101
|
Lim JS, Lee JJ, Woo CW. Post-Stroke Cognitive Impairment: Pathophysiological Insights into Brain Disconnectome from Advanced Neuroimaging Analysis Techniques. J Stroke 2021; 23:297-311. [PMID: 34649376 PMCID: PMC8521255 DOI: 10.5853/jos.2021.02376] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
The neurological symptoms of stroke have traditionally provided the foundation for functional mapping of the brain. However, there are many unresolved aspects in our understanding of cerebral activity, especially regarding high-level cognitive functions. This review provides a comprehensive look at the pathophysiology of post-stroke cognitive impairment in light of recent findings from advanced imaging techniques. Combining network neuroscience and clinical neurology, our research focuses on how changes in brain networks correlate with post-stroke cognitive prognosis. More specifically, we first discuss the general consequences of stroke lesions due to damage of canonical resting-state large-scale networks or changes in the composition of the entire brain. We also review emerging methods, such as lesion-network mapping and gradient analysis, used to study the aforementioned events caused by stroke lesions. Lastly, we examine other patient vulnerabilities, such as superimposed amyloid pathology and blood-brain barrier leakage, which potentially lead to different outcomes for the brain network compositions even in the presence of similar stroke lesions. This knowledge will allow a better understanding of the pathophysiology of post-stroke cognitive impairment and provide a theoretical basis for the development of new treatments, such as neuromodulation.
Collapse
Affiliation(s)
- Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Joong Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Choong-Wan Woo
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
102
|
Hwang K, Shine JM, Bruss J, Tranel D, Boes A. Neuropsychological evidence of multi-domain network hubs in the human thalamus. eLife 2021; 10:69480. [PMID: 34622776 PMCID: PMC8526062 DOI: 10.7554/elife.69480] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022] Open
Abstract
Hubs in the human brain support behaviors that arise from brain network interactions. Previous studies have identified hub regions in the human thalamus that are connected with multiple functional networks. However, the behavioral significance of thalamic hubs has yet to be established. Our framework predicts that thalamic subregions with strong hub properties are broadly involved in functions across multiple cognitive domains. To test this prediction, we studied human patients with focal thalamic lesions in conjunction with network analyses of the human thalamocortical functional connectome. In support of our prediction, lesions to thalamic subregions with stronger hub properties were associated with widespread deficits in executive, language, and memory functions, whereas lesions to thalamic subregions with weaker hub properties were associated with more limited deficits. These results highlight how a large-scale network model can broaden our understanding of thalamic function for human cognition.
Collapse
Affiliation(s)
- Kai Hwang
- Department of Psychological and Brain Sciences, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Cognitive Control Collaborative, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Iowa Neuroscience Institute, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Psychiatry, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Joel Bruss
- Iowa Neuroscience Institute, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Neurology, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Pediatrics, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States
| | - Daniel Tranel
- Department of Psychological and Brain Sciences, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Iowa Neuroscience Institute, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Neurology, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States
| | - Aaron Boes
- Iowa Neuroscience Institute, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Psychiatry, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Neurology, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States.,Department of Pediatrics, The University of Iowa & The University of Iowa College of Medicine, Iowa City, United States
| |
Collapse
|
103
|
Nielsen AN, Wakschlag LS, Norton ES. Linking irritability and functional brain networks: A transdiagnostic case for expanding consideration of development and environment in RDoC. Neurosci Biobehav Rev 2021; 129:231-244. [PMID: 34302863 PMCID: PMC8802626 DOI: 10.1016/j.neubiorev.2021.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 01/13/2023]
Abstract
The National Institute of Mental Health Research Domain Criteria (RDoC) framework promotes the dimensional and transdiagnostic operationalization of psychopathology, but consideration of the neurodevelopmental foundations of mental health problems requires deeper examination. Irritability, the dispositional tendency to angry emotion that has both mood and behavioral elements, is dimensional, transdiagnostic, and observable early in life-a promising target for the identification of early neural indicators or risk factors for psychopathology. Here, we examine functional brain networks linked to irritability from preschool to adulthood and discuss how development and early experience may influence these neural substrates. Functional connectivity measured with fMRI varies according to irritability and indicates the atypical coordination of several functional networks involved in emotion generation, emotion perception, attention, internalization, and cognitive control. We lay out an agenda to improve our understanding and detection of atypical brain:behavior patterns through advances in the characterization of both functional networks and irritability as well as the consideration and operationalization of developmental and early life environmental influences on this pathway.
Collapse
Affiliation(s)
- Ashely N Nielsen
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, United States; Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, United States.
| | - Lauren S Wakschlag
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, United States; Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, United States
| | - Elizabeth S Norton
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, United States; Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| |
Collapse
|
104
|
Zheng A, Montez DF, Marek S, Gilmore AW, Newbold DJ, Laumann TO, Kay BP, Seider NA, Van AN, Hampton JM, Alexopoulos D, Schlaggar BL, Sylvester CM, Greene DJ, Shimony JS, Nelson SM, Wig GS, Gratton C, McDermott KB, Raichle ME, Gordon EM, Dosenbach NUF. Parallel hippocampal-parietal circuits for self- and goal-oriented processing. Proc Natl Acad Sci U S A 2021; 118:e2101743118. [PMID: 34404728 PMCID: PMC8403906 DOI: 10.1073/pnas.2101743118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hippocampus is critically important for a diverse range of cognitive processes, such as episodic memory, prospective memory, affective processing, and spatial navigation. Using individual-specific precision functional mapping of resting-state functional MRI data, we found the anterior hippocampus (head and body) to be preferentially functionally connected to the default mode network (DMN), as expected. The hippocampal tail, however, was strongly preferentially functionally connected to the parietal memory network (PMN), which supports goal-oriented cognition and stimulus recognition. This anterior-posterior dichotomy of resting-state functional connectivity was well-matched by differences in task deactivations and anatomical segmentations of the hippocampus. Task deactivations were localized to the hippocampal head and body (DMN), relatively sparing the tail (PMN). The functional dichotomization of the hippocampus into anterior DMN-connected and posterior PMN-connected parcels suggests parallel but distinct circuits between the hippocampus and medial parietal cortex for self- versus goal-oriented processing.
Collapse
Affiliation(s)
- Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110;
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Adrian W Gilmore
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Jacqueline M Hampton
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, CA 92093
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55414
| | - Gagan S Wig
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL 60208
- Department of Neurology, Northwestern University, Evanston, IL 60208
| | - Kathleen B McDermott
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110;
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
105
|
Zhang J, Kucyi A, Raya J, Nielsen AN, Nomi JS, Damoiseaux JS, Greene DJ, Horovitz SG, Uddin LQ, Whitfield-Gabrieli S. What have we really learned from functional connectivity in clinical populations? Neuroimage 2021; 242:118466. [PMID: 34389443 DOI: 10.1016/j.neuroimage.2021.118466] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 02/09/2023] Open
Abstract
Functional connectivity (FC), or the statistical interdependence of blood-oxygen dependent level (BOLD) signals between brain regions using fMRI, has emerged as a widely used tool for probing functional abnormalities in clinical populations due to the promise of the approach across conceptual, technical, and practical levels. With an already vast and steadily accumulating neuroimaging literature on neurodevelopmental, psychiatric, and neurological diseases and disorders in which FC is a primary measure, we aim here to provide a high-level synthesis of major concepts that have arisen from FC findings in a manner that cuts across different clinical conditions and sheds light on overarching principles. We highlight that FC has allowed us to discover the ubiquity of intrinsic functional networks across virtually all brains and clarify typical patterns of neurodevelopment over the lifespan. This understanding of typical FC maturation with age has provided important benchmarks against which to evaluate divergent maturation in early life and degeneration in late life. This in turn has led to the important insight that many clinical conditions are associated with complex, distributed, network-level changes in the brain, as opposed to solely focal abnormalities. We further emphasize the important role that FC studies have played in supporting a dimensional approach to studying transdiagnostic clinical symptoms and in enhancing the multimodal characterization and prediction of the trajectory of symptom progression across conditions. We highlight the unprecedented opportunity offered by FC to probe functional abnormalities in clinical conditions where brain function could not be easily studied otherwise, such as in disorders of consciousness. Lastly, we suggest high priority areas for future research and acknowledge critical barriers associated with the use of FC methods, particularly those related to artifact removal, data denoising and feasibility in clinical contexts.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| | - Aaron Kucyi
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Jovicarole Raya
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jason S Nomi
- Department of Psychology, University of Miami, Miami, FL 33124, USA
| | - Jessica S Damoiseaux
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Lucina Q Uddin
- Department of Psychology, University of Miami, Miami, FL 33124, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
106
|
Three types of individual variation in brain networks revealed by single-subject functional connectivity analyses. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
107
|
Abstract
Human functional brain networks can be reliably characterized within individuals using precision functional mapping. This approach entails the collection of large quantities of functional magnetic resonance imaging (fMRI) data from each individual subject. Studies employing precision functional mapping in the cerebral cortex have found that individuals manifest unique representations of functional brain networks around a central tendency described by previous group average approaches. We recently extended precision functional mapping to the subcortex and cerebellum, which has revealed several novel organizational principles within these structures. Here, we detail these principles and provide insights into how precision functional mapping of subcortical structures and the cerebellum may become clinically translatable.
