101
|
Epp JR, Beasley CL, Galea LAM. Increased hippocampal neurogenesis and p21 expression in depression: dependent on antidepressants, sex, age, and antipsychotic exposure. Neuropsychopharmacology 2013; 38:2297-306. [PMID: 23778854 PMCID: PMC3773682 DOI: 10.1038/npp.2013.132] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 12/15/2022]
Abstract
The mammalian hippocampus continues to generate new neurons throughout life. The function of adult-generated neurons remains controversial, but adult neurogenesis in the hippocampus is related to depression. Studies show that neurogenesis in the hippocampus is regulated by antidepressants in both humans and rodents, but no studies have examined the effects of age, sex, or antipsychotic exposure on the relationship between depression, antidepressant exposure, and hippocampal neurogenesis in humans. Hippocampal sections were obtained from the Stanley Medical Research Institute and were immunohistochemically labeled for the immature neuron marker doublecortin and the cell cycle arrest marker p21. We compared the number of cells in the granule cell layer and subgranular zone that expressed these proteins in brains from control subjects (n=12), patients with major depressive disorder (MDD) without psychotic symptoms (n=12), and patients with MDD and psychotic symptoms (n=12). We show here that the density of doublecortin/NeuN expression was increased in MDD patients compared with controls and MDD patients with psychosis, with the effect greater in women. Further, we show that older depressed patients without psychosis had higher levels of p21/NeuN expression and that depressed individuals prescribed antidepressants had higher levels of p21/NeuN expression, but only in older women. We show for the first time that changes in neurogenesis due to prescribed antidepressants or depression are dependent on age, sex, and the presence of antipsychotics or psychotic symptoms.
Collapse
Affiliation(s)
- Jonathan R Epp
- Program in Neuroscience, Department of Psychology, Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Liisa AM Galea
- Program in Neuroscience, Department of Psychology, Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada,Program in Neuroscience, Department of Psychology, Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada, Tel: +604 822 6536, Fax: +604 822 6923, E-mail:
| |
Collapse
|
102
|
Hamson DK, Wainwright SR, Taylor JR, Jones BA, Watson NV, Galea LAM. Androgens increase survival of adult-born neurons in the dentate gyrus by an androgen receptor-dependent mechanism in male rats. Endocrinology 2013; 154:3294-304. [PMID: 23782943 DOI: 10.1210/en.2013-1129] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadal steroids are potent regulators of adult neurogenesis. We previously reported that androgens, such as testosterone (T) and dihydrotestosterone (DHT), but not estradiol, increased the survival of new neurons in the dentate gyrus of the male rat. These results suggest androgens regulate hippocampal neurogenesis via the androgen receptor (AR). To test this supposition, we examined the role of ARs in hippocampal neurogenesis using 2 different approaches. In experiment 1, we examined neurogenesis in male rats insensitive to androgens due to a naturally occurring mutation in the gene encoding the AR (termed testicular feminization mutation) compared with wild-type males. In experiment 2, we injected the AR antagonist, flutamide, into castrated male rats and compared neurogenesis levels in the dentate gyrus of DHT and oil-treated controls. In experiment 1, chronic T increased hippocampal neurogenesis in wild-type males but not in androgen-insensitive testicular feminization mutation males. In experiment 2, DHT increased hippocampal neurogenesis via cell survival, an effect that was blocked by concurrent treatment with flutamide. DHT, however, did not affect cell proliferation. Interestingly, cells expressing doublecortin, a marker of immature neurons, did not colabel with ARs in the dentate gyrus, but ARs were robustly expressed in other regions of the hippocampus. Together these studies provide complementary evidence that androgens regulate adult neurogenesis in the hippocampus via the AR but at a site other than the dentate gyrus. Understanding where in the brain androgens act to increase the survival of new neurons in the adult brain may have implications for neurodegenerative disorders.
Collapse
Affiliation(s)
- D K Hamson
- Department of Psychology, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
103
|
Chow C, Epp JR, Lieblich SE, Barha CK, Galea LAM. Sex differences in neurogenesis and activation of new neurons in response to spatial learning and memory. Psychoneuroendocrinology 2013; 38:1236-50. [PMID: 23219473 DOI: 10.1016/j.psyneuen.2012.11.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/30/2012] [Accepted: 11/07/2012] [Indexed: 11/29/2022]
Abstract
Adult hippocampal neurogenesis is often associated with hippocampus-dependent learning and memory. Throughout a new neuron's development, it is differentially sensitive to factors that can influence its survival and functionality. Previous research shows that spatial training that occurred 6-10 days after an injection of the DNA synthesis marker, bromodeoxyuridine (BrdU), increased cell survival in male rats. Because sex differences in spatial cognition and hippocampal neurogenesis have been reported, it is unclear whether spatial training would influence hippocampal neurogenesis in the same way in males and females. Therefore, this study examined sex differences in hippocampal neurogenesis following training in a spatial task. Male and female rats were trained in the spatial or cued version of the Morris water maze 6-10 days after one injection of BrdU (200mg/kg). Twenty days following BrdU injection, all animals were given a probe trial and perfused. Males performed better in the spatial, but not cue, task than females. Spatial training increased BrdU-labeled cells relative to cue training only in males, but both males and females showed greater activation of new cells (BrdU co-labeled with immediate early gene product zif268) after spatial training compared to cue training. Furthermore, performance during spatial training was positively correlated with cell activation in females but not males. This study shows that while spatial training differentially regulates hippocampal neurogenesis in males and females, the activity of new neurons in response to spatial memory retrieval is similar. These findings highlight the importance of sex on neural plasticity and cognition.
Collapse
Affiliation(s)
- Carmen Chow
- Program in Neuroscience, Department of Psychology, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
104
|
Vega-Rivera NM, Fernández-Guasti A, Ramírez-Rodríguez G, Estrada-Camarena E. Acute stress further decreases the effect of ovariectomy on immobility behavior and hippocampal cell survival in rats. Psychoneuroendocrinology 2013; 38:1407-17. [PMID: 23333251 DOI: 10.1016/j.psyneuen.2012.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 11/30/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023]
Abstract
Most studies relating experimental depression and neurogenesis use mainly male rodents subjected to models of chronic stress. The forced swimming test (FST) is a widely utilized model of acute stress, but its effects on the neurogenic process in the hippocampus using females in different endocrine conditions has not been explored. The aim of this study was to evaluate the cell proliferation and early-, short- and long-lasting effects of forced swimming (FS) on adult hippocampal neurogenesis in rats in two endocrine conditions: proestrous and ovariectomized. To determine cell proliferation we used the endogenous marker Ki67. Cell survival was established with the thymidine analog, BrdU (75mg/kg, 2/12, i.p.), which was administered before FS to proestrous and ovariectomized rats. FS increased immobility and corticosterone levels in OVX but not in rats in proestrus. In addition, FS did not affect cell proliferation but significantly decreased the number of BrdU-labeled cells at 2h only in OVX-rats, an effect that remained for 3 and 14 days after FS. Data are discussed taking into consideration the relationship between gonadal and adrenal hormones in adult hippocampal neurogenesis in adult females. Our data also support the use of FS as a model for studying neurogenesis.
