101
|
Baba K, Yoshida W, Toriyama M, Shimada T, Manning CF, Saito M, Kohno K, Trimmer JS, Watanabe R, Inagaki N. Gradient-reading and mechano-effector machinery for netrin-1-induced axon guidance. eLife 2018; 7:34593. [PMID: 30082022 PMCID: PMC6080949 DOI: 10.7554/elife.34593] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/05/2018] [Indexed: 12/28/2022] Open
Abstract
Growth cones navigate axonal projection in response to guidance cues. However, it is unclear how they can decide the migratory direction by transducing the local spatial cues into protrusive forces. Here we show that knockout mice of Shootin1 display abnormal projection of the forebrain commissural axons, a phenotype similar to that of the axon guidance molecule netrin-1. Shallow gradients of netrin-1 elicited highly polarized Pak1-mediated phosphorylation of shootin1 within growth cones. We demonstrate that netrin-1–elicited shootin1 phosphorylation increases shootin1 interaction with the cell adhesion molecule L1-CAM; this, in turn, promotes F-actin–adhesion coupling and concomitant generation of forces for growth cone migration. Moreover, the spatially regulated shootin1 phosphorylation within growth cones is required for axon turning induced by netrin-1 gradients. Our study defines a mechano-effector for netrin-1 signaling and demonstrates that shootin1 phosphorylation is a critical readout for netrin-1 gradients that results in a directional mechanoresponse for axon guidance. Neurons communicate with each other by forming intricate webs that link cells together according to a precise pattern. A neuron can connect to another by growing a branch-like structure known as the axon. To contact the correct neuron, the axon must develop and thread its way to exactly the right place in the brain. Scientists know that the tip of the axon is extraordinarily sensitive to gradients of certain molecules in its surroundings, which guide the budding structure towards its final destination. In particular, two molecules seem to play an important part in this process: netrin-1, which is a protein found outside cells that attracts a growing axon, and shootin1a, which is present inside neurons. Previous studies have shown that netrin-1 can trigger a cascade of reactions that activates shootin1a. In turn, activated shootin1a molecules join the internal skeleton of the cell with L1-CAM, a molecule that attaches the neuron to its surroundings. If the internal skeleton is the engine of the axon, L1-CAMs are the wheels, and shootin1a the clutch. However, it is not clear whether shootin1a is involved in guiding growing axons, and how it could help neurons ‘understand’ and react to gradients of netrin-1. Here, Baba et al. discover that when shootin1a is absent in mice, the axons do not develop properly. Further experiments in rat neurons show that if there is a little more netrin-1 on one side of the tip of an axon, this switches on the shootin1a molecules on that edge. Activated shootin1a promote interactions between the internal skeleton and L1-CAM, helping the axon curve towards the area that has more netrin-1. In fact, if the activated shootin1a is present everywhere on the axon, and not just on one side, the structure can develop, but not turn. Taken together, the results suggest that shootin1a can read the gradients of netrin-1 and then coordinate the turning of a growing axon in response. Wound healing, immune responses or formation of organs are just a few examples of processes that rely on cells moving in an orderly manner through the body. Dissecting how axons are guided through their development may shed light on the migration of cells in general. Ultimately, this could help scientists to understand disorders such as birth abnormalities or neurological disabilities, which arise when this process goes awry.
Collapse
Affiliation(s)
- Kentarou Baba
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Wataru Yoshida
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michinori Toriyama
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tadayuki Shimada
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Colleen F Manning
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Michiko Saito
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kenji Kohno
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Rikiya Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Naoyuki Inagaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
102
|
Boyer NP, Gupton SL. Revisiting Netrin-1: One Who Guides (Axons). Front Cell Neurosci 2018; 12:221. [PMID: 30108487 PMCID: PMC6080411 DOI: 10.3389/fncel.2018.00221] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/09/2018] [Indexed: 12/28/2022] Open
Abstract
Proper patterning of the nervous system requires that developing axons find appropriate postsynaptic partners; this entails microns to meters of extension through an extracellular milieu exhibiting a wide range of mechanical and chemical properties. Thus, the elaborate networks of fiber tracts and non-fasciculated axons evident in mature organisms are formed via complex pathfinding. The macroscopic structures of axon projections are highly stereotyped across members of the same species, indicating precise mechanisms guide their formation. The developing axon exhibits directionally biased growth toward or away from external guidance cues. One of the most studied guidance cues is netrin-1, however, its presentation in vivo remains debated. Guidance cues can be secreted to form soluble or chemotactic gradients or presented bound to cells or the extracellular matrix to form haptotactic gradients. The growth cone, a highly specialized dynamic structure at the end of the extending axon, detects these guidance cues via transmembrane receptors, such as the netrin-1 receptors deleted in colorectal cancer (DCC) and UNC5. These receptors orchestrate remodeling of the cytoskeleton and cell membrane through both chemical and mechanotransductive pathways, which result in traction forces generated by the cytoskeleton against the extracellular environment and translocation of the growth cone. Through intracellular signaling responses, netrin-1 can trigger either attraction or repulsion of the axon. Here we review the mechanisms by which the classical guidance cue netrin-1 regulates intracellular effectors to respond to the extracellular environment in the context of axon guidance during development of the central nervous system and discuss recent findings that demonstrate the critical importance of mechanical forces in this process.
Collapse
Affiliation(s)
- Nicholas P. Boyer
- Neurobiology Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
103
|
Abstract
During nervous system development, neurons extend axons to reach their targets and form functional circuits. The faulty assembly or disintegration of such circuits results in disorders of the nervous system. Thus, understanding the molecular mechanisms that guide axons and lead to neural circuit formation is of interest not only to developmental neuroscientists but also for a better comprehension of neural disorders. Recent studies have demonstrated how crosstalk between different families of guidance receptors can regulate axonal navigation at choice points, and how changes in growth cone behaviour at intermediate targets require changes in the surface expression of receptors. These changes can be achieved by a variety of mechanisms, including transcription, translation, protein-protein interactions, and the specific trafficking of proteins and mRNAs. Here, I review these axon guidance mechanisms, highlighting the most recent advances in the field that challenge the textbook model of axon guidance.
Collapse
Affiliation(s)
- Esther T Stoeckli
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
104
|
Gangatharan G, Schneider-Maunoury S, Breau MA. Role of mechanical cues in shaping neuronal morphology and connectivity. Biol Cell 2018; 110:125-136. [PMID: 29698566 DOI: 10.1111/boc.201800003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
Neuronal circuits, the functional building blocks of the nervous system, assemble during development through a series of dynamic processes including the migration of neurons to their final position, the growth and navigation of axons and their synaptic connection with target cells. While the role of chemical cues in guiding neuronal migration and axonal development has been extensively analysed, the contribution of mechanical inputs, such as forces and stiffness, has received far less attention. In this article, we review the in vitro and more recent in vivo studies supporting the notion that mechanical signals are critical for multiple aspects of neuronal circuit assembly, from the emergence of axons to the formation of functional synapses. By combining live imaging approaches with tools designed to measure and manipulate the mechanical environment of neurons, the emerging field of neuromechanics will add a new paradigm in our understanding of neuronal development and potentially inspire novel regenerative therapies.