Collapse
Affiliation(s)
- Scott Marek
- Department of Psychiatry, Washington University School of Medicine
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego
| |
Collapse
|
108
|
|
109
|
|
110
|
Fedorenko E. The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
111
|
Gilmore AW, Nelson SM, McDermott KB. Precision functional mapping of human memory systems. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2020.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
112
|
Basal ganglia-orbitofrontal circuits are associated with prospective memory deficits in Wilson's disease. Brain Imaging Behav 2021; 16:141-150. [PMID: 34297310 DOI: 10.1007/s11682-021-00485-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Degenerative changes in the basal ganglia (BG) are thought to contribute to neurological symptoms in Wilson's disease (WD). However, very little is known about whether and how the BG have an influence on prospective memory (PM) by interacting with the cerebral cortex. Here, we employed structural magnetic resonance imaging to systematically examine the effect of volume atrophy of BG on cortical thickness and to evaluate the relationships between cortical thickness of regions associated with BG atrophy and PM performance in WD. Cortical thickness atrophy in the left temporal pole and medial frontal gyrus are not related to degenerative changes in BG. Cortical thickness in the left superior frontal gyrus and right orbitofrontal gyrus (ORB) have stronger correlations with volume atrophy of the left accumbens, pallidum, and putamen in WD when compared with healthy controls. Furthermore, the cortical thickness of the right ORB is not only significantly correlated with PM performance but can also distinguish the severity of PM impairment in WD. Additionally, the middle cingulate cortex was related to volume atrophy of the accumbens, and its cortical thickness has a significant positive correlation with event-based PM. Together, these findings highlight that BG-orbitofrontal circuits may serve as neural biomarkers of PM and provide implications for the neural mechanisms underlying cognitive impairment in WD.
Collapse
|
113
|
Phillips JM, Kambi NA, Redinbaugh MJ, Mohanta S, Saalmann YB. Disentangling the influences of multiple thalamic nuclei on prefrontal cortex and cognitive control. Neurosci Biobehav Rev 2021; 128:487-510. [PMID: 34216654 DOI: 10.1016/j.neubiorev.2021.06.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/13/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
The prefrontal cortex (PFC) has a complex relationship with the thalamus, involving many nuclei which occupy predominantly medial zones along its anterior-to-posterior extent. Thalamocortical neurons in most of these nuclei are modulated by the affective and cognitive signals which funnel through the basal ganglia. We review how PFC-connected thalamic nuclei likely contribute to all aspects of cognitive control: from the processing of information on internal states and goals, facilitating its interactions with mnemonic information and learned values of stimuli and actions, to their influence on high-level cognitive processes, attentional allocation and goal-directed behavior. This includes contributions to transformations such as rule-to-choice (parvocellular mediodorsal nucleus), value-to-choice (magnocellular mediodorsal nucleus), mnemonic-to-choice (anteromedial nucleus) and sensory-to-choice (medial pulvinar). Common mechanisms appear to be thalamic modulation of cortical gain and cortico-cortical functional connectivity. The anatomy also implies a unique role for medial PFC in modulating processing in thalamocortical circuits involving other orbital and lateral PFC regions. We further discuss how cortico-basal ganglia circuits may provide a mechanism through which PFC controls cortico-cortical functional connectivity.
Collapse
Affiliation(s)
- Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States.
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Michelle J Redinbaugh
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, 1202 W Johnson St., Madison, WI 53706, United States; Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1202 Capitol Ct., Madison, WI 53715, United States.
| |
Collapse
|
114
|
Ashar YK, Clark J, Gunning FM, Goldin P, Gross JJ, Wager TD. Brain markers predicting response to cognitive-behavioral therapy for social anxiety disorder: an independent replication of Whitfield-Gabrieli et al. 2015. Transl Psychiatry 2021; 11:260. [PMID: 33934101 PMCID: PMC8088432 DOI: 10.1038/s41398-021-01366-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 02/03/2023] Open
Abstract
Predictive brain markers promise a number of important scientific, clinical, and societal applications. Over 600 predictive brain markers have been described in published reports, but very few have been tested in independent replication attempts. Here, we conducted an independent replication of a previously published marker predicting treatment response to cognitive-behavioral therapy for social anxiety disorder from patterns of resting-state fMRI amygdala connectivity1. The replication attempt was conducted in an existing dataset similar to the dataset used in the original report, by a team of independent investigators in consultation with the original authors. The precise model described in the original report positively predicted treatment outcomes in the replication dataset, but with marginal statistical significance, permutation test p = 0.1. The effect size was substantially smaller in the replication dataset, with the model explaining 2% of the variance in treatment outcomes, as compared to 21% in the original report. Several lines of evidence, including the current replication attempt, suggest that features of amygdala function or structure may be able to predict treatment response in anxiety disorders. However, predictive models that explain a substantial amount of variance in independent datasets will be needed for scientific and clinical applications.
Collapse
Affiliation(s)
- Yoni K Ashar
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Joseph Clark
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Philippe Goldin
- Betty Irene Moore School of Nursing, University of California, Davis, Davis, CA, USA
| | - James J Gross
- Department of Psychology, Stanford University, Palo Alto, CA, USA
| | - Tor D Wager
- Psychological and Brain Sciences Department, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
115
|
Lynch CJ, Elbau I, Liston C. Improving precision functional mapping routines with multi-echo fMRI. Curr Opin Behav Sci 2021; 40:113-119. [PMID: 34095359 DOI: 10.1016/j.cobeha.2021.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rapidly developing approaches to acquiring and analyzing densely-sampled, single-subject fMRI data have opened new avenues for understanding the neurobiological basis of individual differences in behavior and could allow fMRI to become a more clinically useful tool. Here, we review briefly key insights from these precision functional mapping studies and a highlight significant barrier to their clinical translation. Specifically, that reliable delineation of functional brain networks in individual humans can require hours of resting-state fMRI data per-subject. We found recently that multi-echo fMRI improves the test-retest reliability of resting-state functional connectivity measurements, mitigating the need for acquiring large quantities of per -subject data. Because the benefits of multi-echo acquisitions are most pronounced in clinically important but artifact-prone brain regions, such as the subgenual cingulate and structures deep in the subcortex, this approach has the potential to increase the impact of precision functional mapping routines in both healthy and clinical populations.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69 Street, Box 240, New York, NY 10021
| | - Immanuel Elbau
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69 Street, Box 240, New York, NY 10021
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69 Street, Box 240, New York, NY 10021
| |
Collapse
|
116
|
Siegel JS, Palanca BJA, Ances BM, Kharasch ED, Schweiger JA, Yingling MD, Snyder AZ, Nicol GE, Lenze EJ, Farber NB. Prolonged ketamine infusion modulates limbic connectivity and induces sustained remission of treatment-resistant depression. Psychopharmacology (Berl) 2021; 238:1157-1169. [PMID: 33483802 PMCID: PMC7969576 DOI: 10.1007/s00213-021-05762-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Ketamine produces a rapid antidepressant response in over 50% of adults with treatment-resistant depression. A long infusion of ketamine may provide durable remission of depressive symptoms, but the safety, efficacy, and neurobiological correlates are unknown. In this open-label, proof-of-principle study, adults with treatment-resistant depression (N = 23) underwent a 96-h infusion of intravenous ketamine (0.15 mg/kg/h titrated toward 0.6 mg/kg/h). Clonidine was co-administered to reduce psychotomimetic effects. We measured clinical response for 8 weeks post-infusion. Resting-state functional magnetic resonance imaging was used to assess functional connectivity in patients pre- and 2 weeks post-infusion and in matched non-depressed controls (N = 27). We hypothesized that responders to therapy would demonstrate response-dependent connectivity changes while all subjects would show treatment-dependent connectivity changes. Most participants completed infusion (21/23; mean final dose 0.54 mg/kg/h, SD 0.13). The infusion was well tolerated with minimal cognitive and psychotomimetic side effects. Depressive symptoms were markedly reduced (MADRS 29 ± 4 at baseline to 9 ± 8 one day post-infusion), which was sustained at 2 weeks (13 ± 8) and 8 weeks (15 ± 8). Imaging demonstrated a response-dependent decrease in hyperconnectivity of the subgenual anterior cingulate cortex to the default mode network, and a treatment-dependent decrease in hyperconnectivity within the limbic system (hippocampus, amygdala, medial thalamus, nucleus accumbens). In exploratory analyses, connectivity was increased between the limbic system and frontal areas, and smaller right hippocampus volume at baseline predicted larger MADRS change. A single prolonged infusion of ketamine provides a tolerated, rapid, and sustained response in treatment-resistant depression and normalizes depression-related hyperconnectivity in the limbic system and frontal lobe. ClinicalTrials.gov : Treatment Resistant Depression (Pilot), NCT01179009.