Collapse
Affiliation(s)
- Nelly M Vega-Rivera
- Laboratory of Neuropsychopharmacology, Division of Neurosciences, National Institute of Psychiatry, México, D.F., Mexico
| | | | | | | |
Collapse
|
105
|
Waddell J, Bowers JM, Edwards NS, Jordan CL, McCarthy MM. Dysregulation of neonatal hippocampal cell genesis in the androgen insensitive Tfm rat. Horm Behav 2013; 64:144-52. [PMID: 23747829 PMCID: PMC3753588 DOI: 10.1016/j.yhbeh.2013.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
Abstract
The first two weeks of life are a critical period for hippocampal development. At this time gonadal steroid exposure organizes sex differences in hippocampal sensitivity to activational effects of steroids, hippocampal cell morphology and hippocampus dependent behaviors. Our laboratory has characterized a robust sex difference in neonatal neurogenesis in the hippocampus that is mediated by estradiol. Here, we extend our knowledge of this sex difference by comparing the male and female hippocampus to the androgen insensitive testicular feminized mutant (Tfm) rat. In the neonatal Tfm rat hippocampus, fewer newly generated cells survive compared to males or females. This deficit in cell genesis is partially recovered with the potent androgen DHT, but is more completely recovered following estradiol administration. Tfm rats do not differ from males or females in the level of endogenous estradiol in the neonatal hippocampus, suggesting other mechanisms mediate a differential sensitivity to estradiol in male, female and Tfm hippocampus. We also demonstrate disrupted performance on a hippocampal-dependent contextual fear discrimination task. Tfm rats generalize fear across contexts, and do not exhibit significant loss of fear during extinction exposure. These results extend prior reports of exaggerated response to stress in Tfm rats, and following gonadectomy in normal male rats.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland, Baltimore, School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
106
|
Yaskin VA. Seasonal modulation of sex-related differences in hippocampus size and spatial behavior in bank voles, Clethrionomys glareolus (Rodentia, Cricetidae). RUSS J ECOL+ 2013. [DOI: 10.1134/s1067413613030156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
107
|
Barker JM, Charlier TD, Ball GF, Balthazart J. A new method for in vitro detection of bromodeoxyuridine in serum: a proof of concept in a songbird species, the canary. PLoS One 2013; 8:e63692. [PMID: 23691086 PMCID: PMC3653834 DOI: 10.1371/journal.pone.0063692] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/06/2013] [Indexed: 01/03/2023] Open
Abstract
Systemic injection of a thymidine analogue such as bromodeoxyuridine (BrdU) in vertebrates is commonly used to detect and study cell production during development, adulthood, and pathology, particularly in studies of adult neurogenesis. Although researchers are applying this technique to multiple species in various physiological conditions, the rate of BrdU clearance from the serum remains unknown in most cases. Changes in this clearance rate as a function of the species, sex or endocrine condition could however profoundly affect the interpretation of the results. We describe a rapid, sensitive, but simple bioassay for post-injection detection and quantification of BrdU in serum. This procedure was shown to be suitable for determining the length of time a thymidine analogue remains in the bloodstream of one avian species and seems applicable to any vertebrate provided sufficiently large blood samples can be collected. This technique was used to demonstrate that, in canaries, BrdU injected at a dose of 100 mg/kg is no longer available for incorporation into DNA between 30 and 60 min post-injection, a delay shorter than anticipated based on the available literature. Preliminary data suggest a similar fast clearance in Japanese quail and mice.
Collapse
Affiliation(s)
- Jennifer M Barker
- GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liege, Liege, Belgium
| | | | | | | |
Collapse
|
108
|
Ho A, Villacis AJ, Svirsky SE, Foilb AR, Romeo RD. The pubertal-related decline in cellular proliferation and neurogenesis in the dentate gyrus of male rats is independent of the pubertal rise in gonadal hormones. Dev Neurobiol 2013; 72:743-52. [PMID: 21990242 DOI: 10.1002/dneu.20987] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pubertal development is marked by significant decreases in cellular proliferation and neurogenesis in the dentate gyrus of the hippocampal formation. Although it is unclear what mediates these developmental changes in the dentate gyrus, gonadal hormones have been implicated in modulating many neurobiological processes during puberty and various parameters of neurogenesis in adulthood. Thus, it is possible that the gradual and sustained increase in gonadal hormones experienced during puberty plays a role in these changes in neurogenesis. In this experiments, we first quantified cellular proliferation and neurogenesis using 5-bromo-2'-deoxyuridine (BrdU) and doublecortin (DCX) immunohistochemistry, respectively, in the dentate gyrus of prepubertal (30 d), midpubertal (45 d), and adult (90 d) male rats. We found the decline in BrdU and DCX cell numbers throughout these ages was coincident with increases in their plasma testosterone levels. We next tested whether exposure to the pubertal rise in gonadal hormones was necessary for this decrease in hippocampal neurogenesis to occur. Thus, we examined cellular proliferation and neurogenesis in intact 30 day (prepubertal) and 60-day-old (late-pubertal) rats, as well as 60-day-old rats that had previously been gonadectomized or sham-gonadectomized at 30 days of age. Although we again found the expected decline in BrdU and DCX cell numbers between 30 and 60 days of age in the intact groups, there were no differences among the 60-day-old animals, regardless of gonadal status. These data indicate that the pubertal-related decline in hippocampal cellular proliferation and neurogenesis is independent of the pubertal change in gonadal hormones.
Collapse
Affiliation(s)
- Amy Ho
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
109
|
The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. Neural Plast 2013; 2013:805497. [PMID: 23691371 PMCID: PMC3649690 DOI: 10.1155/2013/805497] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023] Open
Abstract
Depression is a devastating and prevalent disease, with profound effects on neural structure and function; however the etiology and neuropathology of depression remain poorly understood. Though antidepressant drugs exist, they are not ideal, as only a segment of patients are effectively treated, therapeutic onset is delayed, and the exact mechanism of these drugs remains to be elucidated. Several theories of depression do exist, including modulation of monoaminergic neurotransmission, alterations in neurotrophic factors, and the upregulation of adult hippocampal neurogenesis, and are briefly mentioned in the review. However none of these theories sufficiently explains the pathology and treatment of depression unto itself. Recently, neural plasticity theories of depression have postulated that multiple aspects of brain plasticity, beyond neurogenesis, may bridge the prevailing theories. The term “neural plasticity” encompasses an array of mechanisms, from the birth, survival, migration, and integration of new neurons to neurite outgrowth, synaptogenesis, and the modulation of mature synapses. This review critically assesses the role of adult hippocampal neurogenesis and the cell adhesion molecule, PSA-NCAM (which is known to be involved in many facets of neural plasticity), in depression and antidepressant treatment.
Collapse
|
110
|
Filová B, Ostatníková D, Celec P, Hodosy J. The effect of testosterone on the formation of brain structures. Cells Tissues Organs 2013; 197:169-77. [PMID: 23306974 DOI: 10.1159/000345567] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
It has been confirmed in several studies that testosterone can significantly affect brain development. Following metabolism of this hormone by 5α-reductase to dihydrotestosterone, testosterone may act via androgen receptors, or after conversion by aromatase to estradiol, it may act via estrogen receptors. The parts of the brain which are changed under the influence of sex hormones are known as sexually dimorphic nuclei, especially in the preoptic area of the hypothalamus. Nevertheless, evidence suggests that testosterone also influences the structure of the hippocampus, specifically CA1 and CA3 areas of the hippocampus, as well as the amygdala. These brain areas are designed to convert information from short-term into long-term memory. In this review, we summarize the effects of testosterone on the organization of brain structures with respect to spatial cognitive abilities in small rodents.
Collapse
Affiliation(s)
- Barbora Filová
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | | | | | | |
Collapse
|
111
|
McClure RES, Barha CK, Galea LAM. 17β-Estradiol, but not estrone, increases the survival and activation of new neurons in the hippocampus in response to spatial memory in adult female rats. Horm Behav 2013; 63:144-57. [PMID: 23063473 DOI: 10.1016/j.yhbeh.2012.09.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/18/2012] [Accepted: 09/22/2012] [Indexed: 10/27/2022]
Abstract
Estrogens fluctuate across the lifespan in women, with circulating 17β-estradiol levels higher pre-menopause than estrone and circulating estrone levels higher postmenopause than 17β-estradiol. Estrone is a common component of hormone replacement therapies, but research shows that 17β-estradiol may have a greater positive impact on cognition. Previous studies show that acute estrone and 17β-estradiol impact hippocampus-dependent learning and cell proliferation in the dentate gyrus in a dose-dependent manner in adult female rats. The current study explores how chronic treatment with estrone and 17β-estradiol differentially influences spatial learning, hippocampal neurogenesis and activation of new neurons in response to spatial memory. Adult female rats received daily injections of vehicle (sesame oil), or a 10 μg dose of either 17β-estradiol or estrone for 20 days. One day following the first hormone injection all rats were injected with the DNA synthesis marker, bromodeoxyuridine. On days 11-15 after BrdU injection rats were trained on a spatial reference version of the Morris water maze, and five days later (day 20 of estrogens treatment) were given a probe trial to assess memory retention. Cell proliferation was assessed by the endogenous cell cycle marker, Ki67, cell survival was assessed by counting the number and density of BrdU-ir cells in the dentate gyrus and cell activation was assessed by the percentage of BrdU-ir cells that were co-labelled with the immediate early gene product zif268. There were no significant differences between groups in acquisition or retention of Morris water maze. However, the 17β-estradiol group had significantly higher, while the estrone group had significantly lower, levels of cell survival (BrdU-ir cells) in the dentate gyrus compared to controls. Furthermore, rats injected with 17β-estradiol showed significantly higher levels of activation of new neurons in response to spatial memory compared to controls. These results provide insight into how estrogens differentially influence the brain and behavior, and may provide insight into the development of hormone replacement therapies for women.
