101
|
Koga S, Murakami A, Soto-Beasley AI, Walton RL, Baker MC, Castanedes-Casey M, Josephs KA, Ross OA, Dickson DW. Diffuse argyrophilic grain disease with TDP-43 proteinopathy and neuronal intermediate filament inclusion disease: FTLD with mixed tau, TDP-43 and FUS pathologies. Acta Neuropathol Commun 2023; 11:109. [PMID: 37415197 PMCID: PMC10324204 DOI: 10.1186/s40478-023-01611-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023] Open
Abstract
Frontotemporal lobar degeneration (FTLD) is a group of disorders characterized by degeneration of the frontal and temporal lobes, leading to progressive decline in language, behavior, and motor function. FTLD can be further subdivided into three main subtypes, FTLD-tau, FTLD-TDP and FTLD-FUS based which of the three major proteins - tau, TDP-43 or FUS - forms pathological inclusions in neurons and glia. In this report, we describe an 87-year-old woman with a 7-year history of cognitive decline, hand tremor and gait problems, who was thought to have Alzheimer's disease. At autopsy, histopathological analysis revealed severe neuronal loss, gliosis and spongiosis in the medial temporal lobe, orbitofrontal cortex, cingulate gyrus, amygdala, basal forebrain, nucleus accumbens, caudate nucleus and anteromedial thalamus. Tau immunohistochemistry showed numerous argyrophilic grains, pretangles, thorn-shaped astrocytes, and ballooned neurons in the amygdala, hippocampus, parahippocampal gyrus, anteromedial thalamus, insular cortex, superior temporal gyrus and cingulate gyrus, consistent with diffuse argyrophilic grain disease (AGD). TDP-43 pathology in the form of small, dense, rounded neuronal cytoplasmic inclusion with few short dystrophic neurites was observed in the limbic regions, superior temporal gyrus, striatum and midbrain. No neuronal intranuclear inclusion was observed. Additionally, FUS-positive inclusions were observed in the dentate gyrus. Compact, eosinophilic intranuclear inclusions, so-called "cherry spots," that were visible on histologic stains were immunopositive for α-internexin. Taken together, the patient had a mixed neurodegenerative disease with features of diffuse AGD, TDP-43 proteinopathy and neuronal intermediate filament inclusion disease. She met criteria for three subtypes of FTLD: FTLD-tau, FTLD-TDP and FTLD-FUS. Her amnestic symptoms that were suggestive of Alzheimer's type dementia are best explained by diffuse AGD and medial temporal TDP-43 proteinopathy, and her motor symptoms were likely explained by neuronal loss and gliosis due to tau pathology in the substantia nigra. This case underscores the importance of considering multiple proteinopathies in the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Aya Murakami
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| |
Collapse
|
102
|
Arnold FJ, Nguyen AD, Bedlack RS, Bennett CL, La Spada AR. Intercellular transmission of pathogenic proteins in ALS: Exploring the pathogenic wave. Neurobiol Dis 2023:106218. [PMID: 37394036 DOI: 10.1016/j.nbd.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
In patients with amyotrophic lateral sclerosis (ALS), disease symptoms and pathology typically spread in a predictable spatiotemporal pattern beginning at a focal site of onset and progressing along defined neuroanatomical tracts. Like other neurodegenerative diseases, ALS is characterized by the presence of protein aggregates in postmortem patient tissue. Cytoplasmic, ubiquitin-positive aggregates of TDP-43 are observed in approximately 97% of sporadic and familial ALS patients, while SOD1 inclusions are likely specific to cases of SOD1-ALS. Additionally, the most common subtype of familial ALS, caused by a hexanucleotide repeat expansion in the first intron of the C9orf72 gene (C9-ALS), is further characterized by the presence of aggregated dipeptide repeat proteins (DPRs). As we will describe, cell-to-cell propagation of these pathological proteins tightly correlates with the contiguous spread of disease. While TDP-43 and SOD1 are capable of seeding protein misfolding and aggregation in a prion-like manner, C9orf72 DPRs appear to induce (and transmit) a 'disease state' more generally. Multiple mechanisms of intercellular transport have been described for all of these proteins, including anterograde and retrograde axonal transport, extracellular vesicle secretion, and macropinocytosis. In addition to neuron-to-neuron transmission, transmission of pathological proteins occurs between neurons and glia. Given that the spread of ALS disease pathology corresponds with the spread of symptoms in patients, the various mechanisms by which ALS-associated protein aggregates propagate through the central nervous system should be closely examined.
Collapse
Affiliation(s)
- F J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - A D Nguyen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - R S Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - C L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - A R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
103
|
Boeynaems S, Dorone Y, Zhuang Y, Shabardina V, Huang G, Marian A, Kim G, Sanyal A, Şen NE, Griffith D, Docampo R, Lasker K, Ruiz-Trillo I, Auburger G, Holehouse AS, Kabashi E, Lin Y, Gitler AD. Poly(A)-binding protein is an ataxin-2 chaperone that regulates biomolecular condensates. Mol Cell 2023; 83:2020-2034.e6. [PMID: 37295429 PMCID: PMC10318123 DOI: 10.1016/j.molcel.2023.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Diseases (CAND), Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Yanniv Dorone
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yanrong Zhuang
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Victoria Shabardina
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003 Catalonia, Spain
| | - Guozhong Huang
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Anca Marian
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France
| | - Garam Kim
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anushka Sanyal
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nesli-Ece Şen
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Daniel Griffith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Roberto Docampo
- Department of Cellular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Keren Lasker
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, Barcelona 08003 Catalonia, Spain; ICREA, Passeig Lluís Companys 23, Barcelona 08010 Catalonia, Spain
| | - Georg Auburger
- Experimental Neurology, Goethe-University Hospital, 60590 Frankfurt, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Edor Kabashi
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France
| | - Yi Lin
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aaron D Gitler
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
104
|
Tseng YJ, Malik I, Deng X, Krans A, Jansen-West K, Tank EM, Gomez NB, Sher R, Petrucelli L, Barmada SJ, Todd PK. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544135. [PMID: 37333274 PMCID: PMC10274811 DOI: 10.1101/2023.06.07.544135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1, and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter cell lines and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation - suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation elongation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiexiong Deng
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, 48109, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Nicolas B. Gomez
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roger Sher
- Department of Neurobiology and Behavior & Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Sami J. Barmada
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter K. Todd
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, 48109, USA
| |
Collapse
|
105
|
Nelson AT, Cicardi ME, Markandaiah SS, Han J, Philp N, Welebob E, Haeusler AR, Pasinelli P, Manfredi G, Kawamata H, Trotti D. Glucose Hypometabolism Prompts RAN Translation and Exacerbates C9orf72-related ALS/FTD Phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544100. [PMID: 37333144 PMCID: PMC10274806 DOI: 10.1101/2023.06.07.544100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The most prevalent genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia is a (GGGGCC)n nucleotide repeat expansion (NRE) occurring in the first intron of the C9orf72 gene (C9). Brain glucose hypometabolism is consistently observed in C9-NRE carriers, even at pre-symptomatic stages, although its potential role in disease pathogenesis is unknown. Here, we identified alterations in glucose metabolic pathways and ATP levels in the brain of asymptomatic C9-BAC mice. We found that, through activation of the GCN2 kinase, glucose hypometabolism drives the production of dipeptide repeat proteins (DPRs), impairs the survival of C9 patient-derived neurons, and triggers motor dysfunction in C9-BAC mice. We also found that one of the arginine-rich DPRs (PR) can directly contribute to glucose metabolism and metabolic stress. These findings provide a mechanistic link between energy imbalances and C9-ALS/FTD pathogenesis and support a feedforward loop model that opens several opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- A T Nelson
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - M E Cicardi
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - S S Markandaiah
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - J Han
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - N Philp
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - E Welebob
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A R Haeusler
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - P Pasinelli
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - G Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, New York 10065, USA
| | - H Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, New York 10065, USA
| | - D Trotti
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
106
|
Lorenzini I, Alsop E, Levy J, Gittings LM, Lall D, Rabichow BE, Moore S, Pevey R, Bustos LM, Burciu C, Bhatia D, Singer M, Saul J, McQuade A, Tzioras M, Mota TA, Logemann A, Rose J, Almeida S, Gao FB, Marks M, Donnelly CJ, Hutchins E, Hung ST, Ichida J, Bowser R, Spires-Jones T, Blurton-Jones M, Gendron TF, Baloh RH, Van Keuren-Jensen K, Sattler R. Moderate intrinsic phenotypic alterations in C9orf72 ALS/FTD iPSC-microglia despite the presence of C9orf72 pathological features. Front Cell Neurosci 2023; 17:1179796. [PMID: 37346371 PMCID: PMC10279871 DOI: 10.3389/fncel.2023.1179796] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
While motor and cortical neurons are affected in C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), it remains largely unknown if and how non-neuronal cells induce or exacerbate neuronal damage. We differentiated C9orf72 ALS/FTD patient-derived induced pluripotent stem cells into microglia (iPSC-MG) and examined their intrinsic phenotypes. Similar to iPSC motor neurons, C9orf72 ALS/FTD iPSC-MG mono-cultures form G4C2 repeat RNA foci, exhibit reduced C9orf72 protein levels, and generate dipeptide repeat proteins. Healthy control and C9orf72 ALS/FTD iPSC-MG equally express microglial specific genes and perform microglial functions, including inflammatory cytokine release and phagocytosis of extracellular cargos, such as synthetic amyloid beta peptides and healthy human brain synaptoneurosomes. RNA sequencing analysis revealed select transcriptional changes of genes associated with neuroinflammation or neurodegeneration in diseased microglia yet no significant differentially expressed microglial-enriched genes. Moderate molecular and functional differences were observed in C9orf72 iPSC-MG mono-cultures despite the presence of C9orf72 pathological features suggesting that a diseased microenvironment may be required to induce phenotypic changes in microglial cells and the associated neuronal dysfunction seen in C9orf72 ALS/FTD neurodegeneration.