Collapse
Affiliation(s)
- Joshua S Siegel
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid, Box 8134, St. Louis, MO, 63110, USA.
| | - Ben J A Palanca
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Julie A Schweiger
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid, Box 8134, St. Louis, MO, 63110, USA
| | - Michael D Yingling
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid, Box 8134, St. Louis, MO, 63110, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ginger E Nicol
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid, Box 8134, St. Louis, MO, 63110, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid, Box 8134, St. Louis, MO, 63110, USA
| | - Nuri B Farber
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid, Box 8134, St. Louis, MO, 63110, USA
| |
Collapse
|
117
|
Editorial: The Centrality of Both Hyper- and Hypo-thalamocortical Connectivity in Psychosis. J Am Acad Child Adolesc Psychiatry 2021; 60:438-440. [PMID: 33545306 DOI: 10.1016/j.jaac.2021.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 11/21/2022]
Abstract
Long-standing hypotheses about schizophrenia as a "dysconnection" syndrome are consistent with the idea that mental illness arises in part from brain circuit disruptions, with impairments in cognition and behavior occurring because of a failure of coordinated action across multiple brain regions. One such theory, put forth by Andreasen and colleagues, suggested that schizophrenia involves a disruption in the integration of cortical-striatal-thalamic-cerebellar circuits.1 Anatomical work in primates has shown that the thalamus is topographically organized into parallel pathways connecting specific thalamic nuclei to different regions of cortex. The medial dorsal and anterior nuclei of the thalamus project to the dorsolateral prefrontal cortex (dlPFC), whereas the lateral nuclei project more to sensorimotor regions, with similar findings in functional brain connectivity studies in humans. A large body of evidence has shown reduced connectivity from bilateral thalamic regions, medial dorsal, and anterior nuclei in particular, to the bilateral dlPFC, dorsal anterior cingulate, parts of the striatum, and bilateral cerebellum in schizophrenia.2 This is often coupled increased connectivity between the thalamus, lateral nuclei in particular, and motor, visual, and/or auditory sensory regions.2.
Collapse
|
118
|
Newbold DJ, Gordon EM, Laumann TO, Seider NA, Montez DF, Gross SJ, Zheng A, Nielsen AN, Hoyt CR, Hampton JM, Ortega M, Adeyemo B, Miller DB, Van AN, Marek S, Schlaggar BL, Carter AR, Kay BP, Greene DJ, Raichle ME, Petersen SE, Snyder AZ, Dosenbach NUF. Cingulo-opercular control network and disused motor circuits joined in standby mode. Proc Natl Acad Sci U S A 2021; 118:e2019128118. [PMID: 33753484 PMCID: PMC8020791 DOI: 10.1073/pnas.2019128118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula. Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.
Collapse
Affiliation(s)
- Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110;
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Sarah J Gross
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ashley N Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611
| | - Catherine R Hoyt
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110
| | - Jacqueline M Hampton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Mario Ortega
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek B Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110
| | - Scott Marek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Alexandre R Carter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna J Greene
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
119
|
Moia S, Termenon M, Uruñuela E, Chen G, Stickland RC, Bright MG, Caballero-Gaudes C. ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI. Neuroimage 2021; 233:117914. [PMID: 33684602 PMCID: PMC8351526 DOI: 10.1016/j.neuroimage.2021.117914] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Performing a BOLD functional MRI (fMRI) acquisition during breath-hold (BH) tasks is a non-invasive, robust method to estimate cerebrovascular reactivity (CVR). However, movement and breathing-related artefacts caused by the BH can substantially hinder CVR estimates due to their high temporal collinearity with the effect of interest, and attention has to be paid when choosing which analysis model should be applied to the data. In this study, we evaluate the performance of multiple analysis strategies based on lagged general linear models applied on multi-echo BOLD fMRI data, acquired in ten subjects performing a BH task during ten sessions, to obtain subject-specific CVR and haemodynamic lag estimates. The evaluated approaches range from conventional regression models, i.e. including drifts and motion timecourses as nuisance regressors, applied on single-echo or optimally-combined data, to more complex models including regressors obtained from multi-echo independent component analysis with different grades of orthogonalization in order to preserve the effect of interest, i.e. the CVR. We compare these models in terms of their ability to make signal intensity changes independent from motion, as well as the reliability as measured by voxelwise intraclass correlation coefficients of both CVR and lag maps over time. Our results reveal that a conservative independent component analysis model applied on the optimally-combined multi-echo fMRI signal offers the largest reduction of motion-related effects in the signal, while yielding reliable CVR amplitude and lag estimates, although a conventional regression model applied on the optimally-combined data results in similar estimates. This work demonstrates the usefulness of multi-echo based fMRI acquisitions and independent component analysis denoising for precision mapping of CVR in single subjects based on BH paradigms, fostering its potential as a clinically-viable neuroimaging tool for individual patients. It also proves that the way in which data-driven regressors should be incorporated in the analysis model is not straight-forward due to their complex interaction with the BH-induced BOLD response.
Collapse
Affiliation(s)
- Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Spain; University of the Basque Country UPV/EHU, Donostia, Spain.