Collapse
Affiliation(s)
- Girisaran Gangatharan
- Sorbonne Université, CNRS UMR 7622, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine (LBD-IBPS), INSERM, Paris, 75005, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR 7622, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine (LBD-IBPS), INSERM, Paris, 75005, France
| | - Marie Anne Breau
- Sorbonne Université, CNRS UMR 7622, Laboratoire de Biologie du Développement-Institut de Biologie Paris Seine (LBD-IBPS), INSERM, Paris, 75005, France.,Sorbonne Université, CNRS UMR 8237, Laboratoire Jean Perrin, Paris, 75005, France
| |
Collapse
|
105
|
Vahedi-Hunter TA, Estep JA, Rosette KA, Rutlin ML, Wright KM, Riccomagno MM. Cas Adaptor Proteins Coordinate Sensory Axon Fasciculation. Sci Rep 2018; 8:5996. [PMID: 29662228 PMCID: PMC5902548 DOI: 10.1038/s41598-018-24261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/29/2018] [Indexed: 11/09/2022] Open
Abstract
Development of complex neural circuits like the peripheral somatosensory system requires intricate mechanisms to ensure axons make proper connections. While much is known about ligand-receptor pairs required for dorsal root ganglion (DRG) axon guidance, very little is known about the cytoplasmic effectors that mediate cellular responses triggered by these guidance cues. Here we show that members of the Cas family of cytoplasmic signaling adaptors are highly phosphorylated in central projections of the DRG as they enter the spinal cord. Furthermore, we provide genetic evidence that Cas proteins regulate fasciculation of DRG sensory projections. These data establish an evolutionarily conserved requirement for Cas adaptor proteins during peripheral nervous system axon pathfinding. They also provide insight into the interplay between axonal fasciculation and adhesion to the substrate.
Collapse
Affiliation(s)
- Tyler A Vahedi-Hunter
- Neuroscience Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Jason A Estep
- Cell, Molecular and Developmental Biology Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA
| | - Kylee A Rosette
- Vollum Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Michael L Rutlin
- Department of Biochemistry and Molecular Biophysics, Columbia College of Physicians and Surgeons, Columbia University, New York, New York, 10032, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Martin M Riccomagno
- Neuroscience Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA. .,Cell, Molecular and Developmental Biology Program, Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
106
|
Li H, Shuster SA, Li J, Luo L. Linking neuronal lineage and wiring specificity. Neural Dev 2018; 13:5. [PMID: 29653548 PMCID: PMC5899351 DOI: 10.1186/s13064-018-0102-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/14/2018] [Indexed: 02/01/2023] Open
Abstract
Brain function requires precise neural circuit assembly during development. Establishing a functional circuit involves multiple coordinated steps ranging from neural cell fate specification to proper matching between pre- and post-synaptic partners. How neuronal lineage and birth timing influence wiring specificity remains an open question. Recent findings suggest that the relationships between lineage, birth timing, and wiring specificity vary in different neuronal circuits. In this review, we summarize our current understanding of the cellular, molecular, and developmental mechanisms linking neuronal lineage and birth timing to wiring specificity in a few specific systems in Drosophila and mice, and review different methods employed to explore these mechanisms.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - S. Andrew Shuster
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305 USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
107
|
Arbeille E, Bashaw GJ. Brain Tumor promotes axon growth across the midline through interactions with the microtubule stabilizing protein Apc2. PLoS Genet 2018; 14:e1007314. [PMID: 29617376 PMCID: PMC5902039 DOI: 10.1371/journal.pgen.1007314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/16/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Commissural axons must cross the midline to establish reciprocal connections between the two sides of the body. This process is highly conserved between invertebrates and vertebrates and depends on guidance cues and their receptors to instruct axon trajectories. The DCC family receptor Frazzled (Fra) signals chemoattraction and promotes midline crossing in response to its ligand Netrin. However, in Netrin or fra mutants, the loss of crossing is incomplete, suggesting the existence of additional pathways. Here, we identify Brain Tumor (Brat), a tripartite motif protein, as a new regulator of midline crossing in the Drosophila CNS. Genetic analysis indicates that Brat acts independently of the Netrin/Fra pathway. In addition, we show that through its B-Box domains, Brat acts cell autonomously to regulate the expression and localization of Adenomatous polyposis coli-2 (Apc2), a key component of the Wnt canonical signaling pathway, to promote axon growth across the midline. Genetic evidence indicates that the role of Brat and Apc2 to promote axon growth across the midline is independent of Wnt and Beta-catenin-mediated transcriptional regulation. Instead, we propose that Brat promotes midline crossing through directing the localization or stability of Apc2 at the plus ends of microtubules in navigating commissural axons. These findings define a new mechanism in the coordination of axon growth and guidance at the midline. The establishment of neuronal connections that cross the midline of the animal is essential to generate neural circuits that coordinate the left and right sides of the body. Axons that cross the midline to form these connections are called commissural axons and the molecules and mechanisms that control midline axon crossing are remarkably conserved across animal evolution. In this study we have used a genetic screen in the fruit fly in an attempt to uncover additional players in this key developmental process, and have identified a novel role for the Brain Tumor (Brat) protein in promoting commissural axon growth across the midline. Unlike its previous described functions, in the context of midline axon guidance Brat cooperates with the microtubule stabilizing protein Apc2 to coordinate axon growth and guidance. Molecular and genetic analyses point to the conserved B box motifs of the Brat protein as key in promoting the association of Apc2 with the plus ends of microtubules. Brat is highly conserved and future studies will determine whether homologous genes play analogous roles in mammalian neural development.
Collapse
Affiliation(s)
- Elise Arbeille
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
108
|
Liu Y, Bhowmick T, Liu Y, Gao X, Mertens HDT, Svergun DI, Xiao J, Zhang Y, Wang JH, Meijers R. Structural Basis for Draxin-Modulated Axon Guidance and Fasciculation by Netrin-1 through DCC. Neuron 2018; 97:1261-1267.e4. [PMID: 29503192 PMCID: PMC5871715 DOI: 10.1016/j.neuron.2018.02.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/19/2017] [Accepted: 02/05/2018] [Indexed: 11/25/2022]
Abstract
Axon guidance involves the spatiotemporal interplay between guidance cues and membrane-bound cell-surface receptors, present on the growth cone of the axon. Netrin-1 is a prototypical guidance cue that binds to deleted in colorectal cancer (DCC), and it has been proposed that the guidance cue Draxin modulates this interaction. Here, we present structural snapshots of Draxin/DCC and Draxin/Netrin-1 complexes, revealing a triangular relationship that affects Netrin-mediated haptotaxis and fasciculation. Draxin interacts with DCC through the N-terminal four immunoglobulin domains, and Netrin-1 through the EGF-3 domain, in the same region where DCC binds. Netrin-1 and DCC bind to adjacent sites on Draxin, which appears to capture Netrin-1 and tether it to the DCC receptor. We propose the conformational flexibility of the single-pass membrane receptor DCC is used to promote fasciculation and regulate axon guidance through concerted Netrin-1/Draxin binding. Video Abstract
Crystal structure of cysteine knot domain of Draxin in complex with DCC Crystal structure of Netrin-1 in complex with a Draxin fragment Netrin-1 contains a competing binding site for DCC and Draxin on the EGF-3 domain Draxin tethers Netrin-1 and DCC together to promote fasciculation
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tuhin Bhowmick
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Yiqiong Liu
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China
| | - Xuefan Gao
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Science and Peking-Tsinghua Centre for Life Sciences, Peking University, 100871 Beijing, China.