Collapse
Affiliation(s)
- Ileana Lorenzini
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Eric Alsop
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Jennifer Levy
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Lauren M. Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Deepti Lall
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, CA, United States
| | - Benjamin E. Rabichow
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Stephen Moore
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Ryan Pevey
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Lynette M. Bustos
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Camelia Burciu
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Divya Bhatia
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Mo Singer
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Justin Saul
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Amanda McQuade
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Makis Tzioras
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Discovery Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas A. Mota
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, CA, United States
| | - Amber Logemann
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Jamie Rose
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Discovery Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Michael Marks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher J. Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Shu-Ting Hung
- Department of Stem Cell Biology Regenerative Medicine, USC Keck School of Medicine, Los Angeles, CA, United States
| | - Justin Ichida
- Department of Stem Cell Biology Regenerative Medicine, USC Keck School of Medicine, Los Angeles, CA, United States
| | - Robert Bowser
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Tara Spires-Jones
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Discovery Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Robert H. Baloh
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
107
|
Themistokleous C, Bagnoli E, Parulekar R, M K Muqit M. Role of autophagy pathway in Parkinson's disease and related Genetic Neurological disorders. J Mol Biol 2023:168144. [PMID: 37182812 DOI: 10.1016/j.jmb.2023.168144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The elucidation of the function of the PINK1 protein kinase and Parkin ubiquitin E3 ligase in the elimination of damaged mitochondria by autophagy (mitophagy) has provided unprecedented understanding of the mechanistic pathways underlying Parkinson's disease (PD). We provide a comprehensive overview of the general importance of autophagy in Parkinson's disease and related disorders of the central nervous system. This reveals a critical link between autophagy and neurodegenerative and neurodevelopmental disorders and suggests that strategies to modulate mitophagy may have greater relevance in the CNS beyond PD.
Collapse
Affiliation(s)
- Christos Themistokleous
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Enrico Bagnoli
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ramaa Parulekar
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK of Dundee, Dundee, DD1 5EH, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
108
|
Lee S, Jun YW, Linares GR, Butler B, Yuva-Adyemir Y, Moore J, Krishnan G, Ruiz-Juarez B, Santana M, Pons M, Silverman N, Weng Z, Ichida JK, Gao FB. Downregulation of Hsp90 and the antimicrobial peptide Mtk suppresses poly(GR)-induced neurotoxicity in C9ORF72-ALS/FTD. Neuron 2023; 111:1381-1390.e6. [PMID: 36931278 PMCID: PMC10264157 DOI: 10.1016/j.neuron.2023.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/22/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
GGGGCC repeat expansion in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat RNAs can be translated into dipeptide repeat proteins, including poly(GR), whose mechanisms of action remain largely unknown. In an RNA-seq analysis of poly(GR) toxicity in Drosophila, we found that several antimicrobial peptide genes, such as metchnikowin (Mtk), and heat shock protein (Hsp) genes are activated. Mtk knockdown in the fly eye or in all neurons suppresses poly(GR) neurotoxicity. These findings suggest a cell-autonomous role of Mtk in neurodegeneration. Hsp90 knockdown partially rescues both poly(GR) toxicity in flies and neurodegeneration in C9ORF72 motor neurons derived from induced pluripotent stem cells (iPSCs). Topoisomerase II (TopoII) regulates poly(GR)-induced upregulation of Hsp90 and Mtk. TopoII knockdown also suppresses poly(GR) toxicity in Drosophila and improves survival of C9ORF72 iPSC-derived motor neurons. These results suggest potential novel therapeutic targets for C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Soojin Lee
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Yong-Woo Jun
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Gabriel R Linares
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Brandon Butler
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Yeliz Yuva-Adyemir
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jill Moore
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Gopinath Krishnan
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Bryan Ruiz-Juarez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Manuel Santana
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Marine Pons
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Fen-Biao Gao
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
109
|
Kinger S, Dubey AR, Kumar P, Jagtap YA, Choudhary A, Kumar A, Prajapati VK, Dhiman R, Mishra A. Molecular Chaperones' Potential against Defective Proteostasis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12091302. [PMID: 37174703 PMCID: PMC10177248 DOI: 10.3390/cells12091302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuronal degenerative condition identified via a build-up of mutant aberrantly folded proteins. The native folding of polypeptides is mediated by molecular chaperones, preventing their pathogenic aggregation. The mutant protein expression in ALS is linked with the entrapment and depletion of chaperone capacity. The lack of a thorough understanding of chaperones' involvement in ALS pathogenesis presents a significant challenge in its treatment. Here, we review how the accumulation of the ALS-linked mutant FUS, TDP-43, SOD1, and C9orf72 proteins damage cellular homeostasis mechanisms leading to neuronal loss. Further, we discuss how the HSP70 and DNAJ family co-chaperones can act as potential targets for reducing misfolded protein accumulation in ALS. Moreover, small HSPB1 and HSPB8 chaperones can facilitate neuroprotection and prevent stress-associated misfolded protein apoptosis. Designing therapeutic strategies by pharmacologically enhancing cellular chaperone capacity to reduce mutant protein proteotoxic effects on ALS pathomechanisms can be a considerable advancement. Chaperones, apart from directly interacting with misfolded proteins for protein quality control, can also filter their toxicity by initiating strong stress-response pathways, modulating transcriptional expression profiles, and promoting anti-apoptotic functions. Overall, these properties of chaperones make them an attractive target for gaining fundamental insights into misfolded protein disorders and designing more effective therapies against ALS.
Collapse
Affiliation(s)
- Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
110
|
Sahana TG, Chase KJ, Liu F, Lloyd TE, Rossoll W, Zhang K. c-Jun N-Terminal Kinase Promotes Stress Granule Assembly and Neurodegeneration in C9orf72-Mediated ALS and FTD. J Neurosci 2023; 43:3186-3197. [PMID: 37015810 PMCID: PMC10146492 DOI: 10.1523/jneurosci.1799-22.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
Stress granules are the RNA/protein condensates assembled in the cells under stress. They play a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, how stress granule assembly is regulated and related to ALS/FTD pathomechanism is incompletely understood. Mutation in the C9orf72 gene is the most common cause of familial ALS and FTD. C9orf72 mutation causes the formation of toxic dipeptide repeats. Here we show that the two most toxic dipeptide repeats [i.e., poly(GR) and poly(PR)] activate c-Jun N-terminal kinase (JNK) via the ER-stress response protein IRE1 using fly and cellular models. Further, we show that activated JNK promotes stress granule assembly in cells by promoting the transcription of one of the key stress granule proteins (i.e., G3BP1) by inducing histone 3 phosphorylation. Consistent with these findings, JNK or IRE1 inhibition reduced stress granule formation, histone 3 phosphorylation, G3BP1 mRNA and protein levels, and neurotoxicity in cells overexpressing poly(GR) and poly(PR) or neurons derived from male and female C9ALS/FTD patient-induced pluripotent stem cells. Our findings connect ER stress, JNK activation, and stress granule assembly in a unified pathway contributing to C9ALS/FTD neurodegeneration.SIGNIFICANCE STATEMENT c-Jun N-terminal kinase (JNK) is a part of the mitogen-activated protein kinase pathway, which is the central node for the integration of multiple stress signals. Cells are under constant stress in neurodegenerative diseases, and how these cells respond to stress signals is a critical factor in determining their survival or death. Previous studies have shown JNK as a major contributor to cellular apoptosis. Here, we show the role of JNK in stress granule assembly. We identify that toxic dipeptide repeats produced in ALS/FTD conditions activate JNK. The activated JNK in the nucleus can induce histone modifications which increase G3BP1 expression, thus promoting stress granule assembly and neurodegeneration.
Collapse
Affiliation(s)
| | | | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida 32224
| | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida 32224
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Gaoke Innovation Centre A16, Guangqiao Rd, Shenzhen, Guangdong 518107, China, P.R
| |
Collapse
|
111
|
Liu Y, Huang Z, Liu H, Ji Z, Arora A, Cai D, Wang H, Liu M, Simko EAJ, Zhang Y, Periz G, Liu Z, Wang J. DNA-initiated epigenetic cascades driven by C9orf72 hexanucleotide repeat. Neuron 2023; 111:1205-1221.e9. [PMID: 36822200 PMCID: PMC10121948 DOI: 10.1016/j.neuron.2023.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/08/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
The C9orf72 hexanucleotide repeat expansion (HRE) is the most frequent genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we describe the pathogenic cascades that are initiated by the C9orf72 HRE DNA. The HRE DNA binds to its protein partner DAXX and promotes its liquid-liquid phase separation, which is capable of reorganizing genomic structures. An HRE-dependent nuclear accumulation of DAXX drives chromatin remodeling and epigenetic changes such as histone hypermethylation and hypoacetylation in patient cells. While regulating global gene expression, DAXX plays a key role in the suppression of basal and stress-inducible expression of C9orf72 via chromatin remodeling and epigenetic modifications of the promoter of the major C9orf72 transcript. Downregulation of DAXX or rebalancing the epigenetic modifications mitigates the stress-induced sensitivity of C9orf72-patient-derived motor neurons. These studies reveal a C9orf72 HRE DNA-dependent regulatory mechanism for both local and genomic architectural changes in the relevant diseases.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zhiyuan Huang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Honghe Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Amit Arora
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Danfeng Cai
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hongjin Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mingming Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eric A J Simko
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yanjun Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Goran Periz
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
112
|
Parameswaran J, Zhang N, Braems E, Tilahun K, Pant DC, Yin K, Asress S, Heeren K, Banerjee A, Davis E, Schwartz SL, Conn GL, Bassell GJ, Van Den Bosch L, Jiang J. Antisense, but not sense, repeat expanded RNAs activate PKR/eIF2α-dependent ISR in C9ORF72 FTD/ALS. eLife 2023; 12:e85902. [PMID: 37073950 PMCID: PMC10188109 DOI: 10.7554/elife.85902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023] Open
Abstract
GGGGCC (G4C2) hexanucleotide repeat expansion in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). The repeat is bidirectionally transcribed and confers gain of toxicity. However, the underlying toxic species is debated, and it is not clear whether antisense CCCCGG (C4G2) repeat expanded RNAs contribute to disease pathogenesis. Our study shows that C9ORF72 antisense C4G2 repeat expanded RNAs trigger the activation of the PKR/eIF2α-dependent integrated stress response independent of dipeptide repeat proteins that are produced through repeat-associated non-AUG-initiated translation, leading to global translation inhibition and stress granule formation. Reducing PKR levels with either siRNA or morpholinos mitigates integrated stress response and toxicity caused by the antisense C4G2 RNAs in cell lines, primary neurons, and zebrafish. Increased phosphorylation of PKR/eIF2α is also observed in the frontal cortex of C9ORF72 FTD/ALS patients. Finally, only antisense C4G2, but not sense G4C2, repeat expanded RNAs robustly activate the PKR/eIF2α pathway and induce aberrant stress granule formation. These results provide a mechanism by which antisense C4G2 repeat expanded RNAs elicit neuronal toxicity in FTD/ALS caused by C9ORF72 repeat expansions.