| | - Maite Termenon
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | - Eneko Uruñuela
- Basque Center on Cognition, Brain and Language, Donostia, Spain; University of the Basque Country UPV/EHU, Donostia, Spain
| | - Gang Chen
- Scientific and Statistical Computing Core, NIMH/NIH/HHS, Bethesda, MD, United States
| | - Rachael C Stickland
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Molly G Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | | |
Collapse
|
120
|
Errante A, Ziccarelli S, Mingolla G, Fogassi L. Grasping and Manipulation: Neural Bases and Anatomical Circuitry in Humans. Neuroscience 2021; 458:203-212. [PMID: 33516776 DOI: 10.1016/j.neuroscience.2021.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/09/2023]
Abstract
Neurophysiological and neuroimaging evidence suggests a significant contribution of several brain areas, including subdivisions of the parietal and the premotor cortex, during the processing of different components of hand and arm movements. Many investigations improved our knowledge about the neural processes underlying the execution of reaching and grasping actions, while few studies have directly investigated object manipulation. Most studies on the latter topic concern the use of tools to achieve specific goals. Yet, there are very few studies on pure manipulation performed in order to explore and recognize objects, as well as on manipulation performed with a high level of manual dexterity. Another dimension that is quite neglected by the available studies on grasping and manipulation is, on the one hand, the contribution of the subcortical nodes, first of all the basal ganglia and cerebellum, to these functions, and, on the other hand, recurrent connections of these structures with cortical areas. In the first part, we have reviewed the parieto-premotor and subcortical circuits underlying reaching and grasping in humans, with a focus on functional neuroimaging data. Then, we have described the main structures recruited during object manipulation. We have also reported the contribution of recent structural connectivity techniques whereby the cortico-cortical and cortico-subcortical connections of grasping-related and manipulation-related areas in the human brain can be determined. Based on our review, we have concluded that studies on cortical and subcortical circuits involved in grasping and manipulation might be promising to provide new insights about motor learning and brain plasticity in patients with motor disorders.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
| | - Settimio Ziccarelli
- Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
| | - Gloria Mingolla
- Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
121
|
Bai X, Vajkoczy P, Faust K. Morphological Abnormalities in the Basal Ganglia of Dystonia Patients. Stereotact Funct Neurosurg 2021; 99:351-362. [PMID: 33472209 DOI: 10.1159/000512599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/23/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The pathophysiology of dystonia is poorly understood. As opposed to secondary forms of dystonia, primary dystonia has long been believed to lack any neuroanatomical substrate. During trajectory planning for DBS, however, conspicuous T2-hyperinstensive signal alterations (SA) were registered within the target region, even in young patients, where ischemia is rare. METHODS Fifty MRIs of primary dystonia patients scheduled for DBS were analyzed. Total basal ganglia (BG) volumes, as well as proportionate SA volumes, were measured and compared to 50 age-matched control patients. RESULTS There was a 10-fold preponderance of percentaged SA within the globus pallidus (GP) in dystonia patients. The greatest disparity was in young patients <25 years. Also, total BG volume differences were observed with larger GP and markedly smaller putamen and caudate in the dystonia group. CONCLUSIONS BG morphology in primary dystonia differed from a control population. Volume reductions of the putamen and caudate may reflect functional degeneration, while volume increases of the GP may indicate overactivity. T2-hyperintensive SA in the GP of young primary dystonia patients, where microvascular lesions are highly unlikely, are striking. Their pathogenic role remains unclear.
Collapse
Affiliation(s)
- Xi Bai
- Department of Neurosurgery, Charité University Clinic, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Clinic, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité University Clinic, Berlin, Germany,
| |
Collapse
|
122
|
Kraus BT, Perez D, Ladwig Z, Seitzman BA, Dworetsky A, Petersen SE, Gratton C. Network variants are similar between task and rest states. Neuroimage 2021; 229:117743. [PMID: 33454409 PMCID: PMC8080895 DOI: 10.1016/j.neuroimage.2021.117743] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023] Open
Abstract
Recent work has demonstrated that individual-specific variations in functional networks (termed “network variants”) can be identified in individuals using resting state functional magnetic resonance imaging (fMRI). These network variants exhibit reliability over time, suggesting that they may be trait-like markers of individual differences in brain organization. However, while networks variants are reliable at rest, is is still untested whether they are stable between task and rest states. Here, we use precision data from the Midnight Scan Club (MSC) to demonstrate that (1) task data can be used to identify network variants reliably, (2) these network variants show substantial spatial overlap with those observed in rest, although state-specific effects are present, (3) network variants assign to similar canonical functional networks in task and rest states, and (4) single tasks or a combination of multiple tasks produce similar network variants to rest. Together, these findings further reinforce the trait-like nature of network variants and demonstrate the utility of using task data to define network variants.
Collapse
Affiliation(s)
- Brian T Kraus
- Department of Psychology, Northwestern University, Evanston, IL 60208, United States
| | - Diana Perez
- Department of Psychology, Northwestern University, Evanston, IL 60208, United States
| | - Zach Ladwig
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, United States
| | - Benjamin A Seitzman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Ally Dworetsky
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Steven E Petersen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, United States; Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, United States; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL 60208, United States; Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, United States; Department of Neurology, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
123
|
Avram M, Rogg H, Korda A, Andreou C, Müller F, Borgwardt S. Bridging the Gap? Altered Thalamocortical Connectivity in Psychotic and Psychedelic States. Front Psychiatry 2021; 12:706017. [PMID: 34721097 PMCID: PMC8548726 DOI: 10.3389/fpsyt.2021.706017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
Psychiatry has a well-established tradition of comparing drug-induced experiences to psychotic symptoms, based on shared phenomena such as altered perceptions. The present review focuses on experiences induced by classic psychedelics, which are substances capable of eliciting powerful psychoactive effects, characterized by distortions/alterations of several neurocognitive processes (e.g., hallucinations). Herein we refer to such experiences as psychedelic states. Psychosis is a clinical syndrome defined by impaired reality testing, also characterized by impaired neurocognitive processes (e.g., hallucinations and delusions). In this review we refer to acute phases of psychotic disorders as psychotic states. Neuropharmacological investigations have begun to characterize the neurobiological mechanisms underpinning the shared and distinct neurophysiological changes observed in psychedelic and psychotic states. Mounting evidence indicates changes in thalamic filtering, along with disturbances in cortico-striato-pallido-thalamo-cortical (CSPTC)-circuitry, in both altered states. Notably, alterations in thalamocortical functional connectivity were reported by functional magnetic resonance imaging (fMRI) studies. Thalamocortical dysconnectivity and its clinical relevance are well-characterized in psychotic states, particularly in schizophrenia research. Specifically, studies report hyperconnectivity between the thalamus and sensorimotor cortices and hypoconnectivity between the thalamus and prefrontal cortices, associated with patients' psychotic symptoms and cognitive disturbances, respectively. Intriguingly, studies also report hyperconnectivity between the thalamus and sensorimotor cortices in psychedelic states, correlating with altered visual and auditory perceptions. Taken together, the two altered states appear to share clinically and functionally relevant dysconnectivity patterns. In this review we discuss recent findings of thalamocortical dysconnectivity, its putative extension to CSPTC circuitry, along with its clinical implications and future directions.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Helena Rogg
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Alexandra Korda
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Christina Andreou
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Felix Müller
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| |
Collapse
|
124
|
Hu B, Wang Z, Xu M, Zhu L, Wang D. The therapeutic mechanism of epilepsy seizures in different target areas: Research on a theoretical model. Technol Health Care 2021; 29:455-461. [PMID: 33682782 PMCID: PMC8150464 DOI: 10.3233/thc-218043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The selection of optimal target areas in the surgical treatment of epilepsy is always a difficult problem in medicine. OBJECTIVE We employed a theoretical calculation model to explore the control mechanism of seizures by an external voltage stimulus acting in different nerve nuclei. METHODS Theoretical analysis and numerical simulation were combined. RESULTS The globus pallidus, excitatory pyramidal neurons, striatal D1 neurons, thalamic reticular nucleus and specific relay nuclei were selected, we analyzed that the electrical stimulation has different effects in these target areas. CONCLUSIONS The data selected were reasonable in study, the results may give a theoretical support for similar studies in clinical.