Collapse
Affiliation(s)
- Robyn E S McClure
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
112
|
Kazanis I. Neurogenesis in the adult mammalian brain: how much do we need, how much do we have? Curr Top Behav Neurosci 2013; 15:3-29. [PMID: 22976273 DOI: 10.1007/7854_2012_227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The last two decades cytogenic processes (both neurogenic and gliogenic) driven by neural stem cells surviving within the adult mammalian brain have been extensively investigated. It is now well established that within at least two cytogenic niches, the subependymal zone of the lateral ventricles and the subgranular zone in the dentate gyrus, new neurons are born everyday with a fraction of them being finally incorporated into established neuronal networks in the olfactory bulb and the hippocampus, respectively. But how significant is adult neurogenesis in the context of the mature brain and what are the possibilities that these niches can contribute significantly in tissue repair after degenerative insults, or in the restoration of normal hippocampal function in the context of mental and cognitive disorders? Here, we summarise the available data on the normal behaviour of adult neural stem cells in the young and the aged brain and on their response to degeneration. Focus will be given, whenever possible, to numbers: how many stem cells survive in the adult brain, how many cells they can generate and at what ratios do they produce neurons and glia?
Collapse
Affiliation(s)
- Ilias Kazanis
- MRC Cambridge Centre for Stem cell Biology and Regenerative Medicine and Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK,
| |
Collapse
|
113
|
Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease. Neuroscience 2012; 239:46-66. [PMID: 23276673 DOI: 10.1016/j.neuroscience.2012.12.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in the hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17β-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences the hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17β-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer's disease, epilepsy and addiction.
Collapse
|
114
|
Cell proliferation pattern in adult zebrafish forebrain is sexually dimorphic. Neuroscience 2012; 226:367-81. [DOI: 10.1016/j.neuroscience.2012.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 12/31/2022]
|
115
|
Tatar C, Bessert D, Tse H, Skoff RP. Determinants of central nervous system adult neurogenesis are sex, hormones, mouse strain, age, and brain region. Glia 2012; 61:192-209. [PMID: 23027402 DOI: 10.1002/glia.22426] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/30/2012] [Indexed: 11/11/2022]
Abstract
Multiple sclerosis is a sexually dimorphic (SD) disease that causes oligodendrocyte death, but SD of glial cells is poorly studied. Here, we analyze SD of neural progenitors in 6-8 weeks and 6-8 months normal C57BL/6, SJL/J, and BALB/c mice in the subventricular zone (SVZ), dorsolateral horn (DLC), corpus callosum (CC), and parenchyma. With a short 2-h bromodeoxyuridine (BrdU) pulse, no gender and strain differences are present at 6-8 weeks. At 6-8 months, the number of BrdU(+) cells decreases twofold in each sex, strain, and region, indicating that a common aging mechanism regulates BrdU incorporation. Strikingly, 2× more BrdU(+) cells are found in all brain regions in 6-8 months C57BL/6 females versus males, no gender differences in 6-8 months SJL/J, and fewer BrdU(+) cells in females versus males in BALB/cs. The number of BrdU(+) cells modestly fluctuates throughout the estrous cycle in C57BL/6 and SJLs. Castration causes a dramatic increase in BrdU(+) cells in SVZ and DLC. These findings indicate that testosterone is a major regulator of adult neural proliferation. At 6-8 months, the ratio of PDGFRα(+) cells in the CC to BrdU(+) cells in the DLC of both strains, sexes, estrous cycle, and castrated mice was essentially the same, suggesting that BrdU(+) cells in the DLC differentiate into CC oligodendrocytes. The ratio of TUNEL(+) to BrdU(+) cells does not match proliferation, indicating that these events are differentially regulated. Differential regulation of these two processes leads to the variation in glial numbers between gender and strain. Explanations of neural proliferation based upon data from one sex or strain may be very misleading.
Collapse
Affiliation(s)
- Carrie Tatar
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
116
|
Abstract
Brain injury during development can have severe, long-term consequences. Using an array of animal models, we have an understanding of the etiology of perinatal brain injury. However, we have only recently begun to address the consequences of endogenous factors such as genetic sex and developmental steroid hormone milieu. Our limited understanding has sometimes led researchers to make over-generalizing and potentially dangerous statements regarding treatment for brain injury. Therefore this review acts as a cautionary tale, speaking to our need to understand the effects of sex and steroid hormone environment on the response to brain trauma in the neonate.
Collapse
Affiliation(s)
- Joseph Nuñez
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| |
Collapse
|
117
|
Barha CK, Galea LAM. The hormone therapy, Premarin, impairs hippocampus-dependent spatial learning and memory and reduces activation of new granule neurons in response to memory in female rats. Neurobiol Aging 2012; 34:986-1004. [PMID: 22938820 DOI: 10.1016/j.neurobiolaging.2012.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/29/2012] [Accepted: 07/11/2012] [Indexed: 12/25/2022]
Abstract
Estrogens have been implicated as possible therapeutic agents for improving cognition in postmenopausal women and have been linked to neurodegenerative disorders such as Alzheimer's disease. However, the utility of Premarin (Wyeth Pharmaceuticals, Markham, ON, Canada), a conjugated equine estrogen and the most commonly prescribed hormone therapy, has recently been questioned. The purpose of this study was to investigate the effects of Premarin at 2 different doses (10 or 20 μg) on hippocampus-dependent spatial learning and memory, hippocampal neurogenesis, and new neuronal activation using a rodent model of surgical menopause. Rats were treated daily with subcutaneous injections of Premarin and trained on the spatial working/reference memory version of the radial arm maze. Premarin impaired spatial reference and working learning and memory, increased hippocampal neurogenesis, but either decreased or increased activation of new neurons in response to memory retrieval as indexed by the expression of the immediate early gene product zif268, depending on the maturity of cells examined. This activation of new neurons was related to impaired performance in Premarin-treated but not control-treated female rats. These results indicate that Premarin may be impairing hippocampus-dependent learning and memory by negatively altering the neurogenic environment in the dentate gyrus thus disrupting normal activity of new neurons.
Collapse
Affiliation(s)
- Cindy K Barha
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
118
|
Bayer J, Rune G, Kutsche K, Schwarze U, Kalisch R, Büchel C, Sommer T. Estrogen and the male hippocampus: Genetic variation in the aromatase gene predicting serum estrogen is associated with hippocampal gray matter volume in men. Hippocampus 2012; 23:117-21. [DOI: 10.1002/hipo.22059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2012] [Indexed: 01/11/2023]
|
119
|
Lieberwirth C, Wang Z. The social environment and neurogenesis in the adult Mammalian brain. Front Hum Neurosci 2012; 6:118. [PMID: 22586385 PMCID: PMC3347626 DOI: 10.3389/fnhum.2012.00118] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/16/2012] [Indexed: 12/17/2022] Open
Abstract
Adult neurogenesis - the formation of new neurons in adulthood - has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones) as well as exogenous (e.g., physical activity and environmental complexity) factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. More recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult-adult (e.g., mating and chemosensory interactions) and adult-offspring (e.g., gestation, parenthood, and exposure to offspring) interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant-subordinate interactions) on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed.
Collapse
Affiliation(s)
- Claudia Lieberwirth
- Program in Neuroscience, Department of Psychology, Florida State UniversityTallahassee, FL, USA
| | - Zuoxin Wang
- Program in Neuroscience, Department of Psychology, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
120
|
Carrier N, Kabbaj M. Extracellular signal-regulated kinase 2 signaling in the hippocampal dentate gyrus mediates the antidepressant effects of testosterone. Biol Psychiatry 2012; 71:642-51. [PMID: 22265242 PMCID: PMC3307821 DOI: 10.1016/j.biopsych.2011.11.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/07/2011] [Accepted: 11/30/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human and animal studies suggest that testosterone may have antidepressant effects. In this study, we sought to investigate the molecular mechanisms underlying the antidepressant effects of testosterone within the hippocampus, an area that is fundamental in the etiology of depression. METHODS The effects of testosterone replacements in gonadectomized adult male rats were investigated using the sucrose preference and forced swim tests. We explored possible effects of testosterone on hippocampal neurogenesis and gene expression of stress-related molecules. Through the use of viral vectors, we pursued the antidepressant molecular mechanism(s) of testosterone in mediating anhedonia and manipulated extracellular signal-regulated kinase 2 (ERK2) expression in the dentate gyrus in gonadectomized rats with testosterone replacements. RESULTS Testosterone had antidepressant effects, likely mediated by aromatization to estrogen metabolites, in the sucrose preference and forced swim tests despite having no effects on hippocampal cell proliferation or survival. We found a testosterone-dependent regulation of hippocampal ERK2 expression. Functionally, reducing ERK2 activity within the dentate gyrus induced anhedonia in gonadectomized rats receiving testosterone supplementation, whereas the overexpression of ERK2 rescued this behavior in gonadectomized rats. CONCLUSIONS These results implicate a role for ERK2 signaling within the dentate gyrus area of the hippocampus as a key mediator of the antidepressant effects of testosterone.
