101
|
Hanchate NK, Lee EJ, Ellis A, Kondoh K, Kuang D, Basom R, Trapnell C, Buck LB. Connect-seq to superimpose molecular on anatomical neural circuit maps. Proc Natl Acad Sci U S A 2020; 117:4375-4384. [PMID: 32034095 PMCID: PMC7049128 DOI: 10.1073/pnas.1912176117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mouse brain contains about 75 million neurons interconnected in a vast array of neural circuits. The identities and functions of individual neuronal components of most circuits are undefined. Here we describe a method, termed "Connect-seq," which combines retrograde viral tracing and single-cell transcriptomics to uncover the molecular identities of upstream neurons in a specific circuit and the signaling molecules they use to communicate. Connect-seq can generate a molecular map that can be superimposed on a neuroanatomical map to permit molecular and genetic interrogation of how the neuronal components of a circuit control its function. Application of this method to hypothalamic neurons controlling physiological responses to fear and stress reveals subsets of upstream neurons that express diverse constellations of signaling molecules and can be distinguished by their anatomical locations.
Collapse
Affiliation(s)
- Naresh K Hanchate
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Eun Jeong Lee
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Andria Ellis
- Department of Genome Sciences, University of Washington, Seattle, WA 98115
| | - Kunio Kondoh
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Donghui Kuang
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98115
- The Brotman Baty Institute for Precision Medicine, Seattle, WA 98195
| | - Linda B Buck
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109;
- The Brotman Baty Institute for Precision Medicine, Seattle, WA 98195
| |
Collapse
|
102
|
Lavin TK, Jin L, Lea NE, Wickersham IR. Monosynaptic Tracing Success Depends Critically on Helper Virus Concentrations. Front Synaptic Neurosci 2020; 12:6. [PMID: 32116642 PMCID: PMC7033752 DOI: 10.3389/fnsyn.2020.00006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/23/2020] [Indexed: 11/13/2022] Open
Abstract
Monosynaptically-restricted transsynaptic tracing using deletion-mutant rabies virus (RV) has become a widely used technique in neuroscience, allowing identification, imaging, and manipulation of neurons directly presynaptic to a starting neuronal population. Its most common implementation is to use Cre mouse lines in combination with Cre-dependent "helper" adeno-associated viral vectors (AAVs) to supply the required genes to the targeted population before subsequent injection of a first-generation (ΔG) rabies viral vector. Here we show that the efficiency of transsynaptic spread and the degree of nonspecific labeling in wild-type control animals depend strongly on the concentrations of these helper AAVs. Our results suggest practical guidelines for achieving good results.
Collapse
Affiliation(s)
| | | | | | - Ian R. Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
103
|
Nieder A, Mooney R. The neurobiology of innate, volitional and learned vocalizations in mammals and birds. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190054. [PMID: 31735150 PMCID: PMC6895551 DOI: 10.1098/rstb.2019.0054] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2019] [Indexed: 11/12/2022] Open
Abstract
Vocalization is an ancient vertebrate trait essential to many forms of communication, ranging from courtship calls to free verse. Vocalizations may be entirely innate and evoked by sexual cues or emotional state, as with many types of calls made in primates, rodents and birds; volitional, as with innate calls that, following extensive training, can be evoked by arbitrary sensory cues in non-human primates and corvid songbirds; or learned, acoustically flexible and complex, as with human speech and the courtship songs of oscine songbirds. This review compares and contrasts the neural mechanisms underlying innate, volitional and learned vocalizations, with an emphasis on functional studies in primates, rodents and songbirds. This comparison reveals both highly conserved and convergent mechanisms of vocal production in these different groups, despite their often vast phylogenetic separation. This similarity of central mechanisms for different forms of vocal production presents experimentalists with useful avenues for gaining detailed mechanistic insight into how vocalizations are employed for social and sexual signalling, and how they can be modified through experience to yield new vocal repertoires customized to the individual's social group. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Richard Mooney
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
104
|
Nakajima M, Schmitt LI. Understanding the circuit basis of cognitive functions using mouse models. Neurosci Res 2019; 152:44-58. [PMID: 31857115 DOI: 10.1016/j.neures.2019.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/01/2019] [Accepted: 12/09/2019] [Indexed: 01/13/2023]
Abstract
Understanding how cognitive functions arise from computations occurring in the brain requires the ability to measure and perturb neural activity while the relevant circuits are engaged for specific cognitive processes. Rapid technical advances have led to the development of new approaches to transiently activate and suppress neuronal activity as well as to record simultaneously from hundreds to thousands of neurons across multiple brain regions during behavior. To realize the full potential of these approaches for understanding cognition, however, it is critical that behavioral conditions and stimuli are effectively designed to engage the relevant brain networks. Here, we highlight recent innovations that enable this combined approach. In particular, we focus on how to design behavioral experiments that leverage the ever-growing arsenal of technologies for controlling and measuring neural activity in order to understand cognitive functions.
Collapse
Affiliation(s)
- Miho Nakajima
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - L Ian Schmitt
- McGovern Institute for Brain Research and the Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, United States; Center for Brain Science, RIKEN, Wako, Saitama, Japan.
| |
Collapse
|
105
|
Neural circuits for coping with social defeat. Curr Opin Neurobiol 2019; 60:99-107. [PMID: 31837481 DOI: 10.1016/j.conb.2019.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
When resources, such as food, territory, and potential mates are limited, competition among animals of the same species is inevitable. Over bouts of agonistic interactions, winners and losers are determined. Losing is a traumatic experience, both physically and psychologically. Losers not only need to deploy a set of species-specific defensive behaviors to minimize the physical damage during defeat, but also adjust their behavior towards the winners to avoid future fights in which they are likely disadvantaged. The expression of defensive behaviors and the fast and long-lasting changes in behaviors accompanying defeat must be supported by a complex neural circuit. This review summarizes the brain regions that have been implicated in coping with social defeat, one centered on basolateral amygdala and the other on ventromedial hypothalamus. Gaps in our knowledge and hypotheses that may help guide future experiments are also discussed.
Collapse
|
106
|
Lavin TK, Jin L, Wickersham IR. Monosynaptic tracing: a step-by-step protocol. J Chem Neuroanat 2019; 102:101661. [PMID: 31408693 PMCID: PMC11526806 DOI: 10.1016/j.jchemneu.2019.101661] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/01/2019] [Accepted: 07/14/2019] [Indexed: 01/25/2023]
Abstract
Monosynaptic tracing using deletion-mutant rabies virus allows whole-brain mapping of neurons that are directly presynaptic to a targeted population of neurons. The most common and robust way of implementing it is to use Cre mouse lines in combination with Cre-dependent adeno-associated viral vectors for expression of the required genes in the targeted neurons before subsequent injection of the rabies virus. Here we present a step-by-step protocol for performing such experiments using first-generation (ΔG) rabies viral vectors.
