101
|
McIntyre ABR, Cleland TA. Biophysical constraints on lateral inhibition in the olfactory bulb. J Neurophysiol 2016; 115:2937-49. [PMID: 27009162 DOI: 10.1152/jn.00671.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/16/2016] [Indexed: 12/26/2022] Open
Abstract
The mitral cells (MCs) of the mammalian olfactory bulb (OB) constitute one of two populations of principal neurons (along with middle/deep tufted cells) that integrate afferent olfactory information with top-down inputs and intrinsic learning and deliver output to downstream olfactory areas. MC activity is regulated in part by inhibition from granule cells, which form reciprocal synapses with MCs along the extents of their lateral dendrites. However, with MC lateral dendrites reaching over 1.5 mm in length in rats, the roles of distal inhibitory synapses pose a quandary. Here, we systematically vary the properties of a MC model to assess the capacity of inhibitory synaptic inputs on lateral dendrites to influence afferent information flow through MCs. Simulations using passivized models with varying dendritic morphologies and synaptic properties demonstrated that, even with unrealistically favorable parameters, passive propagation fails to convey effective inhibitory signals to the soma from distal sources. Additional simulations using an active model exhibiting action potentials, subthreshold oscillations, and a dendritic morphology closely matched to experimental values further confirmed that distal synaptic inputs along the lateral dendrite could not exert physiologically relevant effects on MC spike timing at the soma. Larger synaptic conductances representative of multiple simultaneous inputs were not sufficient to compensate for the decline in signal with distance. Reciprocal synapses on distal MC lateral dendrites may instead serve to maintain a common fast oscillatory clock across the OB by delaying spike propagation within the lateral dendrites themselves.
Collapse
Affiliation(s)
- Alexa B R McIntyre
- Tri-Institutional Program in Computational Biology and Medicine, Cornell University, Ithaca, New York; and
| | | |
Collapse
|
102
|
Lehmann A, D'Errico A, Vogel M, Spors H. Spatio-Temporal Characteristics of Inhibition Mapped by Optical Stimulation in Mouse Olfactory Bulb. Front Neural Circuits 2016; 10:15. [PMID: 27047340 PMCID: PMC4801895 DOI: 10.3389/fncir.2016.00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/04/2016] [Indexed: 12/04/2022] Open
Abstract
Mitral and tufted cells (MTCs) of the mammalian olfactory bulb are connected via dendrodendritic synapses with inhibitory interneurons in the external plexiform layer. The range, spatial layout, and temporal properties of inhibitory interactions between MTCs mediated by inhibitory interneurons remain unclear. Therefore, we tested for inhibitory interactions using an optogenetic approach. We optically stimulated MTCs expressing channelrhodopsin-2 in transgenic mice, while recording from individual MTCs in juxtacellular or whole-cell configuration in vivo. We used a spatial noise stimulus for mapping interactions between MTCs belonging to different glomeruli in the dorsal bulb. Analyzing firing responses of MTCs to the stimulus, we did not find robust lateral inhibitory effects that were spatially specific. However, analysis of sub-threshold changes in the membrane potential revealed evidence for inhibitory interactions between MTCs that belong to different glomerular units. These lateral inhibitory effects were short-lived and spatially specific. MTC response maps showed hyperpolarizing effects radially extending over more than five glomerular diameters. The inhibitory maps exhibited non-symmetrical yet distance-dependent characteristics.
Collapse
Affiliation(s)
| | - Anna D'Errico
- Max Planck Institute of Biophysics Frankfurt am Main, Germany
| | - Martin Vogel
- Max Planck Institute of Biophysics Frankfurt am Main, Germany
| | - Hartwig Spors
- Max Planck Institute of BiophysicsFrankfurt am Main, Germany; Department of Neuropediatrics, Justus-Liebig-UniversityGiessen, Germany
| |
Collapse
|
103
|
Novák O, Zelenka O, Hromádka T, Syka J. Immediate manifestation of acoustic trauma in the auditory cortex is layer specific and cell type dependent. J Neurophysiol 2016; 115:1860-74. [PMID: 26823513 DOI: 10.1152/jn.00810.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/28/2016] [Indexed: 02/02/2023] Open
Abstract
Exposure to loud sounds damages the auditory periphery and induces maladaptive changes in central parts of the auditory system. Diminished peripheral afferentation and altered inhibition influence the processing of sounds in the auditory cortex. It is unclear, however, which types of inhibitory interneurons are affected by acoustic trauma. Here we used single-unit electrophysiological recording and two-photon calcium imaging in anesthetized mice to evaluate the effects of acute acoustic trauma (125 dB SPL, white noise, 5 min) on the response properties of neurons in the core auditory cortex. Electrophysiological measurements suggested the selective impact of acoustic trauma on inhibitory interneurons in the auditory cortex. To further investigate which interneuronal types were affected, we used two-photon calcium imaging to record the activity of neurons in cortical layers 2/3 and 4, specifically focusing on parvalbumin-positive (PV+) and somatostatin-positive (SST+) interneurons. Spontaneous and pure-tone-evoked firing rates of SST+ interneurons increased in layer 4 immediately after acoustic trauma and remained almost unchanged in layer 2/3. Furthermore, PV+ interneurons with high best frequencies increased their evoked-to-spontaneous firing rate ratios only in layer 2/3 and did not change in layer 4. Finally, acoustic trauma unmasked low-frequency excitatory inputs only in layer 2/3. Our results demonstrate layer-specific changes in the activity of auditory cortical inhibitory interneurons within minutes after acoustic trauma.
Collapse
Affiliation(s)
- Ondřej Novák
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondřej Zelenka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tomáš Hromádka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
104
|
Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb. J Neurosci 2016; 35:14103-22. [PMID: 26490853 DOI: 10.1523/jneurosci.0746-15.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Granule cell-mediated inhibition is critical to patterning principal neuron activity in the olfactory bulb, and perturbation of synaptic input to granule cells significantly alters olfactory-guided behavior. Despite the critical role of granule cells in olfaction, little is known about how sensory input recruits granule cells. Here, we combined whole-cell patch-clamp electrophysiology in acute mouse olfactory bulb slices with biophysical multicompartmental modeling to investigate the synaptic basis of granule cell recruitment. Physiological activation of sensory afferents within single glomeruli evoked diverse modes of granule cell activity, including subthreshold depolarization, spikelets, and suprathreshold responses with widely distributed spike latencies. The generation of these diverse activity modes depended, in part, on the asynchronous time course of synaptic excitation onto granule cells, which lasted several hundred milliseconds. In addition to asynchronous excitation, each granule cell also received synchronous feedforward inhibition. This inhibition targeted both proximal somatodendritic and distal apical dendritic domains of granule cells, was reliably recruited across sniff rhythms, and scaled in strength with excitation as more glomeruli were activated. Feedforward inhibition onto granule cells originated from deep short-axon cells, which responded to glomerular activation with highly reliable, short-latency firing consistent with tufted cell-mediated excitation. Simulations showed that feedforward inhibition interacts with asynchronous excitation to broaden granule cell spike latency distributions and significantly attenuates granule cell depolarization within local subcellular compartments. Collectively, our results thus identify feedforward inhibition onto granule cells as a core feature of olfactory bulb circuitry and establish asynchronous excitation and feedforward inhibition as critical regulators of granule cell activity. SIGNIFICANCE STATEMENT Inhibitory granule cells are involved critically in shaping odor-evoked principal neuron activity in the mammalian olfactory bulb, yet little is known about how sensory input activates granule cells. Here, we show that sensory input to the olfactory bulb evokes a barrage of asynchronous synaptic excitation and highly reliable, short-latency synaptic inhibition onto granule cells via a disynaptic feedforward inhibitory circuit involving deep short-axon cells. Feedforward inhibition attenuates local depolarization within granule cell dendritic branches, interacts with asynchronous excitation to suppress granule cell spike-timing precision, and scales in strength with excitation across different levels of sensory input to normalize granule cell firing rates.