Collapse
Affiliation(s)
| | - Mohamed Kabbaj
- corresponding author Mohamed Kabbaj, PHD Associate Professor Biomedical Sciences & Neurosciences College of Medicine 1115 W Call Street Tallahassee, FL 32306 850-644-4930
| |
Collapse
|
121
|
Almli LM, Wilczynski W. Socially modulated cell proliferation is independent of gonadal steroid hormones in the brain of the adult green treefrog (Hyla cinerea). BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:170-80. [PMID: 22269468 DOI: 10.1159/000335037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/21/2011] [Indexed: 12/22/2022]
Abstract
Gonadal steroid hormones have been shown to influence adult neurogenesis in addition to their well-defined role in regulating social behavior. Adult neurogenesis consists of several processes including cell proliferation, which can be studied via 5-bromo-2'-deoxyuridine (BrdU) labeling. In a previous study we found that social stimulation altered both cell proliferation and levels of circulating gonadal steroids, leaving the issue of cause/effect unclear. In this study, we sought to determine whether socially modulated BrdU-labeling depends on gonadal hormone changes. We investigated this using a gonadectomy-implant paradigm and by exposing male and female green treefrogs (Hyla cinerea) to their conspecific chorus or control stimuli (i.e. random tones). Our results indicate that socially modulated cell proliferation occurred independently of gonadal hormone levels; furthermore, neither androgens in males nor estrogen in females increased cell proliferation in the preoptic area (POA) and infundibular hypothalamus, brain regions involved in endocrine regulation and acoustic communication. In fact, elevated estrogen levels decreased cell proliferation in those brain regions in the implanted female. In male frogs, evoked calling behavior was positively correlated with BrdU-labeling in the POA; however, statistical analysis showed that this behavior did not mediate socially induced cell proliferation. These results show that the social modulation of cell proliferation can occur without gonadal hormone involvement in either male or female adult anuran amphibians, and confirms that it is independent of a behavioral response in males.
Collapse
Affiliation(s)
- Lynn M Almli
- Institute for Neuroscience, The University of Texas at Austin, Austin, Tex., USA
| | | |
Collapse
|
122
|
Amrein I, Isler K, Lipp HP. Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage. Eur J Neurosci 2012; 34:978-87. [PMID: 21929629 DOI: 10.1111/j.1460-9568.2011.07804.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult hippocampal neurogenesis is a prominent event in rodents. In species with longer life expectancies, newly born cells in the adult dentate gyrus of the hippocampal formation are less abundant or can be completely absent. Several lines of evidence indicate that the regulatory mechanisms of adult neurogenesis differ between short- and long-lived mammals. After a critical appraisal of the factors and problems associated with comparing different species, we provide a quantitative comparison derived from seven laboratory strains of mice (BALB, C57BL/6, CD1, outbred) and rats (F344, Sprague-Dawley, Wistar), six other rodent species of which four are wild-derived (wood mouse, vole, spiny mouse and guinea pig), three non-human primate species (marmoset and two macaque species) and one carnivore (red fox). Normalizing the number of proliferating cells to total granule cell number, we observe an overall exponential decline in proliferation that is chronologically equal between species and orders and independent of early developmental processes and life span. Long- and short-lived mammals differ with regard to major life history stages; at the time points of weaning, age at first reproduction and average life expectancy, long-lived primates and foxes have significantly fewer proliferating cells than rodents. Although the database for neuronal differentiation is limited, we find indications that the extent of neuronal differentiation is subject to species-specific selective adaptations. We conclude that absolute age is the critical factor regulating cell genesis in the adult hippocampus of mammals. Ontogenetic and ecological factors primarily influence the regulation of neuronal differentiation rather than the rate of cell proliferation.
Collapse
Affiliation(s)
- Irmgard Amrein
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | |
Collapse
|
123
|
Bian C, Zhu K, Guo Q, Xiong Y, Cai W, Zhang J. Sex differences and synchronous development of steroid receptor coactivator-1 and synaptic proteins in the hippocampus of postnatal female and male C57BL/6 mice. Steroids 2012; 77:149-56. [PMID: 22085911 DOI: 10.1016/j.steroids.2011.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 12/13/2022]
Abstract
The structure and function including synaptic plasticity of the hippocampus are deeply affected by steroids in a sex-dependant manner, these processes are believed to be mediated by steroid receptors though their coactivators. Our previous studies have reported the developmental profiles of steroid receptor coactivator-1 (SRC-1) and PSD-95 in the hippocampus of postnatal female rats and the sex-differences of SRC-1 immunoreactivities in the brain of adult mice. However, whether there are any sex differences about postnatal development of SRC-1 and synaptic proteins in the hippocampus remain unclear. In this study, we investigated the postnatal profile of SRC-1 and key synaptic protein synaptophysin (SYN), PSD-95 and GluR1 in the hippocampus of female and male mice using immunohistochemistry and Western blot. The results showed that in the female hippocampus, the highest levels of SRC-1 were detected at P14, SYN and GluR1 at P30 and PSD-95 at P60; while in the males, the highest levels of SRC-1, SYN and GluR1 were detected at P30, and PSD-95 at P60. Female hippocampus tended to have higher levels of SRC-1, SYN and GluR1 before P30 and PSD-95 before P14; while male hippocampus have higher levels of PSD-95 at P14, P60 and GluR1 at P0. Correlation analysis showed the profiles of SRC-1 were highly correlated with each synaptic protein. The above results showed that in the hippocampus, except some minor sex differences detected at some time-point examined, females and males shared similar postnatal developmental profile and SRC-1 may be deeply involved in the regulation of hippocampal synaptogenesis.
Collapse
Affiliation(s)
- Chen Bian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
124
|
Lecanu L. Sex, the Underestimated Potential Determining Factor in Brain Tissue Repair Strategy. Stem Cells Dev 2011; 20:2031-5. [DOI: 10.1089/scd.2011.0188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Laurent Lecanu
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
125
|
Abstract
Profound behavioural changes occur in the mother at parturition, together with extensive remodelling of neural circuits. These changes include neurochemical, morphological and functional plasticity. The continuous generation of new neurones in the hippocampus and the olfactory system is an additional form of neuroplasticity that contributes to motherhood. This review describes the reciprocal relationships between hippocampal and olfactory neurogenesis and parental behaviour. Studies in rodents demonstrate that parturition and interactions with the young affect both cell proliferation and survival in a different manner across neurogenic zones. Species in which an individual recognition of the offspring is formed, such as sheep, show a down-regulation of neurogenesis during the perinatal period. This would function to decrease cell competition, favouring the selection of newborn neurones involved in olfactory recognition of the young. Also, in biparental species, increases in olfactory neurogenesis occur in the father in response to pup exposure during the early postpartum period. Oestradiol, corticosterone and prolactin changes associated with parturition are the main physiological factors involved in the regulation of neurogenesis that have been determined so far. In the father, prolactin mediates an enhancement of olfactory neurogenesis. Contradictory evidence indicates a functional link between neurogenesis and parenting behaviour. Mice receiving focal irradiation of the olfactory neurogenic subventricular zone show few disturbances in the expression of maternal behaviour, whereas a reduction of both hippocampal and olfactory neurogenesis as a result of the infusion of an anti-mitotic agent induces behavioural deficits. Disrupting prolactin signalling abolished increased paternal neurogenesis and offspring recognition by the father, and rescuing this neurogenesis restored recognition behaviour. More studies that selectively suppress the changes of neurogenesis are needed to confirm the role of new neurones in regulating parenting behaviour.