Collapse
Affiliation(s)
- Thomas K Lavin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lei Jin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
107
|
Rodriguez E, Ryu D, Zhao S, Han BX, Wang F. Identifying Parabrachial Neurons Selectively Regulating Satiety for Highly Palatable Food in Mice. eNeuro 2019; 6:ENEURO.0252-19.2019. [PMID: 31662323 PMCID: PMC6868176 DOI: 10.1523/eneuro.0252-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/10/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Food consumption is necessary for organisms to maintain metabolic homeostasis. Both extrinsic and intrinsic processes, relayed via intricate neural circuitry, orchestrate the initiation and termination of food intake. More specifically, there are functionally distinct neural circuits that mediate either homeostatic or hedonic suppression of feeding. Notably, being satiated is a positive feeling whereas food aversion is a negative feeling. While significant progress has been made toward elucidating neural circuitry underlying aversive appetite suppression in mice, the circuitry underlying homeostatic satiety is not fully understood. The lateral parabrachial nucleus (PBL) is known as a node that regulates various sensory and visceral processes. Here, we identified and selectively labeled neurons in the caudal lateral region of PBL (PBcl) that are activated by consumption of condensed milk, chocolate Ensure, or peanut butter, which we refer to as PBcl-palatable-food activated neurons (PANs). Specific optogenetic activation of PANs induced positive place preference but decreased the consumption of high-caloric foods such as condensed milk, whereas silencing these cells significantly increased condensed milk consumption in feeding assays. Thus, the PBcl PANs revealed here represent a novel neural substrate regulating caloric-sufficiency mediated satiation.
Collapse
Affiliation(s)
- Erica Rodriguez
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27708
| | - David Ryu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27708
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27708
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27708
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27708
| |
Collapse
|
108
|
Newman EL, Covington HE, Suh J, Bicakci MB, Ressler KJ, DeBold JF, Miczek KA. Fighting Females: Neural and Behavioral Consequences of Social Defeat Stress in Female Mice. Biol Psychiatry 2019; 86:657-668. [PMID: 31255250 PMCID: PMC6788975 DOI: 10.1016/j.biopsych.2019.05.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Despite the twofold higher prevalence of major depressive and posttraumatic stress disorders in women compared with men, most clinical and preclinical studies have focused on male subjects. We used an ethological murine model to study several cardinal symptoms of affective disorders in the female targets of female aggression. METHODS Intact Swiss Webster (CFW) female resident mice were housed with castrated male mice and tested for aggression toward female intruders. For 10 days, aggressive CFW female residents defeated C57BL/6J (B6) female intruders during 5-minute encounters. Measures of corticosterone, c-Fos activation in hypothalamic and limbic structures, and species-typical behaviors were collected from defeated and control females. Ketamine (20 mg/kg) was tested for its potential to reverse stress-induced social deficits. RESULTS Housed with a castrated male mouse, most intact resident CFW females readily attacked unfamiliar B6 female intruders, inflicting >40 bites in a 5-minute encounter. Compared with controls, defeated B6 females exhibited elevated plasma corticosterone and increased c-Fos activation in the medial amygdala, ventral lateral septum, ventromedial hypothalamus, and hypothalamic paraventricular nucleus. Chronically defeated females also showed vigilance-like behavior and deficits in social interactions, novel object investigation, and nesting. The duration of social interactions increased 24 hours after chronically defeated female mice received a systemic dose of ketamine. CONCLUSIONS These findings demonstrate that CFW female mice living with male conspecifics can be used as aggressive residents in an ethological model of female social defeat stress. These novel behavioral methods will encourage further studies of sex-specific neural, physiological, and behavioral adaptations to chronic stress and the biological bases for interfemale aggression.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Department, Tufts University, Medford, Massachusetts
| | | | - Junghyup Suh
- Division of Depression and Anxiety Disorders and Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | | | - Kerry J Ressler
- Division of Depression and Anxiety Disorders and Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Joseph F DeBold
- Psychology Department, Tufts University, Medford, Massachusetts
| | - Klaus A Miczek
- Psychology Department, Tufts University, Medford, Massachusetts; Department of Neuroscience, Tufts University, Boston, Massachusetts.
| |
Collapse
|
109
|
Arimura D, Shinohara K, Takahashi Y, Sugimura YK, Sugimoto M, Tsurugizawa T, Marumo K, Kato F. Primary Role of the Amygdala in Spontaneous Inflammatory Pain- Associated Activation of Pain Networks - A Chemogenetic Manganese-Enhanced MRI Approach. Front Neural Circuits 2019; 13:58. [PMID: 31632244 PMCID: PMC6779784 DOI: 10.3389/fncir.2019.00058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a major health problem, affecting 10–30% of the population in developed countries. While chronic pain is defined as “a persistent complaint of pain lasting for more than the usual period for recovery,” recently accumulated lines of evidence based on human brain imaging have revealed that chronic pain is not simply a sustained state of nociception, but rather an allostatic state established through gradually progressing plastic changes in the central nervous system. To visualize the brain activity associated with spontaneously occurring pain during the shift from acute to chronic pain under anesthetic-free conditions, we used manganese-enhanced magnetic resonance imaging (MEMRI) with a 9.4-T scanner to visualize neural activity-dependent accumulation of manganese in the brains of mice with hind paw inflammation. Time-differential analysis between 2- and 6-h after formalin injection to the left hind paw revealed a significantly increased MEMRI signal in various brain areas, including the right insular cortex, right nucleus accumbens, right globus pallidus, bilateral caudate putamen, right primary/secondary somatosensory cortex, bilateral thalamus, right amygdala, bilateral substantial nigra, and left ventral tegmental area. To analyze the role of the right amygdala in these post-formalin MEMRI signals, we repeatedly inhibited right amygdala neurons during this 2–6-h period using the “designer receptors exclusively activated by designer drugs” (DREADD) technique. Pharmacological activation of inhibitory DREADDs expressed in the right amygdala significantly attenuated MEMRI signals in the bilateral infralimbic cortex, bilateral nucleus accumbens, bilateral caudate putamen, right globus pallidus, bilateral ventral tegmental area, and bilateral substantia nigra, suggesting that the inflammatory pain-associated activation of these structures depends on the activity of the right amygdala and DREADD-expressing adjacent structures. In summary, the combined use of DREADD and MEMRI is a promising approach for revealing regions associated with spontaneous pain-associated brain activities and their causal relationships.
