101
|
William M, Hamilton EJ, Garcia A, Bundgaard H, Chia KKM, Figtree GA, Rasmussen HH. Natriuretic peptides stimulate the cardiac sodium pump via NPR-C-coupled NOS activation. Am J Physiol Cell Physiol 2008; 294:C1067-73. [DOI: 10.1152/ajpcell.00243.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natriuretic peptides (NPs) and their receptors (NPRs) are expressed in the heart, but their effects on myocyte function are poorly understood. Because NPRs are coupled to synthesis of cGMP, an activator of the sarcolemmal Na+-K+ pump, we examined whether atrial natriuretic peptide (ANP) regulates the pump. We voltage clamped rabbit ventricular myocytes and identified electrogenic Na+-K+ pump current (arising from the 3:2 Na+:K+ exchange and normalized for membrane capacitance) as the shift in membrane current induced by 100 μmol/l ouabain. Ten nanomoles per liter ANP stimulated the Na+-K+ pump when the intracellular compartment was perfused with pipette solutions containing 10 mmol/l Na+ but had no effect when the pump was at near maximal activation with 80 mmol/l Na+ in the pipette solution. Stimulation was abolished by inhibition of cGMP-activated protein kinase with KT-5823, nitric oxide (NO)-activated guanylyl cyclase with 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ), or NO synthase with NG-nitro-l-arginine methyl ester (l-NAME). Since synthesis of cGMP by NPR-A and NPR-B is not NO dependent or ODQ sensitive, we exposed myocytes to AP-811, a highly selective ligand for the NPR-C “clearance” receptor. It abolished ANP-induced pump stimulation. Conversely, the selective NPR-C agonist ANP(4-23) reproduced stimulation. The stimulation was blocked by l-NAME. To examine NO production in response to ANP(4-23), we loaded myocytes with the NO-sensitive fluorescent dye diacetylated diaminofluorescein-2 and examined them by confocal microscopy. ANP(4-23) induced a significant increase in fluorescence, which was abolished by l-NAME. We conclude that NPs stimulate the Na+-K+ pump via an NPR-C and NO-dependent pathway.
Collapse
|
102
|
Iemitsu M, Maeda S, Otsuki T, Sugawara J, Kuno S, Ajisaka R, Matsuda M. Arterial Stiffness, Physical Activity, and Atrial Natriuretic Peptide Gene Polymorphism in Older Subjects. Hypertens Res 2008; 31:767-74. [DOI: 10.1291/hypres.31.767] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
103
|
Natriuretic peptides cause relaxation of human esophageal mucosal muscle. ACTA ACUST UNITED AC 2008; 146:224-9. [DOI: 10.1016/j.regpep.2007.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Revised: 08/13/2007] [Accepted: 09/11/2007] [Indexed: 01/16/2023]
|
104
|
Natriuretic peptides in vascular physiology and pathology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:59-93. [PMID: 18703404 DOI: 10.1016/s1937-6448(08)00803-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four major natriuretic peptides have been isolated: atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), and Dendroaspis-type natriuretic peptide (DNP). Natriuretic peptides play an important role in the regulation of cardiovascular homeostasis maintaining blood pressure and extracellular fluid volume. The classical endocrine effects of natriuretic peptides to modulate fluid and electrolyte balance and vascular smooth muscle tone are complemented by autocrine and paracrine actions that include regulation of coronary blood flow and, therefore, myocardial perfusion; modulation of proliferative responses during myocardial and vascular remodeling; and cytoprotective anti-ischemic effects. The actions of natriuretic peptides are mediated by the specific binding of these peptides to three cell surface receptors: type A natriuretic peptide receptor (NPR-A), type B natriuretic peptide receptor (NPR-B), and type C natriuretic peptide receptor (NPR-C). NPR-A and NPR-B are guanylyl cyclase receptors that increase intracellular cGMP concentration and activate cGMP-dependent protein kinases. NPR-C has been presented as a clearance receptor and its activation also results in inhibition of adenylyl cyclase activity. The wide range of effects of natriuretic peptides might be the base for the development of new therapeutic strategies of great benefit in patients with cardiovascular problems including coronary artery disease or heart failure. This review summarizes current literature concerning natriuretic peptides, their receptors and their effects on fluid/electrolyte balance, and vascular and cardiac physiology and pathology, including primary hypertension and myocardial infarction. In addition, we will attempt to provide an update on important issues regarding natriuretic peptides in congestive heart failure.
Collapse
|
105
|
Rose RA, Giles WR. Natriuretic peptide C receptor signalling in the heart and vasculature. J Physiol 2007; 586:353-66. [PMID: 18006579 DOI: 10.1113/jphysiol.2007.144253] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Natriuretic peptides (NPs), including atrial, brain and C-type natriuretic peptides (ANP, BNP and CNP), bind two classes of cell surface receptors: the guanylyl cyclase-linked A and B receptors (NPR-A and NPR-B) and the C receptor (NPR-C). The biological effects of NPs have been mainly attributed to changes in intracellular cGMP following their binding to NPR-A and NPR-B. NPR-C does not include a guanylyl cyclase domain. It has been denoted as a clearance receptor and is thought to bind and internalize NPs for ultimate degradation. However, a substantial body of biochemical work has demonstrated the ability of NPR-C to couple to inhibitory G proteins (Gi) and cause inhibition of adenylyl cyclase and activation of phospholipase-C. Recently, novel physiological effects of NPs, mediated specifically by NPR-C, have been discovered in the heart and vasculature. We have described the ability of CNP, acting via NPR-C, to selectively inhibit L-type calcium currents in atrial and ventricular myocytes, as well as in pacemaker cells (sinoatrial node myocytes). In contrast, our studies of the electrophysiological effects of CNP on cardiac fibroblasts demonstrated an NPR-C-Gi-phospholipase-C-dependent activation of a non-selective cation current mediated by transient receptor potential (TRP) channels. It is also known that CNP and BNP have important anti-proliferative effects in cardiac fibroblasts that appear to involve NPR-C. In the mammalian resistance vessels, including mesenteric and coronary arteries, CNP has been found to function as an NPR-C-dependent endothelium-derived hyperpolarizing factor that regulates local blood flow and systemic blood pressure by hyperpolarizing smooth muscle cells. In this review we highlight the role of NPR-C in mediating these NP effects in myocytes and fibroblasts from the heart as well as in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Robert A Rose
- Departments of Physiology, Heart and Stroke/Richard Lewar Centre, University of Toronto and University Health Network, Toronto, Ontario, Canada M5S 3E2.
| | | |
Collapse
|
106
|
Abstract
Ischemic preconditioning renders the heart resistant to infarction from ischemia/reperfusion. Over the past two decades a great deal has been learned about preconditioning's mechanism. Adenosine, bradykinin, and opioids act in parallel to trigger the preconditioned state and do so by activating PKC. While adenosine couples directly to PKC through the phospholipases, bradykinin and opioids do so through a complex pathway that includes in order: phosphatidylinositol 3-kinase (PI3-kinase), Akt, nitric oxide synthase, guanylyl cyclase, PKG, opening of mitochondrial K(ATP) channels, and activation of PKC by redox signaling. There are even differences between the opioid and bradykinin coupling as the former activates PI3-kinase through transactivation of the epidermal growth factor receptor while the latter has an unknown coupling mechanism. Protection stems from inhibition of formation of mitochondrial permeability transition pores early in reperfusion through activation of the survival kinases, Akt and ERK. These kinases are activated as a result of PKC somehow promoting signaling from adenosine A(2) receptors early in reperfusion. The survival kinases are thought to inhibit pore formation by phosphorylating GSK-3beta. The reperfused heart requires the support of the protective signals for only about an hour after which the ischemic injury is repaired and the signals are no longer needed.
Collapse
Affiliation(s)
- James M Downey
- Department of Physiology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | |
Collapse
|
107
|
Ardizzone N, Cappello F, Di Felice V, Rappa F, Minervini F, Marasà S, Marasà L, Rabl W, Zummo G, Sergi C. Atrial natriuretic peptide and CD34 overexpression in human idiopathic dilated cardiomyopathies. APMIS 2007; 115:1227-1233. [PMID: 18092954 DOI: 10.1111/j.1600-0643.2007.00663.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Idiopathic dilated cardiomyopathy (IDCM) is a primary myocardial disease of unknown cause characterized by ventricular chamber enlargement with impaired contractile function. In familial forms of IDCM, mutations of genes coding for cytoskeletal proteins related to force transmission, such as dystrophin, cardiac actin, desmin, and delta-sarcoglycan, have been identified. Here, we report the data of a retrospective investigation carried out to evaluate the expression of atrial natriuretic peptide (ANP), CD34, troponin T and nestin in the myocardium of patients affected with IDCM. Formalin-fixed and paraffin-embedded consecutive tissue sections from the ventricular wall of 10 human normal hearts (NH) following forensic autopsy and 22 IDCM (living explanted hearts) were studied using primary monoclonal antibodies against ANP, CD34, troponin T and nestin by immunohistochemistry. Myocardial fibers were counted independently by three pathologists. Statistics included analysis of variance, log-rank test for Kaplan-Meier analysis, and kappa assessment for intra- and inter-observer variability. ANP and CD34 were significantly overexpressed in IDCM compared to NH (p<0.05). Conversely, troponin T and nestin expression levels did not show significant variation. Inter-observer kappa statistics showed a value of 0.87 and intra-observer kappa statistics a value of 0.98. Evaluation of the marker distribution in the myocardium of patients with IDCM CD34 expression curve was similar to that of troponin T (p<0.0001), although two groups could be identified. Patients with a difference of more than 20 myocardial fibers in expression of CD34 and troponin T had a somewhat less favorable survival although the difference was not significant. The analysis of cells positive for troponin T resulted in a similar number of cardiac fibers between NH and IDCM. This is in agreement with cardiac enlargement present in IDCM, which is due to ventricular dilatation rather than increased number of myocytes. Moreover, the expression of nestin, a marker of activation of myocardial precursors, did not change either, and this may confirm that there are no hyperplastic phenomena in the IDCM pathogenesis. The increase in ANP-positive cells in IDCM could be a consequence of neurohormonal activation due to a decline in the impaired myocyte contractility. Furthermore, since it was already shown that ANP could be important in the control of vascular remodeling, we postulated that the increase in CD34-positive cells might be functionally correlated with the increase in ANP production. Differential expression of CD34 and troponin T might be used in future studies to evaluate their prognostic value.