Collapse
Affiliation(s)
- F Lévy
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.
| | | | | |
Collapse
|
126
|
Labombarda F, González S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF. Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp Neurol 2011; 231:135-46. [DOI: 10.1016/j.expneurol.2011.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 05/09/2011] [Accepted: 06/04/2011] [Indexed: 11/26/2022]
|
127
|
Spritzer MD, Ibler E, Inglis W, Curtis MG. Testosterone and social isolation influence adult neurogenesis in the dentate gyrus of male rats. Neuroscience 2011; 195:180-90. [PMID: 21875652 DOI: 10.1016/j.neuroscience.2011.08.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/16/2011] [Accepted: 08/16/2011] [Indexed: 12/24/2022]
Abstract
Testosterone has been previously shown to enhance adult neurogenesis within the dentate gyrus of adult male rats, whereas social isolation has been shown to cause a decrease in adult neurogenesis under some conditions. The current study tested the combined effects of testosterone and social isolation upon adult neurogenesis using two experiments involving adult male rats. For both experiments, half of the subjects were pair-housed and half were housed individually for the duration of the experiments (34 days). For experiment 1, the subjects were divided into four groups (n=8/group): (1) sham/pair-housed, (2) sham/isolated, (3) castrate/pair-housed, and (4) castrate/isolated. Rats in the castrate groups were bilaterally castrated, and rats in the sham groups were sham castrated. For experiment 2, all rats were castrated, and the effects of testosterone were tested using daily injections of testosterone propionate (0.500 mg/rat for 15 days) or the oil vehicle. Subjects were divided into four groups (n=8/group): (1) oil/pair-housed, (2) oil/isolated, (3) testosterone/pair-housed, and (4) testosterone/isolated. All rats were injected with 5-bromo-2'-deoxyuridine (BrdU, 200 mg/kg body mass), and immunohistochemistry was used to determine levels of neurogenesis following a 16-day cell survival period. For experiment 1, castrated subjects had significantly fewer BrdU-labeled cells along the granule cell layer and subgranular zone (GCL+SGZ) of the dentate gyrus than did intact subjects, and this effect was mainly due to low levels of neurogenesis in the castrate/isolated group. For experiment 2, social isolation caused a significant decrease in neurogenesis within the GCL+SGZ relative to the pair-housed groups. Testosterone injections did not buffer against this effect but instead tended to cause a decrease in neurogenesis. Thus, social isolation reduced hippocampal neurogenesis, but the effects of testosterone were inconsistent. This suggests that normal circulating levels of testosterone may buffer against the neurogenesis-impairing effects of isolation, whereas high doses of testosterone do not.
Collapse
Affiliation(s)
- M D Spritzer
- Department of Biology, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | | | | | | |
Collapse
|
128
|
Olfactory bulbectomy, but not odor conditioned aversion, induces the differentiation of immature neurons in the adult rat piriform cortex. Neuroscience 2011; 181:18-27. [DOI: 10.1016/j.neuroscience.2011.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/28/2011] [Accepted: 03/01/2011] [Indexed: 01/11/2023]
|
129
|
Bakkum BW, Fan L, Pandey SC, Cohen RS. Hetereogeneity of dose and time effects of estrogen on neuron-specific neuronal protein and phosphorylated cyclic AMP response element-binding protein in the hippocampus of ovariectomized rats. J Neurosci Res 2011; 89:883-97. [PMID: 21337376 DOI: 10.1002/jnr.22601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 12/23/2022]
Abstract
Previous studies have shown changes in the cyclic AMP response element-binding protein (CREB) signaling pathway in CA1 and CA3 regions of the rostral hippocampus with 10 μg estrogen treatment for 14 days. It appears that estrogen's action on CREB phosphorylation in brain structures depends on other estrogen doses and lengths of treatment. We therefore examined the effects of moderate regimens [2.5 μg estradiol benzoate (EB) for 4 or 14 days] on mean numbers of neuron-specific neuronal protein (NeuN)-positive cells and phosphorylated CREB (pCREB)-positive cells and subregion volume defined by NeuN and pCREB immunolabeling and compared those results with results from the high regimen (10 μg EB for 14 days) in CA1, CA2, and CA3 regions and dorsal (DDG) and ventral (VDG) dentate gyrus and hilus of the hippocampus of ovariectomized rats by stereology. For whole hippocampus, all regimens increased mean neuronal (NeuN) numbers and pCREB-positive cell and volume compared with sesame oil (SO) in CA1, CA2, and CA3 regions, DDG and VDG, and hilus. In rostral hippocampus, however, some hippocampal subregions were not responsive to the high regimen, and the moderate regimens appear to be more effective for increasing mean number of NeuN-positive neurons and pCREB-positive cells and subregion volume. Heterogeneity in responsiveness to estrogen was mainly seen within rostral, but not whole, hippocampal subregions. Our results indicate that responsiveness of cells expressing NeuN and pCREB to different EB regimens may vary depending on the specific region of the hippocampus.
Collapse
Affiliation(s)
- Barclay W Bakkum
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois; Illinois College of Optometry, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
130
|
Manns M, Leske O, Gottfried S, Bichler Z, Lafenêtre P, Wahle P, Heumann R. Role of neuronal ras activity in adult hippocampal neurogenesis and cognition. Front Neurosci 2011; 5:18. [PMID: 21427796 PMCID: PMC3052750 DOI: 10.3389/fnins.2011.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/01/2011] [Indexed: 01/17/2023] Open
Abstract
Hippocampal neurogenesis in the adult mammalian brain is modulated by various signals like growth factors, hormones, neuropeptides, and neurotransmitters. All of these factors can (but not necessarily do) converge on the activation of the G protein Ras. We used a transgenic mouse model (synRas mice) expressing constitutively activated G12V-Harvey Ras selectively in differentiated neurons to investigate the possible effects onto neurogenesis. H-Ras activation in neurons attenuates hippocampal precursor cell generation at an early stage of the proliferative cascade before neuronal lineage determination occurs. Therefore it is unlikely that the transgenically activated H-Ras in neurons mediates this effect by a direct, intracellular signaling mechanism. Voluntary exercise restores neurogenesis up to wild type level presumably mediated by brain-derived neurotrophic factor. Reduced neurogenesis is linked to impairments in spatial short-term memory and object recognition, the latter can be rescued by voluntary exercise, as well. These data support the view that new cells significantly increase complexity that can be processed by the hippocampal network when experience requires high demands to associate stimuli over time and/or space.
Collapse
Affiliation(s)
- Martina Manns
- Biopsychology, Institute for Cognitive Neuroscience, Faculty for Psychology, Ruhr-University Bochum Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
131
|
Bian C, Zhang D, Guo Q, Cai W, Zhang J. Localization and sex-difference of steroid receptor coactivator-1 immunoreactivities in the brain of adult female and male mice. Steroids 2011; 76:269-79. [PMID: 21145336 DOI: 10.1016/j.steroids.2010.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/10/2010] [Accepted: 11/29/2010] [Indexed: 11/24/2022]
Abstract
Females and males are different in brain and behaviors. These differences are mediated by steroids and their nuclear receptors which require coactivators to regulate the transcription of target genes. Studies have shown that these coactivators are critical for modulating steroid hormone action in the brain. Steroid receptor coactivator-1 has been implied in the regulation of reproduction, stress, motor learning, and limited studies have reported the sex-specific difference of SRC-1 mRNA or protein expression in specific brain regions, but the expression and differences of SRC-1 immunoreactivities in adult female and male brain remain unclear. In this study we reported that in both sexes, high levels of SRC-1 immunoreactivities were detected in olfactory bulb, cerebral cortex, hippocampus, Purkinje cells, some limited diencephalon and brainstem nuclei. The immunopositive materials were predominantly detected in cell nucleus, but in some regions they were also detected in the processes or fiber-like structures. In most of the brain regions studied, males possessed significantly higher levels of SRC-1 immunoreactivities than that of females. Higher levels of SRC-1 were detected in some nuclei related to learning and memory, motor regulation and reproduction indicated its potential roles in neurodegeneration and sex-dependent behavior and structure; the region- and sex-specific localization of SRC-1 immunoreactivities in agreement with that of some steroid receptors, indicating this coactivator play important roles in these hormone-reactive regions and cell groups related to reproduction, learning and memory, integration of motor and sense.
Collapse
Affiliation(s)
- Chen Bian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Shapingba, Chongqing, China
| | | | | | | | | |
Collapse
|
132
|
Gibson EM, Wang C, Tjho S, Khattar N, Kriegsfeld LJ. Experimental 'jet lag' inhibits adult neurogenesis and produces long-term cognitive deficits in female hamsters. PLoS One 2010; 5:e15267. [PMID: 21152025 PMCID: PMC2995744 DOI: 10.1371/journal.pone.0015267] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/03/2010] [Indexed: 11/28/2022] Open
Abstract
Background Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined. Methodology/Principal Findings In the present study, we investigated whether experimental ‘jet lag’ (i.e., phase advances of the light∶dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function. Conclusions/Significance Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learning and memory.