Collapse
Affiliation(s)
- Daigo Arimura
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Department of Orthopaedics, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Kei Shinohara
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Department of Orthopaedics, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Yukari Takahashi
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Yae K Sugimura
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Mariko Sugimoto
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Tomokazu Tsurugizawa
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan.,NeuroSpin, CEA-Saclay, Gif-sur-Yvette, France
| | - Keishi Marumo
- Department of Orthopaedics, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
110
|
Adesnik H, Naka A. Cracking the Function of Layers in the Sensory Cortex. Neuron 2019; 100:1028-1043. [PMID: 30521778 DOI: 10.1016/j.neuron.2018.10.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/08/2018] [Accepted: 10/18/2018] [Indexed: 12/24/2022]
Abstract
Understanding how cortical activity generates sensory perceptions requires a detailed dissection of the function of cortical layers. Despite our relatively extensive knowledge of their anatomy and wiring, we have a limited grasp of what each layer contributes to cortical computation. We need to develop a theory of cortical function that is rooted solidly in each layer's component cell types and fine circuit architecture and produces predictions that can be validated by specific perturbations. Here we briefly review the progress toward such a theory and suggest an experimental road map toward this goal. We discuss new methods for the all-optical interrogation of cortical layers, for correlating in vivo function with precise identification of transcriptional cell type, and for mapping local and long-range activity in vivo with synaptic resolution. The new technologies that can crack the function of cortical layers are finally on the immediate horizon.
Collapse
Affiliation(s)
- Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Alexander Naka
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
111
|
Tschida K, Michael V, Takatoh J, Han BX, Zhao S, Sakurai K, Mooney R, Wang F. A Specialized Neural Circuit Gates Social Vocalizations in the Mouse. Neuron 2019; 103:459-472.e4. [PMID: 31204083 PMCID: PMC6687542 DOI: 10.1016/j.neuron.2019.05.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/25/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022]
Abstract
Vocalizations are fundamental to mammalian communication, but the underlying neural circuits await detailed characterization. Here, we used an intersectional genetic method to label and manipulate neurons in the midbrain periaqueductal gray (PAG) that are transiently active in male mice when they produce ultrasonic courtship vocalizations (USVs). Genetic silencing of PAG-USV neurons rendered males unable to produce USVs and impaired their ability to attract females. Conversely, activating PAG-USV neurons selectively triggered USV production, even in the absence of any female cues. Optogenetic stimulation combined with axonal tracing indicates that PAG-USV neurons gate downstream vocal-patterning circuits. Indeed, activating PAG neurons that innervate the nucleus retroambiguus, but not those innervating the parabrachial nucleus, elicited USVs in both male and female mice. These experiments establish that a dedicated population of PAG neurons gives rise to a descending circuit necessary and sufficient for USV production while also demonstrating the communicative salience of male USVs. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Katherine Tschida
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie Michael
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jun Takatoh
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Katsuyasu Sakurai
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Richard Mooney
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
112
|
Liu K, Jones S, Minis A, Rodriguez J, Molina H, Steller H. PI31 Is an Adaptor Protein for Proteasome Transport in Axons and Required for Synaptic Development. Dev Cell 2019; 50:509-524.e10. [PMID: 31327739 DOI: 10.1016/j.devcel.2019.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/18/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Protein degradation by the ubiquitin-proteasome system is critical for neuronal function. Neurons utilize microtubule-dependent molecular motors to allocate proteasomes to synapses, but how proteasomes are coupled to motors and how this is regulated to meet changing demand for protein breakdown remain largely unknown. We show that the conserved proteasome-binding protein PI31 serves as an adaptor to couple proteasomes with dynein light chain proteins (DYNLL1/2). The inactivation of PI31 inhibited proteasome motility in axons and disrupted synaptic proteostasis, structure, and function. Moreover, phosphorylation of PI31 by p38 MAPK enhanced binding to DYNLL1/2 and promoted the directional movement of proteasomes in axons, suggesting a mechanism to regulate loading of proteasomes onto motors. Inactivation of PI31 in mouse neurons attenuated proteasome movement in axons, indicating this process is conserved. Because mutations affecting PI31 activity are associated with human neurodegenerative diseases, impairment of PI31-mediated axonal transport of proteasomes may contribute to these disorders.
Collapse
Affiliation(s)
- Kai Liu
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sandra Jones
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Adi Minis
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jose Rodriguez
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
113
|
Covington HE, Newman EL, Leonard MZ, Miczek KA. Translational models of adaptive and excessive fighting: an emerging role for neural circuits in pathological aggression. F1000Res 2019; 8:F1000 Faculty Rev-963. [PMID: 31281636 PMCID: PMC6593325 DOI: 10.12688/f1000research.18883.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
Aggression is a phylogenetically stable behavior, and attacks on conspecifics are observed in most animal species. In this review, we discuss translational models as they relate to pathological forms of offensive aggression and the brain mechanisms that underlie these behaviors. Quantifiable escalations in attack or the development of an atypical sequence of attacks and threats is useful for characterizing abnormal variations in aggression across species. Aggression that serves as a reinforcer can be excessive, and certain schedules of reinforcement that allow aggression rewards also allow for examining brain and behavior during the anticipation of a fight. Ethological attempts to capture and measure offensive aggression point to two prominent hypotheses for the neural basis of violence. First, pathological aggression may be due to an exaggeration of activity in subcortical circuits that mediate adaptive aggressive behaviors as they are triggered by environmental or endogenous cues at vulnerable time points. Indeed, repeated fighting experiences occur with plasticity in brain areas once considered hardwired. Alternatively, a separate "violence network" may converge on aggression circuitry that disinhibits pathological aggression (for example, via disrupted cortical inhibition). Advancing animal models that capture the motivation to commit pathological aggression remains important to fully distinguish the neural architecture of violence as it differs from adaptive competition among conspecifics.