Collapse
Affiliation(s)
| | - Nancy Zhang
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Elke Braems
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | | | - Devesh C Pant
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Keena Yin
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Seneshaw Asress
- Department of Neurology, Emory UniversityAtlantaUnited States
| | - Kara Heeren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | - Anwesha Banerjee
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Emma Davis
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | | | - Graeme L Conn
- Department of Biochemistry, Emory UniversityAtlantaUnited States
| | - Gary J Bassell
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus GasthuisbergLeuvenBelgium
| | - Jie Jiang
- Department of Cell Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
113
|
Dane TL, Gill AL, Vieira FG, Denton KR. Reduced C9orf72 expression exacerbates polyGR toxicity in patient iPSC-derived motor neurons and a Type I protein arginine methyltransferase inhibitor reduces that toxicity. Front Cell Neurosci 2023; 17:1134090. [PMID: 37138766 PMCID: PMC10149854 DOI: 10.3389/fncel.2023.1134090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Intronic repeat expansions in the C9orf72 gene are the most frequent known single genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These repeat expansions are believed to result in both loss-of-function and toxic gain-of-function. Gain-of-function results in the production of toxic arginine-rich dipeptide repeat proteins (DPRs), namely polyGR and polyPR. Small-molecule inhibition of Type I protein arginine methyltransferases (PRMTs) has been shown to protect against toxicity resulting from polyGR and polyPR challenge in NSC-34 cells and primary mouse-derived spinal neurons, but the effect in human motor neurons (MNs) has not yet been explored. Methods To study this, we generated a panel of C9orf72 homozygous and hemizygous knockout iPSCs to examine the contribution of C9orf72 loss-of-function toward disease pathogenesis. We differentiated these iPSCs into spinal motor neurons (sMNs). Results We found that reduced levels of C9orf72 exacerbate polyGR15 toxicity in a dose-dependent manner. Type I PRMT inhibition was able to partially rescue polyGR15 toxicity in both wild-type and C9orf72-expanded sMNs. Discussion This study explores the interplay of loss-of-function and gain-of-function toxicity in C9orf72 ALS. It also implicates type I PRMT inhibitors as a possible modulator of polyGR toxicity.
Collapse
|
114
|
Vanecek AS, Mojsilovic-Petrovic J, Kalb RG, Tepe JJ. Enhanced Degradation of Mutant C9ORF72-Derived Toxic Dipeptide Repeat Proteins by 20S Proteasome Activation Results in Restoration of Proteostasis and Neuroprotection. ACS Chem Neurosci 2023. [PMID: 37015082 DOI: 10.1021/acschemneuro.2c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023] Open
Abstract
A hexanucleotide repeat expansion (HRE) in an intron of gene C9ORF72 is the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. The HRE undergoes noncanonical translation (repeat-associated non-ATG translation) resulting in the production of five distinct dipeptide repeat (DPR) proteins. Arginine-rich DPR proteins have shown to be toxic to motor neurons, and recent evidence suggests this toxicity is associated with disruption of the ubiquitin-proteasome system. Here we report the ability of known 20S proteasome activator, TCH-165, to enhance the degradation of DPR proteins and overcome proteasome impairment evoked by DPR proteins. Furthermore, the 20S activator protects rodent motor neurons from DPR protein toxicity and restores proteostasis in cortical neuron cultures. This study suggests that 20S proteasome enhancers may have therapeutic efficacy in neurodegenerative diseases that display proteostasis defects.
Collapse
Affiliation(s)
- Allison S Vanecek
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jelena Mojsilovic-Petrovic
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Robert G Kalb
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Jetze J Tepe
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
115
|
Ketabforoush AHME, Chegini R, Barati S, Tahmasebi F, Moghisseh B, Joghataei MT, Faghihi F, Azedi F. Masitinib: The promising actor in the next season of the Amyotrophic Lateral Sclerosis treatment series. Biomed Pharmacother 2023; 160:114378. [PMID: 36774721 DOI: 10.1016/j.biopha.2023.114378] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with high mortality and morbidity rate affecting both upper and lower motor neurons (MN). Muscle force reduction, behavioral change, pseudobulbar affect, and cognitive impairments are the most common clinical manifestations of ALS. The main physiopathology of ALS is still unclear, though several studies have identified that oxidative stress, proteinopathies, glutamate-related excitotoxicity, microglial activation, and neuroinflammation may be involved in the pathogenesis of ALS. From 1995 until October 2022, only Riluzole, Dextromethorphan Hydrobromide (DH) with Quinidine sulfate (Q), Edaravone, and Sodium phenylbutyrate with Taurursodiol (PB/TUDCO) have achieved FDA approval for ALS treatment. Despite the use of these four approved agents, the survival rate and quality of life of ALS patients are still low. Thus, finding novel treatments for ALS patients is an urgent requirement. Masitinib, a tyrosine kinase inhibitor, emphasizes the neuro-inflammatory activity of ALS by targeting macrophages, mast cells, and microglia cells. Masitinib downregulates the proinflammatory cytokines, indirectly reduces inflammation, and induces neuroprotection. Also, it was effective in phase 2/3 and 3 clinical trials (CTs) by increasing overall survival and delaying motor, bulbar, and respiratory function deterioration. This review describes the pathophysiology of ALS, focusing on Masitinib's mechanism of action and explaining why Masitinib could be a promising actor in the treatment of ALS patients. In addition, Masitinib CTs and other competitor drugs in phase 3 CTs have been discussed.
Collapse
Affiliation(s)
| | - Rojin Chegini
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bardia Moghisseh
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
116
|
Van't Spijker HM, Almeida S. How villains are made: The translation of dipeptide repeat proteins in C9ORF72-ALS/FTD. Gene 2023; 858:147167. [PMID: 36621656 PMCID: PMC9928902 DOI: 10.1016/j.gene.2023.147167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
A hexanucleotide repeat expansion in the C9ORF72 gene is the most common genetic alteration associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These neurodegenerative diseases share genetic, clinical and pathological features. The mutation in C9ORF72 appears to drive pathogenesis through a combination of loss of C9ORF72 normal function and gain of toxic effects due to the repeat expansion, which result in aggregation prone expanded RNAs and dipeptide repeat (DPR) proteins. Studies in cellular and animal models indicate that the DPR proteins are the more toxic species. Thus, a large body of research has focused on identifying the cellular pathways most directly impacted by these toxic proteins, with the goal of characterizing disease pathogenesis and nominating potential targets for therapeutic development. The preventative block of the production of the toxic proteins before they can cause harm is a second strategy of intense focus. Despite the considerable amount of effort dedicated to this prophylactic approach, it is still unclear how the DPR proteins are synthesized from RNAs harboring repeat expansions. In this review, we summarize our current knowledge of the specific protein translation mechanisms shown to account for the synthesis of DPR proteins. We will then discuss how enhanced understanding of the composition of these toxic effectors could help in refining disease mechanisms, and paving the way to identify and design effective prophylactic therapies for C9ORF72 ALS-FTD.
Collapse
Affiliation(s)
- Heleen M Van't Spijker
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
117
|
Wright SE, Todd PK. Native functions of short tandem repeats. eLife 2023; 12:e84043. [PMID: 36940239 PMCID: PMC10027321 DOI: 10.7554/elife.84043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/08/2023] [Indexed: 03/21/2023] Open
Abstract
Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.
Collapse
Affiliation(s)
- Shannon E Wright
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- Neuroscience Graduate Program, University of Michigan–Ann ArborAnn ArborUnited States
- Department of Neuroscience, Picower InstituteCambridgeUnited States
| | - Peter K Todd
- Department of Neurology, University of Michigan–Ann ArborAnn ArborUnited States
- VA Ann Arbor Healthcare SystemAnn ArborUnited States
| |
Collapse
|
118
|
Oliveira NAS, Pinho BR, Oliveira JMA. Swimming against ALS: How to model disease in zebrafish for pathophysiological and behavioral studies. Neurosci Biobehav Rev 2023; 148:105138. [PMID: 36933816 DOI: 10.1016/j.neubiorev.2023.105138] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that leads to progressive disability and motor impairment. Existing therapies provide modest improvements in patient survival, raising a need for new treatments for ALS. Zebrafish is a promising model animal for translational and fundamental research in ALS - it is an experimentally tractable vertebrate, with high homology to humans and an ample experimental toolbox. These advantages allow high-throughput study of behavioral and pathophysiological phenotypes. The last decade saw an increased interest in modelling ALS in zebrafish, leading to the current abundance and variety of available methods and models. Additionally, the rise of gene editing techniques and toxin combination studies has created novel opportunities for ALS studies in zebrafish. In this review, we address the relevance of zebrafish as a model animal for ALS studies, the strategies for model induction and key phenotypical evaluation. Furthermore, we discuss established and emerging zebrafish models of ALS, analyzing their validity, including their potential for drug testing, and highlighting research opportunities in this area.
Collapse
Affiliation(s)
- Nuno A S Oliveira
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Brígida R Pinho
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal
| | - Jorge M A Oliveira
- UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Mitochondria and Neurobiology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, Department of Drug Sciences, Pharmacology Lab, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
119
|
Mehta PR, Brown AL, Ward ME, Fratta P. The era of cryptic exons: implications for ALS-FTD. Mol Neurodegener 2023; 18:16. [PMID: 36922834 PMCID: PMC10018954 DOI: 10.1186/s13024-023-00608-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
TDP-43 is an RNA-binding protein with a crucial nuclear role in splicing, and mislocalises from the nucleus to the cytoplasm in a range of neurodegenerative disorders. TDP-43 proteinopathy spans a spectrum of incurable, heterogeneous, and increasingly prevalent neurodegenerative diseases, including the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum and a significant fraction of Alzheimer's disease. There are currently no directed disease-modifying therapies for TDP-43 proteinopathies, and no way to distinguish who is affected before death. It is now clear that TDP-43 proteinopathy leads to a number of molecular changes, including the de-repression and inclusion of cryptic exons. Importantly, some of these cryptic exons lead to the loss of crucial neuronal proteins and have been shown to be key pathogenic players in disease pathogenesis (e.g., STMN2), as well as being able to modify disease progression (e.g., UNC13A). Thus, these aberrant splicing events make promising novel therapeutic targets to restore functional gene expression. Moreover, presence of these cryptic exons is highly specific to patients and areas of the brain affected by TDP-43 proteinopathy, offering the potential to develop biomarkers for early detection and stratification of patients. In summary, the discovery of cryptic exons gives hope for novel diagnostics and therapeutics on the horizon for TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Puja R Mehta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL Queen Square Motor Neuron Disease Centre, London, WC1N 3BG, UK
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL Queen Square Motor Neuron Disease Centre, London, WC1N 3BG, UK
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL Queen Square Motor Neuron Disease Centre, London, WC1N 3BG, UK.
| |
Collapse
|
120
|
Jagtap YA, Kumar P, Kinger S, Dubey AR, Choudhary A, Gutti RK, Singh S, Jha HC, Poluri KM, Mishra A. Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front Cell Dev Biol 2023; 11:1146564. [PMID: 36968195 PMCID: PMC10036443 DOI: 10.3389/fcell.2023.1146564] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
The disturbance in mitochondrial functions and homeostasis are the major features of neuron degenerative conditions, like Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Alzheimer’s disease, along with protein misfolding. The aberrantly folded proteins are known to link with impaired mitochondrial pathways, further contributing to disease pathogenesis. Despite their central significance, the implications of mitochondrial homeostasis disruption on other organelles and cellular processes remain insufficiently explored. Here, we have reviewed the dysfunction in mitochondrial physiology, under neuron degenerating conditions. The disease misfolded proteins impact quality control mechanisms of mitochondria, such as fission, fusion, mitophagy, and proteasomal clearance, to the detriment of neuron. The adversely affected mitochondrial functional roles, like oxidative phosphorylation, calcium homeostasis, and biomolecule synthesis as well as its axes and contacts with endoplasmic reticulum and lysosomes are also discussed. Mitochondria sense and respond to multiple cytotoxic stress to make cell adapt and survive, though chronic dysfunction leads to cell death. Mitochondria and their proteins can be candidates for biomarkers and therapeutic targets. Investigation of internetworking between mitochondria and neurodegeneration proteins can enhance our holistic understanding of such conditions and help in designing more targeted therapies.