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China.
| | - Jia-Huai Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China; Department of Medical Oncology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, D-22607 Hamburg, Germany.
| |
Collapse
|
109
|
Abstract
Cell migration directed by substrate-bound chemical cues is called haptotaxis. This study shows that grip and slip between the cell adhesion molecule (CAM) L1-CAM and the adhesive substrates, which occur asymmetrically under the growth cone, direct growth cone migration mediated by laminin. This mechanism is disrupted in a human patient of L1-CAM syndrome, suffering corpus callosum agenesis and corticospinal tract hypoplasia. These findings provide a conceptual framework for understanding the regulation and dysregulation of cell migration on the bases of force generation. Chemical cues presented on the adhesive substrate direct cell migration, a process termed haptotaxis. To migrate, cells must generate traction forces upon the substrate. However, how cells probe substrate-bound cues and generate directional forces for migration remains unclear. Here, we show that the cell adhesion molecule (CAM) L1-CAM is involved in laminin-induced haptotaxis of axonal growth cones. L1-CAM underwent grip and slip on the substrate. The ratio of the grip state was higher on laminin than on the control substrate polylysine; this was accompanied by an increase in the traction force upon laminin. Our data suggest that the directional force for laminin-induced growth cone haptotaxis is generated by the grip and slip of L1-CAM on the substrates, which occur asymmetrically under the growth cone. This mechanism is distinct from the conventional cell signaling models for directional cell migration. We further show that this mechanism is disrupted in a human patient with L1-CAM syndrome, suffering corpus callosum agenesis and corticospinal tract hypoplasia.
Collapse
|
110
|
Chen Z. Common cues wire the spinal cord: Axon guidance molecules in spinal neuron migration. Semin Cell Dev Biol 2018; 85:71-77. [PMID: 29274387 DOI: 10.1016/j.semcdb.2017.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/28/2023]
Abstract
Topographic arrangement of neuronal cell bodies and axonal tracts are crucial for proper wiring of the nervous system. This involves often-coordinated neuronal migration and axon guidance during development. Most neurons migrate from their birthplace to specific topographic coordinates as they adopt the final cell fates and extend axons. The axons follow temporospatial specific guidance cues to reach the appropriate targets. When neuronal or axonal migration or their coordination is disrupted, severe consequences including neurodevelopmental disorders and neurological diseases, can arise. Neuronal and axonal migration shares some molecular mechanisms, as genes originally identified as axon guidance molecules have been increasingly shown to direct both navigation processes. This review focuses on axon guidance pathways that are shown to also direct neuronal migration in the vertebrate spinal cord.
Collapse
Affiliation(s)
- Zhe Chen
- Department of MCD Biology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
111
|
Yung AR, Druckenbrod NR, Cloutier JF, Wu Z, Tessier-Lavigne M, Goodrich LV. Netrin-1 Confines Rhombic Lip-Derived Neurons to the CNS. Cell Rep 2018; 22:1666-1680. [PMID: 29444422 PMCID: PMC5877811 DOI: 10.1016/j.celrep.2018.01.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 02/02/2023] Open
Abstract
During brainstem development, newborn neurons originating from the rhombic lip embark on exceptionally long migrations to generate nuclei important for audition, movement, and respiration. Along the way, this highly motile population passes several cranial nerves yet remains confined to the CNS. We found that Ntn1 accumulates beneath the pial surface separating the CNS from the PNS, with gaps at nerve entry sites. In mice null for Ntn1 or its receptor DCC, hindbrain neurons enter cranial nerves and migrate into the periphery. CNS neurons also escape when Ntn1 is selectively lost from the sub-pial region (SPR), and conversely, expression of Ntn1 throughout the mutant hindbrain can prevent their departure. These findings identify a permissive role for Ntn1 in maintaining the CNS-PNS boundary. We propose that Ntn1 confines rhombic lip-derived neurons by providing a preferred substrate for tangentially migrating neurons in the SPR, preventing their entry into nerve roots.
Collapse
Affiliation(s)
- Andrea R Yung
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Jean-François Cloutier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Zhuhao Wu
- Laboratory of Brain Development & Repair, The Rockefeller University, New York, NY 10065, USA
| | - Marc Tessier-Lavigne
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
112
|
Huang H, Yang T, Shao Q, Majumder T, Mell K, Liu G. Human TUBB3 Mutations Disrupt Netrin Attractive Signaling. Neuroscience 2018; 374:155-171. [PMID: 29382549 DOI: 10.1016/j.neuroscience.2018.01.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/16/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Heterozygous missense mutations in human TUBB3 gene result in a spectrum of brain malformations associated with defects in axon guidance, neuronal migration and differentiation. However, the molecular mechanisms underlying mutation-related axon guidance abnormalities are unclear. Recent studies have shown that netrin-1, a canonical guidance cue, induced the interaction of TUBB3 with the netrin receptor deleted in colorectal cancer (DCC). Furthermore, TUBB3 is required for netrin-1-induced axon outgrowth, branching and pathfinding. Here, we provide evidence that TUBB3 mutations impair netrin/DCC signaling in the developing nervous system. The interaction of DCC with most TUBB3 mutants (eight out of twelve) is significantly reduced compared to the wild-type TUBB3. TUBB3 mutants R262C and A302V exhibit decreased subcellular colocalization with DCC in the growth cones of primary neurons. Netrin-1 increases the interaction of endogenous DCC with wild-type human TUBB3, but not R262C or A302V, in primary neurons. Netrin-1 also increases co-sedimentation of DCC with polymerized microtubules (MTs) in primary neurons expressing the wild-type TUBB3, but not R262C or A302V. Expression of either R262C or A302V not only suppresses netrin-1-induced neurite outgrowth, branching and attraction in vitro, but also causes defects in spinal cord commissural axon (CA) projection and pathfinding in ovo. Our study reveals that missense TUBB3 mutations specifically disrupt netrin/DCC-mediated attractive signaling.