Collapse
Affiliation(s)
- Herbert E. Covington
- Department of Psychology, Tufts University, Medford, 530 Boston Ave, 02155, MA, USA
| | - Emily L. Newman
- Department of Psychology, Tufts University, Medford, 530 Boston Ave, 02155, MA, USA
| | - Michael Z. Leonard
- Department of Psychology, Tufts University, Medford, 530 Boston Ave, 02155, MA, USA
| | - Klaus A. Miczek
- Department of Psychology, Tufts University, Medford, 530 Boston Ave, 02155, MA, USA
- Department of Neuroscience, Tufts University, Boston, 136 Harrison Ave, 02111, MA, USA
| |
Collapse
|
114
|
Locci A, Pinna G. Social isolation as a promising animal model of PTSD comorbid suicide: neurosteroids and cannabinoids as possible treatment options. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:243-259. [PMID: 30586627 DOI: 10.1016/j.pnpbp.2018.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by drastic alterations in mood, emotions, social abilities and cognition. Notably, one aspect of PTSD, particularly in veterans, is its comorbidity with suicide. Elevated aggressiveness predicts high-risk to suicide in humans and despite the difficulty in reproducing a complex human suicidal behavior in rodents, aggressive behavior is a well reproducible behavioral trait of suicide. PTSD animal models are based on a peculiar phenotype, including exaggerated fear memory and impaired fear extinction associated with neurochemical dysregulations in the brain circuitry regulating emotion. The endocannabinoid and the neurosteroid systems regulate emotions and stress responses, and recent evidence shows these two systems are interrelated and critically compromised in neuropsychiatric disorders. For instance, levels of the neurosteroid, allopregnanolone, as well as those of the endocannabinoids, anandamide and its congener, palmitoylethanolamide are decreased in PTSD. Similarly, the endocannabinoid system and neurosteroid biosynthesis are altered in suicidal individuals. Selective serotonin reuptake inhibitors (SSRIs), the only FDA-approved treatments for PTSD, fail to help half of the treatment-seeking patients. This highlights the need for developing biomarker-based efficient therapies. One promising alternative to SSRIs points to stimulation of allopregnanolone biosynthesis as a treatment and a valid end-point to predict treatment response in PTSD patients. This review highlights running findings on the role of the endocannabinoid and neurosteroid systems in PTSD and suicidal behavior both in a preclinical and clinical perspective. A specific focus is given to predictive PTSD/suicide animal models. Ultimately, we discuss the idea that disruption of neurosteroid and endocannabinoid biosynthesis may offer a novel promising biomarker axis to develop new treatments for PTSD and, perhaps, suicidal behavior.
Collapse
Affiliation(s)
- Andrea Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| |
Collapse
|
115
|
Jiang-Xie LF, Yin L, Zhao S, Prevosto V, Han BX, Dzirasa K, Wang F. A Common Neuroendocrine Substrate for Diverse General Anesthetics and Sleep. Neuron 2019; 102:1053-1065.e4. [PMID: 31006556 DOI: 10.1016/j.neuron.2019.03.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
How general anesthesia (GA) induces loss of consciousness remains unclear, and whether diverse anesthetic drugs and sleep share a common neural pathway is unknown. Previous studies have revealed that many GA drugs inhibit neural activity through targeting GABA receptors. Here, using Fos staining, ex vivo brain slice recording, and in vivo multi-channel electrophysiology, we discovered a core ensemble of hypothalamic neurons in and near the supraoptic nucleus, consisting primarily of neuroendocrine cells, which are persistently and commonly activated by multiple classes of GA drugs. Remarkably, chemogenetic or brief optogenetic activations of these anesthesia-activated neurons (AANs) strongly promote slow-wave sleep and potentiates GA, whereas conditional ablation or inhibition of AANs led to diminished slow-wave oscillation, significant loss of sleep, and shortened durations of GA. These findings identify a common neural substrate underlying diverse GA drugs and natural sleep and reveal a crucial role of the neuroendocrine system in regulating global brain states. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Li-Feng Jiang-Xie
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luping Yin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Vincent Prevosto
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kafui Dzirasa
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
116
|
Chen SH, Haam J, Walker M, Scappini E, Naughton J, Martin NP. Recombinant Viral Vectors as Neuroscience Tools. ACTA ACUST UNITED AC 2019; 87:e67. [PMID: 30901512 DOI: 10.1002/cpns.67] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Viral vectors expand the neurobiology toolbox to include direct and rapid anterograde, retrograde, and trans-synaptic delivery of tracers, sensors, and actuators to the mammalian brain. Each viral type offers unique advantages and limitations. To establish strategies for selecting a suitable viral type, this article aims to provide readers with an overview of viral recombinant technology, viral structure, tropism, and differences between serotypes and pseudotypes for three of the most commonly used vectors in neurobiology research: adeno-associated viruses, retro/lentiviruses, and glycoprotein-deleted rabies viruses. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| | - Juhee Haam
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| | - Mitzie Walker
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| | - Erica Scappini
- Signal Transduction Laboratory, Fluorescence Microscopy and Imaging Center, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| | - John Naughton
- Gene Transfer, Targeting and Therapeutics (GT3) Core, Salk Institute for Biological Studies, La Jolla, California
| | - Negin P Martin
- Viral Vector Core, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, North Carolina
| |
Collapse
|
117
|
Connectional architecture of a mouse hypothalamic circuit node controlling social behavior. Proc Natl Acad Sci U S A 2019; 116:7503-7512. [PMID: 30898882 PMCID: PMC6462064 DOI: 10.1073/pnas.1817503116] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
How hypothalamic cellular heterogeneity maps onto circuit connectivity, and the relationship of this anatomical mapping to behavioral function, remain poorly understood. Here we systematically map the connectivity of estrogen receptor-1–expressing neurons in the ventromedial hypothalamus (VMHvlEsr1), which control aggression and related social behaviors, using multiple viral-genetic tracers. Rather than a simple feed-forward sensory-to-motor processing stream, we find high convergence (fan-in) and divergence (fan-out) in VMHvlEsr1 inputs and projections, respectively, with massive feedback. However, outputs are split into two subpopulations that project either posteriorly, to premotor structures, or anteriorly back to the amygdala and hypothalamus. This fan-in/-out system architecture is consistent with “antenna” and “broadcasting” functions for VMHvlEsr1 neurons, with the feedback pathway possibly controlling behavioral decisions and internal state. Type 1 estrogen receptor-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvlEsr1) play a causal role in the control of social behaviors, including aggression. Here we use six different viral-genetic tracing methods to systematically map the connectional architecture of VMHvlEsr1 neurons. These data reveal a high level of input convergence and output divergence (“fan-in/fan-out”) from and to over 30 distinct brain regions, with a high degree (∼90%) of bidirectionality, including both direct as well as indirect feedback. Unbiased collateralization mapping experiments indicate that VMHvlEsr1 neurons project to multiple targets. However, we identify two anatomically distinct subpopulations with anterior vs. posterior biases in their collateralization targets. Nevertheless, these two subpopulations receive indistinguishable inputs. These studies suggest an overall system architecture in which an anatomically feed-forward sensory-to-motor processing stream is integrated with a dense, highly recurrent central processing circuit. This architecture differs from the “brain-inspired,” hierarchical feed-forward circuits used in certain types of artificial intelligence networks.
Collapse
|
118
|
Wang W, Kim CK, Ting AY. Molecular tools for imaging and recording neuronal activity. Nat Chem Biol 2019; 15:101-110. [PMID: 30659298 DOI: 10.1038/s41589-018-0207-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/20/2018] [Indexed: 11/09/2022]
Abstract
To understand how the brain relates to behavior, it is essential to record neural activity in awake, behaving animals. To achieve this goal, a large variety of genetically encoded sensors have been developed to monitor and record the series of events following neuronal firing, including action potentials, intracellular calcium rise, neurotransmitter release and immediate early gene expression. In this Review, we discuss the existing genetically encoded tools for detecting and integrating neuronal activity in animals and highlight the remaining challenges and future opportunities for molecular biologists.