Collapse
Affiliation(s)
- N Ardizzone
- Dipartimento di Medicina Sperimentale, Sezione di Anatomia Umana, Università di Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Woodard GE, Rosado JA. Recent advances in natriuretic peptide research. J Cell Mol Med 2007; 11:1263-71. [PMID: 18205700 PMCID: PMC4401292 DOI: 10.1111/j.1582-4934.2007.00125.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/05/2007] [Indexed: 12/02/2022] Open
Abstract
The natriuretic peptides are a family of related hormones that play a crucial role in cardiovascular and renal homeostasis. They have recently emerged as potentially important clinical biomarkers in heart failure. Natriuretic peptides, particularly brain natriuretic peptide (BNP) and the inactive N-terminal fragment of BNP, NT-proBNP, that has an even greater half-life than BNP, are elevated in heart failure and therefore considered to be excellent predictors of disease outcome. Nesiritide, a recombinant human BNP, has been shown to provide symptomatic and haemodynamic improvement in acute decompensated heart failure, although recent reports have suggested an increased short-term risk of death with nesiritide use. This review article describes: the current use of BNP and its inactive precursor NT-proBNP in diagnosis, screening, prognosis and monitoring of therapy for congestive heart failure, the renoprotective actions of natriuretic peptides after renal failure and the controversy around the therapeutic use of the recombinant human BNP nesiritide.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1876, USA.
| | | |
Collapse
|
109
|
Gladysheva IP, Robinson BR, Houng AK, Kováts T, King SM. Corin is co-expressed with pro-ANP and localized on the cardiomyocyte surface in both zymogen and catalytically active forms. J Mol Cell Cardiol 2007; 44:131-42. [PMID: 17996891 DOI: 10.1016/j.yjmcc.2007.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 08/30/2007] [Accepted: 10/01/2007] [Indexed: 11/29/2022]
Abstract
The multi-domain transmembrane serine protease corin cleaves pro-atrial natriuretic peptide (pro-ANP) in vitro to generate an active hormone, ANP. Corin may also contribute to the regulation of the natriuretic peptide system in vivo, and might be an attractive target for treatment of cardiovascular diseases. In order for corin to cleave its substrate pro-ANP, it should be catalytically active and located proximally. However, because knowledge of native corin is limited, we examined the expression, cardiac localization and molecular forms of the native corin protein. Immunofluorescence studies using a series of anti-corin antibodies directed against the stem and protease domains reveal that corin is present on the cell-surface of rat neonatal cardiomyocytes and murine HL-1 cardiomyocyte-like cells. Furthermore, we immunolocalized native corin in pro-ANP expressing cardiomyocytes. Immunoprecipitation of the membrane fraction of mouse heart extract showed that native corin had a relative mass of 205-210 kDa. Under reducing conditions native corin migrates as several different molecular weight forms corresponding to zymogen (uncleaved) and active (cleaved) forms. Studies using a FITC-tagged chloromethyl ketone that mimics the corin cleavage sequence in pro-ANP, suggest that an enzymatically active form of corin is localized to the cell surface of myocardial cells in vivo. Additionally, we showed that the 205-210 kDa form of corin is a glycosylated protein. Treatment of HL-1 cells with tunicamycin reduced the relative mass of expressed corin. We conclude that native corin is a glycosylated protease that is localized on the cell surface of pro-ANP-expressing cardiomyocytes in both zymogen and catalytically active forms.
Collapse
Affiliation(s)
- Inna P Gladysheva
- Cardiovascular Research Center, Division of Cardiology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|
110
|
Burley DS, Baxter GF. B-type natriuretic peptide at early reperfusion limits infarct size in the rat isolated heart. Basic Res Cardiol 2007; 102:529-41. [PMID: 17896117 DOI: 10.1007/s00395-007-0672-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 07/10/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
Abstract
Natriuretic peptides are regulatory autacoids in the mammalian myocardium whose functions, mediated via particulate guanylyl cyclase/cGMP, may include cytoprotection against ischaemia-reperfusion injury. Previous work has identified that B-type natriuretic peptide (BNP) limits infarct size when administered prior to and during coronary occlusion through a K(ATP) channel-dependent mechanism. The present study examined the hypothesis that the protection afforded by BNP is mediated specifically at reperfusion in a postconditioning-like manner. Langendorff-perfused rat hearts were subjected to 35 min coronary artery occlusion and 120 min reperfusion, and infarct size was determined by tetrazolium staining. Postconditioning was effected by applying six 10-second periods of global ischaemia at the onset of reperfusion.Treatment with either BNP 10 nM or the NO donor S-nitroso-N-acetylpenicillamine (SNAP) 1-10 microM was commenced 5 min prior to reperfusion and continued until 10 min after reperfusion. Control infarct size (% of ischaemic risk zone) was 40.8 +/- 3.7%.BNP at reperfusion induced a significant limitation of infarct size (BNP 22.9 +/- 4.1% P<0.05 vs. control). Co-treatment at reperfusion with BNP and the K(ATP) channel blockers 5-hydroxydecanote (5HD, 100 microM), glibenclamide (Glib; 10 microM) or HMR1098 (10 microM) abolished the infarct-limiting effect of BNP (BNP + 5HD 41.0 +/- 3.9%, BNP + Glib 39.8 +/- 5.6%, BNP + HMR 1098 46.0 +/- 7.1%,P < 0.05 vs. BNP). BNP given together with L-NAME (100 microM) at reperfusion resulted in a marked loss of protection (BNP + L-NAME 53.1 +/- 3.8% P < 0.001 vs. BNP). In a second series of experiments, SNAP (1-10 microM) given at reperfusion was found not to be protective (SNAP 1 microM 30.2 +/- 4.9%, SNAP 2 microM 27.5 +/- 9.5%, SNAP 5 microM 39.2 +/- 5.7%, SNAP 10 microM 33.7 +/- 6.4%, not significant vs. control). In a third series of experiments, postconditioning significantly limited infarct size (14.9 +/- 3.6 % vs. control 34.5 +/- 4.9%, P < 0.01) and this effect of postconditioning was abolished in the presence of isatin (100 microM), a non-specific blocker of particulate guanylyl cyclases (35.1 +/- 6%, P < 0.05 vs. postconditioning). In conclusion, pharmacological activation of pGC by BNP can effectively induce protection against reperfusion injury, by mechanisms involving K(ATP) channel opening and endogenous NO synthase activation. Furthermore, endogenous activation of pGC could play a role in the mechanism of postconditioning.
Collapse
Affiliation(s)
- Dwaine S Burley
- The Royal Veterinary College, University of London, London, UK
| | | |
Collapse
|
111
|
Peltonen TO, Taskinen P, Soini Y, Rysä J, Ronkainen J, Ohtonen P, Satta J, Juvonen T, Ruskoaho H, Leskinen H. Distinct downregulation of C-type natriuretic peptide system in human aortic valve stenosis. Circulation 2007; 116:1283-9. [PMID: 17709640 DOI: 10.1161/circulationaha.106.685743] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aortic valve calcification is an actively regulated process that displays hallmarks of atherosclerosis. Natriuretic peptides (A-, B-, and C-type natriuretic peptides [ANP, BNP, and CNP]) have been reported to have a role in the pathogenesis of vascular atherosclerosis, but their expression in aortic valves is not known. Here, we characterized and compared expression of natriuretic peptide system in aortic valves of patients with normal valves (n=4), aortic regurgitation (n=11), regurgitation and fibrosis (n=6), and aortic valve stenosis (n=21). METHODS AND RESULTS By reverse-transcription polymerase chain reaction, all 3 natriuretic peptides were found to be expressed in aortic valves. CNP mRNA levels were 92% lower (P<0.001) in stenotic valves, whereas no significant changes in the expression of ANP and BNP genes were found compared with valves obtained from patients with aortic regurgitation. CNP was localized by immunohistochemistry with specific CNP (32-53) antibody to valvular endothelial cells and myofibroblasts. Gene expression of furin, which proteolytically cleaves proCNP into active CNP, was 54% lower in aortic valve stenosis (P=0.04). Moreover, natriuretic peptide receptor-A and natriuretic peptide receptor-B mRNA levels were 78% and 76% lower, respectively, in stenotic valves. In contrast, gene expression of corin, a proANP- and proBNP-converting enzyme, and natriuretic peptide receptor-C did not differ between groups. CONCLUSIONS We show that natriuretic peptides, their processing enzymes, and their receptors are expressed in human aortic valves. Aortic valve stenosis is characterized by distinct downregulation of gene expression of CNP, its processing enzyme furin, and the target receptors natriuretic peptide receptor-B and natriuretic peptide receptor-A, which suggests that CNP acts as a paracrine regulator of the aortic valve calcification process.
Collapse
Affiliation(s)
- Tuomas O Peltonen
- Department of Pharmacology and Toxicology, University of Oulu, PO Box 5000, 90014 Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Burley DS, Ferdinandy P, Baxter GF. Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. Br J Pharmacol 2007; 152:855-69. [PMID: 17700722 PMCID: PMC2078226 DOI: 10.1038/sj.bjp.0707409] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It is clear that multiple signalling pathways regulate the critical balance between cell death and survival in myocardial ischaemia-reperfusion. Recent attention has focused on the activation of survival or salvage kinases, particularly during reperfusion, as a common mechanism of many cardioprotective interventions. The phosphatidyl inositol 3'-hydroxy kinase/Akt complex (PI3K/Akt) and p42/p44 mitogen-activated protein kinase cascades have been widely promoted in this respect but the cyclic guanosine 3',5'-monophosphate/cGMP-dependent protein kinase (cGMP/PKG) signal transduction cassette has been less systematically investigated as a survival cascade. We propose that activation of the cGMP/PKG signalling pathway, following activation of soluble or particulate guanylate cyclases, may play a pivotal role in survival signalling in ischaemia-reperfusion, especially in the classical preconditioning, delayed preconditioning and postconditioning paradigms. The resurgence of interest in reperfusion injury, largely as a result of postconditioning-related research, has confirmed that the cGMP/PKG pathway is a pivotal salvage mechanism in reperfusion. Numerous studies suggest that the infarct-limiting effects of preconditioning and postconditioning, exogenously donated nitric oxide (NO), natriuretic peptides, phosphodiesterase inhibitors, and other diverse drugs and mediators such as HMG co-A reductase inhibitors (statins), Rho-kinase inhibitors and adrenomedullin, whether given before and during ischaemia, or specifically at the onset of reperfusion, may be mediated by activation or enhancement of the cGMP pathway, either directly or indirectly via endogenous NO generation downstream of PI3K/Akt. Putative mechanisms of protection include PKG regulation of Ca(2+) homeostasis through the modification of sarcoplasmic reticulum Ca(2+) uptake mechanisms, and PKG-induced opening of ATP-sensitive K(+) channels during ischaemia and/or reperfusion. At present, significant technical obstacles in defining the precise roles played by cGMP/PKG signalling include the heavy reliance on pharmacological PKG inhibitors of uncertain selectivity, difficulties in determining PKG activity in intact tissue, and the growing recognition that intracellular compartmentalisation of the cGMP pool may contribute markedly to the nucleotide's biological actions and biochemical determination. Overall, the body of experimental evidence suggests that cGMP/PKG survival signalling ameliorates irreversible injury associated with ischaemia-reperfusion and may be a tractable therapeutic target.