Collapse
|
105
|
Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro 2015; 2:eN-TNC-0018-15. [PMID: 26665163 PMCID: PMC4672204 DOI: 10.1523/eneuro.0018-15.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/21/2022] Open
Abstract
Gamma (∼40-90 Hz) and beta (∼15-40 Hz) oscillations and their associated neuronal assemblies are key features of neuronal sensory processing. However, the mechanisms involved in either their interaction and/or the switch between these different regimes in most sensory systems remain misunderstood. Based on in vivo recordings and biophysical modeling of the mammalian olfactory bulb (OB), we propose a general scheme where OB internal dynamics can sustain two distinct dynamic states, each dominated by either a gamma or a beta regime. The occurrence of each regime depends on the excitability level of granule cells, the main OB interneurons. Using this model framework, we demonstrate how the balance between sensory and centrifugal input can control the switch between the two oscillatory dynamic states. In parallel, we experimentally observed that sensory and centrifugal inputs to the rat OB could both be modulated by the respiration of the animal (2-12 Hz) and each one phase shifted with the other. Implementing this phase shift in our model resulted in the appearance of the alternation between gamma and beta rhythms within a single respiratory cycle, as in our experimental results under urethane anesthesia. Our theoretical framework can also account for the oscillatory frequency response, depending on the odor intensity, the odor valence, and the animal sniffing strategy observed under various conditions including animal freely-moving. Importantly, the results of the present model can form a basis to understand how fast rhythms could be controlled by the slower sensory and centrifugal modulations linked to the respiration. Visual Abstract: See Abstract.
Collapse
|
106
|
Nunes D, Kuner T. Disinhibition of olfactory bulb granule cells accelerates odour discrimination in mice. Nat Commun 2015; 6:8950. [PMID: 26592770 PMCID: PMC4673882 DOI: 10.1038/ncomms9950] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/20/2015] [Indexed: 11/13/2022] Open
Abstract
Granule cells are the dominant cell type of the olfactory bulb inhibiting mitral and tufted cells via dendrodendritic synapses; yet the factors regulating the strength of their inhibitory output, and, therefore, their impact on odour discrimination, remain unknown. Here we show that GABAAR β3-subunits are distributed in a somatodendritic pattern, mostly sparing the large granule cell spines also known as gemmules. Granule cell-selective deletion of β3-subunits nearly abolishes spontaneous and muscimol-induced currents mediated by GABAA receptors in granule cells, yet recurrent inhibition of mitral cells is strongly enhanced. Mice with disinhibited granule cells require less time to discriminate both dissimilar as well as highly similar odourants, while discrimination learning remains unaffected. Hence, granule cells are controlled by an inhibitory drive that in turn tunes mitral cell inhibition. As a consequence, the olfactory bulb inhibitory network adjusts the speed of early sensory processing. How odour discrimination is influenced by granule cells in the olfactory bulb is poorly understood. Here, the authors show that disinhibition of granule cells in mice increases mitral cell inhibition and accelerates odour discrimination time, independent of odour similarity.
Collapse
Affiliation(s)
- Daniel Nunes
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
107
|
Ben-Shaul Y. Extracting Social Information from Chemosensory Cues: Consideration of Several Scenarios and Their Functional Implications. Front Neurosci 2015; 9:439. [PMID: 26635515 PMCID: PMC4653286 DOI: 10.3389/fnins.2015.00439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/30/2015] [Indexed: 11/16/2022] Open
Abstract
Across all sensory modalities, stimuli can vary along multiple dimensions. Efficient extraction of information requires sensitivity to those stimulus dimensions that provide behaviorally relevant information. To derive social information from chemosensory cues, sensory systems must embed information about the relationships between behaviorally relevant traits of individuals and the distributions of the chemical cues that are informative about these traits. In simple cases, the mere presence of one particular compound is sufficient to guide appropriate behavior. However, more generally, chemosensory information is conveyed via relative levels of multiple chemical cues, in non-trivial ways. The computations and networks needed to derive information from multi-molecule stimuli are distinct from those required by single molecule cues. Our current knowledge about how socially relevant information is encoded by chemical blends, and how it is extracted by chemosensory systems is very limited. This manuscript explores several scenarios and the neuronal computations required to identify them.
Collapse
Affiliation(s)
- Yoram Ben-Shaul
- Department of Medical Neurobiology, Hebrew University Medical School Jerusalem, Israel
| |
Collapse
|
108
|
Gschwend O, Abraham NM, Lagier S, Begnaud F, Rodriguez I, Carleton A. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning. Nat Neurosci 2015; 18:1474-1482. [PMID: 26301325 PMCID: PMC4845880 DOI: 10.1038/nn.4089] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/23/2015] [Indexed: 12/15/2022]
Abstract
Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features, thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. We found that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) were dynamically reformatted in the network on the timescale of a single breath, giving rise to separated patterns of activity in an ensemble of output neurons, mitral/tufted (M/T) cells. Notably, the extent of pattern separation in M/T assemblies predicted behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimulus distinction, a process that is sculpted by synaptic inhibition.