Collapse
Affiliation(s)
- Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sarika Singh
- Division of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Simrol, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
- *Correspondence: Amit Mishra,
| |
Collapse
|
121
|
Boeynaems S, Ma XR, Yeong V, Ginell GM, Chen JH, Blum JA, Nakayama L, Sanyal A, Briner A, Haver DV, Pauwels J, Ekman A, Schmidt HB, Sundararajan K, Porta L, Lasker K, Larabell C, Hayashi MAF, Kundaje A, Impens F, Obermeyer A, Holehouse AS, Gitler AD. Aberrant phase separation is a common killing strategy of positively charged peptides in biology and human disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531820. [PMID: 36945394 PMCID: PMC10028949 DOI: 10.1101/2023.03.09.531820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Positively charged repeat peptides are emerging as key players in neurodegenerative diseases. These peptides can perturb diverse cellular pathways but a unifying framework for how such promiscuous toxicity arises has remained elusive. We used mass-spectrometry-based proteomics to define the protein targets of these neurotoxic peptides and found that they all share similar sequence features that drive their aberrant condensation with these positively charged peptides. We trained a machine learning algorithm to detect such sequence features and unexpectedly discovered that this mode of toxicity is not limited to human repeat expansion disorders but has evolved countless times across the tree of life in the form of cationic antimicrobial and venom peptides. We demonstrate that an excess in positive charge is necessary and sufficient for this killer activity, which we name 'polycation poisoning'. These findings reveal an ancient and conserved mechanism and inform ways to leverage its design rules for new generations of bioactive peptides.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Alzheimer’s and Neurodegenerative Diseases (CAND), Texas Children’s Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - X. Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivian Yeong
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Jacob A. Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anushka Sanyal
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adam Briner
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - H. Broder Schmidt
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kousik Sundararajan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucas Porta
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Keren Lasker
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Carolyn Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Mirian A. F. Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, 9000 Gent, Belgium
- VIB Proteomics Core, 9000 Gent, Belgium
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Allie Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Biomolecular Condensates, Washington University in St Louis, St. Louis, MO 63130, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
122
|
Martella N, Pensabene D, Varone M, Colardo M, Petraroia M, Sergio W, La Rosa P, Moreno S, Segatto M. Bromodomain and Extra-Terminal Proteins in Brain Physiology and Pathology: BET-ing on Epigenetic Regulation. Biomedicines 2023; 11:biomedicines11030750. [PMID: 36979729 PMCID: PMC10045827 DOI: 10.3390/biomedicines11030750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes.
Collapse
Affiliation(s)
- Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - William Sergio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence:
| |
Collapse
|
123
|
He L, Liang J, Chen C, Chen J, Shen Y, Sun S, Li L. C9orf72 functions in the nucleus to regulate DNA damage repair. Cell Death Differ 2023; 30:716-730. [PMID: 36220889 PMCID: PMC9984389 DOI: 10.1038/s41418-022-01074-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 03/05/2023] Open
Abstract
The hexanucleotide GGGGCC repeat expansion in the intronic region of C9orf72 is the most common cause of Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The repeat expansion-generated toxic RNAs and dipeptide repeats (DPRs) including poly-GR, have been extensively studied in neurodegeneration. Moreover, haploinsufficiency has been implicated as a disease mechanism but how C9orf72 deficiency contributes to neurodegeneration remains unclear. Here, we show that C9orf72 deficiency exacerbates poly-GR-induced neurodegeneration by attenuating non-homologous end joining (NHEJ) repair. We demonstrate that C9orf72 localizes to the nucleus and is rapidly recruited to sites of DNA damage. C9orf72 deficiency resulted in impaired NHEJ repair through attenuated DNA-PK complex assembly and DNA damage response (DDR) signaling. In mouse models, we found that C9orf72 deficiency exacerbated poly-GR-induced neuronal loss, glial activation, and neuromuscular deficits. Furthermore, DNA damage accumulated in C9orf72-deficient neurons that expressed poly-GR, resulting in excessive activation of PARP-1. PARP-1 inhibition rescued neuronal death in cultured neurons treated with poly-GR peptides. Together, our results support a pathological mechanism where C9orf72 haploinsufficiency synergizes with poly-GR-induced DNA double-strand breaks to exacerbate the accumulation of DNA damage and PARP-1 overactivation in C9orf72 ALS/FTD patients.
Collapse
Affiliation(s)
- Liying He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Liang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaonan Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jijun Chen
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, China
| | - Yihui Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuangshuang Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
124
|
Li Y, Geng J, Rimal S, Wang H, Liu X, Lu B, Li S. The mTORC2/AKT/VCP axis is associated with quality control of the stalled translation of poly(GR) dipeptide repeats in C9-ALS/FTD. J Biol Chem 2023; 299:102995. [PMID: 36764521 PMCID: PMC10011831 DOI: 10.1016/j.jbc.2023.102995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Expansion of G4C2 hexanucleotide repeats in the chromosome 9 ORF 72 (C9ORF72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (C9-ALS/FTD). Dipeptide repeats generated by unconventional translation, especially the R-containing poly(GR), have been implicated in C9-ALS/FTD pathogenesis. Mutations in other genes, including TAR DNA-binding protein 43 KD (TDP-43), fused in sarcoma (FUS), and valosin-containing protein, have also been linked to ALS/FTD, and upregulation of amyloid precursor protein (APP) is observed at the early stage of ALS and FTD. Fundamental questions remain as to the relationships between these ALS/FTD genes and whether they converge on similar cellular pathways. Here, using biochemical, cell biological, and genetic analyses in Drosophila disease models, patient-derived fibroblasts, and mammalian cell culture, we show that mechanistic target of rapamycin complex 2 (mTORC2)/AKT signaling is activated by APP, TDP-43, and FUS and that mTORC2/AKT and its downstream target valosin-containing protein mediate the effect of APP, TDP-43, and FUS on the quality control of C9-ALS/FTD-associated poly(GR) translation. We also find that poly(GR) expression results in reduction of global translation and that the coexpression of APP, TDP-43, and FUS results in further reduction of global translation, presumably through the GCN2/eIF2α-integrated stress response pathway. Together, our results implicate mTORC2/AKT signaling and GCN2/eIF2α-integrated stress response as common signaling pathways underlying ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Yu Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ji Geng
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Haochuan Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiangguo Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
| | - Shuangxi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
125
|
Shu X, Wei C, Tu WY, Zhong K, Qi S, Wang A, Bai L, Zhang SX, Luo B, Xu ZZ, Zhang K, Shen C. Negative regulation of TREM2-mediated C9orf72 poly-GA clearance by the NLRP3 inflammasome. Cell Rep 2023; 42:112133. [PMID: 36800288 DOI: 10.1016/j.celrep.2023.112133] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/30/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Expansion of the hexanucleotide repeat GGGGCC in the C9orf72 gene is the most common genetic factor in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Poly-Gly-Ala (poly-GA), one form of dipeptide repeat proteins (DPRs) produced from GGGGCC repeats, tends to form neurotoxic protein aggregates. The C9orf72 GGGGCC repeats and microglial receptor TREM2 are both associated with risk for ALS/FTD. The role and regulation of TREM2 in C9orf72-ALS/FTD remain unclear. Here, we found that poly-GA proteins activate the microglial NLRP3 inflammasome to produce interleukin-1β (IL-1β), which promotes ADAM10-mediated TREM2 cleavage and inhibits phagocytosis of poly-GA. The inhibitor of the NLRP3 inflammasome, MCC950, reduces the TREM2 cleavage and poly-GA aggregates, resulting in the alleviation of motor deficits in poly-GA mice. Our study identifies a crosstalk between NLRP3 and TREM2 signaling, suggesting that targeting the NLRP3 inflammasome to sustain TREM2 is an approach to treat C9orf72-ALS/FTD.
Collapse
Affiliation(s)
- Xiaoqiu Shu
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Chen Wei
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Wen-Yo Tu
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Keke Zhong
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Shuyuan Qi
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Ailian Wang
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Lei Bai
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Shan-Xin Zhang
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Benyan Luo
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Zhen-Zhong Xu
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Kejing Zhang
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China.
| | - Chengyong Shen
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
126
|
Al-Turki TM, Griffith JD. Mammalian telomeric RNA (TERRA) can be translated to produce valine-arginine and glycine-leucine dipeptide repeat proteins. Proc Natl Acad Sci U S A 2023; 120:e2221529120. [PMID: 36812212 PMCID: PMC9992779 DOI: 10.1073/pnas.2221529120] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Mammalian telomeres consist of (TTAGGG)n repeats. Transcription of the C-rich strand generates a G-rich RNA, termed TERRA, containing G-quadruplex structures. Recent discoveries in several human nucleotide expansion diseases revealed that RNA transcripts containing long runs of 3 or 6 nt repeats which can form strong secondary structures can be translated in multiple frames to generate homopeptide or dipeptide repeat proteins, and multiple studies have shown them to be toxic in cells. We noted that the translation of TERRA would generate two dipeptide repeat proteins: highly charged repeating valine-arginine (VR)n and hydrophobic repeating glycine-leucine (GL)n. Here, we synthesized these two dipeptide proteins and raised polyclonal antibodies to VR. The VR dipeptide repeat protein binds nucleic acids and localizes strongly to replication forks in DNA. Both VR and GL form long 8-nm filaments with amyloid properties. Using labeled antibodies to VR and laser scanning confocal microscopy, threefold to fourfold more VR was observed in the nuclei of cell lines containing elevated TERRA as contrasted to a primary fibroblast line. Induction of telomere dysfunction via knockdown of TRF2 led to higher amounts of VR, and alteration of TERRA levels using a locked nucleic acid (LNA) GapmeR led to large nuclear VR aggregates. These observations suggest that telomeres, in particular in cells undergoing telomere dysfunction, may express two dipeptide repeat proteins with potentially strong biological properties.