Collapse
Affiliation(s)
- D S Burley
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University Cardiff, UK
| | - P Ferdinandy
- Cardiovascular Research Group, University of Szeged Szeged, Hungary
| | - G F Baxter
- Division of Pharmacology, Welsh School of Pharmacy, Cardiff University Cardiff, UK
- Author for correspondence:
| |
Collapse
|
113
|
Tan T, Zhang Q, Anyadike C, Scholz PM, Weiss HR. Chronic nitrates blunt the effects of not only nitric oxide but also natriuretic peptides in cardiac myocytes. Pharmacol Res 2007; 56:49-55. [PMID: 17482833 PMCID: PMC2696194 DOI: 10.1016/j.phrs.2007.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/21/2007] [Accepted: 03/22/2007] [Indexed: 10/23/2022]
Abstract
Exposure to nitrates causes tachyphylaxis to nitric oxide (NO), which reduces the effects of the second messenger cyclic guanosine-3',-5'-monophosphate (cyclic GMP). We tested the hypothesis that prolonged exposure to NO would also blunt the effects of natriuretic peptides. Cardiac myocytes were isolated from control (N=7) and chronic nitroglycerin (patched, N=7) rabbits. Patched animals received a transdermal nitroglycerin patch (0.3mg/h for 5 days). Myocyte function was determined at baseline, after C-type natriuretic peptide (CNP, 10(-8) and 10(-7)M) or brain natriuretic peptide (BNP, 10(-8) and 10(-7)M) or S-nitroso-N-acetyl-penicilliamine (SNAP, a NO donor, 10(-6) and 10(-5)M) followed by KT5823 (a cyclic GMP protein kinase inhibitor, 10(-6)M). Soluble and particulate guanylyl cyclase activities were measured in vitro and phosphoprotein analysis was performed. In control animals, CNP 10(-8)M (5.14+/-0.5%) and 10(-7)M (4.4+/-0.7%) significantly reduced percentage shortening from baseline (6.1+/-1.6%). KT5823 restored percentage shortening to 4.9+/-0.8%. Similar data were obtained with BNP and SNAP. In patched animals, CNP, BNP, SNAP had no significant effects on percentage shortening. The data on maximal rate of shortening and relaxation were consistent with these results. Guanylyl cyclase activities were not different in the control and patched animals. The myocytes from control and patched animals had similar protein phosphorylation patterns. Our data suggested that in addition to NO, the responses to both natriuretic peptides were downregulated after chronic exposure to nitroglycerin, but these effects were not due to changes in either guanylyl cyclase or cyclic GMP protein kinase, suggesting an altered downstream pathway.
Collapse
Affiliation(s)
- Tao Tan
- Heart and Brain Circulation Laboratory, Department of Physiology & Biophysics, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635 USA
| | - Qihang Zhang
- Heart and Brain Circulation Laboratory, Department of Physiology & Biophysics, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635 USA
| | - Chukwuma Anyadike
- Department of Surgery of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635 USA
| | - Peter M. Scholz
- Department of Surgery of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635 USA
| | - Harvey R. Weiss
- Heart and Brain Circulation Laboratory, Department of Physiology & Biophysics, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635 USA
| |
Collapse
|
114
|
Costa MA, Elesgaray R, Caniffi C, Fellet A, Arranz C. Role of cardiovascular nitric oxide system in C-type natriuretic peptide effects. Biochem Biophys Res Commun 2007; 359:180-6. [PMID: 17532295 DOI: 10.1016/j.bbrc.2007.05.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 05/16/2007] [Indexed: 11/22/2022]
Abstract
The aims were to evaluate the role of cardiovascular nitric oxide (NO)-system in C-type natriuretic peptide (CNP) actions and to investigate receptor types and signaling pathways involved in this interaction. Wistar rats were infused with saline or CNP. Mean arterial pressure (MAP) and nitrites and nitrates (NOx) excretion were determined. NO synthase (NOS) activity and NOS expression (Western blot) were analyzed in atria, ventricle and aorta. CNP decreased MAP and increased NOx excretion. CNP estimulated NOS activity, inducing no changes on cardiac and vascular endothelial NOS expression. NOS activity induced by CNP was abolished by suramin and calmidazoliumand but it is not modified by anantin. CNP would interact with NPR-C receptor coupled via G proteins leading to the activation Ca(2+)-calmodulin dependent endothelial NOS, increasing NO production which would induce the reduction in cardiac myocyte contractility and ANP synthesis and secretion in right atria and the relaxation of vascular smooth muscle.
Collapse
Affiliation(s)
- María Angeles Costa
- Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, IQUIMEFA-CONICET, Junín 956, piso 7, 1113 Capital Federal, Argentina.
| | | | | | | | | |
Collapse
|
115
|
Abstract
The myocardium represents a major source of several families of peptide hormones under normal physiological conditions and the plasma concentrations of many of these "cardiac peptides" (or related pro-peptide fragments) are substantially augmented in many cardiac disease states. In addition to well-characterised endocrine functions of several of the cardiac peptides, pleiotropic functions within the myocardium and the coronary vasculature represent a significant aspect of their actions in health and disease. Here, we focus specifically on the cardioprotective roles of four major peptide families in myocardial ischemia and reperfusion: adrenomedullin, kinins, natriuretic peptides and the urocortins. The patterns of early release of all these peptides are consistent with roles as autacoid cardioprotective mediators. Clinical and experimental research indicates the early release and upregulation of many of these peptides by acute ischemia and there is a convincing body of evidence showing that exogenously administered adrenomedullin, bradykinin, ANP, BNP, CNP and urocortins are all markedly protective against experimental myocardial ischemia-reperfusion injury through a conserved series of cytoprotective signal transduction pathways. Intriguingly, all the peptides examined so far have the potential to salvage against infarction when administered specifically during early reperfusion. Thus, the myocardial secretion of peptide hormones likely represents an early protective response to ischemia. Further work is required to explore the potential therapeutic manipulation of these peptides in acute coronary syndromes and their promise as biomarkers of acute myocardial ischemia.
Collapse
Affiliation(s)
- Dwaine S Burley
- Department of Basic Sciences, The Royal Veterinary College, University of London, Royal College Street, London, UK
| | | | | |
Collapse
|
116
|
Anyadike C, Scholz PM, Zhang Q, Katz E, Weiss HR. Brain natriuretic peptide reverses the effects of myocardial stunning in rabbit myocardium. Pharmacology 2007; 80:40-8. [PMID: 17519532 DOI: 10.1159/000102984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 02/15/2007] [Indexed: 11/19/2022]
Abstract
We tested the hypothesis that brain natriuretic peptide (BNP) would decrease the effects of myocardial stunning in rabbit hearts. We also examined the mechanisms responsible for these effects. In two groups of anesthetized open-chest rabbits, myocardial stunning was produced by 2 15-min occlusions of the left anterior descending artery separated by 15 min of reperfusion. The treatment group had BNP (10(-3) mol/l) topically applied to the stunned area. Hemodynamic and functional parameters were measured. Coronary flow and O2 extraction were used to determine myocardial O2 consumption. In separate animals, we measured the function of isolated control and simulated ischemia (95% N2/5% CO2, 15 min)-reperfusion ventricular myocytes with BNP or C-type natriuretic peptide (10(-8)-10(-7) mol/l) followed by KT5823 (10(-6) mol/l, cyclic GMP protein kinase inhibitor). In the in vivo control group, baseline delay to contraction was 47+/-4 ms and after stunning it increased to 71+/-10 ms. In the treatment group, baseline delay to contraction was 40+/-7 ms, and after stunning and BNP it did not significantly increase (43+/-6 ms). Neither stunning nor BNP administration affected regional O2 consumption. In control myocytes, BNP (10(-7) mol/l) decreased the percent shortening from 6.7+/-0.4 to 4.5+/-0.2%; after KT5823 administration, the percent shortening increased to 5.4+/-0.5%. In ischemia-reperfusion myocytes, BNP (10(-7) mol/l) decreased the percent shortening less from 5.0+/-0.5 to 3.8+/-0.2%; KT5823 administration did not increase the percent shortening (3.8+/-0.2%). BNP similarly and significantly increased cyclic GMP levels in control and stunned myocytes. The data illustrated that BNP administration reversed the effects of stunning and its mechanism may be independent of the cyclic GMP protein kinase.
Collapse
Affiliation(s)
- Chukwuma Anyadike
- Heart and Brain Circulation Laboratory, Department of Surgery, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
| | | | | | | | | |
Collapse
|
117
|
Sosa V, Carbó R, Guarner V. Participation of glucose transporters on atrial natriuretic peptide-induced glucose uptake by adult and neonatal cardiomyocytes under oxygenation and hypoxia. Eur J Pharmacol 2007; 568:83-8. [PMID: 17537429 DOI: 10.1016/j.ejphar.2007.04.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/18/2007] [Accepted: 04/20/2007] [Indexed: 11/22/2022]
Abstract
Natriuretic peptides, beside their endocrine actions, have paracrine functions which include regulating glucose uptake and metabolism. Atrial natriuretic peptide (ANP) actions are mediated by cGMP which is implicated in the metabolic adaptation of glucose metabolism to oxygen deprivation in the heart. Although, it has been reported that ANP increases glucose uptake, cGMP decreases it. The aim of the present paper was to evaluate the role of the glucose transporters 1 and 4 (GLUTS), in glucose uptake produced by ANP in fatty acid-dependent adult cardiomyocytes and glucose-dependent neonatal cardiomyocytes under oxygenation and hypoxia, which reverts adult metabolism to glucose-dependent. We also explored if the calcium-calmodulin complex participates in ANP-induced increase in glucose uptake. Neonatal cells had a higher glucose uptake than adult cells and GLUT 1 participated in basal uptake in both cell types. Hypoxia increased glucose uptake in adult cardiomyocytes but not in neonatal cells and this increase in glucose uptake was mediated by GLUT4. ANP increased glucose uptake in both adult and neonatal myocytes, under oxygenation and hypoxia, and GLUT4 favored this increase. Neonatal cells were less sensitive to ANP. Trifluoperazine, a calcium-calmodulin blocker, inhibited the ANP-induced increase in glucose uptake. This suggests that ANP promotes GLUT 4 calcium-mediated recruitment to the cell membrane. In conclusion, glucose uptake regulation is one of the paracrine metabolic effects of ANP in adult and neonatal cardiomyocytes under oxygenation and hypoxia. This effect of this peptide could explain the beneficial effects found in the internal medicine and surgical fields.