Collapse
Affiliation(s)
- Olivier Gschwend
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
- Geneva Neuroscience Center, University of Geneva, Switzerland
| | - Nixon M Abraham
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
- Geneva Neuroscience Center, University of Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Samuel Lagier
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
- Geneva Neuroscience Center, University of Geneva, Switzerland
| | - Frédéric Begnaud
- Firmenich SA, Corporate R&D Division / Analytical Innovation, route des Jeunes 1, CH-1211 Geneva 8, Switzerland
| | - Ivan Rodriguez
- Geneva Neuroscience Center, University of Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Alan Carleton
- Department of Basic Neurosciences, School of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
- Geneva Neuroscience Center, University of Geneva, Switzerland
| |
Collapse
|
109
|
Banerjee A, Marbach F, Anselmi F, Koh MS, Davis MB, Garcia da Silva P, Delevich K, Oyibo HK, Gupta P, Li B, Albeanu DF. An Interglomerular Circuit Gates Glomerular Output and Implements Gain Control in the Mouse Olfactory Bulb. Neuron 2015; 87:193-207. [PMID: 26139373 DOI: 10.1016/j.neuron.2015.06.019] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/24/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Odors elicit distributed activation of glomeruli in the olfactory bulb (OB). Crosstalk between co-active glomeruli has been proposed to perform a variety of computations, facilitating efficient extraction of sensory information by the cortex. Dopaminergic/GABAergic cells in the OB, which can be identified by their expression of the dopamine transporter (DAT), provide the earliest opportunity for such crosstalk. Here we show in mice that DAT+ cells carry concentration-dependent odor signals and broadcast focal glomerular inputs throughout the OB to cause suppression of mitral/tufted (M/T) cell firing, an effect that is mediated by the external tufted (ET) cells coupled to DAT+ cells via chemical and electrical synapses. We find that DAT+ cells implement gain control and decorrelate odor representations in the M/T cell population. Our results further indicate that ET cells are gatekeepers of glomerular output and prime determinants of M/T responsiveness.
Collapse
Affiliation(s)
- Arkarup Banerjee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Fred Marbach
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | | | - Matthew S Koh
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Martin B Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pedro Garcia da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Kristen Delevich
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Hassana K Oyibo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Priyanka Gupta
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
110
|
Yu Y, Burton SD, Tripathy SJ, Urban NN. Postnatal development attunes olfactory bulb mitral cells to high-frequency signaling. J Neurophysiol 2015; 114:2830-42. [PMID: 26354312 DOI: 10.1152/jn.00315.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022] Open
Abstract
Mitral cells (MCs) are a major class of principal neurons in the vertebrate olfactory bulb, conveying odor-evoked activity from the peripheral sensory neurons to olfactory cortex. Previous work has described the development of MC morphology and connectivity during the first few weeks of postnatal development. However, little is known about the postnatal development of MC intrinsic biophysical properties. To understand stimulus encoding in the developing olfactory bulb, we have therefore examined the development of MC intrinsic biophysical properties in acute slices from postnatal day (P)7-P35 mice. Across development, we observed systematic changes in passive membrane properties and action potential waveforms consistent with a developmental increase in sodium and potassium conductances. We further observed developmental decreases in hyperpolarization-evoked membrane potential sag and firing regularity, extending recent links between MC sag heterogeneity and firing patterns. We then applied a novel combination of statistical analyses to examine how the evolution of these intrinsic biophysical properties specifically influenced the representation of fluctuating stimuli by MCs. We found that immature MCs responded to frozen fluctuating stimuli with lower firing rates, lower spike-time reliability, and lower between-cell spike-time correlations than more mature MCs. Analysis of spike-triggered averages revealed that these changes in spike timing were driven by a developmental shift from broad integration of inputs to more selective detection of coincident inputs. Consistent with this shift, generalized linear model fits to MC firing responses demonstrated an enhanced encoding of high-frequency stimulus features by mature MCs.
Collapse
Affiliation(s)
- Yiyi Yu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Shawn D Burton
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; and
| | - Shreejoy J Tripathy
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Nathaniel N Urban
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
111
|
Tsutiya A, Nishihara M, Goshima Y, Ohtani-Kaneko R. Mouse pups lacking collapsin response mediator protein 4 manifest impaired olfactory function and hyperactivity in the olfactory bulb. Eur J Neurosci 2015; 42:2335-45. [PMID: 26118640 DOI: 10.1111/ejn.12999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 01/07/2023]
Abstract
Members of the collapsin response mediator protein (CRMP) family are reported to be involved in the pathogenesis of various neuronal disorders, including schizophrenia and autism. One of them, CRMP4, is reported to participate in aspects of neuronal development, such as axonal guidance and dendritic development. However, no physiological or behavioral phenotypes in Crmp4 knockout (Crmp4-KO) mice have been identified, making it difficult to elucidate the in vivo roles of CRMP4. Focusing on the olfaction process because of the previous study showing strong expression of Crmp4 mRNA in the olfactory bulb (OB) during the early postnatal period, it was aimed to test the hypothesis that Crmp4-KO pups would exhibit abnormal olfaction. Based on measurements of their ultrasonic vocalizations, impaired olfactory ability in Crmp4-KO pups was found. In addition, c-Fos expression, a marker of neuron activity, revealed hyperactivity in the OB of Crmp4-KO pups compared with wild-types following exposure to an odorant. Moreover, the mRNA and protein expression levels of glutamate receptor 1 (GluR1) and 2 (GluR2) were exaggerated in Crmp4-KO pups relative to other excitatory and inhibitory receptors and transporters, raising the possibility that enhanced expression of these excitatory receptors contributes to the hyperactivity phenotype and impairs olfactory ability. This study provides evidence for an animal model for elucidating the roles of CRMP4 in the development of higher brain functions as well as for elucidating the developmental regulatory mechanisms controlling the activity of the neural circuitry.
Collapse
Affiliation(s)
- Atsuhiro Tsutiya
- Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ritsuko Ohtani-Kaneko
- Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura, Gunma, 374-0193, Japan
- Bio-Nano Electronic Research Centre, Toyo University, Kawagoe, Saitama, Japan
| |
Collapse
|
112
|
Intraglomerular lateral inhibition promotes spike timing variability in principal neurons of the olfactory bulb. J Neurosci 2015; 35:4319-31. [PMID: 25762678 DOI: 10.1523/jneurosci.2181-14.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The activity of mitral and tufted cells, the principal neurons of the olfactory bulb, is modulated by several classes of interneurons. Among them, diverse periglomerular (PG) cell types interact with the apical dendrites of mitral and tufted cells inside glomeruli at the first stage of olfactory processing. We used paired recording in olfactory bulb slices and two-photon targeted patch-clamp recording in vivo to characterize the properties and connections of a genetically identified population of PG cells expressing enhanced yellow fluorescent protein (EYFP) under the control of the Kv3.1 potassium channel promoter. Kv3.1-EYFP(+) PG cells are axonless and monoglomerular neurons that constitute ∼30% of all PG cells and include calbindin-expressing neurons. They respond to an olfactory nerve stimulation with a short barrage of excitatory inputs mediated by mitral, tufted, and external tufted cells, and, in turn, they indiscriminately release GABA onto principal neurons. They are activated by even the weakest olfactory nerve input or by the discharge of a single principal neuron in slices and at each respiration cycle in anesthetized mice. They participate in a fast-onset intraglomerular lateral inhibition between principal neurons from the same glomerulus, a circuit that reduces the firing rate and promotes spike timing variability in mitral cells. Recordings in other PG cell subtypes suggest that this pathway predominates in generating glomerular inhibition. Intraglomerular lateral inhibition may play a key role in olfactory processing by reducing the similarity of principal cells discharge in response to the same incoming input.