Collapse
Affiliation(s)
- Taghreed M. Al-Turki
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-7295
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-7295
| | - Jack D. Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-7295
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599-7295
| |
Collapse
|
127
|
McGoldrick P, Lau A, You Z, Durcan TM, Robertson J. Loss of C9orf72 perturbs the Ran-GTPase gradient and nucleocytoplasmic transport, generating compositionally diverse Importin β-1 granules. Cell Rep 2023; 42:112134. [PMID: 36821445 DOI: 10.1016/j.celrep.2023.112134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/05/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
A hexanucleotide (GGGGCC)n repeat expansion in C9orf72 causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), eliciting toxic effects through generation of RNA foci, dipeptide repeat proteins, and/or loss of C9orf72 protein. Defects in nucleocytoplasmic transport (NCT) have been implicated as a pathogenic mechanism underlying repeat expansion toxicity. Here, we show that loss of C9orf72 disrupts the Ran-GTPase gradient and NCT in vitro and in vivo. NCT disruption in vivo is enhanced by the presence of compositionally different types of cytoplasmic Importin β-1 granule that exhibit neuronal subtype-specific properties. We show that the abundance of Importin β-1 granules is increased in the context of C9orf72 deficiency, disrupting interactions with nuclear pore complex proteins. These granules appear to associate with the nuclear envelope and are co-immunoreactive for G3BP1 and K63-ubiquitin. These findings link loss of C9orf72 protein to gain-of-function mechanisms and defects in NCT.
Collapse
Affiliation(s)
- Philip McGoldrick
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.
| | - Agnes Lau
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Zhipeng You
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, 27 King's College Circle, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
128
|
de Oliveira LMG, Carreira RB, de Oliveira JVR, do Nascimento RP, Dos Santos Souza C, Trias E, da Silva VDA, Costa SL. Impact of Plant-Derived Compounds on Amyotrophic Lateral Sclerosis. Neurotox Res 2023; 41:288-309. [PMID: 36800114 DOI: 10.1007/s12640-022-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 12/29/2022] [Indexed: 02/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by progressive motor neuron degeneration. Conventional therapies for ALS are based on treatment of symptoms, and the disease remains incurable. Molecular mechanisms are unclear, but studies have been pointing to involvement of glia, neuroinflammation, oxidative stress, and glutamate excitotoxicity as a key factor. Nowadays, we have few treatments for this disease that only delays death, but also does not stop the neurodegenerative process. These treatments are based on glutamate blockage (riluzole), tyrosine kinase inhibition (masitinib), and antioxidant activity (edaravone). In the past few years, plant-derived compounds have been studied for neurodegenerative disorder therapies based on neuroprotection and glial cell response. In this review, we describe mechanisms of action of natural compounds associated with neuroprotective effects, and the possibilities for new therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Lucas Matheus Gonçalves de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Rodrigo Barreto Carreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Juciele Valeria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | | | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| |
Collapse
|
129
|
Cicardi ME, Hallgren JH, Mawrie D, Krishnamurthy K, Markandaiah SS, Nelson AT, Kankate V, Anderson EN, Pasinelli P, Pandey UB, Eischen CM, Trotti D. C9orf72 poly(PR) mediated neurodegeneration is associated with nucleolar stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528809. [PMID: 36824930 PMCID: PMC9949130 DOI: 10.1101/2023.02.16.528809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ALS/FTD-linked intronic hexanucleotide repeat expansion in the C9orf72 gene is translated into dipeptide repeat proteins, among which poly-proline-arginine (PR) displays the most aggressive neurotoxicity in-vitro and in-vivo . PR partitions to the nucleus when expressed in neurons and other cell types. Using drosophila and primary rat cortical neurons as model systems, we show that by lessening the nuclear accumulation of PR, we can drastically reduce its neurotoxicity. PR accumulates in the nucleolus, a site of ribosome biogenesis that regulates the cell stress response. We examined the effect of nucleolar PR accumulation and its impact on nucleolar function and determined that PR caused nucleolar stress and increased levels of the transcription factor p53. Downregulating p53 levels, either genetically or by increasing its degradation, also prevented PR-mediated neurotoxic phenotypes both in in-vitro and in-vivo models. We also investigated whether PR could cause the senescence phenotype in neurons but observed none. Instead, we found induction of apoptosis via caspase-3 activation. In summary, we uncovered the central role of nucleolar dysfunction upon PR expression in the context of C9-ALS/FTD.
Collapse
Affiliation(s)
- M E Cicardi
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - J H Hallgren
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - D Mawrie
- Center for Neuroscience, Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - K Krishnamurthy
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - S S Markandaiah
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - A T Nelson
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - V Kankate
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - E N Anderson
- Center for Neuroscience, Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - P Pasinelli
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - U B Pandey
- Center for Neuroscience, Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - C M Eischen
- Sidney Kimmel Cancer Center, Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - D Trotti
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
130
|
Bustos LM, Sattler R. The Fault in Our Astrocytes - cause or casualties of proteinopathies of ALS/FTD and other neurodegenerative diseases? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1075805. [PMID: 39165755 PMCID: PMC11334001 DOI: 10.3389/fmmed.2023.1075805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/08/2023] [Indexed: 08/22/2024]
Abstract
Many neurodegenerative diseases fall under the class of diseases known as proteinopathies, whereby the structure and localization of specific proteins become abnormal. These aberrant proteins often aggregate within cells which disrupts vital homeostatic and physiological cellular functions, ultimately contributing to cell death. Although neurodegenerative disease research is typically neurocentric, there is evidence supporting the role of non-neuronal cells in the pathogenesis of these diseases. Specifically, the role of astrocytes in neurodegenerative diseases has been an ever-growing area of research. Astrocytes are one of the most abundant cell types in the central nervous system (CNS) and provide an array of essential homeostatic functions that are disrupted in neurodegenerative diseases. Astrocytes can exhibit a reactive phenotype that is characterized by molecular changes, as well as changes in morphology and function. In neurodegenerative diseases, there is potential for reactive astrocytes to assume a loss-of-function phenotype in homeostatic operations such as synapse maintenance, neuronal metabolic support, and facilitating cell-cell communication between glia and neurons. They are also able to concurrently exhibit gain-of-function phenotypes that can be destructive to neural networks and the astrocytes themselves. Additionally, astrocytes have been shown to internalize disease related proteins and reflect similar or exacerbated pathology that has been observed in neurons. Here, we review several major neurodegenerative disease-specific proteinopathies and what is known about their presence in astrocytes and the potential consequences regarding cell and non-cell autonomous neurodegeneration.
Collapse
Affiliation(s)
- Lynette M. Bustos
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Barrow Neurological Institute, Phoenix, AZ, United States
| | - Rita Sattler
- Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
131
|
Reyes CJF, Asano K. Between Order and Chaos: Understanding the Mechanism and Pathology of RAN Translation. Biol Pharm Bull 2023; 46:139-146. [PMID: 36724941 DOI: 10.1248/bpb.b22-00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Repeat-associated non-AUG (RAN) translation is a pathogenic mechanism in which repetitive sequences are translated into aggregation-prone proteins from multiple reading frames, even without a canonical AUG start codon. Since its discovery in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1), RAN translation is now known to occur in the context of 12 disease-linked repeat expansions. This review discusses recent advances in understanding the regulatory mechanisms controlling RAN translation and its contribution to the pathophysiology of repeat expansion diseases. We discuss the key findings in the context of Fragile X Tremor Ataxia Syndrome (FXTAS), a neurodegenerative disorder caused by a CGG repeat expansion in the 5' untranslated region of FMR1.
Collapse
Affiliation(s)
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University.,Laboratory of Translational Control Study, Graduate School of Integrated Sciences for Life, Hiroshima University.,Hiroshima Research Center for Healthy Aging, Hiroshima University
| |
Collapse
|
132
|
Teng Y, Zhu M, Qiu Z. G-Quadruplexes in Repeat Expansion Disorders. Int J Mol Sci 2023; 24:ijms24032375. [PMID: 36768697 PMCID: PMC9916761 DOI: 10.3390/ijms24032375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
The repeat expansions are the main genetic cause of various neurodegeneration diseases. More than ten kinds of repeat sequences with different lengths, locations, and structures have been confirmed in the past two decades. G-rich repeat sequences, such as CGG and GGGGCC, are reported to form functional G-quadruplexes, participating in many important bioprocesses. In this review, we conducted an overview concerning the contribution of G-quadruplex in repeat expansion disorders and summarized related mechanisms in current pathological studies, including the increasing genetic instabilities in replication and transcription, the toxic RNA foci formed in neurons, and the loss/gain function of proteins and peptides. Furthermore, novel strategies targeting G-quadruplex repeats were developed based on the understanding of disease mechanism. Small molecules and proteins binding to G-quadruplex in repeat expansions were investigated to protect neurons from dysfunction and delay the progression of neurodegeneration. In addition, the effects of environment on the stability of G-quadruplex were discussed, which might be critical factors in the pathological study of repeat expansion disorders.
Collapse
|
133
|
Mori K, Gotoh S, Uozumi R, Miyamoto T, Akamine S, Kawabe Y, Tagami S, Ikeda M. RNA Dysmetabolism and Repeat-Associated Non-AUG Translation in Frontotemporal Lobar Degeneration/Amyotrophic Lateral Sclerosis due to C9orf72 Hexanucleotide Repeat Expansion. JMA J 2023; 6:9-15. [PMID: 36793534 PMCID: PMC9908409 DOI: 10.31662/jmaj.2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 01/12/2023] Open
Abstract
Neuropathological features of frontotemporal dementia and amyotrophic lateral sclerosis (ALS) due to C9orf72 GGGGCC hexanucleotide repeat expansion include early dipeptide repeats, repeat RNA foci, and subsequent TDP-43 pathologies. Since the discovery of the repeat expansion, extensive studies have elucidated the disease mechanism of how the repeat causes neurodegeneration. In this review, we summarize our current understanding of abnormal repeat RNA metabolism and repeat-associated non-AUG translation in C9orf72 frontotemporal lobar degeneration/ALS. For repeat RNA metabolism, we specifically focus on the role of hnRNPA3, the repeat RNA-binding protein, and the EXOSC10/RNA exosome complex, an intracellular RNA-degrading enzyme. In addition, the mechanism of repeat-associated non-AUG translation inhibition via TMPyP4, a repeat RNA-binding compound, is discussed.