Collapse
Affiliation(s)
- Verónica Sosa
- Physiology Department National Institute of Cardiology Ignacio Chávez, Mexico D.F
| | | | | |
Collapse
|
118
|
Pagel-Langenickel I, Buttgereit J, Bader M, Langenickel TH. Natriuretic peptide receptor B signaling in the cardiovascular system: protection from cardiac hypertrophy. J Mol Med (Berl) 2007; 85:797-810. [PMID: 17429599 DOI: 10.1007/s00109-007-0183-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/06/2007] [Accepted: 02/27/2007] [Indexed: 11/28/2022]
Abstract
Natriuretic peptides (NP) represent a family of structurally homologous but genetically distinct peptide hormones involved in regulation of fluid and electrolyte balance, blood pressure, fat metabolism, cell proliferation, and long bone growth. Recent work suggests a role for natriuretic peptide receptor B (NPR-B) signaling in regulation of cardiac growth by either a direct effect on cardiomyocytes or by modulation of other signaling pathways including the autonomic nervous system. The research links NPR-B for the first time to a cardiac phenotype in vivo and underlines the importance of the NP in the cardiovascular system. This manuscript will focus on the role of NPR-B and its ligand C-type natriuretic peptide in cardiovascular physiology and disease and will evaluate these new findings in the context of the known function of this receptor, with a perspective on how future research might further elucidate NPR-B function.
Collapse
Affiliation(s)
- Ines Pagel-Langenickel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
119
|
Wang Y, de Waard MC, Sterner-Kock A, Stepan H, Schultheiss HP, Duncker DJ, Walther T. Cardiomyocyte-restricted over-expression of C-type natriuretic peptide prevents cardiac hypertrophy induced by myocardial infarction in mice. Eur J Heart Fail 2007; 9:548-57. [PMID: 17407830 DOI: 10.1016/j.ejheart.2007.02.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 01/16/2007] [Accepted: 02/19/2007] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Infused C-type natriuretic peptide (CNP) was recently found to play a cardioprotective role in preventing myocardial ischaemia/reperfusion (I/R) injury and improving cardiac remodelling after myocardial infarction (MI) in rats. Our study aimed to investigate the effect of cardiomyocyte-specific CNP over-expression on I/R injury and MI in transgenic mice. METHODS AND RESULTS We generated transgenic (TG) mice over-expressing CNP in cardiomyocytes. Elevated CNP expression on RNA and protein levels was demonstrated by RNase-protection assay and radioimmunoassay. Male TG mice and age-matched wild-type (WT) littermates were subjected to 1-hour global myocardial ischaemia and 23 h of reperfusion or permanent ligation of the coronary artery for 3 weeks. Infarct size did not differ between the WT and TG groups in mice subjected to I/R. In mice that underwent permanent ligation of coronary arteries, both left and right ventricular hypertrophy were prevented by CNP over-expression 3 weeks post-MI. Histological analysis revealed less necrosis, muscular degeneration and inflammation in infarcted TG mice. Impairment of cardiac function was less pronounced in transgenic animals than in the wild-type controls. CONCLUSIONS Over-expression of CNP in cardiomyocytes does not affect I/R-induced infarct size but prevents cardiac hypertrophy induced by MI. Therefore, CNP may represent a potent therapeutic target for the treatment of patients with cardiac hypertrophy induced by myocardial infarction or other aetiology.
Collapse
Affiliation(s)
- Yong Wang
- Department Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Germany
| | | | | | | | | | | | | |
Collapse
|
120
|
Meyer M, Zhang Q, Khurana K, Scholz PM, Weiss HR. Negative functional effects of natriuretic peptides are attenuated in hypertrophic cardiac myocytes by reduced particulate guanylyl cyclase activity. J Cardiovasc Pharmacol 2007; 49:100-5. [PMID: 17312451 DOI: 10.1097/fjc.0b013e31802e84db] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We tested the hypothesis that the negative functional effects of natriuretic peptides would be blunted in thyroxine (T4)-induced hypertrophic cardiac myocytes. We also studied the causes of these changes. Ventricular myocytes were obtained from control (n=8) and T4 (0.5 mg/kg/16 days) treated rabbit hearts (n=7). Cell shortening parameters were studied with a video edge detector. We also determined particulate (pGC) and soluble (sGC) guanylyl cyclase activity and cyclic GMP levels. Myocyte function was examined at baseline and after brain natriuretic peptide (BNP 10(-7,-6) M) or C-type natriuretic peptide (CNP 10(-7,-6) M) or zaprinast (cyclic GMP phosphodiesterase inhibitor 10(-6)M) followed by BNP or CNP. Baseline function was similar in control and T4 myocytes. BNP (5.7 +/- 0.2 to 4.3 +/- 0.1%) and CNP (5.7 +/- 0.4 to 4.2 +/- 0.2%) significantly reduced percent shortening in control myocytes. These reductions were not observed with T4 (BNP, 5.7 +/- 0.6 to 5.6 +/- 0.6; CNP, 5.6 +/- 0.4 to 5.5 +/- 0.5). BNP and CNP responded similarly after zaprinast. Baseline cyclic GMP was similar in control and T4, but BNP only increased cyclic GMP in controls. The activity of pGC was similar at baseline in control and T4, but the stimulated activity was significantly lower in T4 myocytes. Both basal and stimulated sGC activity were similar in control and hypertrophic myocytes. These results demonstrated that the ability of natriuretic peptides to reduce ventricular myocyte function was blunted in T4 hypertrophic myocytes. This blunted response was related to the reduced ability of natriuretic peptides to increase cyclic GMP levels due to a reduced stimulated particulate guanylyl cyclase activity.
Collapse
Affiliation(s)
- Mark Meyer
- Heart and Brain Circulation Laboratory, Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 088854-8021, USA
| | | | | | | | | |
Collapse
|
121
|
Herrmann M, Taban-Shoma O, Hübner U, Pexa A, Kilter H, Umanskaya N, Straub RH, Böhm M, Herrmann W. Hyperhomocysteinemia and Myocardial Expression of Brain Natriuretic Peptide in Rats. Clin Chem 2007; 53:773-80. [PMID: 17303690 DOI: 10.1373/clinchem.2006.077859] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Hyperhomocysteinemia (HHcy) has been linked to impaired left ventricular function and clinical class in patients with chronic heart failure. We hypothesized that HHcy stimulates myocardial brain natriuretic peptide (BNP) expression and induces adverse left ventricular remodeling.
Methods: We randomized 50 rats into 5 groups. Groups Co1 and Co2 (controls) received a typical diet. Groups Meth, Hcy1, and Hcy2 were fed the same diet supplemented with 2.4% methionine, 1% homocystine, and 2% homocystine, respectively. After 12 weeks, we measured total plasma homocysteine (tHcy) and BNP in plasma and tissue, and we performed histomorphometric analyses.
Results: All animals had comparable baseline body weight [mean (SD) 234 (26) g] and total circulating Hcy [4.7 (1.7) μmol/L]. After 12 weeks of treatment, total circulating Hcy increased in Meth, Hcy1, and Hcy2 [27.3 (8.8), 40.6 (7.0), and 54.0 (46.0) μmol/L, respectively] and remained unchanged in Co1 and Co2. Serum BNP significantly increased in 1 of 10 animals in Meth, 3 of 10 animals in Hcy1, and 3 of 10 animals in Hcy2. Median (25th–75th percentile) BNP tissue concentrations in Hcy1 and Hcy2 were 55% higher than in the corresponding controls [Co1 vs Hcy1, 225 (186–263) vs 338 (262–410) pg/mg protein, P = 0.05; Co2 vs Hcy2, 179 (107–261) vs 308 (192–429) pg/mg protein, P = 0.12]. In the Meth group, BNP expression was comparable to that of controls [200 (159–235) vs 225 (186–263) pg/mg protein, P = 0.32]. The percentage of perivascular and interstitial collagen and mast cell infiltration were comparable in all groups, indicating no adverse cardiac remodeling.
Conclusion: Three months of intermediate HHcy stimulated increased cardiac BNP expression that was not accompanied by adverse cardiac remodeling.
Collapse
Affiliation(s)
- Markus Herrmann
- Department of Clinical Chemistry, University Hospital of Saarland, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Chen LP, Wei TM, Wang LX. Relationship between Pericardial Fluid B-type Natriuretic Peptide and Ventricular Structure and Function. Arch Med Res 2007; 38:326-9. [PMID: 17350484 DOI: 10.1016/j.arcmed.2006.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND We undertook this study to investigate the levels of pericardial B-type natriuretic peptide (BNP) and its relationship with ventricular structure and function. METHODS Pericardial and plasma BNP concentrations were measured in 18 patients with congenital ventricular septal defect. RESULTS The mean level of BNP in the pericardial fluid (324.8+/-137.3 pg/mL) was higher than the plasma (20.8+/-6.1 pg/mL) (p=0.03). Pericardial BNP was correlated with the plasma BNP (r=0.85, p<0.01). A good correlation was also found between the pericardial BNP and left atrial diameter, left ventricular end-diastolic and end-systolic diameter, left ventricular ejection fraction, right ventricular diameter and pulmonary artery systolic pressure (p<0.05). CONCLUSIONS The levels of BNP in pericardial fluid were higher than in the plasma. Similar to plasma BNP, pericardial BNP is also related to the ventricular structure and function.
Collapse
Affiliation(s)
- Li-Ping Chen
- Department of Cardiology, Lishui City Central Hospital, Wenzhou Medical College, Lishui, the People's Republic of China
| | | | | |
Collapse
|
123
|
Bibbins-Domingo K, Gupta R, Na B, Wu AHB, Schiller NB, Whooley MA. N-terminal fragment of the prohormone brain-type natriuretic peptide (NT-proBNP), cardiovascular events, and mortality in patients with stable coronary heart disease. JAMA 2007; 297:169-76. [PMID: 17213400 PMCID: PMC2848442 DOI: 10.1001/jama.297.2.169] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CONTEXT Identification of individuals at high risk for cardiovascular events is important for the optimal use of primary and secondary prevention measures. OBJECTIVE To determine whether plasma levels of amino terminal fragment of the prohormone brain-type natriuretic peptide (NT-proBNP) predict cardiovascular events or death independent of other available prognostic tests. DESIGN, SETTING, AND PARTICIPANTS Prospective cohort study (2000-2002) of 987 individuals in California with stable coronary heart disease in the Heart and Soul Study, who were followed up for a mean of 3.7 (range, 0.1-5.3) years. MAIN OUTCOME MEASURES The association of baseline NT-proBNP levels with death or cardiovascular events (myocardial infarction, stroke, or heart failure). Traditional clinical risk factors, echocardiographic measures, ischemia, other biomarkers, and New York Heart Association classification were adjusted for to determine whether NT-proBNP levels were independent of other prognostic factors. Receiver operating characteristic (ROC) curves were used to assess the incremental prognostic value of adding NT-proBNP level to these other measures. RESULTS A total of 256 participants (26.2%) had a cardiovascular event or died. Each increasing quartile of NT-proBNP level (range of quartile 1, 8.06-73.95 pg/mL; quartile 2, 74-174.5 pg/mL; quartile 3, 175.1-459 pg/mL; quartile 4, > or =460 pg/mL) was associated with a greater risk of cardiovascular events or death, ranging from 23 of 247 (annual event rate, 2.6%) in the lowest quartile to 134 of 246 (annual event rate, 19.6%) in the highest quartile (unadjusted hazard ratio [HR] for quartile 4 vs quartile 1, 7.8; 95% confidence interval [CI], 5.0-12.1; P<.001). Each SD increase in log NT-proBNP level (1.3 pg/mL) was associated with a 2.3-fold increased rate of adverse cardiovascular outcomes (unadjusted HR, 2.3; 95% CI, 2.0-2.6; P<.001), and this association persisted after adjustment for all of the other prognostic measures (adjusted HR, 1.7; 95% CI, 1.3-2.2; P<.001). The addition of NT-proBNP level to standard clinical assessment and complete echocardiographic parameters significantly improved the area under the ROC curves for predicting subsequent adverse cardiovascular outcomes (0.80 for clinical risk factors and echocardiographic parameters plus log NT-proBNP vs 0.76 for clinical risk factors and echocardiographic parameters only; P = .006). CONCLUSIONS Elevated levels of NT-proBNP predict cardiovascular morbidity and mortality, independent of other prognostic markers, and identify at-risk individuals even in the absence of systolic or diastolic dysfunction by echocardiography. Level of NT-proBNP may help guide risk stratification of high-risk individuals, such as those with coronary heart disease.