Collapse
|
113
|
Gilra A, Bhalla US. Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 2015; 10:e0098045. [PMID: 25942312 PMCID: PMC4420273 DOI: 10.1371/journal.pone.0098045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/23/2014] [Indexed: 01/13/2023] Open
Abstract
Stimulus encoding by primary sensory brain areas provides a data-rich context for understanding their circuit mechanisms. The vertebrate olfactory bulb is an input area having unusual two-layer dendro-dendritic connections whose roles in odor coding are unclear. To clarify these roles, we built a detailed compartmental model of the rat olfactory bulb that synthesizes a much wider range of experimental observations on bulbar physiology and response dynamics than has hitherto been modeled. We predict that superficial-layer inhibitory interneurons (periglomerular cells) linearize the input-output transformation of the principal neurons (mitral cells), unlike previous models of contrast enhancement. The linearization is required to replicate observed linear summation of mitral odor responses. Further, in our model, action-potentials back-propagate along lateral dendrites of mitral cells and activate deep-layer inhibitory interneurons (granule cells). Using this, we propose sparse, long-range inhibition between mitral cells, mediated by granule cells, to explain how the respiratory phases of odor responses of sister mitral cells can be sometimes decorrelated as observed, despite receiving similar receptor input. We also rule out some alternative mechanisms. In our mechanism, we predict that a few distant mitral cells receiving input from different receptors, inhibit sister mitral cells differentially, by activating disjoint subsets of granule cells. This differential inhibition is strong enough to decorrelate their firing rate phases, and not merely modulate their spike timing. Thus our well-constrained model suggests novel computational roles for the two most numerous classes of interneurons in the bulb.
Collapse
Affiliation(s)
- Aditya Gilra
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India
| | - Upinder S. Bhalla
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore, 560065, India
- * E-mail:
| |
Collapse
|
114
|
Carey RM, Sherwood WE, Shipley MT, Borisyuk A, Wachowiak M. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb. J Neurophysiol 2015; 113:3112-29. [PMID: 25717156 DOI: 10.1152/jn.00394.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 02/20/2015] [Indexed: 11/22/2022] Open
Abstract
Olfaction in mammals is a dynamic process driven by the inhalation of air through the nasal cavity. Inhalation determines the temporal structure of sensory neuron responses and shapes the neural dynamics underlying central olfactory processing. Inhalation-linked bursts of activity among olfactory bulb (OB) output neurons [mitral/tufted cells (MCs)] are temporally transformed relative to those of sensory neurons. We investigated how OB circuits shape inhalation-driven dynamics in MCs using a modeling approach that was highly constrained by experimental results. First, we constructed models of canonical OB circuits that included mono- and disynaptic feedforward excitation, recurrent inhibition and feedforward inhibition of the MC. We then used experimental data to drive inputs to the models and to tune parameters; inputs were derived from sensory neuron responses during natural odorant sampling (sniffing) in awake rats, and model output was compared with recordings of MC responses to odorants sampled with the same sniff waveforms. This approach allowed us to identify OB circuit features underlying the temporal transformation of sensory inputs into inhalation-linked patterns of MC spike output. We found that realistic input-output transformations can be achieved independently by multiple circuits, including feedforward inhibition with slow onset and decay kinetics and parallel feedforward MC excitation mediated by external tufted cells. We also found that recurrent and feedforward inhibition had differential impacts on MC firing rates and on inhalation-linked response dynamics. These results highlight the importance of investigating neural circuits in a naturalistic context and provide a framework for further explorations of signal processing by OB networks.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Michael T Shipley
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Alla Borisyuk
- Department of Mathematics, University of Utah, Salt Lake City, Utah
| | - Matt Wachowiak
- Department of Neurobiology and Anatomy and Brain Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
115
|
Bartel DL, Rela L, Hsieh L, Greer CA. Dendrodendritic synapses in the mouse olfactory bulb external plexiform layer. J Comp Neurol 2015; 523:1145-61. [PMID: 25420934 DOI: 10.1002/cne.23714] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022]
Abstract
Odor information relayed by olfactory bulb projection neurons, mitral and tufted cells (M/T), is modulated by pairs of reciprocal dendrodendritic synaptic circuits in the external plexiform layer (EPL). Interneurons, which are accounted for largely by granule cells, receive depolarizing input from M/T dendrites and in turn inhibit current spread in M/T dendrites via hyperpolarizing reciprocal dendrodendritic synapses. Because the location of dendrodendritic synapses may significantly affect the cascade of odor information, we assessed synaptic properties and density within sublaminae of the EPL and along the length of M/T secondary dendrites. In electron micrographs the M/T to granule cell synapse appeared to predominate and was equivalent in both the outer and inner EPL. However, the dendrodendritic synapses from granule cell spines onto M/T dendrites were more prevalent in the outer EPL. In contrast, individual gephyrin-immunoreactive (IR) puncta, a postsynaptic scaffolding protein at inhibitory synapses used here as a proxy for the granule to M/T dendritic synapse was equally distributed throughout the EPL. Of significance to the organization of intrabulbar circuits, gephyrin-IR synapses are not uniformly distributed along M/T secondary dendrites. Synaptic density, expressed as a function of surface area, increases distal to the cell body. Furthermore, the distributions of gephyrin-IR puncta are heterogeneous and appear as clusters along the length of the M/T dendrites. Consistent with computational models, our data suggest that temporal coding in M/T cells is achieved by precisely located inhibitory input and that distance from the soma is compensated for by an increase in synaptic density.