Collapse
Affiliation(s)
- Kohji Mori
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shiho Gotoh
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryota Uozumi
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tesshin Miyamoto
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan,Seifukai Ibaraki Hospital, Ibaraki, Japan
| | - Shoshin Akamine
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Kawabe
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan,Minoh Neuropsychiatric Hospital, Minoh, Japan
| | - Shinji Tagami
- Minoh Neuropsychiatric Hospital, Minoh, Japan,Health and Counseling Center, Osaka University, Toyonaka, Japan
| | - Manabu Ikeda
- Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
134
|
Lopez-Herdoiza MB, Bauché S, Wilmet B, Le Duigou C, Roussel D, Frah M, Béal J, Devely G, Boluda S, Frick P, Bouteiller D, Dussaud S, Guillabert P, Dalle C, Dumont M, Camuzat A, Saracino D, Barbier M, Bruneteau G, Ravassard P, Neumann M, Nicole S, Le Ber I, Brice A, Latouche M. C9ORF72 knockdown triggers FTD-like symptoms and cell pathology in mice. Front Cell Neurosci 2023; 17:1155929. [PMID: 37138765 PMCID: PMC10149765 DOI: 10.3389/fncel.2023.1155929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
The GGGGCC intronic repeat expansion within C9ORF72 is the most common genetic cause of ALS and FTD. This mutation results in toxic gain of function through accumulation of expanded RNA foci and aggregation of abnormally translated dipeptide repeat proteins, as well as loss of function due to impaired transcription of C9ORF72. A number of in vivo and in vitro models of gain and loss of function effects have suggested that both mechanisms synergize to cause the disease. However, the contribution of the loss of function mechanism remains poorly understood. We have generated C9ORF72 knockdown mice to mimic C9-FTD/ALS patients haploinsufficiency and investigate the role of this loss of function in the pathogenesis. We found that decreasing C9ORF72 leads to anomalies of the autophagy/lysosomal pathway, cytoplasmic accumulation of TDP-43 and decreased synaptic density in the cortex. Knockdown mice also developed FTD-like behavioral deficits and mild motor phenotypes at a later stage. These findings show that C9ORF72 partial loss of function contributes to the damaging events leading to C9-FTD/ALS.
Collapse
Affiliation(s)
| | - Stephanie Bauché
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Baptiste Wilmet
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Caroline Le Duigou
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Delphine Roussel
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Magali Frah
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Jonas Béal
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Gabin Devely
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Susana Boluda
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Petra Frick
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Sébastien Dussaud
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Pierre Guillabert
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Carine Dalle
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Magali Dumont
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Agnes Camuzat
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Dario Saracino
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Mathieu Barbier
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Gaelle Bruneteau
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | | | - Manuela Neumann
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Sophie Nicole
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Isabelle Le Ber
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Alexis Brice
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
| | - Morwena Latouche
- Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, Paris, France
- EPHE, Neurogenetics Team, PSL Research University, Paris, France
- *Correspondence: Morwena Latouche,
| |
Collapse
|
135
|
Charpignon ML, Vakulenko-Lagun B, Zheng B, Magdamo C, Su B, Evans K, Rodriguez S, Sokolov A, Boswell S, Sheu YH, Somai M, Middleton L, Hyman BT, Betensky RA, Finkelstein SN, Welsch RE, Tzoulaki I, Blacker D, Das S, Albers MW. Causal inference in medical records and complementary systems pharmacology for metformin drug repurposing towards dementia. Nat Commun 2022; 13:7652. [PMID: 36496454 PMCID: PMC9741618 DOI: 10.1038/s41467-022-35157-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Metformin, a diabetes drug with anti-aging cellular responses, has complex actions that may alter dementia onset. Mixed results are emerging from prior observational studies. To address this complexity, we deploy a causal inference approach accounting for the competing risk of death in emulated clinical trials using two distinct electronic health record systems. In intention-to-treat analyses, metformin use associates with lower hazard of all-cause mortality and lower cause-specific hazard of dementia onset, after accounting for prolonged survival, relative to sulfonylureas. In parallel systems pharmacology studies, the expression of two AD-related proteins, APOE and SPP1, was suppressed by pharmacologic concentrations of metformin in differentiated human neural cells, relative to a sulfonylurea. Together, our findings suggest that metformin might reduce the risk of dementia in diabetes patients through mechanisms beyond glycemic control, and that SPP1 is a candidate biomarker for metformin's action in the brain.
Collapse
Affiliation(s)
- Marie-Laure Charpignon
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Bang Zheng
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Colin Magdamo
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Bowen Su
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Kyle Evans
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Steve Rodriguez
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Sarah Boswell
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Yi-Han Sheu
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Melek Somai
- Inception Labs, Collaborative for Health Delivery Sciences, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Lefkos Middleton
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
- Public Health Directorate, Imperial College London NHS Healthcare Trust, London, UK
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rebecca A Betensky
- Department of Biostatistics, School of Global Public Health, New York University, New York, NY, USA
| | - Stan N Finkelstein
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Clinical Informatics, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Roy E Welsch
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- Dementia Research Institute, Imperial College London, London, UK.
- Department of Hygiene and Epidemiology, University of Ioannina, Ioannina, Greece.
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Mark W Albers
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
136
|
Comprehensive evaluation of human-derived anti-poly-GA antibodies in cellular and animal models of C9orf72 disease. Proc Natl Acad Sci U S A 2022; 119:e2123487119. [PMID: 36454749 PMCID: PMC9894253 DOI: 10.1073/pnas.2123487119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hexanucleotide G4C2 repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Dipeptide repeat proteins (DPRs) generated by translation of repeat-containing RNAs show toxic effects in vivo as well as in vitro and are key targets for therapeutic intervention. We generated human antibodies that bind DPRs with high affinity and specificity. Anti-GA antibodies engaged extra- and intra-cellular poly-GA and reduced aggregate formation in a poly-GA overexpressing human cell line. However, antibody treatment in human neuronal cultures synthesizing exogenous poly-GA resulted in the formation of large extracellular immune complexes and did not affect accumulation of intracellular poly-GA aggregates. Treatment with antibodies was also shown to directly alter the morphological and biochemical properties of poly-GA and to shift poly-GA/antibody complexes to more rapidly sedimenting ones. These alterations were not observed with poly-GP and have important implications for accurate measurement of poly-GA levels including the need to evaluate all centrifugation fractions and disrupt the interaction between treatment antibodies and poly-GA by denaturation. Targeting poly-GA and poly-GP in two mouse models expressing G4C2 repeats by systemic antibody delivery for up to 16 mo was well-tolerated and led to measurable brain penetration of antibodies. Long-term treatment with anti-GA antibodies produced improvement in an open-field movement test in aged C9orf72450 mice. However, chronic administration of anti-GA antibodies in AAV-(G4C2)149 mice was associated with increased levels of poly-GA detected by immunoassay and did not significantly reduce poly-GA aggregates or alleviate disease progression in this model.
Collapse
|
137
|
Bush JA, Meyer SM, Fuerst R, Tong Y, Li Y, Benhamou RI, Aikawa H, Zanon PRA, Gibaut QMR, Angelbello AJ, Gendron TF, Zhang YJ, Petrucelli L, Heick Jensen T, Childs-Disney JL, Disney MD. A blood-brain penetrant RNA-targeted small molecule triggers elimination of r(G 4C 2) exp in c9ALS/FTD via the nuclear RNA exosome. Proc Natl Acad Sci U S A 2022; 119:e2210532119. [PMID: 36409902 PMCID: PMC9860304 DOI: 10.1073/pnas.2210532119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
A hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia, or c9ALS/FTD. The RNA transcribed from the expansion, r(G4C2)exp, causes various pathologies, including intron retention, aberrant translation that produces toxic dipeptide repeat proteins (DPRs), and sequestration of RNA-binding proteins (RBPs) in RNA foci. Here, we describe a small molecule that potently and selectively interacts with r(G4C2)exp and mitigates disease pathologies in spinal neurons differentiated from c9ALS patient-derived induced pluripotent stem cells (iPSCs) and in two c9ALS/FTD mouse models. These studies reveal a mode of action whereby a small molecule diminishes intron retention caused by the r(G4C2)exp and allows the liberated intron to be eliminated by the nuclear RNA exosome, a multi-subunit degradation complex. Our findings highlight the complexity of mechanisms available to RNA-binding small molecules to alleviate disease pathologies and establishes a pipeline for the design of brain penetrant small molecules targeting RNA with novel modes of action in vivo.
Collapse
Affiliation(s)
- Jessica A. Bush
- Department of Chemistry, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
| | - Samantha M. Meyer
- Department of Chemistry, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
| | - Rita Fuerst
- Department of Chemistry, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
| | - Yuquan Tong
- Department of Chemistry, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
| | - Yue Li
- Department of Chemistry, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
| | - Raphael I. Benhamou
- Department of Chemistry, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
| | - Haruo Aikawa
- Department of Chemistry, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
| | - Patrick R. A. Zanon
- Department of Chemistry, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
| | - Quentin M. R. Gibaut
- Department of Chemistry, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
| | - Alicia J. Angelbello
- Department of Chemistry, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
| | | | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL32224
| | | | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Jessica L. Childs-Disney
- Department of Chemistry, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
- Department of Neuroscience, The Scripps Research Institute and UF Scripps Biomedical Research, University of Florida, Jupiter, FL33458
| |
Collapse
|
138
|
Peterson JAM, Cooper TA. Clinical and Molecular Insights into Gastrointestinal Dysfunction in Myotonic Dystrophy Types 1 & 2. Int J Mol Sci 2022; 23:ijms232314779. [PMID: 36499107 PMCID: PMC9737721 DOI: 10.3390/ijms232314779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Myotonic dystrophy (DM) is a highly variable, multisystemic disorder that clinically affects one in 8000 individuals. While research has predominantly focused on the symptoms and pathological mechanisms affecting striated muscle and brain, DM patient surveys have identified a high prevalence for gastrointestinal (GI) symptoms amongst affected individuals. Clinical studies have identified chronic and progressive dysfunction of the esophagus, stomach, liver and gallbladder, small and large intestine, and rectum and anal sphincters. Despite the high incidence of GI dysmotility in DM, little is known regarding the pathological mechanisms leading to GI dysfunction. In this review, we summarize results from clinical and molecular analyses of GI dysfunction in both genetic forms of DM, DM type 1 (DM1) and DM type 2 (DM2). Based on current knowledge of DM primary pathological mechanisms in other affected tissues and GI tissue studies, we suggest that misregulation of alternative splicing in smooth muscle resulting from the dysregulation of RNA binding proteins muscleblind-like and CUGBP-elav-like is likely to contribute to GI dysfunction in DM. We propose that a combinatorial approach using clinical and molecular analysis of DM GI tissues and model organisms that recapitulate DM GI manifestations will provide important insight into defects impacting DM GI motility.