Collapse
Affiliation(s)
- Erin M. Gibson
- Department of Psychology, University of California, Berkeley, California, United States of America
| | - Connie Wang
- Department of Psychology, University of California, Berkeley, California, United States of America
| | - Stephanie Tjho
- Department of Psychology, University of California, Berkeley, California, United States of America
| | - Neera Khattar
- Department of Psychology, University of California, Berkeley, California, United States of America
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
133
|
Bowers JM, Waddell J, McCarthy MM. A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol Sex Differ 2010; 1:8. [PMID: 21208470 PMCID: PMC3016241 DOI: 10.1186/2042-6410-1-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 11/22/2010] [Indexed: 01/09/2023] Open
Abstract
Background Oestradiol is a steroid hormone that exerts extensive influence on brain development and is a powerful modulator of hippocampal structure and function. The hippocampus is a critical brain region regulating complex cognitive and emotional responses and is implicated in the aetiology of several mental health disorders, many of which exhibit some degree of sex difference. Many sex differences in the adult rat brain are determined by oestradiol action during a sensitive period of development. We had previously reported a sex difference in rates of cell genesis in the developing hippocampus of the laboratory rat. Males generate more new cells on average than females. The current study explored the effects of both exogenous and endogenous oestradiol on this sex difference. Methods New born male and female rat pups were injected with the mitotic marker 5-bromo-2-deoxyuridine (BrdU) and oestradiol or agents that antagonize oestradiol action. The effects on cell number, proliferation, differentiation and survival were assessed at several time points. Significant differences between groups were determined by two- or thee-Way ANOVA. Results Newborn males had higher rates of cell proliferation than females. Oestradiol treatment increased cell proliferation in neonatal females, but not males, and in the CA1 region many of these cells differentiated into neurons. The increased rate of proliferation induced by neonatal oestradiol persisted until at least 3 weeks of age, suggesting an organizational effect. Administering the aromatase inhibitor, formestane, or the oestrogen receptor antagonist, tamoxifen, significantly decreased the number of new cells in males but not females. Conclusion Endogenous oestradiol increased the rate of cell proliferation observed in newborn males compared to females. This sex difference in neonatal neurogenesis may have implications for adult differences in learning strategy, stress responsivity or vulnerability to damage or disease.
Collapse
Affiliation(s)
- J Michael Bowers
- Department of Physiology, University of Maryland, Baltimore School of Medicine Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
134
|
Pietranera L, Lima A, Roig P, De Nicola AF. Involvement of brain-derived neurotrophic factor and neurogenesis in oestradiol neuroprotection of the hippocampus of hypertensive rats. J Neuroendocrinol 2010; 22:1082-92. [PMID: 20722975 DOI: 10.1111/j.1365-2826.2010.02058.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The hippocampus of spontaneously hypertensive rats (SHR) and deoxycorticosterone (DOCA)-salt hypertensive rats shows decreased cell proliferation and astrogliosis as well as a reduced number of hilar cells. These defects are corrected after administration of 17β-oestradiol (E(2) ) for 2 weeks. The present work investigated whether E(2) treatment of SHR and of hypertensive DOCA-salt male rats modulated the expression of brain-derived neurotrophic factor (BDNF), a neurotrophin involved in hippocampal neurogenesis. The neurogenic response to E(2) was simultaneously determined by counting the number of doublecortin-immunopositive immature neurones in the subgranular zone of the dentate gyrus. Both hypertensive models showed decreased expression of BDNF mRNA in the granular zone of the dentate gyrus, without changes in CA1 or CA3 pyramidal cell layers, decreased BDNF protein levels in whole hippocampal tissue, low density of doublecortin (DCX)-positive immature neurones in the subgranule zone and decreased length of DCX+ neurites in the dentate gyrus. After s.c. implantation of a single E(2) pellet for 2 weeks, BDNF mRNA in the dentate gyrus, BDNF protein in whole hippocampus, DCX immunopositive cells and the length of DCX+ neurites were significantly raised in both SHR and DOCA-salt-treated rats. These results indicate that: (i) low BDNF expression and deficient neurogenesis distinguished the hippocampus of SHR and DOCA-salt hypertensive rats and (ii) E(2) was able to normalise these biologically important functions in the hippocampus of hypertensive animals.
Collapse
Affiliation(s)
- L Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
135
|
Influence of different estrogens on neuroplasticity and cognition in the hippocampus. Biochim Biophys Acta Gen Subj 2010; 1800:1056-67. [DOI: 10.1016/j.bbagen.2010.01.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 01/13/2010] [Accepted: 01/16/2010] [Indexed: 11/18/2022]
|
136
|
Koszykowska M, Calka J, Szwajca P, Jana B. Long-term estradiol-17β administration decreases the number of neurons in the caudal mesenteric ganglion innervating the ovary in sexually mature gilts. J Reprod Dev 2010; 57:62-71. [PMID: 20881351 DOI: 10.1262/jrd.10-061s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of estradiol-17β (E(2)) on the number and distribution of neurons in the caudal mesenteric ganglion (CaMG) supplying the ovary of adult pigs was investigated. Also, the numbers of ovarian dopamine-β-hydroxylase (DβH-), neuropeptide Y (NPY-), somatostatin (SOM-), galanin (GAL-) and estrogen receptor (ER)-immunoreactive perikarya as well as the density of the intraganglionic nerve fibers containing DβH and/or NPY, SOM, GAL were determined. E(2) was administered i.m. from day 4 of the first studied estrous cycle to the expected day 20 of the second studied cycle. Injections of E(2) (1) increased the E(2) level in the peripheral blood approximately 4-5 fold, (2) decreased the number of small-sized Fast Blue-positive postganglionic neurons in the CaMG, (3) decreased the number of small perikarya in the ventral, dorsal and central regions of the CaMG, (4) decreased the number of large perikarya in the dorsal and central regions, (5) decreased the number of small and large perikarya in the CaMG that were DβH(+)/NPY(+), (6) decreased the number of small DβH(+) but NPY(-) perikarya, (7) decreased the number of small perikarya coded DβH(+)/SOM(+) and DβH(+)/SOM(-), (8) decreased the number of small DβH(+)/GAL(-) perikarya, (9) decreased the number of small and large perikarya expressing ER subtypes α and β and (10) decreased the total number of nerve fibers in the CaMG containing DβH and/or NPY and DβH and/or GAL. These results show that long-term E(2) treatment of adult gilts downregulates the populations of both noradrenergic and ERs expressing ovarian neurons in the CaMG. Our findings suggest also that elevated E(2) levels that occur during pathological states may regulate gonadal function(s) by affecting ovary supplying neurons.
Collapse
Affiliation(s)
- Marlena Koszykowska
- Division of Reproductive Endocrinology and Pathophysiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | | | | | | |
Collapse
|
137
|
Rummel J, Epp JR, Galea LAM. Estradiol does not influence strategy choice but place strategy choice is associated with increased cell proliferation in the hippocampus of female rats. Horm Behav 2010; 58:582-90. [PMID: 20688068 DOI: 10.1016/j.yhbeh.2010.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 07/24/2010] [Accepted: 07/26/2010] [Indexed: 01/09/2023]
Abstract
Adult neurogenesis occurs in the hippocampus of most mammals. While the function of adult hippocampal neurogenesis is not known, there is a relationship between neurogenesis and hippocampus-dependent learning and memory. Ovarian hormones can influence learning and memory and strategy choice. In competitive memory tasks, higher levels of estradiol shift female rats towards the use of the place strategy. Previous studies using a cue-competition paradigm find that 36% of male rats will use a hippocampus-dependent place strategy and place strategy users had lower levels of cell proliferation in the hippocampus. Here, we used the same paradigm to test whether endogenous or exogenous ovarian hormones influence strategy choice in the cue-competition paradigm and whether cell proliferation was related to strategy choice. We tested ovariectomized estradiol-treated (10 microg of estradiol benzoate) or sham-operated female rats on alternating blocks of hippocampus-dependent and hippocampus-independent versions of the Morris water task. Rats were then given a probe session with the platform visible and in a novel location. Preferred strategy was classified as place strategy (hippocampus-dependent) if they swam to the old platform location or cue strategy (hippocampus-independent) if they swam to the visible platform. All groups showed a preference for the cue strategy. However, proestrous rats were more likely to be place strategy users than rats not in proestrus. Female place strategy users had increased cell proliferation in the dentate gyrus compared to cue strategy users. Our study suggests that 78% of female rats chose the cue strategy instead of the place strategy. In summary the present results suggest that estradiol does not shift strategy use in this paradigm and that cell proliferation is related to strategy use with greater cell proliferation seen in place strategy users in female rats.