Collapse
Affiliation(s)
- Dianna L Bartel
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, 06520-8082
| | | | | | | |
Collapse
|
116
|
Zhang W, Li L, Wang J, An L, Hu X, Xie J, Yan R, Chen S, Zhao S. Expression of macrophage migration inhibitory factor in the mouse neocortex and posterior piriform cortices during postnatal development. Cell Mol Neurobiol 2014; 34:1183-97. [PMID: 25118614 PMCID: PMC11488965 DOI: 10.1007/s10571-014-0094-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 07/29/2014] [Indexed: 01/30/2023]
Abstract
Macrophage migration inhibitory factor (MIF) functions as a pleiotropic protein, participating in a vast array of cellular and biological processes. Abnormal expression of MIF has been implicated in many neurological diseases, including Parkinson's disease, epilepsy, Alzheimer's Disease, stroke, and neuropathic pain. However, the expression patterns of mif transcript and MIF protein from the early postnatal period through adulthood in the mouse brain are still poorly understood. We therefore investigated the temporal and spatial expression of MIF in the mouse neocortex during postnatal development in detail and partially in posterior piriform cortices (pPC). As determined by quantitative real-time PCR (qPCR), mif transcript gradually increased during development, with the highest level noted at postnatal day 30 (P30) followed by a sharp decline at P75. In contrast, Western blotting results showed that MIF increased constantly from P7 to P75. The highest level of MIF was at P75, while the lowest level of MIF was at P7. Immunofluorescence histochemistry revealed that MIF-immunoreactive (ir) cells were within the entire depth of the developed neocortex, and MIF was heterogeneously distributed among cortical cells, especially at P7, P14, P30, and P75; MIF was abundant in the pyramidal layer within pPC. Double immunostaining showed that all the mature neurons were MIF-ir and all the intensely stained MIF-ir cells were parvalbumin positive (Pv +) at adult. Moreover, it was demonstrated that MIF protein localized in the perikaryon, processes, presynaptic structures, and the nucleus in neurons. Taken together, the developmentally regulated expression and the subcellular localization of MIF should form a platform for an analysis of MIF neurodevelopmental biology and MIF-related nerve diseases.
Collapse
Affiliation(s)
- Wei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Lingling Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Jiutao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Lei An
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Xinde Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Jiongfang Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Runchuan Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| |
Collapse
|
117
|
Murphey DK, Herman AM, Arenkiel BR. Dissecting inhibitory brain circuits with genetically-targeted technologies. Front Neural Circuits 2014; 8:124. [PMID: 25368555 PMCID: PMC4201106 DOI: 10.3389/fncir.2014.00124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022] Open
Abstract
The evolution of genetically targeted tools has begun to allow us to dissect anatomically and functionally heterogeneous interneurons, and to probe circuit function from synapses to behavior. Over the last decade, these tools have been used widely to visualize neurons in a cell type-specific manner, and engage them to activate and inactivate with exquisite precision. In this process, we have expanded our understanding of interneuron diversity, their functional connectivity, and how selective inhibitory circuits contribute to behavior. Here we discuss the relative assets of genetically encoded fluorescent proteins (FPs), viral tracing methods, optogenetics, chemical genetics, and biosensors in the study of inhibitory interneurons and their respective circuits.
Collapse
Affiliation(s)
- Dona K Murphey
- Department of Neurology, Baylor College of Medicine Houston, TX, USA
| | - Alexander M Herman
- Program in Developmental Biology, Baylor College of Medicine Houston, TX, USA
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine Houston, TX, USA ; Department of Molecular and Human Genetics, Baylor College of Medicine Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine Houston, TX, USA ; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital Houston, TX, USA
| |
Collapse
|
118
|
Brai E, Marathe S, Zentilin L, Giacca M, Nimpf J, Kretz R, Scotti A, Alberi L. Notch1 activity in the olfactory bulb is odour-dependent and contributes to olfactory behaviour. Eur J Neurosci 2014; 40:3436-49. [PMID: 25234246 DOI: 10.1111/ejn.12719] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 11/28/2022]
Abstract
Notch signalling plays an important role in synaptic plasticity, learning and memory functions in both Drosophila and rodents. In this paper, we report that this feature is not restricted to hippocampal networks but also involves the olfactory bulb (OB). Odour discrimination and olfactory learning in rodents are essential for survival. Notch1 expression is enriched in mitral cells of the mouse OB. These principal neurons are responsive to specific input odorants and relay the signal to the olfactory cortex. Olfactory stimulation activates a subset of mitral cells, which show an increase in Notch activity. In Notch1cKOKln mice, the loss of Notch1 in mitral cells affects the magnitude of the neuronal response to olfactory stimuli. In addition, Notch1cKOKln mice display reduced olfactory aversion to propionic acid as compared to wildtype controls. This indicates, for the first time, that Notch1 is involved in olfactory processing and may contribute to olfactory behaviour.
Collapse
Affiliation(s)
- Emanuele Brai
- Unit of Anatomy, Department of Medicine, University of Fribourg, Route de Gockel, 1, Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Roux L, Buzsáki G. Tasks for inhibitory interneurons in intact brain circuits. Neuropharmacology 2014; 88:10-23. [PMID: 25239808 DOI: 10.1016/j.neuropharm.2014.09.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 01/17/2023]
Abstract
Synaptic inhibition, brought about by a rich variety of interneuron types, counters excitation, modulates the gain, timing, tuning, bursting properties of principal cell firing, and exerts selective filtering of synaptic excitation. At the network level, it allows for coordinating transient interactions among the principal cells to form cooperative assemblies for efficient transmission of information and routing of excitatory activity across networks, typically in the form of brain oscillations. Recent techniques based on targeted expression of neuronal activity modulators, such as optogenetics, allow physiological identification and perturbation of specific interneuron subtypes in the intact brain. Combined with large-scale recordings or imaging techniques, these approaches facilitate our understanding of the multiple roles of inhibitory interneurons in shaping circuit functions.
Collapse
Affiliation(s)
- Lisa Roux
- NYU Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY 10016, USA
| | - György Buzsáki
- NYU Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
120
|
Local corticotropin releasing hormone (CRH) signals to its receptor CRHR1 during postnatal development of the mouse olfactory bulb. Brain Struct Funct 2014; 221:1-20. [PMID: 25224546 DOI: 10.1007/s00429-014-0888-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/09/2014] [Indexed: 02/07/2023]
Abstract
Neuropeptides play important physiological functions during distinct behaviors such as arousal, learning, memory, and reproduction. However, the role of local, extrahypothalamic neuropeptide signaling in shaping synapse formation and neuronal plasticity in the brain is not well understood. Here, we characterize the spatiotemporal expression profile of the neuropeptide corticotropin-releasing hormone (CRH) and its receptor CRHR1 in the mouse OB throughout development. We found that CRH-expressing interneurons are present in the external plexiform layer, that its cognate receptor is expressed by granule cells, and show that both CRH and CRHR1 expression enriches in the postnatal period when olfaction becomes important towards olfactory-related behaviors. Further, we provide electrophysiological evidence that CRHR1-expressing granule cells functionally respond to CRH ligand, and that the physiological circuitry of CRHR1 knockout mice is abnormal, leading to impaired olfactory behaviors. Together, these data suggest a physiologically relevant role for local CRH signaling towards shaping the neuronal circuitry within the mouse OB.