Collapse
Affiliation(s)
- Wenjing Wang
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Christina K Kim
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
119
|
Next-Generation Tools to Study Autonomic Regulation In Vivo. Neurosci Bull 2018; 35:113-123. [PMID: 30560436 DOI: 10.1007/s12264-018-0319-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/29/2018] [Indexed: 12/31/2022] Open
Abstract
The recent development of tools to decipher the intricacies of neural networks has improved our understanding of brain function. Optogenetics allows one to assess the direct outcome of activating a genetically-distinct population of neurons. Neurons are tagged with light-sensitive channels followed by photo-activation with an appropriate wavelength of light to functionally activate or silence them, resulting in quantifiable changes in the periphery. Capturing and manipulating activated neuron ensembles, is a recently-designed technique to permanently label activated neurons responsible for a physiological function and manipulate them. On the other hand, neurons can be transfected with genetically-encoded Ca2+ indicators to capture the interplay between them that modulates autonomic end-points or somatic behavior. These techniques work with millisecond temporal precision. In addition, neurons can be manipulated chronically to simulate physiological aberrations by transfecting designer G-protein-coupled receptors exclusively activated by designer drugs. In this review, we elaborate on the fundamental concepts and applications of these techniques in research.
Collapse
|
120
|
Abstract
Sexually reproducing animals display sex differences in behavior. Although many of these sex differences in behavior are acquired with experience, sexually dimorphic behaviors such as mating and aggression are innate in the sense that they can be displayed without prior training or experience. In this review, we present recent advances in our understanding of the neural control of such innate sexually dimorphic social behaviors, with a focus on sexual behavior and aggression in flies and mice. We provide a brief overview of fundamental processes that regulate sexual differentiation in these animals to provide a framework within which more recent advances can be understood. We discuss advances in sensory, neuromodulatory, neural circuit, and experiential regulation of sexually dimorphic social behaviors.
Collapse
Affiliation(s)
| | | | - Nirao M. Shah
- Department of Psychiatry and Behavioral Sciences
- Department of Neurobiology, Stanford University, Stanford, CA 94305
| |
Collapse
|
121
|
Luchkina NV, Bolshakov VY. Diminishing fear: Optogenetic approach toward understanding neural circuits of fear control. Pharmacol Biochem Behav 2018; 174:64-79. [PMID: 28502746 PMCID: PMC5681900 DOI: 10.1016/j.pbb.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/13/2017] [Accepted: 05/10/2017] [Indexed: 02/05/2023]
Abstract
Understanding complex behavioral processes, both learned and innate, requires detailed characterization of the principles governing signal flow in corresponding neural circuits. Previous studies were hampered by the lack of appropriate tools needed to address the complexities of behavior-driving micro- and macrocircuits. The development and implementation of optogenetic methodologies revolutionized the field of behavioral neuroscience, allowing precise spatiotemporal control of specific, genetically defined neuronal populations and their functional connectivity both in vivo and ex vivo, thus providing unprecedented insights into the cellular and network-level mechanisms contributing to behavior. Here, we review recent pioneering advances in behavioral studies with optogenetic tools, focusing on mechanisms of fear-related behavioral processes with an emphasis on approaches which could be used to suppress fear when it is pathologically expressed. We also discuss limitations of these methodologies as well as review new technological developments which could be used in future mechanistic studies of fear behavior.
Collapse
Affiliation(s)
- Natalia V Luchkina
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| |
Collapse
|
122
|
He Q, Wang J, Hu H. Illuminating the Activated Brain: Emerging Activity-Dependent Tools to Capture and Control Functional Neural Circuits. Neurosci Bull 2018; 35:369-377. [PMID: 30255458 DOI: 10.1007/s12264-018-0291-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 01/25/2023] Open
Abstract
Immediate-early genes (IEGs) have long been used to visualize neural activations induced by sensory and behavioral stimuli. Recent advances in imaging techniques have made it possible to use endogenous IEG signals to visualize and discriminate neural ensembles activated by multiple stimuli, and to map whole-brain-scale neural activation at single-neuron resolution. In addition, a collection of IEG-dependent molecular tools has been developed that can be used to complement the labeling of endogenous IEG genes and, especially, to manipulate activated neural ensembles in order to reveal the circuits and mechanisms underlying different behaviors. Here, we review these techniques and tools in terms of their utility in studying functional neural circuits. In addition, we provide an experimental strategy to measure the signal-to-noise ratio of IEG-dependent molecular tools, for evaluating their suitability for investigating relevant circuits and behaviors.
Collapse
Affiliation(s)
- Qiye He
- Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310012, China.
| | - Jihua Wang
- Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hailan Hu
- Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
123
|
|
124
|
Optogenetic Study of Anterior BNST and Basomedial Amygdala Projections to the Ventromedial Hypothalamus. eNeuro 2018; 5:eN-CFN-0204-18. [PMID: 29971248 PMCID: PMC6027956 DOI: 10.1523/eneuro.0204-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 12/30/2022] Open
Abstract
The basomedial amygdala (BM) influences the ventromedial nucleus of the hypothalamus (VMH) through direct glutamatergic projections as well as indirectly, through the anterior part of the bed nucleus of the stria terminalis (BNSTa). However, BM and BNSTa axons end in a segregated fashion in VMH. BM projects to the core of VMH, where VMH’s projection cells are located, whereas BNSTa projects to the shell of VMH, where GABAergic cells that inhibit core neurons are concentrated. However, the consequences of this dual regulation of VMH by BM and BNSTa are unknown. To study this question, we recorded the responses of VMH’s shell and core neurons to the optogenetic activation of BM or BNSTa inputs in transgenic mice that selectively express Cre-recombinase in glutamatergic or GABAergic neurons. Glutamatergic BM inputs fired most core neurons but elicited no response in GABAergic shell neurons. Following BM infusions of AAV-EF1α-DIO-hChR2-mCherry in Vgat-ires-Cre-Ai6 mice, no anterograde labeling was observed in the VMH, suggesting that GABAergic BM neurons do not project to the VMH. In contrast, BNSTa sent mostly GABAergic projections that inhibited both shell and core neurons. However, BNSTa-evoked IPSPs had a higher amplitude in shell neurons. Since we also found that activation of GABAergic shell neurons causes an inhibition of core neurons, these results suggest that depending on the firing rate of shell neurons, BNSTa inputs could elicit a net inhibition or disinhibition of core neurons. Thus, the dual regulation of VMH by BM and BNSTa imparts flexibility to this regulator of defensive and social behaviors.