Collapse
Affiliation(s)
- Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Luyao Zhu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
125
|
Lynch CJ, Power JD, Scult MA, Dubin M, Gunning FM, Liston C. Rapid Precision Functional Mapping of Individuals Using Multi-Echo fMRI. Cell Rep 2020; 33:108540. [PMID: 33357444 PMCID: PMC7792478 DOI: 10.1016/j.celrep.2020.108540] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 10/15/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) is widely used in cognitive and clinical neuroscience, but long-duration scans are currently needed to reliably characterize individual differences in functional connectivity (FC) and brain network topology. In this report, we demonstrate that multi-echo fMRI can improve the reliability of FC-based measurements. In four densely sampled individual humans, just 10 min of multi-echo data yielded better test-retest reliability than 30 min of single-echo data in independent datasets. This effect is pronounced in clinically important brain regions, including the subgenual cingulate, basal ganglia, and cerebellum, and is linked to three biophysical signal mechanisms (thermal noise, regional variability in the rate of T2∗ decay, and S0-dependent artifacts) with spatially distinct influences. Together, these findings establish the potential utility of multi-echo fMRI for rapid precision mapping using experimentally and clinically tractable scan times and will facilitate longitudinal neuroimaging of clinical populations.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Jonathan D Power
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Matthew A Scult
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marc Dubin
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
126
|
Horien C, Fontenelle S, Joseph K, Powell N, Nutor C, Fortes D, Butler M, Powell K, Macris D, Lee K, Greene AS, McPartland JC, Volkmar FR, Scheinost D, Chawarska K, Constable RT. Low-motion fMRI data can be obtained in pediatric participants undergoing a 60-minute scan protocol. Sci Rep 2020; 10:21855. [PMID: 33318557 PMCID: PMC7736342 DOI: 10.1038/s41598-020-78885-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/01/2020] [Indexed: 01/21/2023] Open
Abstract
Performing functional magnetic resonance imaging (fMRI) scans of children can be a difficult task, as participants tend to move while being scanned. Head motion represents a significant confound in fMRI connectivity analyses. One approach to limit motion has been to use shorter MRI protocols, though this reduces the reliability of results. Hence, there is a need to implement methods to achieve high-quality, low-motion data while not sacrificing data quantity. Here we show that by using a mock scan protocol prior to a scan, in conjunction with other in-scan steps (weighted blanket and incentive system), it is possible to achieve low-motion fMRI data in pediatric participants (age range: 7-17 years old) undergoing a 60 min MRI session. We also observe that motion is low during the MRI protocol in a separate replication group of participants, including some with autism spectrum disorder. Collectively, the results indicate it is possible to conduct long scan protocols in difficult-to-scan populations and still achieve high-quality data, thus potentially allowing more reliable fMRI findings.
Collapse
Affiliation(s)
- Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA.
- Magnetic Resonance Research Center, 300 Cedar St, PO Box 208043, New Haven, CT, 06520-8043, USA.
| | | | | | | | | | | | | | | | | | - Kangjoo Lee
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
| | - James C McPartland
- Yale Child Study Center, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Fred R Volkmar
- Yale Child Study Center, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| | - Katarzyna Chawarska
- Yale Child Study Center, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
127
|
Bergmann E, Gofman X, Kavushansky A, Kahn I. Individual variability in functional connectivity architecture of the mouse brain. Commun Biol 2020; 3:738. [PMID: 33277621 PMCID: PMC7718219 DOI: 10.1038/s42003-020-01472-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years precision fMRI has emerged in human brain research, demonstrating characterization of individual differences in brain organization. However, mechanistic investigations to the sources of individual variability are limited in humans and thus require animal models. Here, we used resting-state fMRI in awake mice to quantify the contribution of individual variation to the functional architecture of the mouse cortex. We found that the mouse connectome is also characterized by stable individual features that support connectivity-based identification. Unlike in humans, we found that individual variation is homogeneously distributed in sensory and association networks. Finally, connectome-based predictive modeling of motor behavior in the rotarod task revealed that individual variation in functional connectivity explained behavioral variability. Collectively, these results establish the feasibility of precision fMRI in mice and lay the foundation for future mechanistic investigations of individual brain organization and pre-clinical studies of brain disorders in the context of personalized medicine.
Collapse
Affiliation(s)
- Eyal Bergmann
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Xenia Gofman
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexandra Kavushansky
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itamar Kahn
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
128
|
Davidson B, Hamani C, Meng Y, Baskaran A, Sharma S, Abrahao A, Richter MA, Levitt A, Giacobbe P, Lipsman N, Rabin JS. Examining cognitive change in magnetic resonance-guided focused ultrasound capsulotomy for psychiatric illness. Transl Psychiatry 2020; 10:397. [PMID: 33177508 PMCID: PMC7658970 DOI: 10.1038/s41398-020-01072-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) anterior capsulotomy is a novel treatment option for patients with refractory obsessive compulsive disorder (OCD) or major depressive disorder (MDD). However, there is concern that lesional psychiatric surgery procedures may have adverse effects on cognition. In this study, we examined whether MRgFUS capsulotomy causes cognitive decline in patients with psychiatric illness. Ten patients with refractory OCD (n = 5) or MDD (n = 5) underwent MRgFUS capsulotomy. Cognitive functioning was measured at baseline as well as 6 months and 12 months postoperatively, with a battery of neuropsychological tests assessing domains of executive function, memory, and processing speed. Scores were analyzed at the individual-level, and changes ≥2 standard deviations were considered clinically significant. We also examined whether changes in clinical symptoms were associated with changes in cognitive performance. At baseline intellectual functioning was in the average to high-average range for the group. Following MRgFUS capsulotomy, there were no deteriorations in cognition that reached ≥2 standard deviations at 6 or 12 months. Eight out of ten patients demonstrated a ≥2 standard deviation improvement in at least one cognitive score at 6 or 12 months postoperatively. Improvements in clinical symptoms correlated significantly with self-reported improvements in frontal lobe function (p < 0.05), but not with objective measures of cognitive functioning. To summarize, MRgFUS capsulotomy did not result in cognitive decline in this cohort of patients with refractory OCD or MDD, suggesting that this procedure can be offered to patients with a very low risk of cognitive side effects.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada.
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
- Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anusha Baskaran
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sachie Sharma
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Agessandro Abrahao
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Margaret Anne Richter
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Frederick W. Thompson Anxiety Disorders Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Anthony Levitt
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Peter Giacobbe
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
- Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada.
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
129
|
Bagarinao E, Watanabe H, Maesawa S, Mori D, Hara K, Kawabata K, Ohdake R, Masuda M, Ogura A, Kato T, Koyama S, Katsuno M, Wakabayashi T, Kuzuya M, Hoshiyama M, Isoda H, Naganawa S, Ozaki N, Sobue G. Identifying the brain's connector hubs at the voxel level using functional connectivity overlap ratio. Neuroimage 2020; 222:117241. [DOI: 10.1016/j.neuroimage.2020.117241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023] Open
|
130
|
Horn A, Fox MD. Opportunities of connectomic neuromodulation. Neuroimage 2020; 221:117180. [PMID: 32702488 PMCID: PMC7847552 DOI: 10.1016/j.neuroimage.2020.117180] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/12/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
The process of altering neural activity - neuromodulation - has long been used to treat patients with brain disorders and answer scientific questions. Deep brain stimulation in particular has provided clinical benefit to over 150,000 patients. However, our understanding of how neuromodulation impacts the brain is evolving. Instead of focusing on the local impact at the stimulation site itself, we are considering the remote impact on brain regions connected to the stimulation site. Brain connectivity information derived from advanced magnetic resonance imaging data can be used to identify these connections and better understand clinical and behavioral effects of neuromodulation. In this article, we review studies combining neuromodulation and brain connectomics, highlighting opportunities where this approach may prove particularly valuable. We focus on deep brain stimulation, but show that the same principles can be applied to other forms of neuromodulation, such as transcranial magnetic stimulation and MRI-guided focused ultrasound. We outline future perspectives and provide testable hypotheses for future work.
Collapse
Affiliation(s)
- Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Sectio Charité - University Medicine Berlin,, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Michael D Fox
- Berenson-Allen Center for Non-invasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, United States; Martinos Center for Biomedical Imaging, Departments of Neurology and Radiology, Harvard Medical School and Massachusetts General Hospital, United States; Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Harvard Medical School and Brigham and Women's Hospital, United States.
| |
Collapse
|
131
|
Tafazoli S, MacDowell CJ, Che Z, Letai KC, Steinhardt CR, Buschman TJ. Learning to control the brain through adaptive closed-loop patterned stimulation. J Neural Eng 2020; 17:056007. [PMID: 32927437 DOI: 10.1088/1741-2552/abb860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Stimulation of neural activity is an important scientific and clinical tool, causally testing hypotheses and treating neurodegenerative and neuropsychiatric diseases. However, current stimulation approaches cannot flexibly control the pattern of activity in populations of neurons. To address this, we developed a model-free, adaptive, closed-loop stimulation (ACLS) system that learns to use multi-site electrical stimulation to control the pattern of activity of a population of neurons. APPROACH The ACLS system combined multi-electrode electrophysiological recordings with multi-site electrical stimulation to simultaneously record the activity of a population of 5-15 multiunit neurons and deliver spatially-patterned electrical stimulation across 4-16 sites. Using a closed-loop learning system, ACLS iteratively updated the pattern of stimulation to reduce the difference between the observed neural response and a specific target pattern of firing rates in the recorded multiunits. MAIN RESULTS In silico and in vivo experiments showed ACLS learns to produce specific patterns of neural activity (in ∼15 min) and was robust to noise and drift in neural responses. In visual cortex of awake mice, ACLS learned electrical stimulation patterns that produced responses similar to the natural response evoked by visual stimuli. Similar to how repetition of a visual stimulus causes an adaptation in the neural response, the response to electrical stimulation was adapted when it was preceded by the associated visual stimulus. SIGNIFICANCE Our results show an ACLS system that can learn, in real-time, to generate specific patterns of neural activity. This work provides a framework for using model-free closed-loop learning to control neural activity.
