101
|
Prenatal and Early Postnatal Odorant Exposure Heightens Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb. eNeuro 2017. [PMID: 28955723 DOI: 10.1523/eneuro.0129‐17.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early sensory experience shapes the anatomy and function of sensory circuits. In the mouse olfactory bulb (OB), prenatal and early postnatal odorant exposure through odorized food (food/odorant pairing) not only increases the volume of activated glomeruli but also increases the number of mitral and tufted cells (M/TCs) connected to activated glomeruli. Given the importance of M/TCs in OB output and in mediating lateral inhibitory networks, increasing the number of M/TCs connected to a single glomerulus may significantly change odorant representation by increasing the total output of that glomerulus and/or by increasing the strength of lateral inhibition mediated by cells connected to the affected glomerulus. Here, we seek to understand the functional impact of this long-term odorant exposure paradigm on the population activity of mitral cells (MCs). We use viral expression of GCaMP6s to examine odor-evoked responses of MCs following prenatal and early postnatal odorant exposure to two dissimilar odorants, methyl salicylate (MS) and hexanal, which are both strong activators of glomeruli on the dorsal OB surface. Previous work suggests that odor familiarity may decrease odor-evoked MC response in rodents. However, we find that early food-based odorant exposure significantly changes MC responses in an unexpected way, resulting in broad increases in the amplitude, number, and reliability of excitatory MC responses across the dorsal OB.
Collapse
|
102
|
Lack of Pattern Separation in Sensory Inputs to the Olfactory Bulb during Perceptual Learning. eNeuro 2017; 4:eN-NWR-0287-17. [PMID: 28955724 PMCID: PMC5615249 DOI: 10.1523/eneuro.0287-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022] Open
Abstract
Recent studies revealed changes in odor representations in the olfactory bulb during active olfactory learning (Chu et al., 2016; Yamada et al., 2017). Specifically, mitral cell ensemble responses to very similar odorant mixtures sparsened and became more distinguishable as mice learned to discriminate the odorants over days (Chu et al., 2016). In this study, we explored whether changes in the sensory inputs to the bulb underlie the observed changes in mitral cell responses. Using two-photon calcium imaging to monitor the odor responses of the olfactory sensory neuron (OSN) axon terminals in the glomeruli of the olfactory bulb during a discrimination task, we found that OSN inputs to the bulb are stable during discrimination learning. During one week of training to discriminate between very similar odorant mixtures in a Go/No-go task, OSN responses did not show significant sparsening, and the responses to the trained similar odorants did not diverge throughout training. These results suggest that the adaptive changes of mitral cell responses during perceptual learning are ensured by mechanisms downstream of OSN input, possibly in local circuits within olfactory bulb.
Collapse
|
103
|
Prenatal and Early Postnatal Odorant Exposure Heightens Odor-Evoked Mitral Cell Responses in the Mouse Olfactory Bulb. eNeuro 2017; 4:eN-NWR-0129-17. [PMID: 28955723 PMCID: PMC5613225 DOI: 10.1523/eneuro.0129-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 01/22/2023] Open
Abstract
Early sensory experience shapes the anatomy and function of sensory circuits. In the mouse olfactory bulb (OB), prenatal and early postnatal odorant exposure through odorized food (food/odorant pairing) not only increases the volume of activated glomeruli but also increases the number of mitral and tufted cells (M/TCs) connected to activated glomeruli. Given the importance of M/TCs in OB output and in mediating lateral inhibitory networks, increasing the number of M/TCs connected to a single glomerulus may significantly change odorant representation by increasing the total output of that glomerulus and/or by increasing the strength of lateral inhibition mediated by cells connected to the affected glomerulus. Here, we seek to understand the functional impact of this long-term odorant exposure paradigm on the population activity of mitral cells (MCs). We use viral expression of GCaMP6s to examine odor-evoked responses of MCs following prenatal and early postnatal odorant exposure to two dissimilar odorants, methyl salicylate (MS) and hexanal, which are both strong activators of glomeruli on the dorsal OB surface. Previous work suggests that odor familiarity may decrease odor-evoked MC response in rodents. However, we find that early food-based odorant exposure significantly changes MC responses in an unexpected way, resulting in broad increases in the amplitude, number, and reliability of excitatory MC responses across the dorsal OB.
Collapse
|
104
|
Spatial Structure of Synchronized Inhibition in the Olfactory Bulb. J Neurosci 2017; 37:10468-10480. [PMID: 28947574 DOI: 10.1523/jneurosci.1004-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/22/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
Olfactory sensory input is detected by receptor neurons in the nose, which then send information to the olfactory bulb (OB), the first brain region for processing olfactory information. Within the OB, many local circuit interneurons, including axonless granule cells, function to facilitate fine odor discrimination. How interneurons interact with principal cells to affect bulbar processing is not known, but the mechanism is likely to be different from that in sensory cortical regions because the OB lacks an obvious topographical organization. Neighboring glomerular columns, representing inputs from different receptor neuron subtypes, typically have different odor tuning. Determining the spatial scale over which interneurons such as granule cells can affect principal cells is a critical step toward understanding how the OB operates. We addressed this question by assaying inhibitory synchrony using intracellular recordings from pairs of principal cells with different intersomatic spacing. We found, in acute rat OB slices from both sexes, that inhibitory synchrony is evident in the spontaneous synaptic input in mitral cells (MCs) separated up to 220 μm (300 μm with elevated K+). At all intersomatic spacing assayed, inhibitory synchrony was dependent on Na+ channels, suggesting that action potentials in granule cells function to coordinate GABA release at relatively distant dendrodendritic synapses formed throughout the dendritic arbor. Our results suggest that individual granule cells are able to influence relatively large groups of MCs and tufted cells belonging to clusters of at least 15 glomerular modules, providing a potential mechanism to integrate signals reflecting a wide variety of odorants.SIGNIFICANCE STATEMENT Inhibitory circuits in the olfactory bulb (OB) play a major role in odor processing, especially during fine odor discrimination. However, how inhibitory networks enhance olfactory function, and over what spatial scale they operate, is not known. Interneurons are potentially able to function on both a highly localized, synapse-specific level and on a larger, spatial scale that encompasses many different glomerular channels. Although recent indirect evidence has suggested a relatively localized functional role for most inhibition in the OB, in the present study, we used paired intracellular recordings to demonstrate directly that inhibitory local circuits operate over large spatial scales by using fast action potentials to link GABA release at many different synaptic contacts formed with principal cells.
Collapse
|
105
|
McIntyre JC, Thiebaud N, McGann JP, Komiyama T, Rothermel M. Neuromodulation in Chemosensory Pathways. Chem Senses 2017; 42:375-379. [PMID: 28379355 DOI: 10.1093/chemse/bjx014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Interactions with the environment depend not only on sensory perception of external stimuli but also on processes of neuromodulation regulated by the internal state of an organism. These processes allow regulation of stimulus detection to match the demands of an organism influenced by its general brain state (satiety, wakefulness/sleep state, attentiveness, arousal, learning etc.). The sense of smell is initiated by sensory neurons located in the nasal cavity that recognize environmental odorants and project axons into the olfactory bulb (OB), where they form synapses with several types of neurons. Modulations of early synaptic circuits are particularly important since these can affect all subsequent processing steps. While the precise mechanisms have not been fully elucidated, work from many labs has demonstrated that the activity of neurons in the OB and cortex can be modulated by different factors inducing specific changes to olfactory information processing. The symposium "Neuromodulation in Chemosensory Pathways" at the International Symposium on Olfaction and Taste (ISOT 2016) highlighted some of the most recent advances in state-dependent network modulations of the mouse olfactory system including modulation mediated by specific neurotransmitters and neuroendocrine molecules, involving pharmacological, electrophysiological, learning, and behavioral approaches.
Collapse
Affiliation(s)
- Jeremy C McIntyre
- Department of Neuroscience and.,Center for Smell and Taste, University of Florida, PO Box 100244, Gainesville, FL 32610, USA
| | - Nicolas Thiebaud
- Department of Biological Science and.,Program in Neuroscience, The Florida State University, Tallahassee, FL 32306, USA
| | - John P McGann
- Behavioral and Systems Neuroscience, Psychology Department, Rutgers University, New Brunswick, NJ, USA
| | - Takaki Komiyama
- Neurobiology Section and Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA and
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|
106
|
Postnatal Odor Exposure Increases the Strength of Interglomerular Lateral Inhibition onto Olfactory Bulb Tufted Cells. J Neurosci 2017; 36:12321-12327. [PMID: 27927952 DOI: 10.1523/jneurosci.1991-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/21/2022] Open
Abstract
Lateral inhibition between pairs of olfactory bulb (OB) mitral cells (MCs) and tufted cells (TCs) is linked to a variety of computations including gain control, decorrelation, and gamma-frequency synchronization. Differential effects of lateral inhibition onto MCs and TCs via distinct lateral inhibitory circuits are one of several recently described circuit-level differences between MCs and TCs that allow each to encode separate olfactory features in parallel. Here, using acute OB slices from mice, we tested whether lateral inhibition is affected by prior odor exposure and if these effects differ between MCs and TCs. We found that early postnatal odor exposure to the M72 glomerulus ligand acetophenone increased the strength of interglomerular lateral inhibition onto TCs, but not MCs, when the M72 glomerulus was stimulated. These increases were specific to exposure to M72 ligands because exposure to hexanal did not increase the strength of M72-mediated lateral inhibition. Therefore, early life experiences may be an important factor shaping TC odor responses. SIGNIFICANCE STATEMENT Responses of olfactory (OB) bulb mitral cells (MCs) and tufted cells (TCs) are known to depend on prior odor exposure, yet the specific circuit mechanisms underlying these experience-dependent changes are unknown. Here, we show that odor exposure alters one particular circuit element, interglomerular lateral inhibition, which is known to be critical for a variety of OB computations. Early postnatal odor exposure to acetophenone, a ligand of M72 olfactory sensory neurons, increases the strength of M72-mediated lateral inhibition onto TCs, but not MCs, that project to nearby glomeruli. These findings add to a growing list of differences between MCs and TCs suggesting that that these two cell types play distinct roles in odor coding.