Collapse
Affiliation(s)
- Huai Huang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Tao Yang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Qiangqiang Shao
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Tanushree Majumder
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Kristopher Mell
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Guofa Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA.
| |
Collapse
|
113
|
Moreno-Bravo JA, Roig Puiggros S, Blockus H, Dominici C, Zelina P, Mehlen P, Chédotal A. Commissural neurons transgress the CNS/PNS boundary in absence of ventricular zone-derived netrin 1. Development 2018; 145:dev.159400. [PMID: 29343638 DOI: 10.1242/dev.159400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022]
Abstract
During the development of the central nervous system (CNS), only motor axons project into peripheral nerves. Little is known about the cellular and molecular mechanisms that control the development of a boundary at the CNS surface and prevent CNS neuron emigration from the neural tube. It has previously been shown that a subset of spinal cord commissural axons abnormally invades sensory nerves in Ntn1 hypomorphic embryos and Dcc knockouts. However, whether netrin 1 also plays a similar role in the brain is unknown. In the hindbrain, precerebellar neurons migrate tangentially under the pial surface, and their ventral migration is guided by netrin 1. Here, we show that pontine neurons and inferior olivary neurons, two types of precerebellar neurons, are not confined to the CNS in Ntn1 and Dcc mutant mice, but that they invade the trigeminal, auditory and vagus nerves. Using a Ntn1 conditional knockout, we show that netrin 1, which is released at the pial surface by ventricular zone progenitors is responsible for the CNS confinement of precerebellar neurons. We propose, that netrin 1 distribution sculpts the CNS boundary by keeping CNS neurons in netrin 1-rich domains.
Collapse
Affiliation(s)
- Juan Antonio Moreno-Bravo
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Sergi Roig Puiggros
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Heike Blockus
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Chloé Dominici
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Pavol Zelina
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| |
Collapse
|
114
|
Wang J, Zhai W, Yu Z, Sun L, Li H, Shen H, Li X, Liu C, Chen G. Neuroprotection Exerted by Netrin-1 and Kinesin Motor KIF1A in Secondary Brain Injury following Experimental Intracerebral Hemorrhage in Rats. Front Cell Neurosci 2018; 11:432. [PMID: 29375318 PMCID: PMC5768630 DOI: 10.3389/fncel.2017.00432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
Binding of extracellular netrin-1 to its receptors, deleted in colorectal cancer (DCC) and uncoordinated gene 5H2 (UNC5H2), inhibits apoptosis mediated by these receptors. A neuron-specific kinesin motor protein, KIF1A, has been shown to participate in netrin-1 secretion. This study aimed to identify the roles of netrin-1 and KIF1A in secondary brain injury after intracerebral hemorrhage (ICH) and the potential mechanisms. An autologous blood ICH model was established in adult male Sprague-Dawley rats, and cultured neurons were exposed to OxyHb to mimic ICH conditions in vitro. Mouse recombinant netrin-1, expression vectors encoding KIF1A, and KIF1A-specific siRNAs were administered intracerebroventricularly. After ICH, protein levels of netrin-1, DCC, and UNC5H2 increased, while protein levels of KIF1A decreased. Levels of UNC5H2 and DCC bound to netrin-1 increased after ICH but were significantly lower than the increase in total amount of protein. Administration of recombinant netrin-1 attenuated neuronal apoptosis and degeneration in ICH rats. Moreover, KIF1A overexpression increased concentrations of netrin-1 in cerebrospinal fluid and cell culture supernatant and exerted neuroprotective effects via netrin-1 and its receptor pathways. KIF1A plays a critical role in netrin-1 secretion by neurons. An increase in protein levels of netrin-1 may be a neuroprotective strategy after ICH. However, this process is almost completely abolished by ICH-induced loss of KIF1A. An exogenous increase of KIF1A may be a potential strategy for neuroprotection via the netrin-1 pathway.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Neurology, Yancheng City No.1 People's Hospital, Yancheng, China
| | - Weiwei Zhai
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengquan Yu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Sun
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunfeng Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Laboratory of Aging and Nervous Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Laboratory of Aging and Nervous Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
115
|
Deriving Dorsal Spinal Sensory Interneurons from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 10:390-405. [PMID: 29337120 PMCID: PMC5832443 DOI: 10.1016/j.stemcr.2017.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/28/2022] Open
Abstract
Cellular replacement therapies for neurological conditions use human embryonic stem cell (hESC)- or induced pluripotent stem cell (hiPSC)-derived neurons to replace damaged or diseased populations of neurons. For the spinal cord, significant progress has been made generating the in-vitro-derived motor neurons required to restore coordinated movement. However, there is as yet no protocol to generate in-vitro-derived sensory interneurons (INs), which permit perception of the environment. Here, we report on the development of a directed differentiation protocol to derive sensory INs for both hESCs and hiPSCs. Two developmentally relevant factors, retinoic acid in combination with bone morphogenetic protein 4, can be used to generate three classes of sensory INs: the proprioceptive dI1s, the dI2s, and mechanosensory dI3s. Critical to this protocol is the competence state of the neural progenitors, which changes over time. This protocol will facilitate developing cellular replacement therapies to reestablish sensory connections in injured patients. Robust protocol to generate spinal sensory neurons from human pluripotent cells RA ± BMP4 direct hPSCs toward the dI1, dI2, and dI3 classes of dorsal interneurons Only neural progenitors in the correct competence state respond to RA/BMP4 signals
Collapse
|
116
|
Salameh S, Nouel D, Flores C, Hoops D. An optimized immunohistochemistry protocol for detecting the guidance cue Netrin-1 in neural tissue. MethodsX 2018; 5:1-7. [PMID: 29276694 PMCID: PMC5737949 DOI: 10.1016/j.mex.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022] Open
|
117
|
Rogers KW, Lord ND, Gagnon JA, Pauli A, Zimmerman S, Aksel DC, Reyon D, Tsai SQ, Joung JK, Schier AF. Nodal patterning without Lefty inhibitory feedback is functional but fragile. eLife 2017; 6. [PMID: 29215332 PMCID: PMC5720593 DOI: 10.7554/elife.28785] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
Developmental signaling pathways often activate their own inhibitors. Such inhibitory feedback has been suggested to restrict the spatial and temporal extent of signaling or mitigate signaling fluctuations, but these models are difficult to rigorously test. Here, we determine whether the ability of the mesendoderm inducer Nodal to activate its inhibitor Lefty is required for development. We find that zebrafish lefty mutants exhibit excess Nodal signaling and increased specification of mesendoderm, resulting in embryonic lethality. Strikingly, development can be fully restored without feedback: Lethal patterning defects in lefty mutants can be rescued by ectopic expression of lefty far from its normal expression domain or by spatially and temporally uniform exposure to a Nodal inhibitor drug. While drug-treated mutants are less tolerant of mild perturbations to Nodal signaling levels than wild type embryos, they can develop into healthy adults. These results indicate that patterning without inhibitory feedback is functional but fragile. During animal development, a single fertilized cell gives rise to different tissues and organs. This ‘patterning’ process depends on signaling molecules that instruct cells in different positions in the embryo to acquire different identities. To avoid mistakes during patterning, each cell must receive the correct amount of signal at the appropriate time. In a process called ‘inhibitory feedback’, a signaling molecule instructs cells to produce molecules that block its own signaling. Although inhibitory feedback is widely used during patterning in organisms ranging from sea urchins to mammals, its exact purpose is often not clear. In part this is because feedback is challenging to experimentally manipulate. Removing the inhibitor disrupts feedback, but also increases signaling. Since the effects of broken feedback and increased signaling are intertwined, any resulting developmental defects do not provide information about what feedback specifically does. In order to examine the role of feedback, it is therefore necessary to disconnect the production of the inhibitor from the signaling process. In developing embryos, a well-known signaling molecule called Nodal instructs cells to become specific types – for example, a heart or gut cell. Nodal also promotes the production of its inhibitor, Lefty. To understand how this feedback system works, Rogers, Lord et al. first removed Lefty from zebrafish embryos. These embryos had excessive levels of Nodal signaling, did not develop correctly, and could not survive. Bathing the embryos in a drug that inhibits Nodal reduced excess signaling and allowed them to develop successfully. In these drug-treated embryos, inhibitor production is disconnected from the signaling process, allowing the role of feedback to be examined. Drug-treated embryos were less able to tolerate fluctuations in Nodal signaling than normal zebrafish embryos, which could compensate for such disturbances by adjusting Lefty levels. Overall, it appears that inhibitory feedback in this patterning system is important to compensate for alterations in Nodal signaling, but is not essential for development. Understanding the role of inhibitory feedback will be useful for efforts to grow tissues and organs in the laboratory for clinical use. The results presented by Rogers, Lord et al. also suggest the possibility that drug treatments could be developed to help correct birth defects in the womb.