Collapse
|
124
|
Herrmann M, Müller S, Kindermann I, Günther L, König J, Böhm M, Herrmann W. Plasma B vitamins and their relation to the severity of chronic heart failure. Am J Clin Nutr 2007; 85:117-23. [PMID: 17209186 DOI: 10.1093/ajcn/85.1.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Total homocysteine (tHcy) has been linked to the severity of chronic heart failure (CHF). Elevated tHcy concentrations are mainly caused by folate and vitamin B-12 deficiencies. OBJECTIVE We hypothesized that folate and vitamin B-12 deficiencies can explain the relation between tHcy and the severity of CHF. DESIGN We investigated 987 CHF patients. All subjects underwent a physical examination and blood sampling. Cardiac catheterization was performed in 929 patients and echocardiography in 460 patients. Serum tHcy, folate, vitamin B-12, and N-terminal pro-B-type natriuretic-peptide (NT-proBNP) were measured and renal and hepatic function were studied. RESULTS tHcy increased with increasing New York Heart Association (NYHA) classes of heart failure (P < 0.001) and correlated with the left ventricular ejection fraction (EF; r = -0.150, P < 0.001). Contrary to the hypothesis, vitamin B-12 (P < 0.001) increased with NYHA class (P < 0.001) and was negatively correlated with EF (r = -0.080, P = 0.015). Folate showed no relation with NYHA class or EF. Comparable results were obtained for NT-proBNP (tHcy: r = 0.27, P < 0.001; vitamin B-12: r = 0.091, P = 0.004; folate: r = -0.045, P = 0.169). The correlations between tHcy, EF, and NT-proBNP were significantly stronger in patients without coronary artery disease (CAD) than in those with CAD. Regression analysis showed that tHcy, but not B vitamins, is a strong predictor of EF and NT-proBNP. CONCLUSIONS This study showed that tHcy, but not folate and vitamin B-12, is related to clinical, echocardiographic, and laboratory variables of CHF, which indicates a relation between tHcy and the severity of CHF. This relation is stronger in patients without CAD. The lack of association of folate and the paradoxical relation of vitamin B-12 with CHF can possibly be explained by a disturbance in hepatic homeostasis.
Collapse
Affiliation(s)
- Markus Herrmann
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital of Saarland, Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
125
|
Dimitroulas T, Giannakoulas G, Karvounis H, Sfetsios T, Koliakos G, Parcharidis G, Settas L. Neurohormonal activation in patients with systemic sclerosis-related pulmonary arterial hypertension. Int J Cardiol 2006; 121:135-7. [PMID: 17088004 DOI: 10.1016/j.ijcard.2006.08.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 08/04/2006] [Indexed: 11/17/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease, which may lead to pulmonary artery hypertension (PAH). N-terminal pro-brain natriuretic peptide (NT-proBNP) is a biologic marker for the diagnosis and treatment of congestive heart failure. The aim of our study was to investigate the potential role of the plasma NT-proBNP assay in the assessment of functional status and right heart performance in systemic sclerosis-related pulmonary hypertension (SScPAH). Systolic pulmonary artery pressure (sPAP) assessed by echocardiography, six-minute walk test (SMWT) and plasma NT-proBNP levels were recorded from 45 SSc patients. Mean value of NT-proBNP for SSc patients with PAH (n=14) was 691.7+/-325.7 fmol/L compared to 417.4+/-167.1 fmol/L for patients without PAH (n=31) (p=0.0007). In SSc patients we found a statistically significant correlation between NT-proBNP values and sPAP (r=0.32, p=0.03). Amongst SScPAH patients, NT-proBNP values were significantly correlated with sPAP (r=0.73, p=0.003) and inversely correlated with the SMWT (r=-0.60, p=0.02). These results suggest NT-proBNP as a useful additional biological tool in the evaluation and management of SScPAH patients.
Collapse
|
126
|
Fischmeister R, Castro LRV, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G. Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 2006; 99:816-28. [PMID: 17038651 DOI: 10.1161/01.res.0000246118.98832.04] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A current challenge in cellular signaling is to decipher the complex intracellular spatiotemporal organization that any given cell type has developed to discriminate among different external stimuli acting via a common signaling pathway. This obviously applies to cAMP and cGMP signaling in the heart, where these cyclic nucleotides determine the regulation of cardiac function by many hormones and neuromediators. Recent studies have identified cyclic nucleotide phosphodiesterases as key actors in limiting the spread of cAMP and cGMP, and in shaping and organizing intracellular signaling microdomains. With this new role, phosphodiesterases have been promoted from the rank of a housekeeping attendant to that of an executive officer.
Collapse
Affiliation(s)
- Rodolphe Fischmeister
- INSERM U769, Université Paris-Sud 11, Faculté de Pharmacie, 5, Rue J.-B. Clément, F-92296 Châtenay-Malabry Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
127
|
Rothwell SE, Richards AM, Pemberton CJ. Resistin worsens cardiac ischaemia-reperfusion injury. Biochem Biophys Res Commun 2006; 349:400-7. [PMID: 16934751 DOI: 10.1016/j.bbrc.2006.08.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 08/11/2006] [Indexed: 11/24/2022]
Abstract
We provide the first report of direct effects of resistin upon haemodynamic and neurohumoral parameters in isolated perfused rat heart preparations. Pre-conditioning with 1 nmol L-1 recombinant human resistin prior to ischaemia significantly impaired contractile recovery during reperfusion, compared with vehicle-infused hearts (P<0.05, n=12). This was accompanied by a significant increase in both A-type and B-type natriuretic peptides (P<0.05, n=12 both ANP and BNP vs vehicle), creatine kinase, and tumour necrosis factor-alpha (TNF-alpha) release in resistin-infused hearts. Resistin had no significant effect on myocardial glucose uptake. Co-infusion of resistin with Bay 11 7082 (an NF-kappaB inhibitor) improved contractile recovery following ischaemia and reduced both natriuretic peptide and creatine kinase release. This is the first evidence indicating resistin impairs cardiac recovery following ischaemia, stimulates cardiac TNF-alpha secretion, and modulates reperfusion release of natriuretic peptides and biochemical markers of myocardial damage. A TNF-alpha signalling related mechanism is suggested as one component underlying these effects.
Collapse
Affiliation(s)
- Sarah E Rothwell
- Christchurch CardioEndocrine Research Group, Department of Medicine, Christchurch School of Medicine and Health Sciences, University of Otago, Christchurch, New Zealand.
| | | | | |
Collapse
|
128
|
Moalem J, Davidov T, Zhang Q, Grover GJ, Weiss HR, Scholz PM. Negative inotropic effects of C-type natriuretic peptide are attenuated in hypertrophied ventricular myocytes associated with reduced cyclic GMP production. J Surg Res 2006; 135:38-44. [PMID: 16600302 DOI: 10.1016/j.jss.2006.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 01/05/2006] [Accepted: 01/09/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND We tested the hypothesis that the negative inotropic effects of C-type natriuretic peptide (CNP) would be diminished in renal hypertensive (one-kidney-one-clip, 1K1C) hypertrophic rabbit hearts and that this attenuated effect would be due either to decreased cyclic GMP production or to reduced signaling. MATERIAL AND METHODS Using isolated control and 1K1C ventricular myocytes, cell shortening data (video edge detection) were collected: (1) at baseline and after CNP 10(-8,-7) M, followed by KT5823 (KT), a cyclic GMP-dependent protein kinase inhibitor; or (2) at baseline, following KT pre-treatment and subsequent CNP 10(-8,-7) M. In addition, cyclic GMP levels were determined by radioimmunoassay at baseline and CNP 10(-7) M. RESULTS In control myocytes, CNP decreased percent shortening (5.7 +/- 0.4 versus 4.0 +/- 0.4% at 10(-7) M), maximal rate of shortening (58.7 +/- 5.1 versus 45.2 +/- 3.6 microm/sec) and maximal rate of relaxation (57.1 +/- 4.9 versus 44.1 +/- 3.4 microm/sec) in a concentration-dependent manner. These effects were attenuated by subsequent KT administration. CNP failed to produce these negative functional effects in 1K1C myocytes. When pre-treated with KT, CNP had no negative functional effect in either normal and 1K1C myocytes. Basal levels of cyclic GMP were similar in control versus 1K1C myocytes; however, CNP produced a significant rise in cyclic GMP level in control (63.6 +/- 7.8 versus 83.5 +/- 11.3 pmol/10(5) myocytes) but not in 1K1C (49.2 +/- 2.6 versus 52.7 +/- 5.6) myocytes. CONCLUSIONS Thus, CNP acted through the cyclic GMP protein kinase in control myocytes. We conclude that in hypertrophic cardiac myocytes, the decreased effect of CNP was because of decreased production of cyclic GMP.