Collapse
Affiliation(s)
- Julia Rummel
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada
| | | | | |
Collapse
|
138
|
Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 2010; 62:155-98. [PMID: 20392807 PMCID: PMC2879914 DOI: 10.1124/pr.109.002071] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The classic view of estrogen actions in the brain was confined to regulation of ovulation and reproductive behavior in the female of all mammalian species studied, including humans. Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry. There are notable sex differences in the incidence and manifestations of virtually all central nervous system disorders, including neurodegenerative disease (Parkinson's and Alzheimer's), drug abuse, anxiety, and depression. Understanding the cellular and molecular basis of sex differences in brain physiology and responses to estrogen and estrogen mimics is, therefore, vitally important for understanding the nature and origins of sex-specific pathological conditions and for designing novel hormone-based therapeutic agents that will have optimal effectiveness in men or women.
Collapse
Affiliation(s)
- Glenda E Gillies
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College Faculty of Medicine, DuCane Road, London W12ONN, UK.
| | | |
Collapse
|
139
|
Manns M, Bichler Z, Leske O, Heumann R. Neuronal Ras activation inhibits adult hippocampal progenitor cell division and impairs spatial short-term memory. GENES BRAIN AND BEHAVIOR 2010; 9:525-36. [PMID: 20398060 DOI: 10.1111/j.1601-183x.2010.00584.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A large number of endogenous and exogenous factors have been identified to upregulate and downregulate proliferation, differentiation and/or survival of newborn cells in the adult hippocampus. For studying neuronal mechanisms mediating the impact of those factors, we used a transgenic synRas mouse model expressing constitutively activated Valin12-Harvey Ras selectively in differentiated neurons. BrdU injections showed significantly reduced proliferation of new cells within the adult hippocampus of transgenic animals compared with their wild-type siblings. In contrast, the relative survival of newborn cells was increased in synRas mice, although this effect did not fully compensate for diminished proliferation. Inhibition of progenitor cell proliferation and enhancement of cellular survival were more pronounced in males compared with females. Double labelling and doublecortin immunostaining verified that specifically newborn neurons were decreased in synRas mice. Reduced cell generation was observed already 2 h after BrdU pulse injections, identifying an early precursor cell population as target of the inhibitory transgene effect. Differences in proliferation remained stable after 24 h and were specific for the subgranular zone of the dentate gyrus, as subventricular cell generation was not affected supporting a non-cell autonomous effect on neural hippocampal progenitors. Transgene expression only starts with synaptic differentiation and therefore reduced proliferation must represent an indirect secondary consequence of synRas activity in differentiated neurons. This was associated with impaired spatial short-term memory capacities as observed in a radial maze paradigm. Our data suggest that constantly high Ras activity in differentiated neurons downregulates hippocampal precursor cell generation in the neuronal lineage, but is modulated by sex-dependent factors.
Collapse
Affiliation(s)
- M Manns
- Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-University-Bochum, Bochum, FRG.
| | | | | | | |
Collapse
|
140
|
Pawluski JL, Barakauskas VE, Galea LAM. Pregnancy decreases oestrogen receptor alpha expression and pyknosis, but not cell proliferation or survival, in the hippocampus. J Neuroendocrinol 2010; 22:248-57. [PMID: 20136685 DOI: 10.1111/j.1365-2826.2010.01960.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Motherhood differentially affects learning and memory performance and this effect depends on reproductive experience. In turn, evidence suggests that the effects of oestradiol on learning and memory are mediated through binding to oestrogen receptors in the hippocampus and that this is related to hippocampal neurogenesis. The present study investigated the effect of pregnancy and reproductive experience on ERalpha expression throughout the hippocampus, as well as cell proliferation, new cell survival and cell death (as measured by pyknotic cells) in the granule cell layer of the hippocampus. Three groups of female Sprague-Dawley rats were used: virgin, primigravid and multigravid. All rats were injected with 5-bromo-2-deoxyuridine (BrdU; 200 mg/kg) on the afternoon of impregnation and at matched time-points in virgins. Rats were perfused either during early pregnancy (gestation day 1) or late pregnancy (gestation day 21) after BrdU injection. The results obtained show that, during late pregnancy, females, whether first or second pregnancy, have fewer ERalpha-positive cells in the CA3 region of the dorsal hippocampus than virgin females. In addition during early pregnancy, females have significantly fewer pyknotic cells in the granule cell layer than virgin females. There were no other differences between groups in the number of ERalpha-positive, BrdU-positive or pyknotic cells. Future studies will aim to investigate the mechanisms and consequences of the alteration in ERalpha expression in the hippocampus during late pregnancy, as well as the possible changes in ERbeta expression at this time.
Collapse
Affiliation(s)
- J L Pawluski
- Program in Neuroscience, Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
141
|
Cavanaugh BL, Lonstein JS. Androgenic and oestrogenic influences on tyrosine hydroxylase-immunoreactive cells of the prairie vole medial amygdala and bed nucleus of the stria terminalis. J Neuroendocrinol 2010; 22:217-25. [PMID: 20136687 PMCID: PMC3034275 DOI: 10.1111/j.1365-2826.2010.01958.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The posterodorsal medial amygdala (MeApd) and principal nucleus of the bed nucleus of the stria terminalis (pBST) are densely interconnected sites integrating steroid hormone and olfactory information necessary for sociosexual behaviours in many rodents. Our laboratory recently reported sexually dimorphic populations of cells containing tyrosine hydroxylase (TH) located in the MeApd and pBST of prairie voles (Microtus ochrogaster), with males having many more TH-immunoreactive (-ir) cells in these sites than do females. Gonadal hormones circulating during adulthood were showm to regulate this sex difference because it was eliminated by castrating adult males or implanting females with testosterone-filled capsules. In the present study, we demonstrate that many (25-65%) TH-ir cells in the MeApd and pBST of adult virgin male and female prairie voles also contain immunoreactivity for either the androgen receptor or oestrogen receptor alpha. Subcutaneous implants of oestradiol benzoate mimicked the effects of testosterone and maintained high numbers of TH-ir cells in these sites in castrated males. However, implants of dihydrotestosterone (DHT) did not, and these males had low numbers of TH-ir cells similar to castrated males given empty capsules. A similar effect was found in females, where testosterone or oestradiol benzoate greatly increased the number of TH-ir cells in these sites compared to intact or ovariectomised controls, but DHT did not. DHT implants did, however, maintain high seminal vesicle weights in males. Thus, many of the TH-ir cells in the prairie vole MeApd and pBST are potentially sensitive to androgens and oestrogens, although maintaining immunocytochemically detectable levels of TH in these cells may depend more on an oestrogen-mediated mechanism in both sexes. These data have implications for understanding how gonadal hormone release across the reproductive cycle modulates these species-specific groups of catecholaminergic cells and socially monogamous behaviours in prairie voles.
Collapse
|
142
|
Amrein I, Slomianka L. A morphologically distinct granule cell type in the dentate gyrus of the red fox correlates with adult hippocampal neurogenesis. Brain Res 2010; 1328:12-24. [DOI: 10.1016/j.brainres.2010.02.075] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 11/25/2022]
|
143
|
Kordower JH, Chen EY, Morrison JH. Long-term gonadal hormone treatment and endogenous neurogenesis in the dentate gyrus of the adult female monkey. Exp Neurol 2010; 224:252-7. [PMID: 20362573 DOI: 10.1016/j.expneurol.2010.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/22/2010] [Accepted: 03/25/2010] [Indexed: 01/18/2023]
Abstract
Neurogenesis occurs continually throughout life in all mammals and the extent of neurogenesis is influenced by many factors including gonadal hormones. Most research regarding hormones and neurogenesis has been performed on non-primate species. To determine whether gonadal hormones can modulate endogenous neurogenesis in the dentate gyrus (DG) of the hippocampus in non-human primates, ovariectomized (OVX) female rhesus monkeys received continuous, unopposed beta-estradiol (OVX-E-Con), cyclic unopposed beta-estradiol (OVX-E-Cyc), continuous beta-estradiol+cyclic progesterone (OVX-E-Con+P-Cyc), or control (OVX-Veh) treatments. At week 29, all monkeys received BrdU injections for 4 consecutive days, in addition to the ongoing treatment. Twenty days after the last BrdU injection, all animals were sacrificed for tissue collection. In DG of hippocampus, scattered BrdU-ir cells were observed mainly in the subgranular zone (SGZ) and in the granule cell layer and occasionally these BrdU-ir cells in the SGZ formed clusters containing between 2 and 5 cells. In the granule cell layer and SGZ, virtually none of the BrdU-ir cells were either Dcx, a marker of immature neurons, or GFAP positive. However, an occasional BrdU-ir cell was positive for both neuronal marker NeuN or beta III-tubulin. Unbiased stereological analysis of BrdU-ir cells within the SGZ and the granule cell layer of DG revealed that among the experimental groups, there was no significant difference in number of BrdU-ir cells within the SGZ and the granule cell layer of the DG: OVX-E-Con (1801+/-218.7), OVX-E-Cyc (1783+/-415.6), OVX-E-Con+/-P-Cyc (1721+/-229.6), and OVX-Veh (1263+/-106.3), but a trend towards increased BrdU-ir cells was observed in all the experimental groups.