Collapse
|
107
|
Burton SD. Inhibitory circuits of the mammalian main olfactory bulb. J Neurophysiol 2017; 118:2034-2051. [PMID: 28724776 DOI: 10.1152/jn.00109.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Synaptic inhibition critically influences sensory processing throughout the mammalian brain, including the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system. Decades of research across numerous laboratories have established a central role for granule cells (GCs), the most abundant GABAergic interneuron type in the MOB, in the precise regulation of principal mitral and tufted cell (M/TC) firing rates and synchrony through lateral and recurrent inhibitory mechanisms. In addition to GCs, however, the MOB contains a vast diversity of other GABAergic interneuron types, and recent findings suggest that, while fewer in number, these oft-ignored interneurons are just as important as GCs in shaping odor-evoked M/TC activity. Here I challenge the prevailing centrality of GCs. In this review, I first outline the specific properties of each GABAergic interneuron type in the rodent MOB, with particular emphasis placed on direct interneuron recordings and cell type-selective manipulations. On the basis of these properties, I then critically reevaluate the contribution of GCs vs. other interneuron types to the regulation of odor-evoked M/TC firing rates and synchrony via lateral, recurrent, and other inhibitory mechanisms. This analysis yields a novel model in which multiple interneuron types with distinct abundances, connectivity patterns, and physiologies complement one another to regulate M/TC activity and sensory processing.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; and .,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| |
Collapse
|
108
|
Measuring the olfactory bulb input-output transformation reveals a contribution to the perception of odorant concentration invariance. Nat Commun 2017; 8:81. [PMID: 28724907 PMCID: PMC5517565 DOI: 10.1038/s41467-017-00036-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 05/01/2017] [Indexed: 11/23/2022] Open
Abstract
Humans and other animals can recognize an odorant as the same over a range of odorant concentrations. It remains unclear whether the olfactory bulb, the brain structure that mediates the first stage of olfactory information processing, participates in generating this perceptual concentration invariance. Olfactory bulb glomeruli are regions of neuropil that contain input and output processes: olfactory receptor neuron nerve terminals (input) and mitral/tufted cell apical dendrites (output). Differences between the input and output of a brain region define the function(s) carried out by that region. Here we compare the activity signals from the input and output across a range of odorant concentrations. The output maps maintain a relatively stable representation of odor identity over the tested concentration range, even though the input maps and signals change markedly. These results provide direct evidence that the mammalian olfactory bulb likely participates in generating the perception of concentration invariance of odor quality. Humans and animals recognize an odorant across a range of odorant concentrations, but where in the olfactory processing pathway this invariance is generated is unclear. By measuring and comparing olfactory bulb outputs to inputs, the authors show that the olfactory bulb participates in generating the perception of odorant concentration invariance.
Collapse
|
109
|
Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei. J Neurosci 2017; 36:6820-35. [PMID: 27335411 DOI: 10.1523/jneurosci.3667-15.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 05/17/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Serotonergic neurons in the brainstem raphe nuclei densely innervate the olfactory bulb (OB), where they can modulate the initial representation and processing of olfactory information. Serotonergic modulation of sensory responses among defined OB cell types is poorly characterized in vivo Here, we used cell-type-specific expression of optical reporters to visualize how raphe stimulation alters sensory responses in two classes of GABAergic neurons of the mouse OB glomerular layer, periglomerular (PG) and short axon (SA) cells, as well as mitral/tufted (MT) cells carrying OB output to piriform cortex. In PG and SA cells, brief (1-4 s) raphe stimulation elicited a large increase in the magnitude of responses linked to inhalation of ambient air, as well as modest increases in the magnitude of odorant-evoked responses. Near-identical effects were observed when the optical reporter of glutamatergic transmission iGluSnFR was expressed in PG and SA cells, suggesting enhanced excitatory input to these neurons. In contrast, in MT cells imaged from the dorsal OB, raphe stimulation elicited a strong increase in resting GCaMP fluorescence with only a slight enhancement of inhalation-linked responses to odorant. Finally, optogenetically stimulating raphe serotonergic afferents in the OB had heterogeneous effects on presumptive MT cells recorded extracellularly, with an overall modest increase in resting and odorant-evoked responses during serotonergic afferent stimulation. These results suggest that serotonergic afferents from raphe dynamically modulate olfactory processing through distinct effects on multiple OB targets, and may alter the degree to which OB output is shaped by inhibition during behavior. SIGNIFICANCE STATEMENT Modulation of the circuits that process sensory information can profoundly impact how information about the external world is represented and perceived. This study investigates how the serotonergic system modulates the initial processing of olfactory information by the olfactory bulb, an obligatory relay between sensory neurons and cortex. We find that serotonergic projections from the raphe nuclei to the olfactory bulb dramatically enhance the responses of two classes of inhibitory interneurons to sensory input, that this effect is mediated by increased glutamatergic drive onto these neurons, and that serotonergic afferent activation alters the responses of olfactory bulb output neurons in vivo These results elucidate pathways by which neuromodulatory systems can dynamically regulate brain circuits during behavior.
Collapse
|
110
|
A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors. J Neurosci 2017; 36:8210-27. [PMID: 27488640 DOI: 10.1523/jneurosci.2783-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/04/2016] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Neural circuits that undergo reorganization by newborn interneurons in the olfactory bulb (OB) are necessary for odor detection and discrimination, olfactory memory, and innate olfactory responses, including predator avoidance and sexual behaviors. The OB possesses many interneurons, including various types of granule cells (GCs); however, the contribution that each type of interneuron makes to olfactory behavioral control remains unknown. Here, we investigated the in vivo functional role of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic arborization of 5T4-expressing GCs (5T4 GCs), the level of which is reduced in the OB of 5T4 knock-out (KO) mice. Electrophysiological recordings with acute OB slices indicated that external tufted cells (ETCs) can be divided into two types, bursting and nonbursting. Optogenetic stimulation of 5T4 GCs revealed their connection to both bursting and nonbursting ETCs, as well as to mitral cells (MCs). Interestingly, nonbursting ETCs received fewer inhibitory inputs from GCs in 5T4 KO mice than from those in wild-type (WT) mice, whereas bursting ETCs and MCs received similar inputs in both mice. Furthermore, 5T4 GCs received significantly fewer excitatory inputs in 5T4 KO mice. Remarkably, in olfactory behavior tests, 5T4 KO mice had higher odor detection thresholds than the WT, as well as defects in odor discrimination learning. Therefore, the loss of 5T4 attenuates inhibitory inputs from 5T4 GCs to nonbursting ETCs and excitatory inputs to 5T4 GCs, contributing to disturbances in olfactory behavior. Our novel findings suggest that, among the various types of OB interneurons, the 5T4 GC subtype is required for odor detection and discrimination behaviors. SIGNIFICANCE STATEMENT Neuronal circuits in the brain include glutamatergic principal neurons and GABAergic interneurons. Although the latter is a minority cell type, they are vital for normal brain function because they regulate the activity of principal neurons. If interneuron function is impaired, brain function may be damaged, leading to behavior disorder. The olfactory bulb (OB) possesses various types of interneurons, including granule cells (GCs); however, the contribution that each type of interneuron makes to the control of olfactory behavior remains unknown. Here, we analyzed electrophysiologically and behaviorally the function of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic branching in OB GCs. We found that, among the various types of OB interneuron, the 5T4 GC subtype is required for odor detection and odor discrimination behaviors.
Collapse
|
111
|
Chalk M, Masset P, Deneve S, Gutkin B. Sensory noise predicts divisive reshaping of receptive fields. PLoS Comput Biol 2017; 13:e1005582. [PMID: 28622330 PMCID: PMC5509365 DOI: 10.1371/journal.pcbi.1005582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 07/13/2017] [Accepted: 05/10/2017] [Indexed: 11/18/2022] Open
Abstract
In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics.
Collapse
Affiliation(s)
- Matthew Chalk
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Paul Masset
- Department of Neuroscience, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Watson School of Biological Sciences, Cold Spring Harbor, New York, United States of America
| | - Sophie Deneve
- National Research University Higher School of Economics, Center for Cognition and Decision Making, Moscow, Russia
| | - Boris Gutkin
- National Research University Higher School of Economics, Center for Cognition and Decision Making, Moscow, Russia
- Group for Neural Theory, LNC INSERM U960, Departement d’Etudes Cognitive, Ecole Normale Superieure PSL* University, Paris, France
| |
Collapse
|
112
|
Yamaguchi M. The role of sleep in the plasticity of the olfactory system. Neurosci Res 2017; 118:21-29. [PMID: 28501498 DOI: 10.1016/j.neures.2017.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 11/24/2022]
Abstract
The central olfactory system mediates a variety of odor-guided behaviors crucial for maintenance of animal life. The olfactory neural circuit must be highly plastic to ensure that it responds appropriately to changing odor circumstances. Recent studies have revealed that the processing of odor information changes drastically during waking and sleep and that neural activity during sleep plays pivotal roles in the structural reorganization and functional plasticity of the olfactory system. While olfactory information from the external world is efficiently transferred to the olfactory cortex (OC) via the olfactory bulb (OB) during waking, this information flow is attenuated during slow-wave sleep: during slow-wave sleep, the OC neurons exhibit synchronous discharges without odor input under the entrainment of sharp waves in the local field potential recording. Top-down transfer of sharp-wave activity to the OB during slow-wave sleep promotes structural reorganization of the OB neural circuit. Further, the activity of the OC during sleep is affected by the olfactory experience during prior waking period, and perturbation of the sleep activity disrupts proper olfactory memory. Thus, as is seen also in the hippocampus and neocortex, the neural activities of the olfactory system during sleep likely play essential roles in circuit reorganization and memory consolidation.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kohasu, Okocho, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
113
|
Roland B, Deneux T, Franks KM, Bathellier B, Fleischmann A. Odor identity coding by distributed ensembles of neurons in the mouse olfactory cortex. eLife 2017; 6:e26337. [PMID: 28489003 PMCID: PMC5438249 DOI: 10.7554/elife.26337] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/29/2017] [Indexed: 11/18/2022] Open
Abstract
Olfactory perception and behaviors critically depend on the ability to identify an odor across a wide range of concentrations. Here, we use calcium imaging to determine how odor identity is encoded in olfactory cortex. We find that, despite considerable trial-to-trial variability, odor identity can accurately be decoded from ensembles of co-active neurons that are distributed across piriform cortex without any apparent spatial organization. However, piriform response patterns change substantially over a 100-fold change in odor concentration, apparently degrading the population representation of odor identity. We show that this problem can be resolved by decoding odor identity from a subpopulation of concentration-invariant piriform neurons. These concentration-invariant neurons are overrepresented in piriform cortex but not in olfactory bulb mitral and tufted cells. We therefore propose that distinct perceptual features of odors are encoded in independent subnetworks of neurons in the olfactory cortex.