Collapse
Affiliation(s)
- Katherine W Rogers
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Nathan D Lord
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - James A Gagnon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Steven Zimmerman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Deniz C Aksel
- Program in Biophysics, Harvard Medical School, Boston, United States
| | - Deepak Reyon
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, United States.,Department of Pathology, Harvard Medical School, Boston, United States.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, United States
| | - Shengdar Q Tsai
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, United States.,Department of Pathology, Harvard Medical School, Boston, United States.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, United States
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, United States.,Department of Pathology, Harvard Medical School, Boston, United States.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States.,Center for Cancer Research, Massachusetts General Hospital, Charlestown, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Broad Institute of MIT and Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, United States.,Center for Systems Biology, Harvard University, Cambridge, United States
| |
Collapse
|
118
|
Kim M, Fontelonga TM, Lee CH, Barnum SJ, Mastick GS. Motor axons are guided to exit points in the spinal cord by Slit and Netrin signals. Dev Biol 2017; 432:178-191. [PMID: 28986144 PMCID: PMC5694371 DOI: 10.1016/j.ydbio.2017.09.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 01/27/2023]
Abstract
In the spinal cord, motor axons project out the neural tube at specific exit points, then bundle together to project toward target muscles. The molecular signals that guide motor axons to and out of their exit points remain undefined. Since motor axons and their exit points are located near the floor plate, guidance signals produced by the floor plate and adjacent ventral tissues could influence motor axons as they project toward and out of exit points. The secreted Slit proteins are major floor plate repellents, and motor neurons express two Slit receptors, Robo1 and Robo2. Using mutant mouse embryos at early stages of motor axon exit, we found that motor exit points shifted ventrally in Robo1/2 or Slit1/2 double mutants. Along with the ventral shift, mutant axons had abnormal trajectories both within the neural tube toward the exit point, and after exit into the periphery. In contrast, the absence of the major ventral attractant, Netrin-1, or its receptor, DCC caused motor exit points to shift dorsally. Netrin-1 attraction on spinal motor axons was demonstrated by in vitro explant assays, showing that Netrin-1 increased outgrowth and attracted cultured spinal motor axons. The opposing effects of Slit/Robo and Netrin-1/DCC signals were tested genetically by combining Netrin-1 and Robo1/2 mutations. The location of exit points in the combined mutants was significantly recovered to their normal position compared to Netrin-1 or Robo1/2 mutants. Together, these results suggest that the proper position of motor exit points is determined by a "push-pull" mechanism, pulled ventrally by Netrin-1/DCC attraction and pushed dorsally by Slit/Robo repulsion.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | | | - Clare H Lee
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Sarah J Barnum
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Grant S Mastick
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
119
|
Howard LJ, Brown HE, Wadsworth BC, Evans TA. Midline axon guidance in the Drosophila embryonic central nervous system. Semin Cell Dev Biol 2017; 85:13-25. [PMID: 29174915 DOI: 10.1016/j.semcdb.2017.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023]
Abstract
Studies in the fruit fly Drosophila melanogaster have provided many fundamental insights into the genetic regulation of neural development, including the identification and characterization of evolutionarily conserved axon guidance pathways and their roles in important guidance decisions. Due to its highly organized and fast-developing embryonic nervous system, relatively small number of neurons, and molecular and genetic tools for identifying, labeling, and manipulating individual neurons or small neuronal subsets, studies of axon guidance in the Drosophila embryonic CNS have allowed researchers to dissect these genetic mechanisms with a high degree of precision. In this review, we discuss the major axon guidance pathways that regulate midline crossing of axons and the formation and guidance of longitudinal axon tracts, two processes that contribute to the development of the precise three-dimensional structure of the insect nerve cord. We focus particularly on recent insights into the roles and regulation of canonical midline axon guidance pathways, and on additional factors and pathways that have recently been shown to contribute to axon guidance decisions at and near the midline.
Collapse
Affiliation(s)
- LaFreda J Howard
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Haley E Brown
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Benjamin C Wadsworth
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA
| | - Timothy A Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville AR 72701, USA.
| |
Collapse
|
120
|
Eve AMJ, Smith JC. Knockdown of Laminin gamma-3 (Lamc3) impairs motoneuron guidance in the zebrafish embryo. Wellcome Open Res 2017; 2:111. [PMID: 29417095 PMCID: PMC5785718 DOI: 10.12688/wellcomeopenres.12394.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 01/09/2023] Open
Abstract
Background: Previous work in the zebrafish embryo has shown that laminin γ-3 ( lamc3) is enriched in endothelial cells marked by expression of fli1a, but the role of Lamc3 has been unknown. Methods: We use antisense morpholino oligonucleotides, and CRISPR/Cas9 mutagenesis of F0 embryos, to create zebrafish embryos in which lamc3 expression is compromised. Transgenic imaging, immunofluorescence, and in situ hybridisation reveal that Lamc3 loss-of-function affects the development of muscle pioneers, endothelial cells, and motoneurons. Results: Lamc3 is enriched in endothelial cells during zebrafish development, but it is also expressed by other tissues. Depletion of Lamc3 by use of antisense morpholino oligonucleotides perturbs formation of the parachordal chain and subsequently the thoracic duct, but Lamc3 is not required for sprouting of the cardinal vein. F0 embryos in which lamc3 expression is perturbed by a CRISPR/Cas9 approach also fail to form a parachordal chain, but we were unable to establish a stable lamc3 null line. Lamc3 is dispensable for muscle pioneer specification and for the expression of netrin-1a in these cells. Lamc3 knockdown causes netrin-1a up-regulation in the neural tube and there is increased Netrin-1 protein throughout the trunk of the embryo. Axonal guidance of rostral primary motoneurons is defective in Lamc3 knockdown embryos. Conclusions: We suggest that knockdown of Lamc3 perturbs migration of rostral primary motoneurons at the level of the horizontal myoseptum, indicating that laminin γ3 plays a role in motoneuron guidance.