Collapse
|
125
|
Aleyasin H, Flanigan ME, Russo SJ. Neurocircuitry of aggression and aggression seeking behavior: nose poking into brain circuitry controlling aggression. Curr Opin Neurobiol 2018; 49:184-191. [PMID: 29524848 PMCID: PMC5935264 DOI: 10.1016/j.conb.2018.02.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/21/2017] [Accepted: 02/20/2018] [Indexed: 11/27/2022]
Abstract
Aggression is an innate behavior that helps individuals succeed in environments with limited resources. Over the past few decades, neurobiologists have identified neural circuits that promote and modulate aggression; however, far less is known regarding the motivational processes that drive aggression. Recent research suggests that aggression can activate reward centers in the brain to promote positive valence. Here, we review major recent findings regarding neural circuits that regulate aggression, with an emphasis on those regions involved in the rewarding or reinforcing properties of aggressive behavior.
Collapse
Affiliation(s)
- Hossein Aleyasin
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Meghan E Flanigan
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
126
|
O'Neill PK, Gore F, Salzman CD. Basolateral amygdala circuitry in positive and negative valence. Curr Opin Neurobiol 2018; 49:175-183. [PMID: 29525574 PMCID: PMC6138049 DOI: 10.1016/j.conb.2018.02.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/25/2017] [Accepted: 02/20/2018] [Indexed: 01/17/2023]
Abstract
All organisms must solve the same fundamental problem: they must acquire rewards and avoid danger in order to survive. A key challenge for the nervous system is therefore to connect motivationally salient sensory stimuli to neural circuits that engage appropriate valence-specific behavioral responses. Anatomical, behavioral, and electrophysiological data have long suggested that the amygdala plays a central role in this process. Here we review experimental efforts leveraging recent technological advances to provide previously unattainable insights into the functional, anatomical, and genetic identity of neural populations within the amygdala that connect sensory stimuli to valence-specific behavioral responses.
Collapse
Affiliation(s)
- Pia-Kelsey O'Neill
- Department of Neuroscience, Columbia University, 1051 Riverside Drive Unit 87, New York, NY 10032, USA
| | - Felicity Gore
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| | - C Daniel Salzman
- Department of Neuroscience, Columbia University, 1051 Riverside Drive Unit 87, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive Unit 87, New York, NY 10032, USA; New York State Psychiatric Institute, 1051 Riverside Drive Unit 87, New York, NY 10032, USA; Kavli Institute for Brain Sciences, 1051 Riverside Drive Unit 87, New York, NY 10032, USA.
| |
Collapse
|
127
|
Brennan KC, Pietrobon D. A Systems Neuroscience Approach to Migraine. Neuron 2018; 97:1004-1021. [PMID: 29518355 PMCID: PMC6402597 DOI: 10.1016/j.neuron.2018.01.029] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Migraine is an extremely common but poorly understood nervous system disorder. We conceptualize migraine as a disorder of sensory network gain and plasticity, and we propose that this framing makes it amenable to the tools of current systems neuroscience.
Collapse
Affiliation(s)
- K C Brennan
- Department of Neurology, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA.
| | - Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, 35131 Padova, Italy; CNR Institute of Neuroscience, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
128
|
Tasaka GI, Guenthner CJ, Shalev A, Gilday O, Luo L, Mizrahi A. Genetic tagging of active neurons in auditory cortex reveals maternal plasticity of coding ultrasonic vocalizations. Nat Commun 2018; 9:871. [PMID: 29491360 PMCID: PMC5830453 DOI: 10.1038/s41467-018-03183-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/25/2018] [Indexed: 11/09/2022] Open
Abstract
Cortical neurons are often functionally heterogeneous even for molecularly defined subtypes. In sensory cortices, physiological responses to natural stimuli can be sparse and vary widely even for neighboring neurons. It is thus difficult to parse out circuits that encode specific stimuli for further experimentation. Here, we report the development of a Cre-reporter mouse that allows recombination for cellular labeling and genetic manipulation, and use it with an activity-dependent Fos-CreERT2 driver to identify functionally active circuits in the auditory cortex. In vivo targeted patch recordings validate our method for neurons responding to physiologically relevant natural sounds such as pup wriggling calls and ultrasonic vocalizations (USVs). Using this system to investigate cortical responses in postpartum mothers, we find a transient recruitment of neurons highly responsive to USVs. This subpopulation of neurons has distinct physiological properties that improve the coding efficiency for pup USV calls, implicating it as a unique signature in parental plasticity.
Collapse
Affiliation(s)
- Gen-Ichi Tasaka
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Casey J Guenthner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.,Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Amos Shalev
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Omri Gilday
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA. .,Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Adi Mizrahi
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel. .,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
129
|
Albin RL. Tourette syndrome: a disorder of the social decision-making network. Brain 2018; 141:332-347. [PMID: 29053770 PMCID: PMC5837580 DOI: 10.1093/brain/awx204] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Tourette syndrome is a common neurodevelopmental disorder defined by characteristic involuntary movements, tics, with both motor and phonic components. Tourette syndrome is usually conceptualized as a basal ganglia disorder, with an emphasis on striatal dysfunction. While considerable evidence is consistent with these concepts, imaging data suggest diffuse functional and structural abnormalities in Tourette syndrome brain. Tourette syndrome exhibits features that are difficult to explain solely based on basal ganglia circuit dysfunctions. These features include the natural history of tic expression, with typical onset of tics around ages 5 to 7 years and exacerbation during the peri-pubertal years, marked sex disparity with higher male prevalence, and the characteristic distribution of tics. The latter are usually repetitive, somewhat stereotyped involuntary eye, facial and head movements, and phonations. A major functional role of eye, face, and head movements is social signalling. Prior work in social neuroscience identified a phylogenetically conserved network of sexually dimorphic subcortical nuclei, the Social Behaviour Network, mediating many social behaviours. Social behaviour network function is modulated developmentally by gonadal steroids and social behaviour network outputs are stereotyped sex and species specific behaviours. In 2011 O'Connell and Hofmann proposed that the social behaviour network interdigitates with the basal ganglia to form a greater network, the social decision-making network. The social decision-making network may have two functionally complementary limbs: the basal ganglia component responsible for evaluation of socially relevant stimuli and actions with the social behaviour network component responsible for the performance of social acts. Social decision-making network dysfunction can explain major features of the neurobiology of Tourette syndrome. Tourette syndrome may be a disorder of social communication resulting from developmental abnormalities at several levels of the social decision-making network. The social decision-making network dysfunction hypothesis suggests new avenues for research in Tourette syndrome and new potential therapeutic targets.