Collapse
Affiliation(s)
- Benjamin Roland
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Paris, France
| | - Thomas Deneux
- Unité de Neuroscience, Information et Complexité, Centre National de la Recherche Scientifique, UPR 3293, Gif-sur-Yvette, France
| | - Kevin M Franks
- Department of Neurobiology, Duke University, Durham, United States
| | - Brice Bathellier
- Unité de Neuroscience, Information et Complexité, Centre National de la Recherche Scientifique, UPR 3293, Gif-sur-Yvette, France
| | - Alexander Fleischmann
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM U1050, Paris, France
| |
Collapse
|
114
|
Hige T. What can tiny mushrooms in fruit flies tell us about learning and memory? Neurosci Res 2017; 129:8-16. [PMID: 28483586 DOI: 10.1016/j.neures.2017.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 10/19/2022]
Abstract
Nervous systems have evolved to translate external stimuli into appropriate behavioral responses. In an ever-changing environment, flexible adjustment of behavioral choice by experience-dependent learning is essential for the animal's survival. Associative learning is a simple form of learning that is widely observed from worms to humans. To understand the whole process of learning, we need to know how sensory information is represented and transformed in the brain, how it is changed by experience, and how the changes are reflected on motor output. To tackle these questions, studying numerically simple invertebrate nervous systems has a great advantage. In this review, I will feature the Pavlovian olfactory learning in the fruit fly, Drosophila melanogaster. The mushroom body is a key brain area for the olfactory learning in this organism. Recently, comprehensive anatomical information and the genetic tool sets were made available for the mushroom body circuit. This greatly accelerated the physiological understanding of the learning process. One of the key findings was dopamine-induced long-term synaptic plasticity that can alter the representations of stimulus valence. I will mostly focus on the new studies within these few years and discuss what we can possibly learn about the vertebrate systems from this model organism.
Collapse
Affiliation(s)
- Toshihide Hige
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
115
|
Dissociation of Choice Formation and Choice-Correlated Activity in Macaque Visual Cortex. J Neurosci 2017; 37:5195-5203. [PMID: 28432137 DOI: 10.1523/jneurosci.3331-16.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 11/21/2022] Open
Abstract
Responses of individual task-relevant sensory neurons can predict monkeys' trial-by-trial choices in perceptual decision-making tasks. Choice-correlated activity has been interpreted as evidence that the responses of these neurons are causally linked to perceptual judgments. To further test this hypothesis, we studied responses of orientation-selective neurons in V1 and V2 while two macaque monkeys performed a fine orientation discrimination task. Although both animals exhibited a high level of neuronal and behavioral sensitivity, only one exhibited choice-correlated activity. Surprisingly, this correlation was negative: when a neuron fired more vigorously, the animal was less likely to choose the orientation preferred by that neuron. Moreover, choice-correlated activity emerged late in the trial, earlier in V2 than in V1, and was correlated with anticipatory signals. Together, these results suggest that choice-correlated activity in task-relevant sensory neurons can reflect postdecision modulatory signals.SIGNIFICANCE STATEMENT When observers perform a difficult sensory discrimination, repeated presentations of the same stimulus can elicit different perceptual judgments. This behavioral variability often correlates with variability in the activity of sensory neurons driven by the stimulus. Traditionally, this correlation has been interpreted as suggesting a causal link between the activity of sensory neurons and perceptual judgments. More recently, it has been argued that the correlation instead may originate in recurrent input from other brain areas involved in the interpretation of sensory signals. Here, we call both hypotheses into question. We show that choice-related activity in sensory neurons can be highly variable across observers and can reflect modulatory processes that are dissociated from perceptual decision-making.
Collapse
|
116
|
Bolding KA, Franks KM. Complementary codes for odor identity and intensity in olfactory cortex. eLife 2017; 6. [PMID: 28379135 PMCID: PMC5438247 DOI: 10.7554/elife.22630] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/01/2017] [Indexed: 12/18/2022] Open
Abstract
The ability to represent both stimulus identity and intensity is fundamental for perception. Using large-scale population recordings in awake mice, we find distinct coding strategies facilitate non-interfering representations of odor identity and intensity in piriform cortex. Simply knowing which neurons were activated is sufficient to accurately represent odor identity, with no additional information about identity provided by spike time or spike count. Decoding analyses indicate that cortical odor representations are not sparse. Odorant concentration had no systematic effect on spike counts, indicating that rate cannot encode intensity. Instead, odor intensity can be encoded by temporal features of the population response. We found a subpopulation of rapid, largely concentration-invariant responses was followed by another population of responses whose latencies systematically decreased at higher concentrations. Cortical inhibition transforms olfactory bulb output to sharpen these dynamics. Our data therefore reveal complementary coding strategies that can selectively represent distinct features of a stimulus. DOI:http://dx.doi.org/10.7554/eLife.22630.001
Collapse
Affiliation(s)
- Kevin A Bolding
- Department of Neurobiology, Duke University Medical School, Durham, United States
| | - Kevin M Franks
- Department of Neurobiology, Duke University Medical School, Durham, United States
| |
Collapse
|
117
|
Yamada Y, Bhaukaurally K, Madarász TJ, Pouget A, Rodriguez I, Carleton A. Context- and Output Layer-Dependent Long-Term Ensemble Plasticity in a Sensory Circuit. Neuron 2017; 93:1198-1212.e5. [PMID: 28238548 PMCID: PMC5352733 DOI: 10.1016/j.neuron.2017.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 11/10/2016] [Accepted: 02/03/2017] [Indexed: 01/14/2023]
Abstract
Sensory information is translated into ensemble representations by various populations of projection neurons in brain circuits. The dynamics of ensemble representations formed by distinct channels of output neurons in diverse behavioral contexts remains largely unknown. We studied the two output neuron layers in the olfactory bulb (OB), mitral and tufted cells, using chronic two-photon calcium imaging in awake mice. Both output populations displayed similar odor response profiles. During passive sensory experience, both populations showed reorganization of ensemble odor representations yet stable pattern separation across days. Intriguingly, during active odor discrimination learning, mitral but not tufted cells exhibited improved pattern separation, although both populations showed reorganization of ensemble representations. An olfactory circuitry model suggests that cortical feedback on OB interneurons can trigger both forms of plasticity. In conclusion, we show that different OB output layers display unique context-dependent long-term ensemble plasticity, allowing parallel transfer of non-redundant sensory information to downstream centers. Video Abstract
Mitral and tufted cells in the olfactory bulb show similar odor-evoked responses Passive odor experience reorganizes ensemble odor representations in both cell types Associative odor learning specifically improves pattern separation in mitral cells Cortical feedback can trigger both forms of plasticity in a network model
Collapse
Affiliation(s)
- Yoshiyuki Yamada
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland
| | - Khaleel Bhaukaurally
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland
| | - Tamás J Madarász
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland
| | - Alexandre Pouget
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland; Gatsby Computational Neuroscience Unit, University College London, London, W1T 4JG, UK
| | - Ivan Rodriguez
- Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland; Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland.
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland; Geneva Neuroscience Center, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
118
|
Chan W, Singh S, Keshav T, Dewan R, Eberly C, Maurer R, Nunez-Parra A, Araneda RC. Mice Lacking M1 and M3 Muscarinic Acetylcholine Receptors Have Impaired Odor Discrimination and Learning. Front Synaptic Neurosci 2017; 9:4. [PMID: 28210219 PMCID: PMC5288360 DOI: 10.3389/fnsyn.2017.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/18/2017] [Indexed: 01/27/2023] Open
Abstract
The cholinergic system has extensive projections to the olfactory bulb (OB) where it produces a state-dependent regulation of sensory gating. Previous work has shown a prominent role of muscarinic acetylcholine (ACh) receptors (mAChRs) in regulating the excitability of OB neurons, in particular the M1 receptor. Here, we examined the contribution of M1 and M3 mAChR subtypes to olfactory processing using mice with a genetic deletion of these receptors, the M1−/− and the M1/M3−/− knockout (KO) mice. Genetic ablation of the M1 and M3 mAChRs resulted in a significant deficit in odor discrimination of closely related molecules, including stereoisomers. However, the discrimination of dissimilar molecules, social odors (e.g., urine) and novel object recognition was not affected. In addition the KO mice showed impaired learning in an associative odor-learning task, learning to discriminate odors at a slower rate, indicating that both short and long-term memory is disrupted by mAChR dysfunction. Interestingly, the KO mice exhibited decreased olfactory neurogenesis at younger ages, a deficit that was not maintained in older animals. In older animals, the olfactory deficit could be restored by increasing the number of new born neurons integrated into the OB after exposing them to an olfactory enriched environment, suggesting that muscarinic modulation and adult neurogenesis could be two different mechanism used by the olfactory system to improve olfactory processing.