Collapse
|
121
|
Garcia I, Quast KB, Huang L, Herman AM, Selever J, Deussing JM, Justice NJ, Arenkiel BR. Local CRH signaling promotes synaptogenesis and circuit integration of adult-born neurons. Dev Cell 2014; 30:645-59. [PMID: 25199688 DOI: 10.1016/j.devcel.2014.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 05/02/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023]
Abstract
Neural activity either enhances or impairs de novo synaptogenesis and circuit integration of neurons, but how this activity is mechanistically relayed in the adult brain is largely unknown. Neuropeptide-expressing interneurons are widespread throughout the brain and are key candidates for conveying neural activity downstream via neuromodulatory pathways that are distinct from classical neurotransmission. With the goal of identifying signaling mechanisms that underlie neuronal circuit integration in the adult brain, we have virally traced local corticotropin-releasing hormone (CRH)-expressing inhibitory interneurons with extensive presynaptic inputs onto new neurons that are continuously integrated into the adult rodent olfactory bulb. Local CRH signaling onto adult-born neurons promotes and/or stabilizes chemical synapses in the olfactory bulb, revealing a neuromodulatory mechanism for continued circuit plasticity, synapse formation, and integration of new neurons in the adult brain.
Collapse
Affiliation(s)
- Isabella Garcia
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathleen B Quast
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Longwen Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander M Herman
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer Selever
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jan M Deussing
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
122
|
Nagayama S, Homma R, Imamura F. Neuronal organization of olfactory bulb circuits. Front Neural Circuits 2014; 8:98. [PMID: 25232305 PMCID: PMC4153298 DOI: 10.3389/fncir.2014.00098] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit.
Collapse
Affiliation(s)
- Shin Nagayama
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | - Ryota Homma
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine Hershey, PA, USA
| |
Collapse
|
123
|
Imai T. Construction of functional neuronal circuitry in the olfactory bulb. Semin Cell Dev Biol 2014; 35:180-8. [PMID: 25084319 DOI: 10.1016/j.semcdb.2014.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022]
Abstract
Recent studies using molecular genetics, electrophysiology, in vivo imaging, and behavioral analyses have elucidated detailed connectivity and function of the mammalian olfactory circuits. The olfactory bulb is the first relay station of olfactory perception in the brain, but it is more than a simple relay: olfactory information is dynamically tuned by local olfactory bulb circuits and converted to spatiotemporal neural code for higher-order information processing. Because the olfactory bulb processes ∼1000 discrete input channels from different odorant receptors, it serves as a good model to study neuronal wiring specificity, from both functional and developmental aspects. This review summarizes our current understanding of the olfactory bulb circuitry from functional standpoint and discusses important future studies with particular focus on its development and plasticity.
Collapse
Affiliation(s)
- Takeshi Imai
- Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, Kobe, Japan; PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
124
|
Schmidt LJ, Strowbridge BW. Modulation of olfactory bulb network activity by serotonin: synchronous inhibition of mitral cells mediated by spatially localized GABAergic microcircuits. ACTA ACUST UNITED AC 2014; 21:406-16. [PMID: 25031366 PMCID: PMC4105717 DOI: 10.1101/lm.035659.114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles of mitral cells (MCs), a primary output neuron in the olfactory bulb, and recorded intracellularly from pairs of MCs to directly assay coincident inhibitory input. We find that 5-HT disynaptically depolarized granule cells (GCs) only slightly but robustly increased the frequency of inhibitory postsynaptic inhibitory currents in MCs. Serotonin also triggered more coincident IPSCs in pairs of nearby MCs than expected by chance, including in MCs with truncated apical dendrites that lack glomerular synapses. That serotonin-triggered coincident inhibition in the absence of elevated GC somatic firing rates suggested that synchronized MC inhibition arose from glutamate receptor-mediated depolarization of GC dendrites or other (non-GC) interneurons outside the glomerular layer. Tetanic stimulation of GCL afferents to GCs triggered robust GC spiking, coincident inhibition in pairs of MCs, and recruited large-amplitude IPSCs in MCs. Enhancing neurotransmission through NMDARs by lowering the external Mg2+ concentration also increased inhibitory tone onto MCs but failed to promote synchronized inhibition. These results demonstrate that coincident MC inhibition can occur through multiple circuit pathways and suggests that the functional coordination between different GABAergic synapses in individual GCs can be dynamically regulated.
Collapse
Affiliation(s)
- Loren J Schmidt
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Ben W Strowbridge
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
125
|
Fukunaga I, Herb JT, Kollo M, Boyden ES, Schaefer AT. Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb. Nat Neurosci 2014; 17:1208-16. [PMID: 24997762 PMCID: PMC4146518 DOI: 10.1038/nn.3760] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/10/2014] [Indexed: 12/15/2022]
Abstract
Circuits in the brain possess a remarkable ability to orchestrate activities on different timescales, but how distinct circuits interact to sculpt diverse rhythms remains unresolved. The olfactory bulb is a classic example where slow, theta, and fast, gamma, rhythms coexist. Furthermore inhibitory interneurons generally implicated in rhythm generation are segregated into distinct layers, neatly separating local from global motifs. Here, combining intracellular recordings in vivo with circuit-specific optogenetic interference we dissect the contribution of inhibition to rhythmic activity in the mouse olfactory bulb. We found that the two inhibitory circuits control rhythms on distinct timescales: local, glomerular networks coordinate theta activity, regulating baseline and odor-evoked inhibition; granule cells orchestrate gamma synchrony and spike timing. Surprisingly, they did not contribute to baseline rhythms, or sniff-coupled odor-evoked inhibition despite their perceived dominance. Thus, activities on theta and gamma time scales are controlled by separate, dissociable inhibitory networks in the olfactory bulb.
Collapse
Affiliation(s)
- Izumi Fukunaga
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK
| | - Jan T Herb
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK. [3] Department Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Mihaly Kollo
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK
| | - Edward S Boyden
- Media Lab, Synthetic Neurobiology Group, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andreas T Schaefer
- 1] Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany. [2] Division of Neurophysiology, MRC National Institute for Medical Research, London, UK. [3] Department Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany. [4] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
126
|
Persson L, Witt RM, Galligan M, Greer PL, Eisner A, Pazyra-Murphy MF, Datta SR, Segal RA. Shh-proteoglycan interactions regulate maturation of olfactory glomerular circuitry. Dev Neurobiol 2014; 74:1255-67. [PMID: 24913191 DOI: 10.1002/dneu.22202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/30/2014] [Accepted: 06/04/2014] [Indexed: 12/27/2022]
Abstract
The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (Shh(Ala/Ala)), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature Shh(Ala/Ala) mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry.