Collapse
Affiliation(s)
- Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI, 48105, USA
- University of Michigan Morris K. Udall Parkinson’s Disease Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
130
|
Wei YC, Wang SR, Jiao ZL, Zhang W, Lin JK, Li XY, Li SS, Zhang X, Xu XH. Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender. Nat Commun 2018; 9:279. [PMID: 29348568 PMCID: PMC5773506 DOI: 10.1038/s41467-017-02648-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/15/2017] [Indexed: 01/05/2023] Open
Abstract
The medial preoptic area (mPOA) differs between males and females in nearly all species examined to date, including humans. Here, using fiber photometry recordings of Ca2+ transients in freely behaving mice, we show ramping activities in the mPOA that precede and correlate with sexually dimorphic display of male-typical mounting and female-typical pup retrieval. Strikingly, optogenetic stimulation of the mPOA elicits similar display of mounting and pup retrieval in both males and females. Furthermore, by means of recording, ablation, optogenetic activation, and inhibition, we show mPOA neurons expressing estrogen receptor alpha (Esr1) are essential for the sexually biased display of these behaviors. Together, these results underscore the shared layout of the brain that can mediate sex-specific behaviors in both male and female mice and provide an important functional frame to decode neural mechanisms governing sexually dimorphic behaviors in the future. The medial preoptic area (mPOA) in a mammalian brain is sexually dimorphic, and yet its exact function in mediating gender-specific behavior remains unclear. Here, Xu and colleagues show that optogenetic manipulation of the mPOA in male mice induce female-stereotyped behaviors and vice versa.
Collapse
Affiliation(s)
- Yi-Chao Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shao-Ran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuo-Lei Jiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun-Kai Lin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Yu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai-Shuai Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
131
|
Hashikawa Y, Hashikawa K, Falkner AL, Lin D. Ventromedial Hypothalamus and the Generation of Aggression. Front Syst Neurosci 2017; 11:94. [PMID: 29375329 PMCID: PMC5770748 DOI: 10.3389/fnsys.2017.00094] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Aggression is a costly behavior, sometimes with severe consequences including death. Yet aggression is prevalent across animal species ranging from insects to humans, demonstrating its essential role in the survival of individuals and groups. The question of how the brain decides when to generate this costly behavior has intrigued neuroscientists for over a century and has led to the identification of relevant neural substrates. Various lesion and electric stimulation experiments have revealed that the hypothalamus, an ancient structure situated deep in the brain, is essential for expressing aggressive behaviors. More recently, studies using precise circuit manipulation tools have identified a small subnucleus in the medial hypothalamus, the ventrolateral part of the ventromedial hypothalamus (VMHvl), as a key structure for driving both aggression and aggression-seeking behaviors. Here, we provide an updated summary of the evidence that supports a role of the VMHvl in aggressive behaviors. We will consider our recent findings detailing the physiological response properties of populations of VMHvl cells during aggressive behaviors and provide new understanding regarding the role of the VMHvl embedded within the larger whole-brain circuit for social sensation and action.
Collapse
Affiliation(s)
- Yoshiko Hashikawa
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States
| | - Koichi Hashikawa
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States
| | - Annegret L Falkner
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York University, New York, NY, United States.,Department of Psychiatry, New York University School of Medicine, New York University, New York, NY, United States.,Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
132
|
Abstract
Researchers in behavioral neuroscience have long sought imaging techniques that can identify and distinguish neural ensembles that are activated by sequentially applied stimuli at single-cell resolution across the whole brain. Taking advantage of the different kinetics of immediate-early genes' mRNA and protein expression, we addressed this problem by developing tyramide-amplified immunohistochemistry-fluorescence in situ hybridization (TAI-FISH), a dual-epoch neural-activity-dependent labeling protocol. Here we describe the step-by-step procedures for TAI-FISH on brain sections from mice that were sequentially stimulated by morphine (appetitive first stimulus) and foot shock (aversive second stimulus). We exemplify our approach by FISH-labeling the neural ensembles that were activated by the second stimulus for the mRNA expression of c-fos, a well-established marker of neural activation. We labeled neuronal ensembles activated by the first stimulus using fluorescence immunohistochemistry (IHC) for the c-fos protein. To further improve the temporal separation of the c-fos mRNA and protein signals, we provide instructions on how to enhance the protein signals using tyramide signal amplification (TSA). Compared with other dual-epoch labeling techniques, TAI-FISH provides better temporal separation of the activated neural ensembles and is better suited to investigation of whole-brain responses. TAI-FISH has been used to investigate neural activation patterns in response to appetitive and aversive stimuli, and we expect it to be more broadly utilized for visualizing brain responses to other types of stimuli, such as sensory stimuli or psychiatric drugs. From first stimulation to image analysis, TAI-FISH takes ∼9 d to complete.
Collapse
|
133
|
Rodriguez E, Sakurai K, Xu J, Chen Y, Toda K, Zhao S, Han BX, Ryu D, Yin H, Liedtke W, Wang F. A craniofacial-specific monosynaptic circuit enables heightened affective pain. Nat Neurosci 2017; 20:1734-1743. [PMID: 29184209 PMCID: PMC5819335 DOI: 10.1038/s41593-017-0012-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/22/2017] [Indexed: 01/19/2023]
Abstract
Humans often rank craniofacial pain as more severe than body pain. Evidence suggests that a stimulus of the same intensity induces stronger pain in the face than in the body. However, the underlying neural circuitry for the differential processing of facial versus bodily pain remains unknown. Interestingly, the lateral parabrachial nucleus (PBL), a critical node in the affective pain circuit, is activated more strongly by noxious stimulation of the face than of the hindpaw. Using a novel activity-dependent technology called CANE developed in our laboratory, we identified and selectively labeled noxious-stimulus-activated PBL neurons and performed comprehensive anatomical input-output mapping. Surprisingly, we uncovered a hitherto uncharacterized monosynaptic connection between cranial sensory neurons and the PBL-nociceptive neurons. Optogenetic activation of this monosynaptic craniofacial-to-PBL projection induced robust escape and avoidance behaviors and stress calls, whereas optogenetic silencing specifically reduced facial nociception. The monosynaptic circuit revealed here provides a neural substrate for heightened craniofacial affective pain.
Collapse
Affiliation(s)
- Erica Rodriguez
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Katsuyasu Sakurai
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Jennie Xu
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Koji Toda
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - David Ryu
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Henry Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
134
|
Wu MV, Tollkuhn J. Estrogen receptor alpha is required in GABAergic, but not glutamatergic, neurons to masculinize behavior. Horm Behav 2017; 95:3-12. [PMID: 28734725 PMCID: PMC7011612 DOI: 10.1016/j.yhbeh.2017.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/05/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023]
Abstract
Masculinization of the altricial rodent brain is driven by estrogen signaling during a perinatal critical period. Genetic deletion of estrogen receptor alpha (Esr1/ERα) results in altered hypothalamic-pituitary-gonadal (HPG) axis signaling and a dramatic reduction of male sexual and territorial behaviors. However, the role of ERα in masculinizing distinct classes of neurons remains unexplored. We deleted ERα in excitatory or inhibitory neurons using either a Vglut2 or Vgat driver and assessed male behaviors. We find that Vglut2-Cre;Esr1lox/lox mutant males lack ERα in the ventrolateral region of the ventromedial hypothalamus (VMHvl) and posterior ventral portion of the medial amygdala (MePV). These mutants recapitulate the increased serum testosterone levels seen with constitutive ERα deletion, but have none of the behavioral deficits. In contrast, Vgat-Cre;Esr1lox/lox males with substantial ERα deletion in inhibitory neurons, including those of the principal nucleus of the bed nucleus of the stria terminalis (BNSTpr), posterior dorsal MeA (MePD), and medial preoptic area (MPOA) have normal testosterone levels, but display alterations in mating and territorial behaviors. These mutants also show dysmasculinized expression of androgen receptor (AR) and estrogen receptor beta (Esr2). Our results demonstrate that ERα masculinizes GABAergic neurons that gate the display of male-typical behaviors.