Collapse
Affiliation(s)
- Wilson Chan
- Department of Biology, University of Maryland College Park, MD, USA
| | - Sanmeet Singh
- Department of Biology, University of Maryland College Park, MD, USA
| | - Taj Keshav
- Department of Biology, University of Maryland College Park, MD, USA
| | - Ramita Dewan
- Department of Biology, University of Maryland College Park, MD, USA
| | - Christian Eberly
- Department of Biology, University of Maryland College Park, MD, USA
| | - Robert Maurer
- Department of Biology, University of Maryland College Park, MD, USA
| | - Alexia Nunez-Parra
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile Santiago, Chile
| | | |
Collapse
|
119
|
Behavioral Status Influences the Dependence of Odorant-Induced Change in Firing on Prestimulus Firing Rate. J Neurosci 2017; 37:1835-1852. [PMID: 28093474 DOI: 10.1523/jneurosci.3132-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 11/21/2022] Open
Abstract
The firing rate of the mitral/tufted cells in the olfactory bulb is known to undergo significant trial-to-trial variability and is affected by anesthesia. Here we ask whether odorant-elicited changes in firing rate depend on the rate before application of the stimulus in the awake and anesthetized mouse. We find that prestimulus firing rate varies widely on a trial-to-trial basis and that the stimulus-induced change in firing rate decreases with increasing prestimulus firing rate. Interestingly, this prestimulus firing rate dependence was different when the behavioral task did not involve detecting the valence of the stimulus. Finally, when the animal was learning to associate the odor with reward, the prestimulus firing rate was smaller for false alarms compared with correct rejections, suggesting that intrinsic activity reflects the anticipatory status of the animal. Thus, in this sensory modality, changes in behavioral status alter the intrinsic prestimulus activity, leading to a change in the responsiveness of the second-order neurons. We speculate that this trial-to-trial variability in odorant responses reflects sampling of the massive parallel input by subsets of mitral cells.SIGNIFICANCE STATEMENT The olfactory bulb must deal with processing massive parallel input from ∼1200 distinct olfactory receptors. In contrast, the visual system receives input from a small number of photoreceptors and achieves recognition of complex stimuli by allocating processing for distinct spatial locations to different brain areas. Here we find that the change in firing rate elicited by the odorant in second-order mitral cells depends on the intrinsic activity leading to a change of magnitude in the responsiveness of these neurons relative to this prestimulus activity. Further, we find that prestimulus firing rate is influenced by behavioral status. This suggests that there is top-down modulation allowing downstream brain processing areas to perform dynamic readout of olfactory information.
Collapse
|
120
|
Menegas W, Babayan BM, Uchida N, Watabe-Uchida M. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. eLife 2017; 6. [PMID: 28054919 PMCID: PMC5271609 DOI: 10.7554/elife.21886] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/04/2017] [Indexed: 01/02/2023] Open
Abstract
Dopamine neurons are thought to encode novelty in addition to reward prediction error (the discrepancy between actual and predicted values). In this study, we compared dopamine activity across the striatum using fiber fluorometry in mice. During classical conditioning, we observed opposite dynamics in dopamine axon signals in the ventral striatum (‘VS dopamine’) and the posterior tail of the striatum (‘TS dopamine’). TS dopamine showed strong excitation to novel cues, whereas VS dopamine showed no responses to novel cues until they had been paired with a reward. TS dopamine cue responses decreased over time, depending on what the cue predicted. Additionally, TS dopamine showed excitation to several types of stimuli including rewarding, aversive, and neutral stimuli whereas VS dopamine showed excitation only to reward or reward-predicting cues. Together, these results demonstrate that dopamine novelty signals are localized in TS along with general salience signals, while VS dopamine reliably encodes reward prediction error. DOI:http://dx.doi.org/10.7554/eLife.21886.001 New experiences trigger a variety of responses in animals. We are surprised by, move towards, and often explore new objects. But how does the brain control these responses? Dopamine is a molecule that controls many processes in the brain and plays critical roles in various mental disorders, diseases that affect movement, and addiction. Rewarding experiences (like a glass of cold water on a hot day) can trigger dopamine neurons and studies have also shown that dopamine neurons respond to new experiences. This suggested that novelty may be rewarding in itself, or that novelty may signal the potential for future reward. On the other hand, it may be that different groups of dopamine neurons play different roles in responding to new or rewarding experiences. In 2015, it was reported that dopamine neurons connected to the rear part of an area in the brain called the striatum receive signals from different parts of the brain than most other dopamine neurons. The dopamine neurons connected to this “tail” of the striatum preferentially received inputs from regions involved in arousal rather than reward, suggesting that they may have a unique role and transmit a different type of information. Now, Menegas et al. have shown that dopamine signals in different areas of the striatum separate reward from novelty and other signals in mice. The results demonstrate that new odors activate dopamine neurons projecting to the tail of the striatum, but that this activity fades as the novelty wears off (as the mice learn to associate the odor with a particular outcome). By contrast, dopamine neurons projecting to the front of the striatum do not respond to novelty, but rather become more active as mice learn which odors accompany rewards (only responding to odors that predict reward). The experiments also show that dopamine neurons in the tail of the striatum encode information about the importance of a stimulus. Together, these findings indicate that some of the roles dopamine plays in the brain may not be related to reward, but are instead linked to the novelty and importance of the stimulus. The next challenge will be to find out how the separate reward and novelty signals in dopamine neurons relate to the animals’ behavior. This may help us to better understand dopamine-related psychiatric conditions, such as depression and addiction. DOI:http://dx.doi.org/10.7554/eLife.21886.002
Collapse
Affiliation(s)
- William Menegas
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Benedicte M Babayan
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, United States
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, United States
| |
Collapse
|
121
|
Short SM, Morse TM, McTavish TS, Shepherd GM, Verhagen JV. Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb. PLoS One 2016; 11:e0168356. [PMID: 28005923 PMCID: PMC5179112 DOI: 10.1371/journal.pone.0168356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/30/2016] [Indexed: 12/23/2022] Open
Abstract
Respiration plays an essential role in odor processing. Even in the absence of odors, oscillating excitatory and inhibitory activity in the olfactory bulb synchronizes with respiration, commonly resulting in a burst of action potentials in mammalian mitral/tufted cells (MTCs) during the transition from inhalation to exhalation. This excitation is followed by inhibition that quiets MTC activity in both the glomerular and granule cell layers. Odor processing is hypothesized to be modulated by and may even rely on respiration-mediated activity, yet exactly how respiration influences sensory processing by MTCs is still not well understood. By using optogenetics to stimulate discrete sensory inputs in vivo, it was possible to temporally vary the stimulus to occur at unique phases of each respiration. Single unit recordings obtained from the mitral cell layer were used to map spatiotemporal patterns of glomerular evoked responses that were unique to stimulations occurring during periods of inhalation or exhalation. Sensory evoked activity in MTCs was gated to periods outside phasic respiratory mediated firing, causing net shifts in MTC activity across the cycle. In contrast, odor evoked inhibitory responses appear to be permitted throughout the respiratory cycle. Computational models were used to further explore mechanisms of inhibition that can be activated by respiratory activity and influence MTC responses. In silico results indicate that both periglomerular and granule cell inhibition can be activated by respiration to internally gate sensory responses in the olfactory bulb. Both the respiration rate and strength of lateral connectivity influenced inhibitory mechanisms that gate sensory evoked responses.
Collapse
Affiliation(s)
- Shaina M. Short
- Yale School of Medicine, Dept. Neuroscience, New Haven, CT, United States of America
- The John B. Pierce Laboratory, New Haven, CT, United States of America
- * E-mail:
| | - Thomas M. Morse
- Yale School of Medicine, Dept. Neuroscience, New Haven, CT, United States of America
| | - Thomas S. McTavish
- Yale School of Medicine, Dept. Neuroscience, New Haven, CT, United States of America
| | - Gordon M. Shepherd
- Yale School of Medicine, Dept. Neuroscience, New Haven, CT, United States of America
| | - Justus V. Verhagen
- Yale School of Medicine, Dept. Neuroscience, New Haven, CT, United States of America
- The John B. Pierce Laboratory, New Haven, CT, United States of America
| |
Collapse
|
122
|
A probabilistic approach to demixing odors. Nat Neurosci 2016; 20:98-106. [PMID: 27918530 DOI: 10.1038/nn.4444] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
Abstract
The olfactory system faces a hard problem: on the basis of noisy information from olfactory receptor neurons (the neurons that transduce chemicals to neural activity), it must figure out which odors are present in the world. Odors almost never occur in isolation, and different odors excite overlapping populations of olfactory receptor neurons, so the central challenge of the olfactory system is to demix its input. Because of noise and the large number of possible odors, demixing is fundamentally a probabilistic inference task. We propose that the early olfactory system uses approximate Bayesian inference to solve it. The computations involve a dynamical loop between the olfactory bulb and the piriform cortex, with cortex explaining incoming activity from the olfactory receptor neurons in terms of a mixture of odors. The model is compatible with known anatomy and physiology, including pattern decorrelation, and it performs better than other models at demixing odors.
Collapse
|
123
|
Zhaoping L. Olfactory object recognition, segmentation, adaptation, target seeking, and discrimination by the network of the olfactory bulb and cortex: computational model and experimental data. Curr Opin Behav Sci 2016. [DOI: 10.1016/j.cobeha.2016.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
124
|
Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse. Neural Plast 2016; 2016:9124986. [PMID: 27747107 PMCID: PMC5056313 DOI: 10.1155/2016/9124986] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022] Open
Abstract
During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS) protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts ("single-sniff paradigm") can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and "single-sniff paradigm"-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.
Collapse
|
125
|
Chu MW, Li WL, Komiyama T. Balancing the Robustness and Efficiency of Odor Representations during Learning. Neuron 2016; 92:174-186. [PMID: 27667005 DOI: 10.1016/j.neuron.2016.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/12/2016] [Accepted: 08/23/2016] [Indexed: 01/11/2023]
Abstract
For reliable stimulus identification, sensory codes have to be robust by including redundancy to combat noise, but redundancy sacrifices coding efficiency. To address how experience affects the balance between the robustness and efficiency of sensory codes, we probed odor representations in the mouse olfactory bulb during learning over a week, using longitudinal two-photon calcium imaging. When mice learned to discriminate between two dissimilar odorants, responses of mitral cell ensembles to the two odorants gradually became less discrete, increasing the efficiency. In contrast, when mice learned to discriminate between two very similar odorants, the initially overlapping representations of the two odorants became progressively decorrelated, enhancing the robustness. Qualitatively similar changes were observed when the same odorants were experienced passively, a condition that would induce implicit perceptual learning. These results suggest that experience adjusts odor representations to balance the robustness and efficiency depending on the similarity of the experienced odorants.