Collapse
Affiliation(s)
- Jacob Moalem
- Department of Physiology & Biophysics, Heart and Brain Circulation Laboratory, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
129
|
Katz E, Zhang Q, Weiss HR, Scholz PM. T4-induced cardiac hypertrophy disrupts cyclic GMP mediated responses to brain natriuretic peptide in rabbit myocardium. Peptides 2006; 27:2276-83. [PMID: 16762459 DOI: 10.1016/j.peptides.2006.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/12/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
Brain natriuretic peptide (BNP) affects the regulation of myocardial metabolism through the production of cGMP and these effects may be altered by cardiac hypertrophy. We tested the hypothesis that BNP would cause decreased metabolism and function in the heart and cardiac myocytes by increasing cGMP and that these effects would be disrupted after thyroxine-induced cardiac hypertrophy (T4). Open-chest control and T4 rabbits were instrumented to determine local effects of epicardial BNP (10(-3) M). Function of isolated cardiac myocytes was examined with BNP (10(-8)-10(-7) M) with or without KT5823 (10(-6) M, cGMP protein kinase inhibitor). Cyclic GMP levels were measured in myocytes. In open-chest controls, O2 consumption was reduced in the BNP area of the subepicardium (6.6+/-1.3 ml O2/min/100 g versus 8.9+/-1.4 ml O2/min/100 g) and subendocardium (9.4+/-1.3 versus 11.3+/-0.99). In T4 animals, functional and metabolic rates were higher than controls, but there was no difference between BNP-treated and untreated areas. In isolated control myocytes, BNP (10(-7) M) reduced percent shortening (PSH) from 6.5+/-0.6 to 4.3+/-0.4%. With KT5823 there was no effect of BNP on PSH. In T4 myocytes, BNP had no effect on PSH. In control myocytes, BNP caused cGMP levels to rise from 279+/-8 to 584+/-14 fmol/10(5) cells. In T4 myocytes, baseline cGMP levels were lower (117+/-2 l) and were not significantly increased by BNP. Thus, BNP caused decreased metabolism and function while increasing cGMP in control. These effects were lost after T4 due to lack of cGMP production. These data indicated that the effects of BNP on heart function operated through a cGMP-dependent mechanism, and that this mechanism was disrupted in T4-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Elizabeth Katz
- Heart and Brain Circulation Laboratory, Department of Physiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
| | | | | | | |
Collapse
|
130
|
|
131
|
Del Ry S, Passino C, Emdin M, Giannessi D. C-type natriuretic peptide and heart failure. Pharmacol Res 2006; 54:326-33. [PMID: 16904335 DOI: 10.1016/j.phrs.2006.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/08/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
C-type natriuretic peptide (CNP) is a peptide produced by the vascular endothelium with vasodilative properties. It shares structural and physiological properties with the atrial and brain natriuretic peptides (ANP and BNP), whose central role in the pathophysiology of heart failure (CHF) is firmly established. The role of CNP, first isolated from porcine brain, has not been yet completely determined. The transcription of the gene, that in man is located on chromosome 2, is regulated by factors such as tumor necrosis factor and interleukin-1. Two mature forms of the peptide exist: CNP-53, that predominates in tissues and CNP-22, found mainly in plasma. As recently found, CNP is produced directly in the myocardium and an increase in plasma levels of this peptide and of its precursor was observed in CHF. The aim of this review was to examine the current literature relating to cardiovascular functions of CNP and in particular to its role in CHF. In fact, CNP may represent an important new local autocrine and endocrine mediator in CHF although further evaluations are required to define its full pathophysiological role in this disease.
Collapse
Affiliation(s)
- Silvia Del Ry
- CNR Institute of Clinical Physiology, National Research Council Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | | | | | | |
Collapse
|
132
|
Piggott LA, Hassell KA, Berkova Z, Morris AP, Silberbach M, Rich TC. Natriuretic peptides and nitric oxide stimulate cGMP synthesis in different cellular compartments. J Gen Physiol 2006; 128:3-14. [PMID: 16769793 PMCID: PMC2151547 DOI: 10.1085/jgp.200509403] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 05/23/2006] [Indexed: 11/20/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels are a family of ion channels activated by the binding of cyclic nucleotides. Endogenous channels have been used to measure cyclic nucleotide signals in photoreceptor outer segments and olfactory cilia for decades. Here we have investigated the subcellular localization of cGMP signals by monitoring CNG channel activity in response to agonists that activate either particulate or soluble guanylyl cyclase. CNG channels were heterologously expressed in either human embryonic kidney (HEK)-293 cells that stably overexpress a particulate guanylyl cyclase (HEK-NPRA cells), or cultured vascular smooth muscle cells (VSMCs). Atrial natriuretic peptide (ANP) was used to activate the particulate guanylyl cyclase and the nitric oxide donor S-nitroso-n-acetylpenicillamine (SNAP) was used to activate the soluble guanylyl cyclase. CNG channel activity was monitored by measuring Ca2+ or Mn2+ influx through the channels using the fluorescent dye, fura-2. We found that in HEK-NPRA cells, ANP-induced increases in cGMP levels activated CNG channels in a dose-dependent manner (0.05-10 nM), whereas SNAP (0.01-100 microM) induced increases in cGMP levels triggered little or no activation of CNG channels (P < 0.01). After pretreatment with 100 microM 3-isobutyl-1-methylxanthine (IBMX), a nonspecific phosphodiesterase inhibitor, ANP-induced Mn2+ influx through CNG channels was significantly enhanced, while SNAP-induced Mn2+ influx remained small. In contrast, we found that in the presence of IBMX, both 1 nM ANP and 100 microM SNAP triggered similar increases in total cGMP levels. We next sought to determine if cGMP signals are compartmentalized in VSMCs, which endogenously express particulate and soluble guanylyl cyclase. We found that 10 nM ANP induced activation of CNG channels more readily than 100 muM SNAP; whereas 100 microM SNAP triggered higher levels of total cellular cGMP accumulation. These results suggest that cGMP signals are spatially segregated within cells, and that the functional compartmentalization of cGMP signals may underlie the unique actions of ANP and nitric oxide.
Collapse
Affiliation(s)
- Leslie A Piggott
- Program in Cell and Regulatory Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, 77225, USA
| | | | | | | | | | | |
Collapse
|
133
|
Singh G, Kuc RE, Maguire JJ, Fidock M, Davenport AP. Novel snake venom ligand dendroaspis natriuretic peptide is selective for natriuretic peptide receptor-A in human heart: downregulation of natriuretic peptide receptor-A in heart failure. Circ Res 2006; 99:183-90. [PMID: 16778132 DOI: 10.1161/01.res.0000232322.06633.d3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The natriuretic peptides are considered to be cardioprotective; however, their receptors have not been identified in human myocardium using radiolabeled analogs. Dendroaspis natriuretic peptide (DNP) has been recently identified as a new member of this peptide family and is thought to be less susceptible to enzymatic degradation. Therefore, we have developed the novel radiolabeled analog [125I]-DNP and used this to localize high-affinity (K(D)=0.2 nmol/L), saturable, specific binding sites in adult human heart (n=6) and coronary artery (n=8). In competition binding experiments, atrial natriuretic peptide and brain type natriuretic peptide had greater affinity for [125I]-DNP binding sites than C-type natriuretic peptide and the natriuretic peptide receptor (NPR)-C ligand, cANF. This rank order of potency suggested binding of [125I]-DNP was specific to NPR-A. Messenger RNA encoding NPR-A was identified in left ventricle and coronary artery smooth muscle, and expression was confirmed by immunocytochemical studies at the protein level. In addition, fluorescence dual labeling immunocytochemistry localized NPR-A protein to cardiomyocytes, endocardial endothelial cells, and smooth muscle of intramyocardial vessels. Importantly, we demonstrated a significant downregulation in the density of NPR-A in heart and coronary artery of patients with ischemic heart disease that may explain, in part, the attenuated natriuretic peptide response reported in this patient group.
Collapse
Affiliation(s)
- Gurminder Singh
- Clinical Pharmacology Unit, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | | | | | | | | |
Collapse
|
134
|
Johanson CE, Donahue JE, Spangenberger A, Stopa EG, Duncan JA, Sharma HS. Atrial natriuretic peptide: its putative role in modulating the choroid plexus-CSF system for intracranial pressure regulation. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 96:451-6. [PMID: 16671503 DOI: 10.1007/3-211-30714-1_92] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Evidence continues to build for the role of atrial natriuretic peptide (ANP) in reducing cerebrospinal fluid (CSF) formation rate, and thus, intracranial pressure. ANP binds to choroid plexus (CP) epithelial cells. This generates cGMP, which leads to altered ion transport and the slowing of CSF production. Binding sites for ANP in CP are plentiful and demonstrate plasticity in fluid imbalance disorders; however, specific ANP receptors in epithelial cells need confirmation. Using antibodies directed against NPR-A and NPR-B, we now demonstrate immunostaining not only in the choroidal epithelium (including cytoplasm), but also in the ependyma and some endothelial cells of cerebral microvessels in adult rats (Sprague-Dawley). The choroidal and ependymal cells stained almost universally, thus substantiating the initial autoradiographic binding studies with 125I-ANP. Because ANP titers in human CSF have previously been shown to increase proportionally to increments in ICP, we propose a compensatory ANP modulation of CP function to down-regulate ICP in hydrocephalus. Further evidence for this notion comes from the current finding of increased frequency of "dark" epithelial cells in CP of hydrocephalic (HTx) rats, which fits our earlier observation that the "dark" choroidal cells, associated with states of reduced CSF formation, are increased by elevated ANP in CSF. Altogether, ANP neuroendocrine-like regulation at CSF transport interfaces and blood-brain barrier impacts brain fluid homeostasis.
Collapse
Affiliation(s)
- C E Johanson
- Department of Clinical Neuroscience, Brown Medical School, Rhode Island Hospital, Providence, RI 02903, USA.
| | | | | | | | | | | |
Collapse
|
135
|
Takle H, Baeverfjord G, Helland S, Kjorsvik E, Andersen O. Hyperthermia induced atrial natriuretic peptide expression and deviant heart development in Atlantic salmon Salmo salar embryos. Gen Comp Endocrinol 2006; 147:118-25. [PMID: 16466726 DOI: 10.1016/j.ygcen.2005.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 09/19/2005] [Accepted: 12/13/2005] [Indexed: 11/28/2022]
Abstract
Heart abnormalities are increasingly recognized as a problem in salmon aquaculture. Fish in early life-stages are particularly susceptible to teratogens, including elevated water temperature. Recently, heat-induced mRNA expression of the cardiac hormone atrial natriuretic peptide (ANP), which is known to be involved in modulation of cardiac growth and regulation of cardiac homeostasis, was demonstrated in Atlantic salmon (Salmo salar) embryos by RAP-PCR. The relation between heat sensitive ANP expression and heart abnormalities was explored in two experiments. In an experiment with short-term exposure, salmon eggs were heat shocked at 16 degrees C at eight different embryonic stages from gastrulation till completion of somitogenesis. The RT-PCR results showed that the ANP mRNA expression was down-regulated at the onset of heart formation at the gastrula stage, while the transcription became heat inducible from the fusioning of the heart tube around the 15th-20th somite stage and onwards. This was confirmed by whole-mount in situ hybridization, which also showed that ANP is exclusively expressed in the heart of Atlantic salmon embryos. In a second long-term experiment, salmon embryos were incubated at either 10 degrees C (high temperature) or 8 degrees C (controls) from fertilization till first feeding, and subsequently reared within normal conditions to an average size of 52 g. The long-term hyperthermic embryos showed up-regulated ANP transcription at the approximately 9th and approximately 20th somite stage and at the completion of somitogenesis. The cardiosomatic index [CSI; (ventricle weight/body weight) *100] demonstrated a significant decrease in the relative heart weight of fish incubated at 10 degrees C during the embryogenesis compared with controls. In these fish, aplasia of septum transversum was observed in 2 of 25 fish, resulting in abnormally shaped hearts situated partly within the abdominal cavity. Altogether, our results demonstrate that hyperthermia both induce deviant development of heart and associated structures and up-regulation of ANP transcription during embryogenesis. A possible role of ANP in development of heart malformations is thus suggested.