Collapse
Affiliation(s)
- Melody V Wu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
135
|
Abstract
Social interactions are often powerful drivers of learning. In female mice, mating creates a long-lasting sensory memory for the pheromones of the stud male that alters neuroendocrine responses to his chemosignals for many weeks. The cellular and synaptic correlates of pheromonal learning, however, remain unclear. We examined local circuit changes in the accessory olfactory bulb (AOB) using targeted ex vivo recordings of mating-activated neurons tagged with a fluorescent reporter. Imprinting led to striking plasticity in the intrinsic membrane excitability of projection neurons (mitral cells, MCs) that dramatically curtailed their responsiveness, suggesting a novel cellular substrate for pheromonal learning. Plasticity was selectively expressed in the MC ensembles activated by the stud male, consistent with formation of memories for specific individuals. Finally, MC excitability gained atypical activity-dependence whose slow dynamics strongly attenuated firing on timescales of several minutes. This unusual form of AOB plasticity may act to filter sustained or repetitive sensory signals. DOI:http://dx.doi.org/10.7554/eLife.25421.001 To navigate social situations, humans and other animals need to remember who they have interacted with and how it went, and adjust their behavior in future encounters accordingly. For example, your physical actions, and even your body’s physiological responses, will be very different when you encounter the last person you kissed instead of the last person you fought with (assuming this is not the same person!). Memories of social interactions can have dramatic consequences. For instance, male mice often kill the offspring of other males. Female mice appear to have adopted a countermeasure to avoid losing a litter of pups to such aggression: they will spontaneously abort a pregnancy when exposed to chemicals called pheromones from unfamiliar males. However, when the female mouse is exposed to the pheromones of the male she mated with she maintains her pregnancy. Exactly how the memories of previous social interactions with the males affect the female’s pheromone responses is not fully understood. To investigate how the female is able to respond differently to different males, Gao et al. recorded the activity of individual neurons taken from the brain tissue of female mice who had recently mated. The recordings showed that previous social experiences produce learning-related changes in the brain of the female mouse that reduce how sensitively pheromone-detecting neurons respond to the chemical cues of the male mate. This suppresses the signals that the neurons would otherwise send to trigger an abortion in response to male pheromones. Gao et al. also used fluorescent tags to identify which neurons in the female’s brain had been activated during mating. This revealed that only those neurons that had been activated by the mate become unresponsive when the cells again encountered his pheromones. This suggests that a set of neurons in the female’s brain records the chemical ‘fingerprint’ of the mate, and can then selectively filter out that mate’s pheromone signals. Many other social interactions, such as parenting, are also strongly shaped by experience. The results presented by Gao et al. may therefore offer wider lessons for understanding how the brain targets different behaviors toward specific individuals. It will also be important to investigate how highly arousing experiences cause such powerful memories to form. This could ultimately help us to better understand – and potentially treat – conditions like post-traumatic stress disorder. DOI:http://dx.doi.org/10.7554/eLife.25421.002
Collapse
Affiliation(s)
- Yuan Gao
- Department of Biology, Boston University, Boston, United States
| | - Carl Budlong
- Department of Biology, Boston University, Boston, United States
| | - Emily Durlacher
- Program in Neuroscience and Behavior, Mount Holyoke College, South Hadley, United States
| | - Ian G Davison
- Department of Biology, Boston University, Boston, United States
| |
Collapse
|
136
|
DeNardo L, Luo L. Genetic strategies to access activated neurons. Curr Opin Neurobiol 2017; 45:121-129. [PMID: 28577429 PMCID: PMC5810937 DOI: 10.1016/j.conb.2017.05.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 12/18/2022]
Abstract
A major goal of modern neuroscience is to understand how ensembles of neurons participate in neural circuits underlying behavior. The recent explosion of genetically-encoded circuit analysis tools has allowed neuroscientists to characterize molecularly-defined neuronal types with unprecedented detail. However, since neurons defined by molecular expression can be functionally heterogeneous, targeting circuit analysis tools to neurons based on their activity is critical to elucidating the neural basis of behavior. Here we review genetic strategies to access activated neurons and characterize their functional properties, molecular profiles, connectivity, and causal roles in sensory-coding, memory, and valence-encoding. We also discuss future possibilities for improving these strategies and using them to screen brain-wide activity patterns underlying adaptive and maladaptive behaviors.
Collapse
Affiliation(s)
- Laura DeNardo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, United States
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, United States.
| |
Collapse
|
137
|
Manning CE, Williams ES, Robison AJ. Reward Network Immediate Early Gene Expression in Mood Disorders. Front Behav Neurosci 2017; 11:77. [PMID: 28503137 PMCID: PMC5408019 DOI: 10.3389/fnbeh.2017.00077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/11/2017] [Indexed: 12/30/2022] Open
Abstract
Over the past three decades, it has become clear that aberrant function of the network of interconnected brain regions responsible for reward processing and motivated behavior underlies a variety of mood disorders, including depression and anxiety. It is also clear that stress-induced changes in reward network activity underlying both normal and pathological behavior also cause changes in gene expression. Here, we attempt to define the reward circuitry and explore the known and potential contributions of activity-dependent changes in gene expression within this circuitry to stress-induced changes in behavior related to mood disorders, and contrast some of these effects with those induced by exposure to drugs of abuse. We focus on a series of immediate early genes regulated by stress within this circuitry and their connections, both well-explored and relatively novel, to circuit function and subsequent reward-related behaviors. We conclude that IEGs play a crucial role in stress-dependent remodeling of reward circuitry, and that they may serve as inroads to the molecular, cellular, and circuit-level mechanisms of mood disorder etiology and treatment.
Collapse
Affiliation(s)
- Claire E Manning
- Department of Physiology, Michigan State UniversityEast Lansing, MI, USA
| | | | - Alfred J Robison
- Department of Physiology, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
138
|
Vogt N. Manipulating neurons in an activity-dependent manner. Nat Methods 2017. [DOI: 10.1038/nmeth.4135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|