Collapse
Affiliation(s)
- Monica W Chu
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wankun L Li
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; JST, PRESTO, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
126
|
Wienisch M, Murthy VN. Population imaging at subcellular resolution supports specific and local inhibition by granule cells in the olfactory bulb. Sci Rep 2016; 6:29308. [PMID: 27388949 PMCID: PMC4937346 DOI: 10.1038/srep29308] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
Information processing in early sensory regions is modulated by a diverse range of inhibitory interneurons. We sought to elucidate the role of olfactory bulb interneurons called granule cells (GCs) in odor processing by imaging the activity of hundreds of these cells simultaneously in mice. Odor responses in GCs were temporally diverse and spatially disperse, with some degree of non-random, modular organization. The overall sparseness of activation of GCs was highly correlated with the extent of glomerular activation by odor stimuli. Increasing concentrations of single odorants led to proportionately larger population activity, but some individual GCs had non-monotonic relations to concentration due to local inhibitory interactions. Individual dendritic segments could sometimes respond independently to odors, revealing their capacity for compartmentalized signaling in vivo. Collectively, the response properties of GCs point to their role in specific and local processing, rather than global operations such as response normalization proposed for other interneurons.
Collapse
Affiliation(s)
- Martin Wienisch
- Center for Brain Science and Department of Molecular &Cellular Biology Harvard University, Cambridge 02138, MA, USA
| | - Venkatesh N Murthy
- Center for Brain Science and Department of Molecular &Cellular Biology Harvard University, Cambridge 02138, MA, USA
| |
Collapse
|
127
|
Geramita MA, Burton SD, Urban NN. Distinct lateral inhibitory circuits drive parallel processing of sensory information in the mammalian olfactory bulb. eLife 2016; 5. [PMID: 27351103 PMCID: PMC4972542 DOI: 10.7554/elife.16039] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/27/2016] [Indexed: 11/13/2022] Open
Abstract
Splitting sensory information into parallel pathways is a common strategy in sensory systems. Yet, how circuits in these parallel pathways are composed to maintain or even enhance the encoding of specific stimulus features is poorly understood. Here, we have investigated the parallel pathways formed by mitral and tufted cells of the olfactory system in mice and characterized the emergence of feature selectivity in these cell types via distinct lateral inhibitory circuits. We find differences in activity-dependent lateral inhibition between mitral and tufted cells that likely reflect newly described differences in the activation of deep and superficial granule cells. Simulations show that these circuit-level differences allow mitral and tufted cells to best discriminate odors in separate concentration ranges, indicating that segregating information about different ranges of stimulus intensity may be an important function of these parallel sensory pathways. DOI:http://dx.doi.org/10.7554/eLife.16039.001 The brain often processes different features of sensory information in separate pathways. For example, when seeing an object, information about colour and movement are processed by separate types of neurons in the eye. These neurons in turn relay information to different sets of brain areas, all of which are active at the same time. Such parallel processing was originally not thought to apply to information about smell. This was because in mammals, the two types of neurons in the brain area that processes smell seemed to play the same role. However, more recent work suggests that there are in fact differences in the responses of these two neuron types (called mitral cells and tufted cells) to odors, suggesting that the brain might use parallel processing for information about smells too. Information travels along neurons in the form of electrical signals, and this activity is often seen in the form of a series of “spikes”. In a process called lateral inhibition, the activity of one neuron can feed back and inhibit the activity of its neighbors. This is important for enhancing contrast; in terms of the sense of smell, lateral inhibition is thought to help distinguish between similar odors. A technique called optogenetics allows the activity of particular neurons in an animal’s brain to be controlled by shining light onto them. Geramita et al. have now used this technique in mice to investigate whether there are differences in how lateral inhibition works in mitral cells and tufted cells. This revealed that lateral inhibition affects mitral cells only when they are spiking at intermediate firing rates, whereas tufted cells are only affected by lateral inhibition when spiking at low firing rates. Using computer simulations, Geramita et al. show that these different responses mean that mitral cells are best at distinguishing similar smells when they are present at high concentrations, while tufted cells are best at distinguishing similar smells that are present at low concentrations. These differences also mean that, by working together, mitral and tufted cells can distinguish between smells much better than either type of neuron on its own. These results demonstrate that, as with the other senses, the brain processes information about smell using parallel pathways. Future work is now needed to see what effect switching off the activity of either mitral or tufted cells will have on an animal’s behavior. DOI:http://dx.doi.org/10.7554/eLife.16039.002
Collapse
Affiliation(s)
- Matthew A Geramita
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States
| | - Shawn D Burton
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States
| | - Nathan N Urban
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
128
|
Control of Mitral/Tufted Cell Output by Selective Inhibition among Olfactory Bulb Glomeruli. Neuron 2016; 91:397-411. [PMID: 27346531 DOI: 10.1016/j.neuron.2016.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 10/30/2015] [Accepted: 05/25/2016] [Indexed: 11/23/2022]
Abstract
Inhibition is fundamental to information processing by neural circuits. In the olfactory bulb (OB), glomeruli are the functional units for odor information coding, but inhibition among glomeruli is poorly characterized. We used two-photon calcium imaging in anesthetized and awake mice to visualize both odorant-evoked excitation and suppression in OB output neurons (mitral and tufted, MT cells). MT cell response polarity mapped uniformly to discrete OB glomeruli, allowing us to analyze how inhibition shapes OB output relative to the glomerular map. Odorants elicited unique patterns of suppression in only a subset of glomeruli in which such suppression could be detected, and excited and suppressed glomeruli were spatially intermingled. Binary mixture experiments revealed that interglomerular inhibition could suppress excitatory mitral cell responses to odorants. These results reveal that inhibitory OB circuits nonlinearly transform odor representations and support a model of selective and nonrandom inhibition among glomerular ensembles.
Collapse
|
129
|
Roland B, Jordan R, Sosulski DL, Diodato A, Fukunaga I, Wickersham I, Franks KM, Schaefer AT, Fleischmann A. Massive normalization of olfactory bulb output in mice with a 'monoclonal nose'. eLife 2016; 5. [PMID: 27177421 PMCID: PMC4919110 DOI: 10.7554/elife.16335] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/12/2016] [Indexed: 12/24/2022] Open
Abstract
Perturbations in neural circuits can provide mechanistic understanding of the neural correlates of behavior. In M71 transgenic mice with a “monoclonal nose”, glomerular input patterns in the olfactory bulb are massively perturbed and olfactory behaviors are altered. To gain insights into how olfactory circuits can process such degraded inputs we characterized odor-evoked responses of olfactory bulb mitral cells and interneurons. Surprisingly, calcium imaging experiments reveal that mitral cell responses in M71 transgenic mice are largely normal, highlighting a remarkable capacity of olfactory circuits to normalize sensory input. In vivo whole cell recordings suggest that feedforward inhibition from olfactory bulb periglomerular cells can mediate this signal normalization. Together, our results identify inhibitory circuits in the olfactory bulb as a mechanistic basis for many of the behavioral phenotypes of mice with a “monoclonal nose” and highlight how substantially degraded odor input can be transformed to yield meaningful olfactory bulb output. DOI:http://dx.doi.org/10.7554/eLife.16335.001 The lining of the nose contains cells called olfactory sensory neurons that allow different smells to be detected. Odor molecules bind to receptor proteins that are embedded in the surface of the olfactory sensory neuron. Different receptors respond to different odors, and the nose contains hundreds of different receptors that work together to distinguish thousands of scents. When an odor molecule binds to a receptor, it triggers a pattern of electrical activity in the neuron. These patterns are the building blocks that allow smells to be recognized and if necessary, acted upon – by not eating food that smells rancid, for example. In 2008, researchers genetically engineered mice so that nearly all of their olfactory sensory neurons produced the same type of olfactory receptor. Unexpectedly, these mice could still detect and discriminate between many different smells. Now, Roland, Jordan, Sosulski et al. – including several of the researchers involved in the 2008 study – have tracked the brain activity of these mice as they were exposed to various smells to find out how they can recognize such a wide range of odors with such a limited repertoire of receptors. The results of the experiments revealed that neural circuits in the brains of these modified mice still produce largely normal patterns of activity in response to an odor. This ‘normalization’ of activity relies on a fine balance between ‘excitatory’ processes that increase the activity of neurons and ‘inhibitory’ processes that reduce this activity. Overall, the findings of Roland, Jordan, Sosulski et al. provide a link between how a scent is detected and how this information is processed in the brain. In future experiments, it will be important to determine how this processing of odor information is influenced by learning and experience to generate the long-lasting odor memories that guide behavior. DOI:http://dx.doi.org/10.7554/eLife.16335.002
Collapse
Affiliation(s)
- Benjamin Roland
- Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR 7241, Paris, France
| | - Rebecca Jordan
- The Francis Crick Institute, London, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Dara L Sosulski
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Assunta Diodato
- Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR 7241, Paris, France
| | - Izumi Fukunaga
- The Francis Crick Institute, London, United Kingdom.,Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Ian Wickersham
- MIT Genetic Neuroengineering Group, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Kevin M Franks
- Department of Neurobiology, Duke University, Durham, United States
| | - Andreas T Schaefer
- The Francis Crick Institute, London, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.,Behavioural Neurophysiology, Max-Planck-Institute for Medical Research, Heidelberg, Germany.,Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Alexander Fleischmann
- Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR 7241, Paris, France
| |
Collapse
|
130
|
Thiebaud N, Llewellyn-Smith IJ, Gribble F, Reimann F, Trapp S, Fadool DA. The incretin hormone glucagon-like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage-dependent potassium channel. J Physiol 2016; 594:2607-28. [PMID: 26931093 PMCID: PMC4865572 DOI: 10.1113/jp272322] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
Key points The gut hormone called glucagon‐like peptide 1 (GLP‐1) is a strong moderator of energy homeostasis and communication between the peripheral organs and the brain. GLP‐1 signalling occurs in the brain; using a newly developed genetic reporter line of mice, we have discovered GLP‐synthesizing cells in the olfactory bulb. GLP‐1 increases the firing frequency of neurons (mitral cells) that encode olfactory information by decreasing activity of voltage‐dependent K channels (Kv1.3). Modifying GLP‐1 levels, either therapeutically or following the ingestion of food, could alter the excitability of neurons in the olfactory bulb in a nutrition or energy state‐dependent manner to influence olfactory detection or metabolic sensing. The results of the present study uncover a new function for an olfactory bulb neuron (deep short axon cells, Cajal cells) that could be capable of modifying mitral cell activity through the release of GLP‐1. This might be of relevance for the action of GLP‐1 mimetics now widely used in the treatment of diabetes.