Collapse
Affiliation(s)
- Harald Takle
- AKVAFORSK, Institute of Aquaculture Research, P.O. Box 5010, N-1432 Aas, Norway.
| | | | | | | | | |
Collapse
|
136
|
Abstract
BACKGROUND Cyclic guanosine monophosphate (cGMP) is the common second messenger for the cardiovascular effects of nitric oxide (NO) and natriuretic peptides, such as atrial or brain natriuretic peptide, which activate the soluble and particulate forms of guanylyl cyclase, respectively. However, natriuretic peptides and NO donors exert different effects on cardiac and vascular smooth muscle function. We therefore tested whether these differences are due to an intracellular compartmentation of cGMP and evaluated the role of phosphodiesterase (PDE) subtypes in this process. METHODS AND RESULTS Subsarcolemmal cGMP signals were monitored in adult rat cardiomyocytes by expression of the rat olfactory cyclic nucleotide-gated (CNG) channel alpha-subunit and recording of the associated cGMP-gated current (ICNG). Atrial natriuretic peptide (10 nmol/L) or brain natriuretic peptide (10 nmol/L) induced a clear activation of ICNG, whereas NO donors (S-nitroso-N-acetyl-penicillamine, diethylamine NONOate, 3-morpholinosydnonimine, and spermine NO, all at 100 micromol/L) had little effect. The ICNG current was strongly potentiated by nonselective PDE inhibition with isobutyl methylxanthine (100 micromol/L) and by the PDE2 inhibitors erythro-9-(2-hydroxy-3-nonyl)adenine (10 micromol/L) and Bay 60-7550 (50 nmol/L). Surprisingly, sildenafil, a PDE5 inhibitor, produced a dose-dependent increase of I(CNG) activated by NO donors but had no effect (at 100 nmol/L) on the current elicited by atrial natriuretic peptide. CONCLUSIONS These results indicate that in rat cardiomyocytes (1) the particulate cGMP pool is readily accessible at the plasma membrane, whereas the soluble pool is not; and (2) PDE5 controls the soluble but not the particulate pool, whereas the latter is under the exclusive control of PDE2. Differential spatiotemporal distributions of cGMP may therefore contribute to the specific effects of natriuretic peptides and NO donors on cardiac function.
Collapse
Affiliation(s)
- Liliana R.V. Castro
- Cardiologie cellulaire et moléculaire
INSERM : U769Université Paris Sud - Paris XIFaculte de Pharmacie
5, Rue Jean-Baptiste Clement
92296 CHATENAY MALABRY CEDEX,FR
- Innovation Thérapeutique : du Fondamental au Médicament
CNRS : IFR141 INSERM : IFR141Université Paris Sud - Paris XIFaculté de Pharmacie
5, Rue J.B. Clément
92296 CHATENAY-MALABRY,FR
- Centro de Investigação em Ciências da Saúde
Universidade da Beira Interior6201-001
Covilhã,PT
| | - Ignacio Verde
- Centro de Investigação em Ciências da Saúde
Universidade da Beira Interior6201-001
Covilhã,PT
| | - Dermot M. Cooper
- Department of Pharmacology
University of CambridgeTennis Court Road, Cambridge
CB2 1PD,FR
| | - Rodolphe Fischmeister
- Cardiologie cellulaire et moléculaire
INSERM : U769Université Paris Sud - Paris XIFaculte de Pharmacie
5, Rue Jean-Baptiste Clement
92296 CHATENAY MALABRY CEDEX,FR
- Innovation Thérapeutique : du Fondamental au Médicament
CNRS : IFR141 INSERM : IFR141Université Paris Sud - Paris XIFaculté de Pharmacie
5, Rue J.B. Clément
92296 CHATENAY-MALABRY,FR
- * Correspondence should be adressed to: Rodolphe Fischmeister
| |
Collapse
|
137
|
Abstract
PURPOSE OF REVIEW The natriuretic peptide (NP) system is primarily an endocrine system that maintains fluid and pressure homeostasis by modulating cardiac and renal function. The physiologic functions of the NP system in healthy humans and in patients with cardiovascular disease are not fully understood. NP levels are elevated in patients with heart failure (HF) and other cardiac diseases; measurement of NPs may be used in the clinical setting to aid diagnosis and prognosis. In addition, synthetic NPs such as nesiritide are available for use in management of patients with acutely decompensated congestive HF. RECENT FINDINGS Not only do NPs modulate volume and pressure homeostasis, but they also exert important anti-proliferative, anti-fibrotic effects in the heart. Thus, NPs may prove useful for prevention of remodeling after myocardial infarction and in advanced HF. BNP is emerging as an important biomarker in patients with HF and other cardiovascular diseases, such as pulmonary hypertension and atherosclerotic vascular disease. Elevated NP levels may serve as an early warning system to help to identify patients at high risk for cardiac events. Recombinant human ANP (carperitide) and BNP (nesiritide) are useful for management of acutely decompensated HF; these drugs are also being investigated for myocardial and renal protection in the setting of cardiac surgery and for prevention of cardiac remodeling. SUMMARY The clinical application of NPs is expanding rapidly. Recent basic science and clinical research findings continue to improve our understanding of the NP system and guide use of ANP and BNP as biomarkers and as therapeutic agents.
Collapse
Affiliation(s)
- Marc A Silver
- Advocate Christ Medical Center, 4440 West 95th Street, Oak Lawn, IL 60453, USA.
| |
Collapse
|
138
|
Yang XM, Philipp S, Downey JM, Cohen MV. Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol 2006; 101:311-8. [PMID: 16604440 DOI: 10.1007/s00395-006-0587-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 01/17/2006] [Indexed: 10/24/2022]
Abstract
We investigated whether atrial natriuretic peptide (ANP) given just prior to reperfusion reduces infarction in rabbit hearts and whether protection is related to activation of protein kinase G (PKG). Isolated rabbit hearts were subjected to a 30-min period of regional ischemia; treated hearts received a 20-min infusion of ANP (0.1 microM) starting 5 min before 2 h of reperfusion. ANP infusion decreased infarction from 31.5+/-2.4% of the risk zone in untreated hearts to 12.5+/-2.0% (P<0.001). To explore mechanisms of protection ischemic hearts were treated simultaneously with ANP and isatin, a blocker of the natriuretic peptide receptor, shortly before reperfusion. ANP's protective effect was aborted (36.8+/-2.9% infarction). There is no acceptable blocker of protein kinase G that can be used in intact organs. However, 8-(4-chlorophenylthio)-guanosine 3', 5'-cyclic monophosphate (10 microM), a cell-permeable cGMP analog that directly activates PKG, was infused from 5 min before to 15 min after reperfusion. The PKG activator mimicked ANP's protection with only 18.2+/-3.6% infarction (P<0.001). 5-Hydroxyde-canoate (5-HD), a putative mitochondrial KATP channel (mKATP) inhibitor, abrogated ANP's protection (34.4+/-2.6% infarction). Unexpectedly, 1H-[1,2,4]oxadiazole- [4,3-a]quinoxalin-1-one (ODQ), a blocker of soluble guanylyl cyclase also prevented ANP's infarct-sparing effect. It is unclear whether this observation implicated participation of soluble guanylyl cyclase in the mechanism or simply a lack of selectivity of ODQ. Finally the reperfusion injury salvage kinases (RISK), phosphatidylinositol 3-kinase and extracellular signal-regulated kinase, were implicated in ANP's mechanism since either wortmannin or PD98059 infused at reperfusion prevented ANP's infarct-sparing effect. ANP administered just prior to reperfusion protects hearts against infarction, likely by activation of PKG, opening of mKATP, and stimulation of downstream kinases.
Collapse
Affiliation(s)
- Xi-Ming Yang
- Department of Physiology, University of South Alabama College of Medicine, MSB 3050, Mobile, AL 36688, USA
| | | | | | | |
Collapse
|
139
|
Alexander SPH, Mathie A, Peters JA. Natriuretic peptide. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
140
|
Christoffersen C, Bartels ED, Nielsen LB. Heart specific up-regulation of genes for B-type and C-type natriuretic peptide receptors in diabetic mice. Eur J Clin Invest 2006; 36:69-75. [PMID: 16436087 DOI: 10.1111/j.1365-2362.2006.01596.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diabetes may cause cardiomyopathy characterized by cardiac fibrosis. Recent studies of genetically modified mice have elucidated a role of the natriuretic peptides (NP), type-A and type-B (ANP and BNP), and their common receptor [natriuretic peptide receptor (NPR), type-A] in development of cardiac fibrosis. The role of NP type-C (CNP) and NPR type-B (NPR-B) in the heart is less well established. In this study we examined if diabetes alters heart expression of the genes encoding the NP and its receptors. MATERIALS AND METHODS Cardiac mRNA was quantified by real-time PCR in diabetic streptozotocin (STZ)-treated and ob/ob-mice and nondiabetic control mice. RESULTS The ob/ob-mice with type-II diabetes displayed highly significant increases of the cardiac mRNA expression of NPR-B and NPR-C while the expression levels of NPR-A, ANP, BNP, and CNP mRNA were similar in ob/ob-mice and controls. Mice with STZ-induced type-I diabetes also showed an increase of heart NPR-B mRNA expression at 12 weeks, but not at 3, 6 or 9 weeks after STZ-treatment. The ANP and NPR-C mRNA expressions were only altered after 3 weeks, whereas BNP, CNP and NPR-A mRNA expressions were not altered in STZ-treated-mouse hearts at any of the time points. CONCLUSIONS The results show that diabetes in mice confers increased NPR-B gene expression in the heart, suggesting that increased NPR-B signalling may affect development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- C Christoffersen
- Department of Biochemistry, Rigshospitalet, University of Copenhagen, Denmark
| | | | | |
Collapse
|
141
|
Schnabel R, Lubos E, Rupprecht HJ, Espinola-Klein C, Bickel C, Lackner KJ, Cambien F, Tiret L, Münzel T, Blankenberg S. B-Type Natriuretic Peptide and the Risk of Cardiovascular Events and Death in Patients With Stable Angina. J Am Coll Cardiol 2006; 47:552-8. [PMID: 16458135 DOI: 10.1016/j.jacc.2005.09.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 09/13/2005] [Accepted: 09/19/2005] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of this study was to assess the predictive value of the cardiac hormone B-type natriuretic peptide (BNP) for long-term outcome in a large cohort of stable angina patients. BACKGROUND Recent data suggest a role of BNP in stable ischemic heart disease beyond its known value in heart failure and acute coronary syndromes. METHODS In 1,085 patients with coronary artery disease (CAD) baseline levels of BNP were prospectively associated with cardiovascular (CV) events during a mean follow-up of 2.5 years. RESULTS BNP concentrations were significantly elevated in patients with future CV events (median [25th/75th interquartile range] 119.2 [43.6/300.4] pg/ml vs. 36.2 [11.3/94.6] pg/ml; p < 0.001). Kaplan-Meier survival analysis showed a stepwise decrease in event-free survival across quartiles of BNP baseline concentration (p(log rank) < 0.001). Patients in the highest quartile revealed a 6.1-fold increased risk (p = 0.001) compared to patients in the lowest quartile after adjustment for potential confounders. For a cut-off value of 100 pg/ml, an independently increased risk of adverse outcome (hazard ratio [HR] 4.4; p < 0.001) could be demonstrated. One standard deviation (SD) decrease in ejection fraction implied the most prominent increase in risk of future CV events (HR 1.69; p < 0.001) followed by one SD increase in BNP (HR 1.53; p < 0.001). The highest prognostic accuracy could be demonstrated for BNP (area under the curve 0.671). CONCLUSIONS The data of this large group of CAD patients provide independent evidence that BNP is a strong predictor of cardiovascular risk in patients with stable angina independent of left ventricular systolic performance and known risk factors.