Collapse
Affiliation(s)
- Janel A. M. Peterson
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor College of Medicine, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas A. Cooper
- Baylor College of Medicine, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor College of Medicine, Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor College of Medicine, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
139
|
Meijboom KE, Abdallah A, Fordham NP, Nagase H, Rodriguez T, Kraus C, Gendron TF, Krishnan G, Esanov R, Andrade NS, Rybin MJ, Ramic M, Stephens ZD, Edraki A, Blackwood MT, Kahriman A, Henninger N, Kocher JPA, Benatar M, Brodsky MH, Petrucelli L, Gao FB, Sontheimer EJ, Brown RH, Zeier Z, Mueller C. CRISPR/Cas9-mediated excision of ALS/FTD-causing hexanucleotide repeat expansion in C9ORF72 rescues major disease mechanisms in vivo and in vitro. Nat Commun 2022; 13:6286. [PMID: 36271076 PMCID: PMC9587249 DOI: 10.1038/s41467-022-33332-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/13/2022] [Indexed: 12/25/2022] Open
Abstract
A GGGGCC24+ hexanucleotide repeat expansion (HRE) in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), fatal neurodegenerative diseases with no cure or approved treatments that substantially slow disease progression or extend survival. Mechanistic underpinnings of neuronal death include C9ORF72 haploinsufficiency, sequestration of RNA-binding proteins in the nucleus, and production of dipeptide repeat proteins. Here, we used an adeno-associated viral vector system to deliver CRISPR/Cas9 gene-editing machineries to effectuate the removal of the HRE from the C9ORF72 genomic locus. We demonstrate successful excision of the HRE in primary cortical neurons and brains of three mouse models containing the expansion (500-600 repeats) as well as in patient-derived iPSC motor neurons and brain organoids (450 repeats). This resulted in a reduction of RNA foci, poly-dipeptides and haploinsufficiency, major hallmarks of C9-ALS/FTD, making this a promising therapeutic approach to these diseases.
Collapse
Affiliation(s)
- Katharina E. Meijboom
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA ,grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Abbas Abdallah
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Nicholas P. Fordham
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Hiroko Nagase
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Tomás Rodriguez
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Carolyn Kraus
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Tania F. Gendron
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Gopinath Krishnan
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Rustam Esanov
- grid.26790.3a0000 0004 1936 8606Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Nadja S. Andrade
- grid.26790.3a0000 0004 1936 8606Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Matthew J. Rybin
- grid.26790.3a0000 0004 1936 8606Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Melina Ramic
- grid.26790.3a0000 0004 1936 8606Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Zachary D. Stephens
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences. Mayo Clinic, Rochester, MN 55905 USA
| | - Alireza Edraki
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Meghan T. Blackwood
- grid.168645.80000 0001 0742 0364Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Aydan Kahriman
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Nils Henninger
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Jean-Pierre A. Kocher
- grid.66875.3a0000 0004 0459 167XDepartment of Quantitative Health Sciences. Mayo Clinic, Rochester, MN 55905 USA
| | - Michael Benatar
- grid.26790.3a0000 0004 1936 8606Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Michael H. Brodsky
- grid.168645.80000 0001 0742 0364Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Leonard Petrucelli
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Fen-Biao Gao
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Erik J. Sontheimer
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Robert H. Brown
- grid.168645.80000 0001 0742 0364Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
140
|
Cerebrospinal Fluid Biomarker Profile in TDP-43-Related Genetic Frontotemporal Dementia. J Pers Med 2022; 12:jpm12101747. [PMID: 36294886 PMCID: PMC9605286 DOI: 10.3390/jpm12101747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebrospinal fluid (CSF) biomarkers, namely total tau, phospho-tau and amyloid beta peptides, have received much attention specifically regarding Alzheimer’s disease (AD), since they can detect the biochemical fingerprint of AD and serve as a diagnostic tool for accurate and early diagnosis during life. In the same way, biomarkers for other neurodegenerative disease pathologies are also needed. We present a case series of six patients with genetic frontotemporal dementia (FTD), with TDP-43 underlying proteinopathy, in an attempt to assess TDP-43 as a novel biomarker alone and in combination with established AD biomarkers for this specific patient group, based on the principles of personalized and precision medicine. Our results indicate that genetic TDP-43-FTD is characterized by increased CSF TPD-43 and increased TDP-43 × τΤ/τP-181 combination. Hence, TDP-43 combined with tau proteins could be a useful tool for the diagnosis of genetic FTD with TDP-43 underling histopathology, supplementing clinical, neuropsychological and imaging data.
Collapse
|
141
|
Shao W, Todd TW, Wu Y, Jones CY, Tong J, Jansen-West K, Daughrity LM, Park J, Koike Y, Kurti A, Yue M, Castanedes-Casey M, del Rosso G, Dunmore JA, Alepuz DZ, Oskarsson B, Dickson DW, Cook CN, Prudencio M, Gendron TF, Fryer JD, Zhang YJ, Petrucelli L. Two FTD-ALS genes converge on the endosomal pathway to induce TDP-43 pathology and degeneration. Science 2022; 378:94-99. [PMID: 36201573 PMCID: PMC9942492 DOI: 10.1126/science.abq7860] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis (FTD-ALS) are associated with both a repeat expansion in the C9orf72 gene and mutations in the TANK-binding kinase 1 (TBK1) gene. We found that TBK1 is phosphorylated in response to C9orf72 poly(Gly-Ala) [poly(GA)] aggregation and sequestered into inclusions, which leads to a loss of TBK1 activity and contributes to neurodegeneration. When we reduced TBK1 activity using a TBK1-R228H (Arg228→His) mutation in mice, poly(GA)-induced phenotypes were exacerbated. These phenotypes included an increase in TAR DNA binding protein 43 (TDP-43) pathology and the accumulation of defective endosomes in poly(GA)-positive neurons. Inhibiting the endosomal pathway induced TDP-43 aggregation, which highlights the importance of this pathway and TBK1 activity in pathogenesis. This interplay between C9orf72, TBK1, and TDP-43 connects three different facets of FTD-ALS into one coherent pathway.
Collapse
Affiliation(s)
- Wei Shao
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Tiffany W. Todd
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Yanwei Wu
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Caroline Y. Jones
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Jimei Tong
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | | | - Jinyoung Park
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Yuka Koike
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | | | - Giulia del Rosso
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| | - Judith A. Dunmore
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
| | | | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| | - John D. Fryer
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Department of Neuroscience, Mayo Clinic; Scottsdale, AZ, 85259, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, 32224, USA
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL, 32224, USA
| |
Collapse
|
142
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
143
|
Neuroimmune dysfunction in frontotemporal dementia: Insights from progranulin and C9orf72 deficiency. Curr Opin Neurobiol 2022; 76:102599. [PMID: 35792478 PMCID: PMC9798541 DOI: 10.1016/j.conb.2022.102599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/31/2022]
Abstract
Neuroimmune dysfunction is a cardinal feature of neurodegenerative diseases. But how immune dysregulation in the brain and peripheral organs contribute to neurodegeneration remains unclear. Here, we discuss the recent advances highlighting neuroimmune dysfunction as a key disease-driving factor in frontotemporal dementia (FTD). We provide an overview of the clinical observations supporting a high prevalence of autoimmune diseases in FTD patients with mutations in GRN or C9orf72. We then focus on a myriad of evidence from human genetic studies, mouse models, in vitro assays, and multi-omics platform, which indicate that haploinsufficiency in GRN and C9orf72 promotes neuroimmune dysfunction and contributes to neurodegeneration and premature death. These compelling data provide key insights to disease mechanisms, biomarker discovery, and therapeutic interventions for FTD (120 words).
Collapse
|
144
|
Lee J, Cho H, Kwon I. Phase separation of low-complexity domains in cellular function and disease. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1412-1422. [PMID: 36175485 PMCID: PMC9534829 DOI: 10.1038/s12276-022-00857-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
In this review, we discuss the ways in which recent studies of low-complexity (LC) domains have challenged our understanding of the mechanisms underlying cellular organization. LC sequences, long believed to function in the absence of a molecular structure, are abundant in the proteomes of all eukaryotic organisms. Over the past decade, the phase separation of LC domains has emerged as a fundamental mechanism driving dynamic multivalent interactions of many cellular processes. We review the key evidence showing the role of phase separation of individual proteins in organizing cellular assemblies and facilitating biological function while implicating the dynamics of phase separation as a key to biological validity and functional utility. We also highlight the evidence showing that pathogenic LC proteins alter various phase separation-dependent interactions to elicit debilitating human diseases, including cancer and neurodegenerative diseases. Progress in understanding the biology of phase separation may offer useful hints toward possible therapeutic interventions to combat the toxicity of pathogenic proteins.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| | - Ilmin Kwon
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| |
Collapse
|
145
|
Dubey SK, Maulding K, Sung H, Lloyd TE. Nucleoporins are degraded via upregulation of ESCRT-III/Vps4 complex in Drosophila models of C9-ALS/FTD. Cell Rep 2022; 40:111379. [PMID: 36130523 PMCID: PMC10099287 DOI: 10.1016/j.celrep.2022.111379] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/22/2022] [Accepted: 08/28/2022] [Indexed: 11/03/2022] Open
Abstract
Disruption of the nuclear pore complex (NPC) and nucleocytoplasmic transport (NCT) have been implicated in the pathogenesis of neurodegenerative diseases. A GGGGCC hexanucleotide repeat expansion (HRE) in an intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia, but the mechanism by which the HRE disrupts NCT is incompletely understood. We find that expression of GGGGCC repeats in Drosophila neurons induces proteasome-mediated degradation of select nucleoporins of the NPC. This process requires the Vps4 ATPase and the endosomal-sorting complex required for transport complex-III (ESCRT-III), as knockdown of ESCRT-III/Vps4 genes rescues nucleoporin levels, normalizes NCT, and suppresses GGGGCC-mediated neurodegeneration. GGGGCC expression upregulates nuclear ESCRT-III/Vps4 expression, and expansion microscopy demonstrates that the nucleoporins are translocated into the cytoplasm before undergoing proteasome-mediated degradation. These findings demonstrate a mechanism for nucleoporin degradation and NPC dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Sandeep Kumar Dubey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kirstin Maulding
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyun Sung
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
146
|
Zheng AJL, Thermou A, Daskalogianni C, Malbert-Colas L, Karakostis K, Le Sénéchal R, Trang Dinh V, Tovar Fernandez MC, Apcher S, Chen S, Blondel M, Fahraeus R. The nascent polypeptide-associated complex (NAC) controls translation initiation in cis by recruiting nucleolin to the encoding mRNA. Nucleic Acids Res 2022; 50:10110-10122. [PMID: 36107769 PMCID: PMC9508830 DOI: 10.1093/nar/gkac751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/10/2022] [Indexed: 11/20/2022] Open
Abstract
Protein aggregates and abnormal proteins are toxic and associated with neurodegenerative diseases. There are several mechanisms to help cells get rid of aggregates but little is known on how cells prevent aggregate-prone proteins from being synthesised. The EBNA1 of the Epstein-Barr virus (EBV) evades the immune system by suppressing its own mRNA translation initiation in order to minimize the production of antigenic peptides for the major histocompatibility (MHC) class I pathway. Here we show that the emerging peptide of the disordered glycine–alanine repeat (GAr) within EBNA1 dislodges the nascent polypeptide-associated complex (NAC) from the ribosome. This results in the recruitment of nucleolin to the GAr-encoding mRNA and suppression of mRNA translation initiation in cis. Suppressing NAC alpha (NACA) expression prevents nucleolin from binding to the GAr mRNA and overcomes GAr-mediated translation inhibition. Taken together, these observations suggest that EBNA1 exploits a nascent protein quality control pathway to regulate its own rate of synthesis that is based on sensing the nascent GAr peptide by NAC followed by the recruitment of nucleolin to the GAr-encoding RNA sequence.