Collapse
Affiliation(s)
- Alexander M. J. Eve
- Developmental Biology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - James C. Smith
- Developmental Biology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
121
|
Marsh APL, Edwards TJ, Galea C, Cooper HM, Engle EC, Jamuar SS, Méneret A, Moutard ML, Nava C, Rastetter A, Robinson G, Rouleau G, Roze E, Spencer-Smith M, Trouillard O, Billette de Villemeur T, Walsh CA, Yu TW, Heron D, Sherr EH, Richards LJ, Depienne C, Leventer RJ, Lockhart PJ. DCC mutation update: Congenital mirror movements, isolated agenesis of the corpus callosum, and developmental split brain syndrome. Hum Mutat 2017; 39:23-39. [PMID: 29068161 DOI: 10.1002/humu.23361] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both. Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome (DSBS). Although the underlying molecular mechanisms leading to disease remain poorly understood, they are thought to stem from reduced or perturbed NTN1 signaling. Here, we review the 26 reported DCC mutations associated with abnormal CNS development in humans, including 14 missense and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics and diagnostic features. We provide an update on the observed genotype-phenotype relationships of congenital mirror movements, isolated ACC and DSBS, and correlate this to our current understanding of the biological function of DCC in the development of the CNS. All mutations and their associated phenotypes were deposited into a locus-specific LOVD (https://databases.lovd.nl/shared/genes/DCC).
Collapse
Affiliation(s)
- Ashley P L Marsh
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Timothy J Edwards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Brisbane, Australia
| | - Charles Galea
- Drug Delivery, Disposition and Dynamics (D4), Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia
| | - Elizabeth C Engle
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts
| | - Saumya S Jamuar
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Department of Paediatrics, KK Women's and Children's Hospital, Paediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Aurélie Méneret
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Laure Moutard
- Service de Neuropédiatrie, AP-HP, Hôpital Trousseau, Paris, France.,UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Centre de référence "Neurogénétique", Paris, France
| | - Caroline Nava
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Agnès Rastetter
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Gail Robinson
- Neuropsychology Research Unit, School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, McGill University Health Center, Montreal, Quebec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec, Canada
| | - Emmanuel Roze
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Neurologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Megan Spencer-Smith
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Clayton Campus, Clayton, Victoria, Australia
| | - Oriane Trouillard
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Thierry Billette de Villemeur
- Service de Neuropédiatrie, AP-HP, Hôpital Trousseau, Paris, France.,UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Centre de Référence "déficiences intellectuelles de causes rares", Paris, France.,INSERM U1141, Paris, France
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts.,Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Timothy W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | | | - Delphine Heron
- UPMC, GRC ConCer-LD, Sorbonne Université, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Elliott H Sherr
- Department of Neurology, UCSF Benioff Children's Hospital, San Francisco, California
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia.,The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, Australia
| | - Christel Depienne
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Département de Génétique, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.,Département de Médicine translationnelle et Neurogénétique, IGBMC, CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France.,Laboratoires de génétique, Institut de génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Richard J Leventer
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Neuroscience Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Neurology, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
122
|
Abstract
Varadarajan et al. (2017)-in this issue of Neuron-and Dominici et al. (2017)-published online at Nature-independently show that floor plate-derived netrin-1 is dispensable for commissural neuron axon guidance to the CNS midline during development.
Collapse
Affiliation(s)
- Randal A Hand
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience and Howard Hughes Medical Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
123
|
Okada T, Keino-Masu K, Nagamine S, Kametani F, Ohto T, Hasegawa M, van Kuppevelt TH, Kunita S, Takahashi S, Masu M. Desulfation of Heparan Sulfate by Sulf1 and Sulf2 Is Required for Corticospinal Tract Formation. Sci Rep 2017; 7:13847. [PMID: 29062064 PMCID: PMC5653861 DOI: 10.1038/s41598-017-14185-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022] Open
Abstract
Heparan sulfate (HS) has been implicated in a wide range of cell signaling. Here we report a novel mechanism in which extracellular removal of 6-O-sulfate groups from HS by the endosulfatases, Sulf1 and Sulf2, is essential for axon guidance during development. In Sulf1/2 double knockout (DKO) mice, the corticospinal tract (CST) was dorsally displaced on the midbrain surface. In utero electroporation of Sulf1/2 into radial glial cells along the third ventricle, where Sulf1/2 mRNAs are normally expressed, rescued the CST defects in the DKO mice. Proteomic analysis and functional testing identified Slit2 as the key molecule associated with the DKO phenotype. In the DKO brain, 6-O-sulfated HS was increased, leading to abnormal accumulation of Slit2 protein on the pial surface of the cerebral peduncle and hypothalamus, which caused dorsal repulsion of CST axons. Our findings indicate that postbiosynthetic desulfation of HS by Sulfs controls CST axon guidance through fine-tuning of Slit2 presentation.
Collapse
Affiliation(s)
- Takuya Okada
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8575, Japan
| | - Kazuko Keino-Masu
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8575, Japan
| | - Satoshi Nagamine
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8575, Japan.,Pharmaceuticals and Medical Devices Agency, 3-3-2 Kasumigaseki, Chiyoda-Ku, Tokyo, 100-0013, Japan
| | - Fuyuki Kametani
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tatsuyuki Ohto
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8575, Japan.,Department of Pediatrics, University of Tsukuba Hospital, 2-1-1 Amakubo, Ibaraki, 305-8576, Japan
| | - Masato Hasegawa
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Toin H van Kuppevelt
- Department of Biochemistry, Nijmegen Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Satoshi Kunita
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Center for Experimental Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Masu
- Department of Molecular Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, 305-8575, Japan.
| |
Collapse
|
124
|
Making Dopamine Connections in Adolescence. Trends Neurosci 2017; 40:709-719. [PMID: 29032842 DOI: 10.1016/j.tins.2017.09.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022]
Abstract
A dramatic maturational process ongoing in adolescence is prefrontal cortex development, including its dopamine innervation. Dopamine axons grow from the striatum to the prefrontal cortex, the only known case of long-distance axon growth during adolescence. This is coordinated by the Netrin-1 guidance cue receptor DCC (deleted in colorectal cancer), which in turn controls the intrinsic development of the prefrontal cortex itself. Stimulant drugs in adolescence alter DCC in dopamine neurons and, in turn prefrontal cortex maturation, impacting cognitive abilities. Variations in DCC expression are linked to psychiatric conditions of prefrontal cortex dysfunction, and microRNA regulation of DCC may be key to determining adolescent vulnerability or resilience. Since early interventions are proving to effectively ameliorate disease outcome, the Netrin-1 system is a promising therapeutic target.