Collapse
Affiliation(s)
- Sina Tafazoli
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, United States of America. Lead contact and corresponding author
| | | | | | | | | | | |
Collapse
|
132
|
Koyama MS, Molfese PJ, Milham MP, Mencl WE, Pugh KR. Thalamus is a common locus of reading, arithmetic, and IQ: Analysis of local intrinsic functional properties. BRAIN AND LANGUAGE 2020; 209:104835. [PMID: 32738503 PMCID: PMC8087146 DOI: 10.1016/j.bandl.2020.104835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/04/2023]
Abstract
Neuroimaging studies of basic achievement skills - reading and arithmetic - often control for the effect of IQ to identify unique neural correlates of each skill. This may underestimate possible effects of common factors between achievement and IQ measures on neuroimaging results. Here, we simultaneously examined achievement (reading and arithmetic) and IQ measures in young adults, aiming to identify MRI correlates of their common factors. Resting-state fMRI (rs-fMRI) data were analyzed using two metrics assessing local intrinsic functional properties; regional homogeneity (ReHo) and fractional amplitude low frequency fluctuation (fALFF), measuring local intrinsic functional connectivity and intrinsic functional activity, respectively. ReHo highlighted the thalamus/pulvinar (a subcortical region implied for selective attention) as a common locus for both achievement skills and IQ. More specifically, the higher the ReHo values, the lower the achievement and IQ scores. For fALFF, the left superior parietal lobule, part of the dorsal attention network, was positively associated with reading and IQ. Collectively, our results highlight attention-related regions, particularly the thalamus/pulvinar as a key region related to individual differences in performance on all the three measures. ReHo in the thalamus/pulvinar may serve as a tool to examine brain mechanisms underlying a comorbidity of reading and arithmetic difficulties, which could co-occur with weakness in general intellectual abilities.
Collapse
Affiliation(s)
- Maki S Koyama
- Haskins Laboratories, New Haven, CT, USA; Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
| | - Peter J Molfese
- Haskins Laboratories, New Haven, CT, USA; Section on Functional Imaging Methods, Laboratory of Brain and Cognition, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA; Center for Biomedical Imagingand Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
| | | | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, USA; Yale University School of Medicine, Department of Diagnostic Radiology, New Haven, CT, USA; University of Connecticut, Department of Psychology, Storrs, CT, USA.
| |
Collapse
|
133
|
Norris SA, Morris AE, Campbell MC, Karimi M, Adeyemo B, Paniello RC, Snyder AZ, Petersen SE, Mink JW, Perlmutter JS. Regional, not global, functional connectivity contributes to isolated focal dystonia. Neurology 2020; 95:e2246-e2258. [PMID: 32913023 DOI: 10.1212/wnl.0000000000010791] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To test the hypothesis that there is shared regional or global functional connectivity dysfunction in a large cohort of patients with isolated focal dystonia affecting different body regions compared to control participants. In this case-control study, we obtained resting-state MRI scans (three or four 7.3-minute runs) with eyes closed in participants with focal dystonia (cranial [17], cervical [13], laryngeal [18], or limb [10]) and age- and sex-matched controls. METHODS Rigorous preprocessing for all analyses was performed to minimize effect of head motion during scan acquisition (dystonia n = 58, control n = 47 analyzed). We assessed regional functional connectivity by computing a seed-correlation map between putamen, pallidum, and sensorimotor cortex and all brain voxels. We assessed significant group differences on a cluster-wise basis. In a separate analysis, we applied 300 seed regions across the cortex, cerebellum, basal ganglia, and thalamus to comprehensively sample the whole brain. We obtained participant whole-brain correlation matrices by computing the correlation between seed average time courses for each seed pair. Weighted object-oriented data analysis assessed group-level whole-brain differences. RESULTS Participants with focal dystonia had decreased functional connectivity at the regional level, within the striatum and between lateral primary sensorimotor cortex and ventral intraparietal area, whereas whole-brain correlation matrices did not differ between focal dystonia and control groups. Rigorous quality control measures eliminated spurious large-scale functional connectivity differences between groups. CONCLUSION Regional functional connectivity differences, not global network level dysfunction, contributes to common pathophysiologic mechanisms in isolated focal dystonia. Rigorous quality control eliminated spurious large-scale network differences between patients with focal dystonia and control participants.
Collapse
Affiliation(s)
- Scott A Norris
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY.
| | - Aimee E Morris
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Meghan C Campbell
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Morvarid Karimi
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Babatunde Adeyemo
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Randal C Paniello
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Abraham Z Snyder
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Steven E Petersen
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Jonathan W Mink
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| | - Joel S Perlmutter
- From the Departments of Neurology (S.A.N., M.C.C., M.K., A.B., A.Z.S., S.E.P., J.S.P.), Radiology (S.A.N., M.C.C., A.Z.S., S.E.P., J.S.P.), Otolaryngology (R.C.P.), Neuroscience (S.E.P., J.S.P.), Psychology (S.E.P.), Physical Therapy (J.S.P.), and Occupational Therapy (J.S.P.), Washington University School of Medicine, St. Louis, MO; University of Rochester Medical Scientist Training Program and Neurosciences Graduate Program (A.E.M.); and Departments of Neurology, Neuroscience, and Pediatrics (J.W.M.), University of Rochester, NY
| |
Collapse
|
134
|
Hwang K, Bruss J, Tranel D, Boes AD. Network Localization of Executive Function Deficits in Patients with Focal Thalamic Lesions. J Cogn Neurosci 2020; 32:2303-2319. [PMID: 32902335 DOI: 10.1162/jocn_a_01628] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human thalamus has been suggested to be involved in executive function, based on animal studies and correlational evidence from functional neuroimaging in humans. Human lesion studies, examining behavioral deficits associated with focal brain injuries, can directly test the necessity of the human thalamus for executive function. The goal of our study was to determine the specific lesion location within the thalamus as well as the potential disruption of specific thalamocortical functional networks, related to executive dysfunction. We assessed executive function in 15 patients with focal thalamic lesions and 34 comparison patients with lesions that spared the thalamus. We found that patients with mediodorsal thalamic lesions exhibited more severe impairment in executive function when compared to both patients with thalamic lesions that spared the mediodorsal nucleus and to comparison patients with lesions outside the thalamus. Furthermore, we employed a lesion network mapping approach to map cortical regions that show strong functional connectivity with the lesioned thalamic subregions in the normative functional connectome. We found that thalamic lesion sites associated with more severe deficits in executive function showed stronger functional connectivity with ACC, dorsomedial PFC, and frontoparietal network, compared to thalamic lesions not associated with executive dysfunction. These are brain regions and functional networks whose dysfunction could contribute to impaired executive functioning. In aggregate, our findings provide new evidence that delineates a thalamocortical network for executive function.