Abstract The olfactory system is intricately linked with the endocrine system where it may serve as a detector of the internal metabolic state or energy homeostasis in addition to its classical function as a sensor of external olfactory information. The recent development of transgenic mGLU‐yellow fluorescent protein mice that express a genetic reporter under the control of the preproglucagon reporter suggested the presence of the gut hormone, glucagon‐like peptide (GLP‐1), in deep short axon cells (Cajal cells) of the olfactory bulb and its neuromodulatory effect on mitral cell (MC) first‐order neurons. A MC target for the peptide was determined using GLP‐1 receptor binding assays, immunocytochemistry for the receptor and injection of fluorescence‐labelled GLP‐1 analogue exendin‐4. Using patch clamp recording of olfactory bulb slices in the whole‐cell configuration, we report that GLP‐1 and its stable analogue exendin‐4 increase the action potential firing frequency of MCs by decreasing the interburst interval rather than modifying the action potential shape, train length or interspike interval. GLP‐1 decreases Kv1.3 channel contribution to outward currents in voltage clamp recordings as determined by pharmacological blockade of Kv1.3 or utilizing mice with Kv1.3 gene‐targeted deletion as a negative control. Because fluctuations in GLP‐1 concentrations monitored by the olfactory bulb can modify the firing frequency of MCs, olfactory coding could change depending upon nutritional or physiological state. As a regulator of neuronal activity, GLP‐1 or its analogue may comprise a new metabolic factor with a potential therapeutic target in the olfactory bulb (i.e. via intranasal delivery) for controlling an imbalance in energy homeostasis. The gut hormone called glucagon‐like peptide 1 (GLP‐1) is a strong moderator of energy homeostasis and communication between the peripheral organs and the brain. GLP‐1 signalling occurs in the brain; using a newly developed genetic reporter line of mice, we have discovered GLP‐synthesizing cells in the olfactory bulb. GLP‐1 increases the firing frequency of neurons (mitral cells) that encode olfactory information by decreasing activity of voltage‐dependent K channels (Kv1.3). Modifying GLP‐1 levels, either therapeutically or following the ingestion of food, could alter the excitability of neurons in the olfactory bulb in a nutrition or energy state‐dependent manner to influence olfactory detection or metabolic sensing. The results of the present study uncover a new function for an olfactory bulb neuron (deep short axon cells, Cajal cells) that could be capable of modifying mitral cell activity through the release of GLP‐1. This might be of relevance for the action of GLP‐1 mimetics now widely used in the treatment of diabetes.
Collapse
Affiliation(s)
- Nicolas Thiebaud
- The Florida State University, Department of Biological Science, Program in Neuroscience, Tallahassee, FL, USA
| | - Ida J Llewellyn-Smith
- Cardiovascular Medicine and Human Physiology, School of Medicine, Flinders University, Bedford Park, SA, Australia
| | - Fiona Gribble
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK
| | - Frank Reimann
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK.,Department of Surgery and Cancer, Imperial College London, London, UK
| | - Debra Ann Fadool
- The Florida State University, Department of Biological Science, Program in Neuroscience, Tallahassee, FL, USA.,The Florida State University, Institute of Molecular Biophysics, Tallahassee, FL, USA
| |
Collapse
|
131
|
Lehmann A, D'Errico A, Vogel M, Spors H. Spatio-Temporal Characteristics of Inhibition Mapped by Optical Stimulation in Mouse Olfactory Bulb. Front Neural Circuits 2016; 10:15. [PMID: 27047340 PMCID: PMC4801895 DOI: 10.3389/fncir.2016.00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/04/2016] [Indexed: 12/04/2022] Open
Abstract
Mitral and tufted cells (MTCs) of the mammalian olfactory bulb are connected via dendrodendritic synapses with inhibitory interneurons in the external plexiform layer. The range, spatial layout, and temporal properties of inhibitory interactions between MTCs mediated by inhibitory interneurons remain unclear. Therefore, we tested for inhibitory interactions using an optogenetic approach. We optically stimulated MTCs expressing channelrhodopsin-2 in transgenic mice, while recording from individual MTCs in juxtacellular or whole-cell configuration in vivo. We used a spatial noise stimulus for mapping interactions between MTCs belonging to different glomeruli in the dorsal bulb. Analyzing firing responses of MTCs to the stimulus, we did not find robust lateral inhibitory effects that were spatially specific. However, analysis of sub-threshold changes in the membrane potential revealed evidence for inhibitory interactions between MTCs that belong to different glomerular units. These lateral inhibitory effects were short-lived and spatially specific. MTC response maps showed hyperpolarizing effects radially extending over more than five glomerular diameters. The inhibitory maps exhibited non-symmetrical yet distance-dependent characteristics.
Collapse
Affiliation(s)
| | - Anna D'Errico
- Max Planck Institute of Biophysics Frankfurt am Main, Germany
| | - Martin Vogel
- Max Planck Institute of Biophysics Frankfurt am Main, Germany
| | - Hartwig Spors
- Max Planck Institute of BiophysicsFrankfurt am Main, Germany; Department of Neuropediatrics, Justus-Liebig-UniversityGiessen, Germany
| |
Collapse
|
132
|
Zhou S, Migliore M, Yu Y. Odor Experience Facilitates Sparse Representations of New Odors in a Large-Scale Olfactory Bulb Model. Front Neuroanat 2016; 10:10. [PMID: 26903819 PMCID: PMC4749983 DOI: 10.3389/fnana.2016.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/27/2016] [Indexed: 01/11/2023] Open
Abstract
Prior odor experience has a profound effect on the coding of new odor inputs by animals. The olfactory bulb, the first relay of the olfactory pathway, can substantially shape the representations of odor inputs. How prior odor experience affects the representation of new odor inputs in olfactory bulb and its underlying network mechanism are still unclear. Here we carried out a series of simulations based on a large-scale realistic mitral-granule network model and found that prior odor experience not only accelerated formation of the network, but it also significantly strengthened sparse responses in the mitral cell network while decreasing sparse responses in the granule cell network. This modulation of sparse representations may be due to the increase of inhibitory synaptic weights. Correlations among mitral cells within the network and correlations between mitral network responses to different odors decreased gradually when the number of prior training odors was increased, resulting in a greater decorrelation of the bulb representations of input odors. Based on these findings, we conclude that the degree of prior odor experience facilitates degrees of sparse representations of new odors by the mitral cell network through experience-enhanced inhibition mechanism.
Collapse
Affiliation(s)
- Shanglin Zhou
- School of Life Science and The Collaborative Innovation Center for Brain Science, The Center for Computational Systems Biology, Fudan University Shanghai, China
| | - Michele Migliore
- Division of Palermo, Institute of Biophysics, National Research CouncilPalermo, Italy; Department of Neurobiology, Yale University School of MedicineNew Haven, CT, USA
| | - Yuguo Yu
- School of Life Science and The Collaborative Innovation Center for Brain Science, The Center for Computational Systems Biology, Fudan University Shanghai, China
| |
Collapse
|
133
|
Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb. J Neurosci 2016; 35:14103-22. [PMID: 26490853 DOI: 10.1523/jneurosci.0746-15.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE STATEMENT Inhibitory granule cells are involved critically in shaping odor-evoked principal neuron activity in the mammalian olfactory bulb, yet little is known about how sensory input activates granule cells. Here, we show that sensory input to the olfactory bulb evokes a barrage of asynchronous synaptic excitation and highly reliable, short-latency synaptic inhibition onto granule cells via a disynaptic feedforward inhibitory circuit involving deep short-axon cells. Feedforward inhibition attenuates local depolarization within granule cell dendritic branches, interacts with asynchronous excitation to suppress granule cell spike-timing precision, and scales in strength with excitation across different levels of sensory input to normalize granule cell firing rates.
Collapse
|
134
|
Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro 2015; 2:eN-TNC-0018-15. [PMID: 26665163 PMCID: PMC4672204 DOI: 10.1523/eneuro.0018-15.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/21/2022] Open
Abstract
Gamma (∼40-90 Hz) and beta (∼15-40 Hz) oscillations and their associated neuronal assemblies are key features of neuronal sensory processing. However, the mechanisms involved in either their interaction and/or the switch between these different regimes in most sensory systems remain misunderstood. Based on in vivo recordings and biophysical modeling of the mammalian olfactory bulb (OB), we propose a general scheme where OB internal dynamics can sustain two distinct dynamic states, each dominated by either a gamma or a beta regime. The occurrence of each regime depends on the excitability level of granule cells, the main OB interneurons. Using this model framework, we demonstrate how the balance between sensory and centrifugal input can control the switch between the two oscillatory dynamic states. In parallel, we experimentally observed that sensory and centrifugal inputs to the rat OB could both be modulated by the respiration of the animal (2-12 Hz) and each one phase shifted with the other. Implementing this phase shift in our model resulted in the appearance of the alternation between gamma and beta rhythms within a single respiratory cycle, as in our experimental results under urethane anesthesia. Our theoretical framework can also account for the oscillatory frequency response, depending on the odor intensity, the odor valence, and the animal sniffing strategy observed under various conditions including animal freely-moving. Importantly, the results of the present model can form a basis to understand how fast rhythms could be controlled by the slower sensory and centrifugal modulations linked to the respiration. Visual Abstract: See Abstract.