Collapse
|
125
|
Rapti G, Li C, Shan A, Lu Y, Shaham S. Glia initiate brain assembly through noncanonical Chimaerin-Furin axon guidance in C. elegans. Nat Neurosci 2017; 20:1350-1360. [PMID: 28846083 PMCID: PMC5614858 DOI: 10.1038/nn.4630] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
Abstract
Brain assembly is hypothesized to begin when pioneer axons extend over non-neuronal cells, forming tracts guiding follower axons. Yet pioneer-neuron identities, their guidance substrates, and their interactions are not well understood. Here, using time-lapse embryonic imaging, genetics, protein-interaction, and functional studies, we uncover the early events of C. elegans brain assembly. We demonstrate that C. elegans glia are key for assembly initiation, guiding pioneer and follower axons using distinct signals. Pioneer sublateral neurons, with unique growth properties, anatomy, and innervation, cooperate with glia to mediate follower-axon guidance. We further identify a Chimaerin (CHIN-1)- Furin (KPC-1) double-mutant that severely disrupts assembly. CHIN-1 and KPC-1 function noncanonically, in glia and pioneer neurons, for guidance-cue trafficking. We exploit this bottleneck to define roles for glial Netrin and Semaphorin in pioneer- and follower-axon guidance, respectively, and for glial and pioneer-neuron Flamingo (CELSR) in follower-axon navigation. Taken together, our studies reveal previously undescribed glial roles in pioneer-axon guidance, suggesting conserved principles of brain assembly.
Collapse
Affiliation(s)
- Georgia Rapti
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Chang Li
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
- These authors contributed equally to this work
| | - Alan Shan
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
- These authors contributed equally to this work
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
126
|
Méneret A, Franz EA, Trouillard O, Oliver TC, Zagar Y, Robertson SP, Welniarz Q, Gardner RJM, Gallea C, Srour M, Depienne C, Jasoni CL, Dubacq C, Riant F, Lamy JC, Morel MP, Guérois R, Andreani J, Fouquet C, Doulazmi M, Vidailhet M, Rouleau GA, Brice A, Chédotal A, Dusart I, Roze E, Markie D. Mutations in the netrin-1 gene cause congenital mirror movements. J Clin Invest 2017; 127:3923-3936. [PMID: 28945198 DOI: 10.1172/jci95442] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Netrin-1 is a secreted protein that was first identified 20 years ago as an axon guidance molecule that regulates midline crossing in the CNS. It plays critical roles in various tissues throughout development and is implicated in tumorigenesis and inflammation in adulthood. Despite extensive studies, no inherited human disease has been directly associated with mutations in NTN1, the gene coding for netrin-1. Here, we have identified 3 mutations in exon 7 of NTN1 in 2 unrelated families and 1 sporadic case with isolated congenital mirror movements (CMM), a disorder characterized by involuntary movements of one hand that mirror intentional movements of the opposite hand. Given the diverse roles of netrin-1, the absence of manifestations other than CMM in NTN1 mutation carriers was unexpected. Using multimodal approaches, we discovered that the anatomy of the corticospinal tract (CST) is abnormal in patients with NTN1-mutant CMM. When expressed in HEK293 or stable HeLa cells, the 3 mutated netrin-1 proteins were almost exclusively detected in the intracellular compartment, contrary to WT netrin-1, which is detected in both intracellular and extracellular compartments. Since netrin-1 is a diffusible extracellular cue, the pathophysiology likely involves its loss of function and subsequent disruption of axon guidance, resulting in abnormal decussation of the CST.
Collapse
Affiliation(s)
- Aurélie Méneret
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - Elizabeth A Franz
- Department of Psychology and fMRIotago, , University of Otago, Dunedin, New Zealand
| | - Oriane Trouillard
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Thomas C Oliver
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Yvrick Zagar
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Stephen P Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Quentin Welniarz
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - R J MacKinlay Gardner
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Cécile Gallea
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Myriam Srour
- Department of Neurology and Neurosurgery, and.,Department of Paediatrics, McGill University, Montreal, Quebec, Canada
| | - Christel Depienne
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,Institut de Génétique et de Biologie moléculaire et cellulaire (IGBMC), CNRS UMR 7104, INSERM U964, Université de Strasbourg, Illkirch, France.,Laboratoires de génétique, Institut de génétique médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christine L Jasoni
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Caroline Dubacq
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - Florence Riant
- AP-HP, Groupe hospitalier Lariboisière-Fernand Widal, Laboratoire de Génétique, Paris, France.,INSERM, UMR S740, Université Paris 7 Denis Diderot, Paris, France
| | - Jean-Charles Lamy
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Marie-Pierre Morel
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - Raphael Guérois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Coralie Fouquet
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - Mohamed Doulazmi
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Adaptation Biologique et Vieillissement, Paris, France
| | - Marie Vidailhet
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, and.,Montreal Neurological Institute, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Alexis Brice
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Fédération de Génétique, Département de Génétique et de Cytogénétique, Paris, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Dusart
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, Paris, France
| | - Emmanuel Roze
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06, UMR S1127, CIC-1422, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France.,AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Neurologie, Paris, France
| | - David Markie
- Pathology Department, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
127
|
Netrin-1 Derived from the Ventricular Zone, but not the Floor Plate, Directs Hindbrain Commissural Axons to the Ventral Midline. Sci Rep 2017; 7:11992. [PMID: 28931893 PMCID: PMC5607380 DOI: 10.1038/s41598-017-12269-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/31/2017] [Indexed: 11/08/2022] Open
Abstract
Netrin-1 (Ntn1) emanating from the ventral midline has been thought to act as a long-range diffusible chemoattractant for commissural axons (CAs). However, CAs still grow towards the midline in the absence of the floor plate (FP), a glial structure occupying the midline. Here, using genetically loss-of-function approaches in mice, we show that Ntn1 derived from the ventricular zone (VZ), but not the FP, is crucial for CA guidance in the mouse hindbrain. During the period of CA growth, Ntn1 is expressed in the ventral two-thirds of the VZ, in addition to the FP. Remarkably, deletion of Ntn1 from the VZ and even from the dorsal VZ highly disrupts CA guidance to the midline, whereas the deletion from the FP has little impact on it. We also show that the severities of CA guidance defects found in the Ntn1 conditional mutants were irrelevant to their FP long-range chemoattractive activities. Our results are incompatible with the prevailing view that Ntn1 is an FP-derived long-range diffusible chemoattractant for CAs, but suggest a novel mechanism that VZ-derived Ntn1 directs CAs to the ventral midline by its local actions.
Collapse
|
128
|
Onishi K, Zou Y. Sonic Hedgehog switches on Wnt/planar cell polarity signaling in commissural axon growth cones by reducing levels of Shisa2. eLife 2017; 6:25269. [PMID: 28885142 PMCID: PMC5779225 DOI: 10.7554/elife.25269] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023] Open
Abstract
Commissural axons switch on responsiveness to Wnt attraction during midline crossing and turn anteriorly only after exiting the floor plate. We report here that Sonic Hedgehog (Shh)-Smoothened signaling downregulates Shisa2, which inhibits the glycosylation and cell surface presentation of Frizzled3 in rodent commissural axon growth cones. Constitutive Shisa2 expression causes randomized turning of post-crossing commissural axons along the anterior–posterior (A–P) axis. Loss of Shisa2 led to precocious anterior turning of commissural axons before or during midline crossing. Post-crossing commissural axon turning is completely randomized along the A–P axis when Wntless, which is essential for Wnt secretion, is conditionally knocked out in the floor plate. This regulatory link between Shh and planar cell polarity (PCP) signaling may also occur in other developmental processes.