Collapse
Affiliation(s)
- Alice J L Zheng
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Aikaterini Thermou
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Chrysoula Daskalogianni
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Laurence Malbert-Colas
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Konstantinos Karakostis
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
| | - Ronan Le Sénéchal
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Van Trang Dinh
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Maria C Tovar Fernandez
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- ICCVS, University of Gdańsk , Science, ul. Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Sébastien Apcher
- Institut Gustave Roussy, Université Paris Sud, Unité 1015 département d’immunologie , 114, rue Edouard Vaillant , 94805 Villejuif , France
| | - Sa Chen
- Department of Medical Biosciences, Building 6M, Umeå University , 901 85 Umeå , Sweden
| | - Marc Blondel
- Inserm UMR 1078, Université de Bretagne Occidentale (UBO), Etablissement Français du Sang (EFS) Bretagne, CHRU Brest , 29200 , Brest , France
| | - Robin Fahraeus
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris, Hôpital St. Louis , F-75010 Paris , France
- Department of Medical Biosciences, Building 6M, Umeå University , 901 85 Umeå , Sweden
- RECAMO, Masaryk Memorial Cancer Institute , Zluty kopec 7 , 65653 Brno , Czech Republic
| |
Collapse
|
147
|
Kurosaki T, Ashizawa T. The genetic and molecular features of the intronic pentanucleotide repeat expansion in spinocerebellar ataxia type 10. Front Genet 2022; 13:936869. [PMID: 36199580 PMCID: PMC9528567 DOI: 10.3389/fgene.2022.936869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is characterized by progressive cerebellar neurodegeneration and, in many patients, epilepsy. This disease mainly occurs in individuals with Indigenous American or East Asian ancestry, with strong evidence supporting a founder effect. The mutation causing SCA10 is a large expansion in an ATTCT pentanucleotide repeat in intron 9 of the ATXN10 gene. The ATTCT repeat is highly unstable, expanding to 280-4,500 repeats in affected patients compared with the 9-32 repeats in normal individuals, one of the largest repeat expansions causing neurological disorders identified to date. However, the underlying molecular basis of how this huge repeat expansion evolves and contributes to the SCA10 phenotype remains largely unknown. Recent progress in next-generation DNA sequencing technologies has established that the SCA10 repeat sequence has a highly heterogeneous structure. Here we summarize what is known about the structure and origin of SCA10 repeats, discuss the potential contribution of variant repeats to the SCA10 disease phenotype, and explore how this information can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, United States
- Center for RNA Biology, University of Rochester, Rochester, NY, United States
| | - Tetsuo Ashizawa
- Stanley H. Appel Department of Neurology, Houston Methodist Research Institute and Weil Cornell Medical College at Houston Methodist Houston, TX, United States
| |
Collapse
|
148
|
Gao J, Mewborne QT, Girdhar A, Sheth U, Coyne AN, Punathil R, Kang BG, Dasovich M, Veire A, Hernandez MD, Liu S, Shi Z, Dafinca R, Fouquerel E, Talbot K, Kam TI, Zhang YJ, Dickson D, Petrucelli L, van Blitterswijk M, Guo L, Dawson TM, Dawson VL, Leung AKL, Lloyd TE, Gendron TF, Rothstein JD, Zhang K. Poly(ADP-ribose) promotes toxicity of C9ORF72 arginine-rich dipeptide repeat proteins. Sci Transl Med 2022; 14:eabq3215. [PMID: 36103513 PMCID: PMC10359073 DOI: 10.1126/scitranslmed.abq3215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Arginine-rich dipeptide repeat proteins (R-DPRs), abnormal translational products of a GGGGCC hexanucleotide repeat expansion in C9ORF72, play a critical role in C9ORF72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the most common genetic form of the disorders (c9ALS/FTD). R-DPRs form liquid condensates in vitro, induce stress granule formation in cultured cells, aggregate, and sometimes coaggregate with TDP-43 in postmortem tissue from patients with c9ALS/FTD. However, how these processes are regulated is unclear. Here, we show that loss of poly(ADP-ribose) (PAR) suppresses neurodegeneration in c9ALS/FTD fly models and neurons differentiated from patient-derived induced pluripotent stem cells. Mechanistically, PAR induces R-DPR condensation and promotes R-DPR-induced stress granule formation and TDP-43 aggregation. Moreover, PAR associates with insoluble R-DPR and TDP-43 in postmortem tissue from patients. These findings identified PAR as a promoter of R-DPR toxicity and thus a potential target for treating c9ALS/FTD.
Collapse
Affiliation(s)
- Junli Gao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Amandeep Girdhar
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Udit Sheth
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ritika Punathil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bong Gu Kang
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Chemistry, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Austin Veire
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Shuaichen Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ruxandra Dafinca
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Elise Fouquerel
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Tae-In Kam
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | | | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ted M. Dawson
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Valina L. Dawson
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas E. Lloyd
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Jeffrey D. Rothstein
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
- Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
- Institute of Neurological Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| |
Collapse
|
149
|
Marchi PM, Marrone L, Brasseur L, Coens A, Webster CP, Bousset L, Destro M, Smith EF, Walther CG, Alfred V, Marroccella R, Graves EJ, Robinson D, Shaw AC, Wan LM, Grierson AJ, Ebbens SJ, De Vos KJ, Hautbergue GM, Ferraiuolo L, Melki R, Azzouz M. C9ORF72-derived poly-GA DPRs undergo endocytic uptake in iAstrocytes and spread to motor neurons. Life Sci Alliance 2022; 5:5/9/e202101276. [PMID: 35568435 PMCID: PMC9108631 DOI: 10.26508/lsa.202101276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Dipeptide repeat (DPR) proteins are aggregation-prone polypeptides encoded by the pathogenic GGGGCC repeat expansion in the C9ORF72 gene, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. In this study, we focus on the role of poly-GA DPRs in disease spread. We demonstrate that recombinant poly-GA oligomers can directly convert into solid-like aggregates and form characteristic β-sheet fibrils in vitro. To dissect the process of cell-to-cell DPR transmission, we closely follow the fate of poly-GA DPRs in either their oligomeric or fibrillized form after administration in the cell culture medium. We observe that poly-GA DPRs are taken up via dynamin-dependent and -independent endocytosis, eventually converging at the lysosomal compartment and leading to axonal swellings in neurons. We then use a co-culture system to demonstrate astrocyte-to-motor neuron DPR propagation, showing that astrocytes may internalise and release aberrant peptides in disease pathogenesis. Overall, our results shed light on the mechanisms of poly-GA cellular uptake and propagation, suggesting lysosomal impairment as a possible feature underlying the cellular pathogenicity of these DPR species.
Collapse
Affiliation(s)
- Paolo M Marchi
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Lara Marrone
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Laurent Brasseur
- The French Alternative Energies and Atomic Energy Commission (CEA), Institut François Jacob (MIRcen) and The French National Centre for Scientific Research (CNRS), Laboratory of Neurodegenerative Diseases (UMR9199), Fontenay-aux-Roses, France
| | - Audrey Coens
- The French Alternative Energies and Atomic Energy Commission (CEA), Institut François Jacob (MIRcen) and The French National Centre for Scientific Research (CNRS), Laboratory of Neurodegenerative Diseases (UMR9199), Fontenay-aux-Roses, France
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Luc Bousset
- The French Alternative Energies and Atomic Energy Commission (CEA), Institut François Jacob (MIRcen) and The French National Centre for Scientific Research (CNRS), Laboratory of Neurodegenerative Diseases (UMR9199), Fontenay-aux-Roses, France
| | - Marco Destro
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK.,Centre for Membrane Interactions and Dynamics, University of Sheffield, Western Bank, Sheffield, UK
| | - Christa G Walther
- The Wolfson Light Microscopy Facility, University of Sheffield, Sheffield, UK
| | - Victor Alfred
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Raffaele Marroccella
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Emily J Graves
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Darren Robinson
- The Wolfson Light Microscopy Facility, University of Sheffield, Sheffield, UK
| | - Allan C Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Lai Mei Wan
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Andrew J Grierson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Stephen J Ebbens
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK.,Centre for Membrane Interactions and Dynamics, University of Sheffield, Western Bank, Sheffield, UK
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| | - Ronald Melki
- The French Alternative Energies and Atomic Energy Commission (CEA), Institut François Jacob (MIRcen) and The French National Centre for Scientific Research (CNRS), Laboratory of Neurodegenerative Diseases (UMR9199), Fontenay-aux-Roses, France
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK .,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
150
|
Romero Romero ML, Landerer C, Poehls J, Toth‐Petroczy A. Phenotypic mutations contribute to protein diversity and shape protein evolution. Protein Sci 2022; 31:e4397. [PMID: 36040266 PMCID: PMC9375231 DOI: 10.1002/pro.4397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/14/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Errors in DNA replication generate genetic mutations, while errors in transcription and translation lead to phenotypic mutations. Phenotypic mutations are orders of magnitude more frequent than genetic ones, yet they are less understood. Here, we review the types of phenotypic mutations, their quantifications, and their role in protein evolution and disease. The diversity generated by phenotypic mutation can facilitate adaptive evolution. Indeed, phenotypic mutations, such as ribosomal frameshift and stop codon readthrough, sometimes serve to regulate protein expression and function. Phenotypic mutations have often been linked to fitness decrease and diseases. Thus, understanding the protein heterogeneity and phenotypic diversity caused by phenotypic mutations will advance our understanding of protein evolution and have implications on human health and diseases.
Collapse
Affiliation(s)
- Maria Luisa Romero Romero
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Cedric Landerer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Jonas Poehls
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - Agnes Toth‐Petroczy
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Cluster of Excellence Physics of LifeTU DresdenDresdenGermany
| |
Collapse
|