Collapse
Affiliation(s)
- Kai Hwang
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| | - Joel Bruss
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| | - Daniel Tranel
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| | - Aaron D Boes
- The University of Iowa.,The University of Iowa Hospitals and Clinics
| |
Collapse
|
135
|
Middlebrooks EH, Domingo RA, Vivas-Buitrago T, Okromelidze L, Tsuboi T, Wong JK, Eisinger RS, Almeida L, Burns MR, Horn A, Uitti RJ, Wharen RE, Holanda VM, Grewal SS. Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics. AJNR Am J Neuroradiol 2020; 41:1558-1568. [PMID: 32816768 DOI: 10.3174/ajnr.a6693] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
Abstract
Deep brain stimulation is an established therapy for multiple brain disorders, with rapidly expanding potential indications. Neuroimaging has advanced the field of deep brain stimulation through improvements in delineation of anatomy, and, more recently, application of brain connectomics. Older lesion-derived, localizationist theories of these conditions have evolved to newer, network-based "circuitopathies," aided by the ability to directly assess these brain circuits in vivo through the use of advanced neuroimaging techniques, such as diffusion tractography and fMRI. In this review, we use a combination of ultra-high-field MR imaging and diffusion tractography to highlight relevant anatomy for the currently approved indications for deep brain stimulation in the United States: essential tremor, Parkinson disease, drug-resistant epilepsy, dystonia, and obsessive-compulsive disorder. We also review the literature regarding the use of fMRI and diffusion tractography in understanding the role of deep brain stimulation in these disorders, as well as their potential use in both surgical targeting and device programming.
Collapse
Affiliation(s)
- E H Middlebrooks
- From the Departments of Radiology (E.H.M., L.O.) .,Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| | - R A Domingo
- Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| | | | | | - T Tsuboi
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida.,Department of Neurology (T.T., J.K.W., R.S.E., L.A., M.R.B.), Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - J K Wong
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - R S Eisinger
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - L Almeida
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - M R Burns
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - A Horn
- Department of Neurology (T.T.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - R J Uitti
- Department for Neurology (A.H.), Charité, University Medicine Berlin, Berlin, Germany
| | - R E Wharen
- Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| | - V M Holanda
- Center of Neurology and Neurosurgery Associates (V.M.H.), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - S S Grewal
- Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| |
Collapse
|
136
|
Hierarchical dynamics as a macroscopic organizing principle of the human brain. Proc Natl Acad Sci U S A 2020; 117:20890-20897. [PMID: 32817467 DOI: 10.1073/pnas.2003383117] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined "temporal receptive windows" are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains.
Collapse
|
137
|
Newbold DJ, Laumann TO, Hoyt CR, Hampton JM, Montez DF, Raut RV, Ortega M, Mitra A, Nielsen AN, Miller DB, Adeyemo B, Nguyen AL, Scheidter KM, Tanenbaum AB, Van AN, Marek S, Schlaggar BL, Carter AR, Greene DJ, Gordon EM, Raichle ME, Petersen SE, Snyder AZ, Dosenbach NUF. Plasticity and Spontaneous Activity Pulses in Disused Human Brain Circuits. Neuron 2020; 107:580-589.e6. [PMID: 32778224 PMCID: PMC7419711 DOI: 10.1016/j.neuron.2020.05.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/12/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022]
Abstract
To induce brain plasticity in humans, we casted the dominant upper extremity for 2 weeks and tracked changes in functional connectivity using daily 30-min scans of resting-state functional MRI (rs-fMRI). Casting caused cortical and cerebellar regions controlling the disused extremity to functionally disconnect from the rest of the somatomotor system, while internal connectivity within the disused sub-circuit was maintained. Functional disconnection was evident within 48 h, progressed throughout the cast period, and reversed after cast removal. During the cast period, large, spontaneous pulses of activity propagated through the disused somatomotor sub-circuit. The adult brain seems to rely on regular use to maintain its functional architecture. Disuse-driven spontaneous activity pulses may help preserve functionally disconnected sub-circuits.
Collapse
Affiliation(s)
- Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine R Hoyt
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline M Hampton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan V Raut
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mario Ortega
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anish Mitra
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Derek B Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Annie L Nguyen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristen M Scheidter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaron B Tanenbaum
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Scott Marek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Kennedy Krieger Institute, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexandre R Carter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deanna J Greene
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Evan M Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75080, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
138
|
Pini L, Youssov K, Sambataro F, Bachoud‐Levi A, Vallesi A, Jacquemot C. Striatal connectivity in pre‐manifest Huntington’s disease is differentially affected by disease burden. Eur J Neurol 2020; 27:2147-2157. [DOI: 10.1111/ene.14423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/25/2020] [Indexed: 11/26/2022]
Affiliation(s)
- L. Pini
- Department of Neuroscience & Padova Neuroscience Center University of Padova Padova Italy
| | - K. Youssov
- Département d'Études Cognitives École Normale Supérieure PSL University ParisFrance
- Faculté de Santé Université Paris‐Est Créteil CréteilFrance
- Inserm U955 Equipe E01 NeuroPsychologie Interventionnelle Institut Mondor de Recherche Biomédicale CréteilFrance
- Centre de référence Maladie de Huntington Service de Neurologie Hôpital Henri Mondor, AP‐HP Créteil France
| | - F. Sambataro
- Department of Neuroscience & Padova Neuroscience Center University of Padova Padova Italy
| | - A.‐C. Bachoud‐Levi
- Département d'Études Cognitives École Normale Supérieure PSL University ParisFrance
- Faculté de Santé Université Paris‐Est Créteil CréteilFrance
- Inserm U955 Equipe E01 NeuroPsychologie Interventionnelle Institut Mondor de Recherche Biomédicale CréteilFrance
- Centre de référence Maladie de Huntington Service de Neurologie Hôpital Henri Mondor, AP‐HP Créteil France
| | - A. Vallesi
- Department of Neuroscience & Padova Neuroscience Center University of Padova Padova Italy
- Brain Imaging and Neural Dynamics Research Group IRCCS San Camillo Hospital Venice Italy
| | - C. Jacquemot
- Département d'Études Cognitives École Normale Supérieure PSL University ParisFrance
- Faculté de Santé Université Paris‐Est Créteil CréteilFrance
- Inserm U955 Equipe E01 NeuroPsychologie Interventionnelle Institut Mondor de Recherche Biomédicale CréteilFrance
| |
Collapse
|
139
|
Gordon EM, Laumann TO, Marek S, Raut RV, Gratton C, Newbold DJ, Greene DJ, Coalson RS, Snyder AZ, Schlaggar BL, Petersen SE, Dosenbach NUF, Nelson SM. Default-mode network streams for coupling to language and control systems. Proc Natl Acad Sci U S A 2020; 117:17308-17319. [PMID: 32632019 PMCID: PMC7382234 DOI: 10.1073/pnas.2005238117] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human brain is organized into large-scale networks identifiable using resting-state functional connectivity (RSFC). These functional networks correspond with broad cognitive domains; for example, the Default-mode network (DMN) is engaged during internally oriented cognition. However, functional networks may contain hierarchical substructures corresponding with more specific cognitive functions. Here, we used individual-specific precision RSFC to test whether network substructures could be identified in 10 healthy human brains. Across all subjects and networks, individualized network subdivisions were more valid-more internally homogeneous and better matching spatial patterns of task activation-than canonical networks. These measures of validity were maximized at a hierarchical scale that contained ∼83 subnetworks across the brain. At this scale, nine DMN subnetworks exhibited topographical similarity across subjects, suggesting that this approach identifies homologous neurobiological circuits across individuals. Some DMN subnetworks matched known features of brain organization corresponding with cognitive functions. Other subnetworks represented separate streams by which DMN couples with other canonical large-scale networks, including language and control networks. Together, this work provides a detailed organizational framework for studying the DMN in individual humans.