Collapse
Affiliation(s)
- Keisuke Onishi
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, San Diego, United States
| | - Yimin Zou
- Neurobiology Section, Biological Sciences Division, University of California, San Diego, San Diego, United States
| |
Collapse
|
129
|
Pomreinke AP, Soh GH, Rogers KW, Bergmann JK, Bläßle AJ, Müller P. Dynamics of BMP signaling and distribution during zebrafish dorsal-ventral patterning. eLife 2017; 6:25861. [PMID: 28857744 PMCID: PMC5658070 DOI: 10.7554/elife.25861] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/30/2017] [Indexed: 11/21/2022] Open
Abstract
During vertebrate embryogenesis, dorsal-ventral patterning is controlled by the BMP/Chordin activator/inhibitor system. BMP induces ventral fates, whereas Chordin inhibits BMP signaling on the dorsal side. Several theories can explain how the distributions of BMP and Chordin are regulated to achieve patterning, but the assumptions regarding activator/inhibitor diffusion and stability differ between models. Notably, ‘shuttling’ models in which the BMP distribution is modulated by a Chordin-mediated increase in BMP diffusivity have gained recent prominence. Here, we directly test five major models by measuring the biophysical properties of fluorescently tagged BMP2b and Chordin in zebrafish embryos. We found that BMP2b and Chordin diffuse and rapidly form extracellular protein gradients, Chordin does not modulate the diffusivity or distribution of BMP2b, and Chordin is not required to establish peak levels of BMP signaling. Our findings challenge current self-regulating reaction-diffusion and shuttling models and provide support for a graded source-sink mechanism underlying zebrafish dorsal-ventral patterning. Animals start life as clumps of cells that ultimately give rise to complex structures and organs. Over a century of research has revealed a small number of proteins that are crucial for complex structures to form from these clumps, including one protein called BMP. Different levels of BMP instruct cells to give rise to different tissues. In zebrafish, BMP is more abundant on one side of the embryo than the other. This gradient in BMP levels causes different tissues to form at distinct positions and helps coordinate embryo development. Several theories have been proposed to explain how the BMP gradient is established. They all suggest that a second protein – Chordin – plays an important role in influencing how cells sense the BMP gradient by blocking BMP’s activity. However, the exact role of Chordin in the formation of the BMP gradient is disputed. To address this, Pomreinke, Soh, Rogers et al. directly tested five theories of how BMP and Chordin molecules spread through embryos. The experiments used microscopy to track the movements of fluorescent versions of both molecules in zebrafish embryos. The measurements contradict one theory stating that BMP does not move, and another in which Chordin increases the mobility of BMP. Pomreinke, Soh, Rogers et al. also found that embryos that lack Chordin have increased BMP signaling levels only on the side where Chordin is normally made but not on the opposite side where BMP is made, ruling out several of the theories. The findings are most consistent with the idea that the BMP gradient forms mainly as a result of higher production of BMP on one side of the embryo combined with movement of BMP away from where it is made. Chordin produced at the opposite end of the embryo helps to ensure that only the correct cells receive instructions from BMP. In the future, two approaches could further clarify how the BMP gradient is formed. First, better techniques to directly observe the BMP gradient in normally developing embryos would be useful. Second, new theories that take into account additional players other than BMP and Chordin might help explain some features of development that current theories cannot address. Uncovering the mechanisms that control the formation of BMP gradients will improve our understanding of how clumps of cells can develop into animals.
Collapse
Affiliation(s)
- Autumn P Pomreinke
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Gary H Soh
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Jennifer K Bergmann
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Alexander J Bläßle
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| |
Collapse
|
130
|
Varadarajan SG, Butler SJ. Netrin1 establishes multiple boundaries for axon growth in the developing spinal cord. Dev Biol 2017; 430:177-187. [PMID: 28780049 DOI: 10.1016/j.ydbio.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/01/2023]
Abstract
The canonical model for netrin1 function proposed that it acted as a long-range chemotropic axon guidance cue. In the developing spinal cord, floor-plate (FP)-derived netrin1 was thought to act as a diffusible attractant to draw commissural axons to the ventral midline. However, our recent studies have shown that netrin1 is dispensable in the FP for axon guidance. We have rather found that netrin1 acts locally: netrin1 is produced by neural progenitor cells (NPCs) in the ventricular zone (VZ), and deposited on the pial surface as a haptotactic adhesive substrate that guides Dcc+ axon growth. Here, we further demonstrate that this netrin1 pial-substrate has an early role orienting pioneering spinal axons, directing them to extend ventrally. However, as development proceeds, commissural axons choose to grow around a boundary of netrin1 expressing cells in VZ, instead of continuing to extend alongside the netrin1 pial-substrate in the ventral spinal cord. This observation suggests netrin1 may supply a more complex activity than pure adhesion, with netrin1-expressing cells also supplying a growth boundary for axons. Supporting this possibility, we have observed that additional domains of netrin1 expression arise adjacent to the dorsal root entry zone (DREZ) in E12.5 mice that are also required to sculpt axonal growth. Together, our studies suggest that netrin1 provides "hederal" boundaries: a local growth substrate that promotes axon extension, while also preventing local innervation of netrin1-expressing domains.
Collapse
Affiliation(s)
- Supraja G Varadarajan
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, United States; Neuroscience Interdisciplinary Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, United States; Neuroscience Interdisciplinary Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
131
|
Morales D. A new model for netrin1 in commissural axon guidance. J Neurosci Res 2017; 96:247-252. [PMID: 28742927 DOI: 10.1002/jnr.24117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
Now-classic experiments characterized netrin1 as a major player in commissural axon guidance in the spinal cord. The data suggest a chemotactic model in which netrin1 expression in the floor plate forms a concentration gradient that attracts commissural axons. New research published independently in Neuron and in Nature tests this model by deleting netrin1 specifically in the floor plate. Surprisingly, these conditional mutant mice have no overt commissure defects. The authors report that netrin1 decorates the pial surface of the spinal cord and hindbrain, likely deposited by radial processes of progenitor cells in the ventricular zone. They find that deletion of the cue exclusively in the ventricular zone causes commissural axons to take aberrant trajectories, suggesting a short range, haptotactic guidance mechanism as opposed to chemotaxis. This minireview aims to summarize the classic and the new findings and offer some interpretations of the data.
Collapse
Affiliation(s)
- Daniel Morales
- Institut de recherches cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
132
|
The source of the signal. Nat Rev Neurosci 2017; 18:324. [DOI: 10.1038/nrn.2017.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|