Collapse
Affiliation(s)
- Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
144
|
Brock O, Keller M, Veyrac A, Douhard Q, Bakker J. Short term treatment with estradiol decreases the rate of newly generated cells in the subventricular zone and main olfactory bulb of adult female mice. Neuroscience 2010; 166:368-76. [DOI: 10.1016/j.neuroscience.2009.12.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 12/21/2022]
|
145
|
Barker JM, Galea LAM. Males show stronger contextual fear conditioning than females after context pre-exposure. Physiol Behav 2010; 99:82-90. [PMID: 19879284 DOI: 10.1016/j.physbeh.2009.10.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/17/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
Estradiol affects the structure and function of the hippocampus. We have found that repeated estradiol affects neurogenesis and cell death in the hippocampus of adult female, but not male rats. In the present study we sought to determine whether using the same regimen of estradiol would influence hippocampus-dependent behaviour. Adult male and female rats were given estradiol or sesame oil for 15 days, and then tested using a contextual pre-exposure paradigm in which performance depends on the hippocampus. The time spent freezing displayed by rats was scored on subsequent days in (1) the training context, (2) a novel context in which rats had never been shocked, and (3) the training context a second time. Irrespective of treatment, males showed stronger memory for the context by exhibiting greater freezing in both the training context exposures and the novel context. Previous estradiol treatment, in either sex, did not affect the ability to learn and retain information about the training context. However, female rats treated with estradiol and exposed to a novel context after fear conditioning exhibited less freezing behaviour than controls. Taken together, our results demonstrate that gonadectomized male rats outperform females, regardless of previous treatment with estradiol, on a hippocampus-contextual fear conditioning test, and that previous estradiol treatment has a subtle effect on performance in female but not male rats.
Collapse
Affiliation(s)
- Jennifer M Barker
- Graduate Program in Neuroscience, Brain Research Centre, Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
146
|
Epp JR, Barker JM, Galea LAM. Running wild: Neurogenesis in the hippocampus across the lifespan in wild and laboratory-bred Norway rats. Hippocampus 2009; 19:1040-9. [DOI: 10.1002/hipo.20546] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
147
|
Barker JM, Galea LAM. Sex and regional differences in estradiol content in the prefrontal cortex, amygdala and hippocampus of adult male and female rats. Gen Comp Endocrinol 2009; 164:77-84. [PMID: 19457436 DOI: 10.1016/j.ygcen.2009.05.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/09/2009] [Accepted: 05/12/2009] [Indexed: 12/11/2022]
Abstract
In general, the behavioral and neural effects of estradiol administration to males and females differ. While much attention has been paid to the potential structural, cellular and sub-cellular mechanisms that may underlie such differences, as of yet there has been no examination of whether the differences observed may be related to differential uptake or storage of estradiol within the brain itself. We administered estradiol benzoate to gonadectomized male and female rats, and compared the concentration of estradiol in serum and brain tissue found in these rats to those of gonadectomized, oil-treated rats and intact rats of both sexes. Long-term gonadectomy (3 weeks) reduced estradiol concentration in the male and female hippocampus, but not in the male or female amygdala or in the female prefrontal cortex. Furthermore, exogenous treatment with estradiol increased estradiol content to levels above intact animals in the amygdala, prefrontal cortex and the male hippocampus. Levels of estradiol were undetectable in the prefrontal cortex of intact males, but were detectable in all other brain regions of intact rats. Here we demonstrate (1) that serum concentrations of estradiol are not necessarily reflective of brain tissue concentrations, (2) that within the brain, there are regional differences in the effects of gonadectomy and estradiol administration, and (3) that there is less evidence for local production of estradiol in males than females, particularly in the prefrontal cortex and perhaps the hippocampus. Thus there are regional differences in estradiol concentration in the prefrontal cortex, amygdala and hippocampus that are influenced by sex and hormone status.
Collapse
Affiliation(s)
- Jennifer M Barker
- Graduate Program in Neuroscience, Brain Research Centre, Department of Psychology, University of British Columbia, British Columbia, Canada
| | | |
Collapse
|
148
|
Pawluski JL, Brummelte S, Barha CK, Crozier TM, Galea LAM. Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Front Neuroendocrinol 2009; 30:343-57. [PMID: 19361542 DOI: 10.1016/j.yfrne.2009.03.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 12/20/2022]
Abstract
Adult neurogenesis exists in most mammalian species, including humans, in two main areas: the subventricular zone (new cells migrate to the olfactory bulbs) and the dentate gyrus of the hippocampus. Many factors affect neurogenesis in the hippocampus and the subventricular zone, however the focus of this review will be on factors that affect hippocampal neurogenesis, particularly in females. Sex differences are often seen in levels of hippocampal neurogenesis, and these effects are due in part to differences in circulating levels of steroid hormones such as estradiol, progesterone, and corticosterone during the estrous cycle, in response to stress, with reproduction (including pregnancy and lactation), and aging. Depletion and administration of these same steroid hormones also has marked effects on hippocampal neurogenesis in the adult female, and these effects are dependent upon reproductive status and age. The present review will focus on current research investigating how hippocampal neurogenesis is altered in the adult female rodent across the lifespan.
Collapse
Affiliation(s)
- Jodi L Pawluski
- Department of Psychology, The University of British Columbia, 2136 West Mall, Vancouver, BC, Canada V6T1Z4
| | | | | | | | | |
Collapse
|
149
|
Abstract
The structural and functional changes occurring into the brain is the hallmark of its tremendous capacity for dealing with the complexity that we are facing throughout life. It is also the hallmark of what neuroscientists refer as neuroplasticity. The continuous generation of cohorts of new neurons in some discrete regions of the adult brain, including the olfactory system, is a newly recognized form of neuroplasticity that has been recently the focus of neuroscience studies. Several lines of evidence indicate that this recruitment of newly-generated neurons is extremely sensitive to the overall neuronal activity of the host circuits. Therefore, adult neurogenesis represents, not only a constitutive replacement mechanism for lost neurons, but also a process supporting a capacity of neural plasticity in response to specific experience throughout life. The remarkable complexity of the social life offers a host of daily challenges that require a diversity of brain mechanism to make sense of the ever-changing social world. This review describes some recent findings which have begun to define reciprocal relationships between the production and integration of newborn neurons in the adult brain and social behavior. These studies demonstrate how this domain of research has the potential to address issues in the functional contribution of adult neurogenesis in the expression of some social traits as well in the role of some social contexts to finely regulate the production, survival and integration of adult newborn neurons.
Collapse
|
150
|
Sex steroids and brain structure in pubertal boys and girls. Psychoneuroendocrinology 2009; 34:332-42. [PMID: 18980810 DOI: 10.1016/j.psyneuen.2008.09.012] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/16/2008] [Accepted: 09/21/2008] [Indexed: 12/11/2022]
Abstract
Sex steroids exert important organizational effects on brain structure. Early in life, they are involved in brain sexual differentiation. During puberty, sex steroid levels increase considerably. However, to which extent sex steroid production is involved in structural brain development during human puberty remains unknown. The relationship between pubertal rises in testosterone and estradiol levels and brain structure was assessed in 37 boys and 41 girls (10-15 years). Global brain volumes were measured using volumetric-MRI. Regional gray and white matter were quantified with voxel-based morphometry (VBM), a technique which measures relative concentrations ('density') of gray and white matter after individual global differences in size and shape of brains have been removed. Results showed that, corrected for age, global gray matter volume was negatively associated with estradiol levels in girls, and positively with testosterone levels in boys. Regionally, a higher estradiol level in girls was associated with decreases within prefrontal, parietal and middle temporal areas (corrected for age), and with increases in middle frontal-, inferior temporal- and middle occipital gyri. In boys, estradiol and testosterone levels were not related to regional brain structures, nor were testosterone levels in girls. Pubertal sex steroid levels could not explain regional sex differences in regional gray matter density. Boys were significantly younger than girls, which may explain part of the results. In conclusion, in girls, with the progression of puberty, gray matter development is at least in part directly associated with increased levels of estradiol, whereas in boys, who are in a less advanced pubertal stage, such steroid-related development could not (yet) be found. We suggest that in pubertal girls, estradiol may be implicated in neuronal changes in the cerebral cortex during this important period of brain development.
Collapse
|