Collapse
Affiliation(s)
- Laura Persson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. J Neurosci 2014; 34:5788-99. [PMID: 24760839 DOI: 10.1523/jneurosci.0674-14.2014] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The olfactory bulb (OB) is one of the two major loci in the mammalian brain where newborn neurons are constantly integrated into the neural circuit during postnatal life. Newborn neurons are generated from neural stem cells in the subventricular zone (SVZ) of the lateral ventricle and migrate to the OB through the rostral migratory stream. The majority of these newborn neurons differentiate into inhibitory interneurons, such as granule cells and periglomerular cells. It has been reported that prolonged supply of newborn neurons leads to continuous addition/turnover of the interneuronal populations and contributes to functional integrity of the OB circuit. However, it is not still clear how and to what extent postnatal-born neurons contribute to OB neural circuit formation, and the functional role of postnatal neurogenesis in odor-related behaviors remains elusive. To address this question, here by using genetic strategies, we first determined the unique integration mode of newly born interneurons during postnatal development of the mouse OB. We then manipulated these interneuron populations and found that continuous postnatal neurogenesis in the SVZ-OB plays pivotal roles in flexible olfactory associative learning and memory.
Collapse
|
128
|
Sakamoto M, Kageyama R, Imayoshi I. The functional significance of newly born neurons integrated into olfactory bulb circuits. Front Neurosci 2014; 8:121. [PMID: 24904263 PMCID: PMC4033306 DOI: 10.3389/fnins.2014.00121] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/06/2014] [Indexed: 12/27/2022] Open
Abstract
The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the neuronal circuits of the OB throughout life. The significance of this continuous supply of new neurons in the OB has been implicated in plasticity and memory regulation. Two decades of huge investigation in adult neurogenesis revealed the biological importance of integration of new neurons into the olfactory circuits. In this review, we highlight the recent findings about the physiological functions of newly generated neurons in rodent OB circuits and then discuss the contribution of neurogenesis in the brain function. Finally, we introduce cutting edge technologies to monitor and manipulate the activity of new neurons.
Collapse
Affiliation(s)
- Masayuki Sakamoto
- Institute for Virus Research, Kyoto University Kyoto, Japan ; Kyoto University Graduate School of Biostudies Kyoto, Japan
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University Kyoto, Japan ; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Kyoto, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Kyoto, Japan
| | - Itaru Imayoshi
- Institute for Virus Research, Kyoto University Kyoto, Japan ; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University Kyoto, Japan ; The Hakubi Center, Kyoto University Kyoto, Japan ; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology Kyoto, Japan
| |
Collapse
|
129
|
Cholinergic inputs from Basal forebrain add an excitatory bias to odor coding in the olfactory bulb. J Neurosci 2014; 34:4654-64. [PMID: 24672011 DOI: 10.1523/jneurosci.5026-13.2014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment.
Collapse
|
130
|
A population of glomerular glutamatergic neurons controls sensory information transfer in the mouse olfactory bulb. Nat Commun 2014; 5:3791. [PMID: 24804702 PMCID: PMC4028618 DOI: 10.1038/ncomms4791] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/02/2014] [Indexed: 12/29/2022] Open
Abstract
In sensory systems, peripheral organs convey sensory inputs to relay networks where information is shaped by local microcircuits before being transmitted to cortical areas. In the olfactory system, odorants evoke specific patterns of sensory neuron activity which are transmitted to output neurons in olfactory bulb glomeruli. How sensory information is transferred and shaped at this level remains still unclear. Here we employ mouse genetics, 2-photon microscopy, electrophysiology and optogenetics, to identify a novel population of glutamatergic neurons (VGLUT3+) in the glomerular layer of the adult mouse olfactory bulb as well as several of their synaptic targets. Both peripheral and serotoninergic inputs control VGLUT3+ neurons firing. Furthermore, we show that VGLUT3+ neurons photostimulation in vivo strongly suppresses both spontaneous and odor-evoked firing of bulbar output neurons. In conclusion, we identify and characterize here a microcircuit controlling the transfer of sensory information at an early stage of the olfactory pathway.
Collapse
|
131
|
Buetfering C, Allen K, Monyer H. Parvalbumin interneurons provide grid cell-driven recurrent inhibition in the medial entorhinal cortex. Nat Neurosci 2014; 17:710-8. [PMID: 24705183 DOI: 10.1038/nn.3696] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 03/11/2014] [Indexed: 11/09/2022]
Abstract
Grid cells in the medial entorhinal cortex (MEC) generate metric spatial representations. Recent attractor-network models suggest an essential role for GABAergic interneurons in the emergence of the grid-cell firing pattern through recurrent inhibition dependent on grid-cell phase. To test this hypothesis, we studied identified parvalbumin-expressing (PV(+)) interneurons that are the most likely candidate for providing this recurrent inhibition onto grid cells. Using optogenetics and tetrode recordings in mice, we found that PV(+) interneurons exhibited high firing rates, low spatial sparsity and no spatial periodicity. PV(+) interneurons inhibited all functionally defined cell types in the MEC and were in turn recruited preferentially by grid cells. To our surprise, we found that individual PV(+) interneurons received input from grid cells with various phases, which most likely accounts for the broadly tuned spatial firing activity of PV(+) interneurons. Our data argue against the notion that PV(+) interneurons provide phase-dependent recurrent inhibition and challenge recent attractor-network models of grid cells.
Collapse
Affiliation(s)
- Christina Buetfering
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kevin Allen
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
132
|
Saiz-Sanchez D, De la Rosa-Prieto C, Ubeda-Banon I, Martinez-Marcos A. Interneurons, tau and amyloid-β in the piriform cortex in Alzheimer's disease. Brain Struct Funct 2014; 220:2011-25. [PMID: 24748561 DOI: 10.1007/s00429-014-0771-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 04/02/2014] [Indexed: 12/14/2022]
Abstract
Impaired olfaction has been described as an early symptom of Alzheimer's disease. Neuroanatomical changes underlying this deficit in the olfactory system are largely unknown. Interestingly, neuropathology begins in the transentorhinal cortex and extends to the neighboring limbic system and basal telencephalic structures that mediate olfactory processing, including the anterior olfactory nucleus and olfactory bulb. The human piriform cortex has been described as a crucial area in odor quality coding; disruption of this region mediates early olfactory deficits in Alzheimer's disease. Most neuropathological investigations have focused on the entorhinal cortex and hippocampus, whereas the piriform cortex has largely been neglected. This work aims to characterize the expression of the neuropathological amyloid-β peptide, tau protein and interneuron population markers (calretinin, parvalbumin and somatostatin) in the piriform cortex of ten Alzheimer-diagnosed (80.4 ± 8.3 years old) and five control (69.6 ± 11.1) cases. Here, we examined the distribution of different interneuronal markers as well as co-localization of interneurons and pathological markers. Results indicated preferential vulnerability of somatostatin- (p = 0.0001 < α = 0.05) and calretinin-positive (p = 0.013 < α = 0.05) cells that colocalized with amyloid-β peptide, while the prevalence of parvalbumin-positive cells was increased (p = 0.045 < α = 0.05) in the Alzheimer's cases. These data may help to reveal the neural basis of olfactory deficits linked to Alzheimer's disease as well as to characterize neuronal populations preferentially vulnerable to neuropathology in regions critically involved in early stages of the disease.