Collapse
Affiliation(s)
- Evan M Gordon
- Veterans Integrated Service Network 17 Center of Excellence for Research on Returning War Veterans, US Department of Veterans Affairs, Waco, TX 76711;
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76789
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Scott Marek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ryan V Raut
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL 60208
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna J Greene
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Rebecca S Coalson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychological & Brain Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven M Nelson
- Veterans Integrated Service Network 17 Center of Excellence for Research on Returning War Veterans, US Department of Veterans Affairs, Waco, TX 76711
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76789
- Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, Bryan, TX 77807
| |
Collapse
|
140
|
Suda A, Osada T, Ogawa A, Tanaka M, Kamagata K, Aoki S, Hattori N, Konishi S. Functional Organization for Response Inhibition in the Right Inferior Frontal Cortex of Individual Human Brains. Cereb Cortex 2020; 30:6325-6335. [PMID: 32666077 PMCID: PMC7609925 DOI: 10.1093/cercor/bhaa188] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/10/2023] Open
Abstract
The right inferior frontal cortex (IFC) is critical to response inhibition. The right IFC referred in the human studies of response inhibition is located in the posterior part of the inferior frontal gyrus and the surrounding regions and consists of multiple areas that implement distinct functions. Recent studies using resting-state functional connectivity have parcellated the cerebral cortex and revealed across-subject variability of parcel-based cerebrocortical networks. However, how the right IFC of individual brains is functionally organized and what functional properties the IFC parcels possess regarding response inhibition remain elusive. In the present functional magnetic resonance imaging study, precision functional mapping of individual human brains was adopted to the parcels in the right IFC to evaluate their functional properties related to response inhibition. The right IFC consisted of six modules or subsets of subregions, and the spatial organization of the modules varied considerably across subjects. Each module revealed unique characteristics of brain activity and its correlation to behavior related to response inhibition. These results provide updated functional features of the IFC and demonstrate the importance of individual-focused approaches in studying response inhibition in the right IFC.
Collapse
Affiliation(s)
- Akimitsu Suda
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan.,Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan.,Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan.,Sportology Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan.,Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
141
|
Power JD, Lynch CJ, Adeyemo B, Petersen SE. A Critical, Event-Related Appraisal of Denoising in Resting-State fMRI Studies. Cereb Cortex 2020; 30:5544-5559. [PMID: 32494823 DOI: 10.1093/cercor/bhaa139] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
This article advances two parallel lines of argument about resting-state functional magnetic resonance imaging (fMRI) signals, one empirical and one conceptual. The empirical line creates a four-part organization of the text: (1) head motion and respiration commonly cause distinct, major, unwanted influences (artifacts) in fMRI signals; (2) head motion and respiratory changes are, confoundingly, both related to psychological and clinical and biological variables of interest; (3) many fMRI denoising strategies fail to identify and remove one or the other kind of artifact; and (4) unremoved artifact, due to correlations of artifacts with variables of interest, renders studies susceptible to identifying variance of noninterest as variance of interest. Arising from these empirical observations is a conceptual argument: that an event-related approach to task-free scans, targeting common behaviors during scanning, enables fundamental distinctions among the kinds of signals present in the data, information which is vital to understanding the effects of denoising procedures. This event-related perspective permits statements like "Event X is associated with signals A, B, and C, each with particular spatial, temporal, and signal decay properties". Denoising approaches can then be tailored, via performance in known events, to permit or suppress certain kinds of signals based on their desirability.
Collapse
Affiliation(s)
- Jonathan D Power
- Sackler Institute for Developmental Psychobiology, Department of Psychiatry, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Charles J Lynch
- Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Babatunde Adeyemo
- Departments of Neurology and Psychology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Steven E Petersen
- Departments of Neurology and Psychology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| |
Collapse
|
142
|
McNaughton N. Personality neuroscience and psychopathology: should we start with biology and look for neural-level factors? PERSONALITY NEUROSCIENCE 2020; 3:e4. [PMID: 32524065 PMCID: PMC7253689 DOI: 10.1017/pen.2020.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
"Personality is an abstraction used to explain consistency and coherency in an individual's pattern of affects, cognitions, desires and behaviors [ABCDs]" (Revelle, 2007, p. 37). But personality research currently provides more a taxonomy of patterns than theories of fundamental causes. Psychiatric disorders can be viewed as involving extremes of personality but are diagnosed via symptom patterns not biological causes. Such surface-level taxonomic description is necessary for science, but consistent predictive explanation requires causal theory. Personality constructs, and especially their clinical extremes, should predict variation in ABCD patterns, with parsimony requiring the lowest effective causal level of explanation. But, even biologically inspired personality theories currently use an intuitive language-based approach for scale development that lacks biological anchors. I argue that teleonomic "purpose" explains the organisation and outputs of conserved brain emotion systems, where high activation is adaptive in specific situations but is otherwise maladaptive. Simple modulators of whole-system sensitivity evolved because the requisite adaptive level can vary across people and time. Sensitivity to a modulator is an abstract predictive personality factor that operates at the neural level but provides a causal explanation of both coherence and occasional apparent incoherence in ABCD variation. Neuromodulators impact all levels of the "personality hierarchy" from metatraits to aspects: stability appears altered by serotonergic drugs, neuroticism by ketamine and trait anxiety by simple anxiolytic drugs. Here, the tools of psychiatry transfer to personality research and imply both interaction between levels and oblique factor mappings to ABCD. On this view, much psychopathology reflects extremes of neural-level personality factors, and we can view much pharmacotherapy as temporarily altering personality. So, particularly for personality factors linked to basic emotions and their disorders, I think we should start with evolutionary biology and look directly at conserved neural-level modulators for our explanatory personality constructs and only invoke higher order, emergent, explanations when neural-level explanation fails.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
143
|
Gratton C, Smith DM, Dorn M. Digging Deeper to Chart the Landscape of Human Brain Development. Neuron 2020; 106:209-211. [DOI: 10.1016/j.neuron.2020.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
144
|
Lynch CJ, Liston C. Precision Functional Mapping of Corticostriatal and Corticothalamic Circuits: Parallel Processing Reconsidered. Neuron 2020; 105:595-597. [PMID: 32078793 DOI: 10.1016/j.neuron.2020.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this issue of Neuron, Greene et al. (2020) identify zones of network specificity and multi-network integration in the basal ganglia and thalamus of individual human subjects. Such information could aid in the development of personalized and more effective brain stimulation therapies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Charles J Lynch
- Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69(th) Street, Box 204, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, 413 East 69(th) Street, Box 204, New York, NY 10021, USA
| | - Conor Liston
- Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69(th) Street, Box 204, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, 413 East 69(th) Street, Box 204, New York, NY 10021, USA.
| |
Collapse
|
145
|
Seitzman BA, Gratton C, Marek S, Raut RV, Dosenbach NUF, Schlaggar BL, Petersen SE, Greene DJ. A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum. Neuroimage 2020; 206:116290. [PMID: 31634545 PMCID: PMC6981071 DOI: 10.1016/j.neuroimage.2019.116290] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
An important aspect of network-based analysis is robust node definition. This issue is critical for functional brain network analyses, as poor node choice can lead to spurious findings and misleading inferences about functional brain organization. Two sets of functional brain nodes from our group are well represented in the literature: (1) 264 volumetric regions of interest (ROIs) reported in Power et al., 2011, and (2) 333 cortical surface parcels reported in Gordon et al., 2016. However, subcortical and cerebellar structures are either incompletely captured or missing from these ROI sets. Therefore, properties of functional network organization involving the subcortex and cerebellum may be underappreciated thus far. Here, we apply a winner-take-all partitioning method to resting-state fMRI data to generate novel functionally-constrained ROIs in the thalamus, basal ganglia, amygdala, hippocampus, and cerebellum. We validate these ROIs in three datasets using several criteria, including agreement with existing literature and anatomical atlases. Further, we demonstrate that combining these ROIs with established cortical ROIs recapitulates and extends previously described functional network organization. This new set of ROIs is made publicly available for general use, including a full list of MNI coordinates and functional network labels.
Collapse
Affiliation(s)
- Benjamin A Seitzman
- Department of Neurology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| | - Caterina Gratton
- Department of Neurology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| | - Scott Marek
- Department of Neurology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| | - Ryan V Raut
- Department of Radiology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| | - Nico U F Dosenbach
- Department of Neurology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Radiology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Pediatrics, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Occupational Therapy, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis- School of Engineering and Applied Science, One Brookings Dr, St. Louis, MO, 63130, USA.
| | - Bradley L Schlaggar
- Department of Neurology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Psychiatry, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Radiology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Pediatrics, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Neuroscience, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| | - Steven E Petersen
- Department of Neurology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, One Brookings Dr, St. Louis, MO, 63130, USA; Department of Radiology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Neuroscience, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis- School of Engineering and Applied Science, One Brookings Dr, St. Louis, MO, 63130, USA.
| | - Deanna J Greene
- Department of Psychiatry, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA; Department of Radiology, Washington University in St. Louis- School of Medicine, 660 S Euclid Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|