Collapse
|
135
|
Neural Coding of Perceived Odor Intensity. eNeuro 2015; 2:eN-NWR-0083-15. [PMID: 26665162 PMCID: PMC4672005 DOI: 10.1523/eneuro.0083-15.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/25/2015] [Accepted: 10/28/2015] [Indexed: 01/02/2023] Open
Abstract
Stimulus intensity is a fundamental perceptual feature in all sensory systems. In olfaction, perceived odor intensity depends on at least two variables: odor concentration; and duration of the odor exposure or adaptation. To examine how neural activity at early stages of the olfactory system represents features relevant to intensity perception, we studied the responses of mitral/tufted cells (MTCs) while manipulating odor concentration and exposure duration. Temporal profiles of MTC responses to odors changed both as a function of concentration and with adaptation. However, despite the complexity of these responses, adaptation and concentration dependencies behaved similarly. These similarities were visualized by principal component analysis of average population responses and were quantified by discriminant analysis in a trial-by-trial manner. The qualitative functional dependencies of neuronal responses paralleled psychophysics results in humans. We suggest that temporal patterns of MTC responses in the olfactory bulb contribute to an internal perceptual variable: odor intensity.
Collapse
|
136
|
Zhou S, Fan B, Migliore M, Yu Y. Learning experience facilitates sparse coding of new odors in a large-scale olfactory bulb model. BMC Neurosci 2015. [PMCID: PMC4698994 DOI: 10.1186/1471-2202-16-s1-p297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
137
|
Nunes D, Kuner T. Disinhibition of olfactory bulb granule cells accelerates odour discrimination in mice. Nat Commun 2015; 6:8950. [PMID: 26592770 PMCID: PMC4673882 DOI: 10.1038/ncomms9950] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/20/2015] [Indexed: 11/13/2022] Open
Abstract
Granule cells are the dominant cell type of the olfactory bulb inhibiting mitral and tufted cells via dendrodendritic synapses; yet the factors regulating the strength of their inhibitory output, and, therefore, their impact on odour discrimination, remain unknown. Here we show that GABAAR β3-subunits are distributed in a somatodendritic pattern, mostly sparing the large granule cell spines also known as gemmules. Granule cell-selective deletion of β3-subunits nearly abolishes spontaneous and muscimol-induced currents mediated by GABAA receptors in granule cells, yet recurrent inhibition of mitral cells is strongly enhanced. Mice with disinhibited granule cells require less time to discriminate both dissimilar as well as highly similar odourants, while discrimination learning remains unaffected. Hence, granule cells are controlled by an inhibitory drive that in turn tunes mitral cell inhibition. As a consequence, the olfactory bulb inhibitory network adjusts the speed of early sensory processing. How odour discrimination is influenced by granule cells in the olfactory bulb is poorly understood. Here, the authors show that disinhibition of granule cells in mice increases mitral cell inhibition and accelerates odour discrimination time, independent of odour similarity.
Collapse
Affiliation(s)
- Daniel Nunes
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
138
|
Affiliation(s)
- Anne Tromelin
- CNRS; UMR6265 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- INRA; UMR1324 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- Université de Bourgogne; UMR Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
139
|
Kato HK, Gillet SN, Isaacson JS. Flexible Sensory Representations in Auditory Cortex Driven by Behavioral Relevance. Neuron 2015; 88:1027-1039. [PMID: 26586181 DOI: 10.1016/j.neuron.2015.10.024] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/10/2015] [Accepted: 10/13/2015] [Indexed: 11/28/2022]
Abstract
Animals require the ability to ignore sensory stimuli that have no consequence yet respond to the same stimuli when they become useful. However, the brain circuits that govern this flexibility in sensory processing are not well understood. Here we show in mouse primary auditory cortex (A1) that daily passive sound exposure causes a long-lasting reduction in representations of the experienced sound by layer 2/3 pyramidal cells. This habituation arises locally in A1 and involves an enhancement in inhibition and selective upregulation in the activity of somatostatin-expressing inhibitory neurons (SOM cells). Furthermore, when mice engage in sound-guided behavior, pyramidal cell excitatory responses to habituated sounds are enhanced, whereas SOM cell responses are diminished. Together, our results demonstrate the bidirectional modulation of A1 sensory representations and suggest that SOM cells gate cortical information flow based on the behavioral relevance of the stimulus.
Collapse
Affiliation(s)
- Hiroyuki K Kato
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Shea N Gillet
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeffry S Isaacson
- Center for Neural Circuits and Behavior and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
140
|
McGann JP. Associative learning and sensory neuroplasticity: how does it happen and what is it good for? ACTA ACUST UNITED AC 2015; 22:567-76. [PMID: 26472647 PMCID: PMC4749728 DOI: 10.1101/lm.039636.115] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/03/2015] [Indexed: 01/31/2023]
Abstract
Historically, the body's sensory systems have been presumed to provide the brain with raw information about the external environment, which the brain must interpret to select a behavioral response. Consequently, studies of the neurobiology of learning and memory have focused on circuitry that interfaces between sensory inputs and behavioral outputs, such as the amygdala and cerebellum. However, evidence is accumulating that some forms of learning can in fact drive stimulus-specific changes very early in sensory systems, including not only primary sensory cortices but also precortical structures and even the peripheral sensory organs themselves. This review synthesizes evidence across sensory modalities to report emerging themes, including the systems’ flexibility to emphasize different aspects of a sensory stimulus depending on its predictive features and ability of different forms of learning to produce similar plasticity in sensory structures. Potential functions of this learning-induced neuroplasticity are discussed in relation to the challenges faced by sensory systems in changing environments, and evidence for absolute changes in sensory ability is considered. We also emphasize that this plasticity may serve important nonsensory functions, including balancing metabolic load, regulating attentional focus, and facilitating downstream neuroplasticity.
Collapse
Affiliation(s)
- John P McGann
- Behavioral and Systems Neuroscience, Psychology Department, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
141
|
Yu Y, Burton SD, Tripathy SJ, Urban NN. Postnatal development attunes olfactory bulb mitral cells to high-frequency signaling. J Neurophysiol 2015; 114:2830-42. [PMID: 26354312 DOI: 10.1152/jn.00315.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022] Open
Abstract
Mitral cells (MCs) are a major class of principal neurons in the vertebrate olfactory bulb, conveying odor-evoked activity from the peripheral sensory neurons to olfactory cortex. Previous work has described the development of MC morphology and connectivity during the first few weeks of postnatal development. However, little is known about the postnatal development of MC intrinsic biophysical properties. To understand stimulus encoding in the developing olfactory bulb, we have therefore examined the development of MC intrinsic biophysical properties in acute slices from postnatal day (P)7-P35 mice. Across development, we observed systematic changes in passive membrane properties and action potential waveforms consistent with a developmental increase in sodium and potassium conductances. We further observed developmental decreases in hyperpolarization-evoked membrane potential sag and firing regularity, extending recent links between MC sag heterogeneity and firing patterns. We then applied a novel combination of statistical analyses to examine how the evolution of these intrinsic biophysical properties specifically influenced the representation of fluctuating stimuli by MCs. We found that immature MCs responded to frozen fluctuating stimuli with lower firing rates, lower spike-time reliability, and lower between-cell spike-time correlations than more mature MCs. Analysis of spike-triggered averages revealed that these changes in spike timing were driven by a developmental shift from broad integration of inputs to more selective detection of coincident inputs. Consistent with this shift, generalized linear model fits to MC firing responses demonstrated an enhanced encoding of high-frequency stimulus features by mature MCs.
Collapse
Affiliation(s)
- Yiyi Yu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Shawn D Burton
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; and
| | - Shreejoy J Tripathy
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Nathaniel N Urban
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
142
|
Sparse coding and lateral inhibition arising from balanced and unbalanced dendrodendritic excitation and inhibition. J Neurosci 2015; 34:13701-13. [PMID: 25297097 DOI: 10.1523/jneurosci.1834-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The precise mechanism by which synaptic excitation and inhibition interact with each other in odor coding through the unique dendrodendritic synaptic microcircuits present in olfactory bulb is unknown. Here a scaled-up model of the mitral-granule cell network in the rodent olfactory bulb is used to analyze dendrodendritic processing of experimentally determined odor patterns. We found that the interaction between excitation and inhibition is responsible for two fundamental computational mechanisms: (1) a balanced excitation/inhibition in strongly activated mitral cells, leading to a sparse representation of odorant input, and (2) an unbalanced excitation/inhibition (inhibition dominated) in surrounding weakly activated mitral cells, leading to lateral inhibition. These results suggest how both mechanisms can carry information about the input patterns, with optimal level of synaptic excitation and inhibition producing the highest level of sparseness and decorrelation in the network response. The results suggest how the learning process, through the emergent development of these mechanisms, can enhance odor representation of olfactory bulb.
Collapse
|
143
|
Pérez de los Cobos Pallarés F, Stanić D, Farmer D, Dutschmann M, Egger V. An arterially perfused nose-olfactory bulb preparation of the rat. J Neurophysiol 2015; 114:2033-42. [PMID: 26108959 DOI: 10.1152/jn.01048.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
A main feature of the mammalian olfactory bulb network is the presence of various rhythmic activities, in particular, gamma, beta, and theta oscillations, with the latter coupled to the respiratory rhythm. Interactions between those oscillations as well as the spatial distribution of network activation are likely to determine olfactory coding. Here, we describe a novel semi-intact perfused nose-olfactory bulb-brain stem preparation in rats with both a preserved olfactory epithelium and brain stem, which could be particularly suitable for the study of oscillatory activity and spatial odor mapping within the olfactory bulb, in particular, in hitherto inaccessible locations. In the perfused olfactory bulb, we observed robust spontaneous oscillations, mostly in the theta range. Odor application resulted in an increase in oscillatory power in higher frequency ranges, stimulus-locked local field potentials, and excitation or inhibition of individual bulbar neurons, similar to odor responses reported from in vivo recordings. Thus our method constitutes the first viable in situ preparation of a mammalian system that uses airborne odor stimuli and preserves these characteristic features of odor processing. This preparation will allow the use of highly invasive experimental procedures and the application of techniques such as patch-clamp recording, high-resolution imaging, and optogenetics within the entire olfactory bulb.