Collapse
Affiliation(s)
- Daniel Saiz-Sanchez
- Laboratorio de Neuroplasticidad y Neurodegeneración, Facultad de Medicina de Ciudad Real, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avda. de Moledores s/n, 13071, Ciudad Real, Spain
| | | | | | | |
Collapse
|
133
|
|
134
|
Burton SD, Urban NN. Greater excitability and firing irregularity of tufted cells underlies distinct afferent-evoked activity of olfactory bulb mitral and tufted cells. J Physiol 2014; 592:2097-118. [PMID: 24614745 DOI: 10.1113/jphysiol.2013.269886] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitral and tufted cells, the two classes of principal neurons in the mammalian main olfactory bulb, exhibit morphological differences but remain widely viewed as functionally equivalent. Results from several recent studies, however, suggest that these two cell classes may encode complementary olfactory information in their distinct patterns of afferent-evoked activity. To understand how these differences in activity arise, we have performed the first systematic comparison of synaptic and intrinsic properties between mitral and tufted cells. Consistent with previous studies, we found that tufted cells fire with higher probability and rates and shorter latencies than mitral cells in response to physiological afferent stimulation. This stronger response of tufted cells could be partially attributed to synaptic differences, as tufted cells received stronger afferent-evoked excitation than mitral cells. However, differences in intrinsic excitability also contributed to the differences between mitral and tufted cell activity. Compared to mitral cells, tufted cells exhibited twofold greater excitability and peak instantaneous firing rates. These differences in excitability probably arise from differential expression of voltage-gated potassium currents, as tufted cells exhibited faster action potential repolarization and afterhyperpolarizations than mitral cells. Surprisingly, mitral and tufted cells also showed firing mode differences. While both cell classes exhibited regular firing and irregular stuttering of action potential clusters, tufted cells demonstrated a greater propensity to stutter than mitral cells. Collectively, stronger afferent-evoked excitation, greater intrinsic excitability and more irregular firing in tufted cells can combine to drive distinct responses of mitral and tufted cells to afferent-evoked input.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Nathaniel N Urban
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
135
|
Cazakoff BN, Lau BYB, Crump KL, Demmer HS, Shea SD. Broadly tuned and respiration-independent inhibition in the olfactory bulb of awake mice. Nat Neurosci 2014; 17:569-76. [PMID: 24584050 DOI: 10.1038/nn.3669] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/04/2014] [Indexed: 12/14/2022]
Abstract
Olfactory representations are shaped by brain state and respiration. The interaction and circuit substrates of these influences are unclear. Granule cells (GCs) in the main olfactory bulb (MOB) are presumed to sculpt activity reaching the cortex via inhibition of mitral/tufted cells (MTs). GCs potentially make ensemble activity more sparse by facilitating lateral inhibition among MTs and/or enforce temporally precise activity locked to breathing. Yet the selectivity and temporal structure of wakeful GC activity are unknown. We recorded GCs in the MOB of anesthetized and awake mice and identified state-dependent features of odor coding and temporal patterning. Under anesthesia, GCs were sparsely active and strongly and synchronously coupled to respiration. Upon waking, GCs desynchronized, broadened their tuning and largely fired independently from respiration. Thus, during wakefulness, GCs exhibited stronger odor responses with less temporal structure. We propose that during wakefulness GCs may shape MT odor responses through broadened lateral interactions rather than respiratory synchronization.
Collapse
Affiliation(s)
| | - Billy Y B Lau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Kerensa L Crump
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Heike S Demmer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Stephen D Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
136
|
Uchida N, Eshel N, Watabe-Uchida M. Division of labor for division: inhibitory interneurons with different spatial landscapes in the olfactory system. Neuron 2014; 80:1106-9. [PMID: 24314722 DOI: 10.1016/j.neuron.2013.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Normalizing neural responses by the sum of population activity allows the nervous system to adjust its sensitivity according to task demands, facilitating intensity-invariant information processing. In this issue of Neuron, two studies, Kato et al. (2013) and Miyamichi et al. (2013), suggest that parvalbumin-positive interneurons in the olfactory bulb play a role in this process.
Collapse
Affiliation(s)
- Naoshige Uchida
- Center for Brain Science, Department of Molecular and Cellular Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
137
|
Adult neurogenesis in the olfactory system shapes odor memory and perception. PROGRESS IN BRAIN RESEARCH 2014; 208:157-75. [PMID: 24767482 DOI: 10.1016/b978-0-444-63350-7.00006-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The olfactory system is a dynamic place. In mammals, not only are sensory neurons located in the sensory organ renewed through adult life, but also its first central relay is reconstructed by continuous neuronal recruitment. Despite these numerous morphological and physiological changes, olfaction is a unique sensory modality endowed with a privileged link to memory. This raises a clear conundrum; how does the olfactory system balance its neuronal turnover with its participation in long-term memory? This review concentrates on the functional aspects of adult neurogenesis, addressing how the integration of late-born neurons participates in olfactory perception and memory. After outlining the properties of adult neurogenesis in the olfactory system, and after describing their regulation by internal and environmental factors, we ask how the process of odorant perception can be influenced by constant neuronal turnover. We then explore the possible functional roles that newborn neurons might have for olfactory memory. Throughout this review, and as we concentrate almost exclusively on mammalian models, we stress the idea that adult neurogenesis is yet another form of plasticity used by the brain to copes with a constantly changing olfactory world.
Collapse
|
138
|
|
139
|
Miyamichi K, Shlomai-Fuchs Y, Shu M, Weissbourd BC, Luo L, Mizrahi A. Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output. Neuron 2013; 80:1232-45. [PMID: 24239125 DOI: 10.1016/j.neuron.2013.08.027] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
In the mouse olfactory bulb, information from sensory neurons is extensively processed by local interneurons before being transmitted to the olfactory cortex by mitral and tufted (M/T) cells. The precise function of these local networks remains elusive because of the vast heterogeneity of interneurons, their diverse physiological properties, and their complex synaptic connectivity. Here we identified the parvalbumin interneurons (PVNs) as a prominent component of the M/T presynaptic landscape by using an improved rabies-based transsynaptic tracing method for local circuits. In vivo two-photon-targeted patch recording revealed that PVNs have exceptionally broad olfactory receptive fields and exhibit largely excitatory and persistent odor responses. Transsynaptic tracing indicated that PVNs receive direct input from widely distributed M/T cells. Both the anatomical and functional extent of this M/T→PVN→M/T circuit contrasts with the narrowly confined M/T→granule cell→M/T circuit, suggesting that olfactory information is processed by multiple local circuits operating at distinct spatial scales.
Collapse
Affiliation(s)
- Kazunari Miyamichi
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|