Collapse
Affiliation(s)
- Fernando Pérez de los Cobos Pallarés
- Systems Neurobiology, Department of Biology II, Ludwigs-Maximilians-Universität München, Martinsried, Germany; Neurophysiology, Zoological Institute, Regensburg University, Regensburg, Germany; and
| | - Davor Stanić
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Victoria, Melbourne, Victoria, Australia
| | - David Farmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Victoria, Melbourne, Victoria, Australia
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Victoria, Melbourne, Victoria, Australia
| | - Veronica Egger
- Systems Neurobiology, Department of Biology II, Ludwigs-Maximilians-Universität München, Martinsried, Germany; Neurophysiology, Zoological Institute, Regensburg University, Regensburg, Germany; and
| |
Collapse
|
144
|
Hamel EJO, Grewe BF, Parker JG, Schnitzer MJ. Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 2015; 86:140-59. [PMID: 25856491 PMCID: PMC5758309 DOI: 10.1016/j.neuron.2015.03.055] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fluorescence imaging offers expanding capabilities for recording neural dynamics in behaving mammals, including the means to monitor hundreds of cells targeted by genetic type or connectivity, track cells over weeks, densely sample neurons within local microcircuits, study cells too inactive to isolate in extracellular electrical recordings, and visualize activity in dendrites, axons, or dendritic spines. We discuss recent progress and future directions for imaging in behaving mammals from a systems engineering perspective, which seeks holistic consideration of fluorescent indicators, optical instrumentation, and computational analyses. Today, genetically encoded indicators of neural Ca(2+) dynamics are widely used, and those of trans-membrane voltage are rapidly improving. Two complementary imaging paradigms involve conventional microscopes for studying head-restrained animals and head-mounted miniature microscopes for imaging in freely behaving animals. Overall, the field has attained sufficient sophistication that increased cooperation between those designing new indicators, light sources, microscopes, and computational analyses would greatly benefit future progress.
Collapse
Affiliation(s)
| | | | - Jones G Parker
- CNC Program, Stanford University, Stanford, CA 94305, USA; Pfizer Neuroscience Research Unit, Cambridge, MA 02139, USA
| | - Mark J Schnitzer
- CNC Program, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
145
|
Monitoring brain activity with protein voltage and calcium sensors. Sci Rep 2015; 5:10212. [PMID: 25970202 PMCID: PMC4429559 DOI: 10.1038/srep10212] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/07/2015] [Indexed: 11/08/2022] Open
Abstract
Understanding the roles of different cell types in the behaviors generated by neural circuits requires protein indicators that report neural activity with high spatio-temporal resolution. Genetically encoded fluorescent protein (FP) voltage sensors, which optically report the electrical activity in distinct cell populations, are, in principle, ideal candidates. Here we demonstrate that the FP voltage sensor ArcLight reports odor-evoked electrical activity in the in vivo mammalian olfactory bulb in single trials using both wide-field and 2-photon imaging. ArcLight resolved fast odorant-responses in individual glomeruli, and distributed odorant responses across a population of glomeruli. Comparisons between ArcLight and the protein calcium sensors GCaMP3 and GCaMP6f revealed that ArcLight had faster temporal kinetics that more clearly distinguished activity elicited by individual odorant inspirations. In contrast, the signals from both GCaMPs were a saturating integral of activity that returned relatively slowly to the baseline. ArcLight enables optical electrophysiology of mammalian neuronal population activity in vivo.
Collapse
|
146
|
Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb. J Neurosci 2015; 35:4319-31. [PMID: 25762678 DOI: 10.1523/jneurosci.2181-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The activity of mitral and tufted cells, the principal neurons of the olfactory bulb, is modulated by several classes of interneurons. Among them, diverse periglomerular (PG) cell types interact with the apical dendrites of mitral and tufted cells inside glomeruli at the first stage of olfactory processing. We used paired recording in olfactory bulb slices and two-photon targeted patch-clamp recording in vivo to characterize the properties and connections of a genetically identified population of PG cells expressing enhanced yellow fluorescent protein (EYFP) under the control of the Kv3.1 potassium channel promoter. Kv3.1-EYFP(+) PG cells are axonless and monoglomerular neurons that constitute ∼30% of all PG cells and include calbindin-expressing neurons. They respond to an olfactory nerve stimulation with a short barrage of excitatory inputs mediated by mitral, tufted, and external tufted cells, and, in turn, they indiscriminately release GABA onto principal neurons. They are activated by even the weakest olfactory nerve input or by the discharge of a single principal neuron in slices and at each respiration cycle in anesthetized mice. They participate in a fast-onset intraglomerular lateral inhibition between principal neurons from the same glomerulus, a circuit that reduces the firing rate and promotes spike timing variability in mitral cells. Recordings in other PG cell subtypes suggest that this pathway predominates in generating glomerular inhibition. Intraglomerular lateral inhibition may play a key role in olfactory processing by reducing the similarity of principal cells discharge in response to the same incoming input.
Collapse
|
147
|
Gilra A, Bhalla US. Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 2015; 10:e0098045. [PMID: 25942312 PMCID: PMC4420273 DOI: 10.1371/journal.pone.0098045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/23/2014] [Indexed: 01/13/2023] Open
Abstract
Stimulus encoding by primary sensory brain areas provides a data-rich context for understanding their circuit mechanisms. The vertebrate olfactory bulb is an input area having unusual two-layer dendro-dendritic connections whose roles in odor coding are unclear. To clarify these roles, we built a detailed compartmental model of the rat olfactory bulb that synthesizes a much wider range of experimental observations on bulbar physiology and response dynamics than has hitherto been modeled. We predict that superficial-layer inhibitory interneurons (periglomerular cells) linearize the input-output transformation of the principal neurons (mitral cells), unlike previous models of contrast enhancement. The linearization is required to replicate observed linear summation of mitral odor responses. Further, in our model, action-potentials back-propagate along lateral dendrites of mitral cells and activate deep-layer inhibitory interneurons (granule cells). Using this, we propose sparse, long-range inhibition between mitral cells, mediated by granule cells, to explain how the respiratory phases of odor responses of sister mitral cells can be sometimes decorrelated as observed, despite receiving similar receptor input. We also rule out some alternative mechanisms. In our mechanism, we predict that a few distant mitral cells receiving input from different receptors, inhibit sister mitral cells differentially, by activating disjoint subsets of granule cells. This differential inhibition is strong enough to decorrelate their firing rate phases, and not merely modulate their spike timing. Thus our well-constrained model suggests novel computational roles for the two most numerous classes of interneurons in the bulb.
Collapse
Affiliation(s)
- Aditya Gilra
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India
| | - Upinder S. Bhalla
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India
- * E-mail:
| |
Collapse
|
148
|
Li A, Gire DH, Restrepo D. ϒ spike-field coherence in a population of olfactory bulb neurons differentiates between odors irrespective of associated outcome. J Neurosci 2015; 35:5808-22. [PMID: 25855190 PMCID: PMC4388934 DOI: 10.1523/jneurosci.4003-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/30/2015] [Accepted: 02/22/2015] [Indexed: 02/06/2023] Open
Abstract
Studies in different sensory systems indicate that short spike patterns within a spike train that carry items of sensory information can be extracted from the overall train by using field potential oscillations as a reference (Kayser et al., 2012; Panzeri et al., 2014). Here we test the hypothesis that the local field potential (LFP) provides the temporal reference frame needed to differentiate between odors regardless of associated outcome. Experiments were performed in the olfactory system of the mouse (Mus musculus) where the mitral/tufted (M/T) cell spike rate develops differential responses to rewarded and unrewarded odors as the animal learns to associate one of the odors with a reward in a go-no go behavioral task. We found that coherence of spiking in M/T cells with the ϒ LFP (65 to 95 Hz) differentiates between odors regardless of the associated behavioral outcome of odor presentation.
Collapse
Affiliation(s)
- Anan Li
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, Colorado 80045, Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou, 221004, China
| | - David H Gire
- Department of Psychology, University of Washington, Seattle, Washington 9819, and
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, Colorado 80045,
| |
Collapse
|
149
|
Nunez-Parra A, Li A, Restrepo D. Coding odor identity and odor value in awake rodents. PROGRESS IN BRAIN RESEARCH 2015; 208:205-22. [PMID: 24767484 DOI: 10.1016/b978-0-444-63350-7.00008-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In the last decade, drastic changes in the understanding of the role of the olfactory bulb and piriform cortex in odor detection have taken place through awake behaving recording in rodents. It is clear that odor responses in mitral and granule cells are strikingly different in the olfactory bulb of anesthetized versus awake animals. In addition, sniff recording has evidenced that mitral cell responses to odors during the sniff can convey information on the odor identity and sniff phase. Moreover, we review studies that show that the mitral cell conveys information on not only odor identity but also whether the odor is rewarded or not (odor value). Finally, we discuss how the substantial increase in awake behaving recording raises questions for future studies.
Collapse
Affiliation(s)
- Alexia Nunez-Parra
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, CO, USA
| | - Anan Li
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, CO, USA; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, China
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Rocky Mountain Taste and Smell Center and Neuroscience Program, University of Colorado Medical School, Aurora, CO, USA.
| |
Collapse
|
150
|
Goltstein PM, Montijn JS, Pennartz CMA. Effects of isoflurane anesthesia on ensemble patterns of Ca2+ activity in mouse v1: reduced direction selectivity independent of increased correlations in cellular activity. PLoS One 2015; 10:e0118277. [PMID: 25706867 PMCID: PMC4338011 DOI: 10.1371/journal.pone.0118277] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 01/04/2015] [Indexed: 01/22/2023] Open
Abstract
Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to 'break' the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity.
Collapse
Affiliation(s)
- Pieter M. Goltstein
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Jorrit S. Montijn
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Cyriel M. A. Pennartz
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|