Collapse
Affiliation(s)
- Renate Schnabel
- Department of Medicine II, Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Hofmann F, Feil R, Kleppisch T, Schlossmann J. Function of cGMP-Dependent Protein Kinases as Revealed by Gene Deletion. Physiol Rev 2006; 86:1-23. [PMID: 16371594 DOI: 10.1152/physrev.00015.2005] [Citation(s) in RCA: 327] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past few years, a wealth of biochemical and functional data have been gathered on mammalian cGMP-dependent protein kinases (cGKs). In mammals, three different kinases are encoded by two genes. Mutant and chimeric cGK proteins generated by molecular biology techniques yielded important biochemical knowledge, such as the function of the NH2-terminal domains of cGKI and cGKII, the identity of the cGMP-binding sites of cGKI, and the substrate specificity of the enzymes. Genetic approaches have proven especially useful for the analysis of the biological functions of cGKs. Recently, some of the in vivo targets and mechanisms leading to changes in neuronal adaptation, smooth muscle relaxation and growth, intestinal water secretion, bone growth, renin secretion, and other important functions have been identified. These data show that cGKs are signaling molecules involved in many biological functions.
Collapse
Affiliation(s)
- F Hofmann
- Institut für Pharmakologie und Toxicologie, Technische Universität München, Biedersteiner Strasse 29, D-80802 Munich, Germany.
| | | | | | | |
Collapse
|
143
|
|
144
|
Krylova MI. Immunocytochemical localization of atrial natriuretic peptide in mast cells of adult brown frog Rana temporaria. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2006; 406:79-81. [PMID: 16572820 DOI: 10.1134/s0012496606010224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- M I Krylova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg, 194064 Russia
| |
Collapse
|
145
|
Moalem J, Davidov T, Katz E, Scholz PM, Weiss HR. Atrial natriuretic peptide reverses the negative functional effects of stunning in rabbit myocardium. ACTA ACUST UNITED AC 2005; 132:47-52. [PMID: 16223535 DOI: 10.1016/j.regpep.2005.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
We tested the hypothesis that atrial natriuretic peptide (ANP) would decrease both the effects of myocardial stunning and oxygen consumption in rabbit hearts. In two groups of anesthetized open-chest rabbits, myocardial stunning was produced by two 15 min occlusions of the left anterior descending (LAD) artery separated by 15 min of reperfusion. Either ANP (0.2 mg) or vehicle (lactated Ringers) was then injected into the affected area of the left ventricle. In a third group, ANP was injected into the LAD region of non-stunned rabbits. Hemodynamic (heart rate, aortic and left ventricular pressures) and functional (wall thickening (WT), delay of onset of WT, and rate of WT) parameters were measured. Coronary blood flow (microspheres) and O2 extraction (microspectrophotometry) were used to determine myocardial O2 consumption. Stunning was demonstrated by an increase in the time delay to contraction and depressed WT. In the control group, baseline delay to contraction was 25+/-7 ms, and this increased to 84+/-16 following stunning and vehicle administration. In the ANP group, baseline delay was 20+/-6 at baseline and after stunning and ANP administration it was 30+/-7. Wall thickening decreased by approximately 30% with stunning and vehicle but only 8% in the ANP treated hearts. Stunning did not affect regional O2 consumption (6.0+/-1.1 stunned vs. 7.4+/-1.2 mlO2/min/100g non-stunned). ANP administration did not affect O2 consumption (7.3+/-1.7 stunned vs. 6.4+/-1.0 non-stunned). We therefore concluded that ANP administration reversed the effects of stunning without alteration in local O2 consumption in stunned myocardium.
Collapse
Affiliation(s)
- Jacob Moalem
- Heart and Brain Circulation Laboratory, Department of Surgery, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
146
|
Saranteas T, Zotos N, Chantzi C, Mourouzis C, Rallis G, Anagnostopoulou S, Tesseromatis C. Ketamine-induced changes in metabolic and endocrine parameters of normal and 2-kidney 1-clip rats. Eur J Anaesthesiol 2005; 22:875-8. [PMID: 16225725 DOI: 10.1017/s0265021505001481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to investigate the effect of ketamine on the endocrine and lipid metabolic status of the renal-banded animals. METHODS Forty male rats were randomly divided into four groups. Group A served as control, Group B animals received ketamine intraperitoneally at a dose of 100 mg kg(-1), Group C was submitted to 2-kidney 1-clip experimental hypertension and Group D received ketamine as above, as well as being submitted to renal artery clipping. Atrial natriuretic peptide, angiotensin II and free fatty acid concentrations were measured in serum. In addition, adipose tissue lipoprotein lipase activity and angiotensin II content were determined, while the left ventricular weight relative to body weight was used as a cardiac hypertrophy index. RESULTS In renal-banded rats (Groups C and D) serum atrial natriuretic peptide, free fatty acid and angiotensin II concentrations as well as ventricular weight were increased, while adipose tissue lipoprotein lipase activity was lower than in control animals (Groups A and B). Ketamine administration did not influence angiotensin II concentrations either in normal (Group B) or banded rats (Group D). Ketamine increased serum atrial natriuretic peptide and free fatty acid concentrations only in normal animals (Group B). It had no influence on adipose tissue lipoprotein lipase activity either in normal (Group B) or banded animals (Group D). Adipose angiotensin II content did not differ between the four groups. CONCLUSION Ketamine increased the atrial natriuretic peptide and free fatty acid concentration in normal rats. In 2-kidney 1-clip animals, ketamine did not elicit an additional response of serum atrial natriuretic peptide or free fatty acids levels. Its contribution to these factors was not significant.
Collapse
Affiliation(s)
- T Saranteas
- University of Athens, Medical School, Department of Pharmacology, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
147
|
Schillinger KJ, Tsai SY, Taffet GE, Reddy AK, Marian AJ, Entman ML, Oka K, Chan L, O'Malley BW. Regulatable atrial natriuretic peptide gene therapy for hypertension. Proc Natl Acad Sci U S A 2005; 102:13789-94. [PMID: 16162668 PMCID: PMC1236585 DOI: 10.1073/pnas.0506807102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypertension (HTN) is a disease that begins with dysfunctional renal-sodium excretion and progresses to a syndrome of highly elevated systolic, diastolic, and mean arterial pressures. Inadequacies in the therapy of HTN have led to the investigation of the gene therapy of this disease by using systemic overproduction of vasodilatory peptides, such as atrial natriuretic peptide (ANP). However, gene-therapy approaches to HTN using ANP are limited by the need for long-term ANP gene expression and, most important, control of ANP gene expression. Here, we introduce a helper-dependent adenoviral vector carrying the mifepristone (Mfp)-inducible gene-regulatory system to control in vivo ANP expression. In the BPH/2 mouse model of HTN, Mfp-inducible ANP expression was seen for a period of >120 days after administration of vector. Physiological effects of ANP, including decreased systolic blood pressure, increased urinary cGMP output, and decreases in heart weight as a percentage of body weight were also under the control of Mfp. Given these capabilities, this vector represents a paradigm for the gene therapy of HTN.
Collapse
Affiliation(s)
- Kurt J Schillinger
- Department of Molecular and Cellular Biology, Section of Cardiovascular Sciences and Cardiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Woodard GE, Li X, Brown J, Rosado JA. Receptor subtypes for vasonatrin peptide in renal glomeruli and arteries. ACTA ACUST UNITED AC 2005; 129:183-9. [PMID: 15927715 DOI: 10.1016/j.regpep.2005.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Vasonatrin peptide (VNP) is a synthetic new member of the natriuretic peptide family. VNP is a chimera of CNP and ANP, which possesses the 22-amino acid ringed structure of CNP and the COOH terminus of ANP. VNP shares properties with ANP and CNP but also shows functional characteristics distinct from those induced by the original natriuretic peptides. This study investigates VNP binding to specific sites in the kidney and femoral artery, in order to clarify the nature of the receptors through which VNP exerts its effects. Using autoradiographic techniques we have found that VNP binds to renal and arterial tissue sections. VNP binding was displaced by incubation in the presence of 1 microM ANP(1-28), CNP(1-22) and C-ANP, which suggests that VNP mostly binds to NPR-C. Cross-linking studies performed in rat glomerular membranes confirmed that VNP mainly binds to the 67 kDa-NPR-C-like protein and also to NPR-A. Consistent with this, our results indicate that VNP inhibits cAMP synthesis stimulated by the physiological agonist histamine in a concentration-dependent manner, without having any effect on basal cAMP production. Finally, we have found that VNP increases cGMP production in rat renal glomeruli, suggesting that this peptide functionally binds to NPR-A.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (Building 10, Rm 8C-208), 10 Center Drive, MSC 1752 Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
149
|
Zhang Q, Moalem J, Tse J, Scholz PM, Weiss HR. Effects of natriuretic peptides on ventricular myocyte contraction and role of cyclic GMP signaling. Eur J Pharmacol 2005; 510:209-15. [PMID: 15763244 DOI: 10.1016/j.ejphar.2005.01.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 01/14/2005] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
Natriuretic peptides, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) act through different receptors and at different potencies to affect cardiac myocyte function. We tested the hypothesis that these three peptides would differentially reduce cardiomyocyte function through their effects on the cyclic GMP signaling pathway. Rabbit ventricular myocytes were isolated and stimulated by electrical field stimulation. Cell function was measured using a video edge detector. ANP BNP or CNP at 10(-9), 10(-8), 10(-7) M were added to the myocytes. Intracellular cyclic GMP was determined using a radioimmunoassay in the absence or presence of ANP, BNP or CNP. All natriuretic peptides decreased myocyte contractility in a similar concentration dependent manner. Myocyte percentage shortening was significantly decreased with all peptides at 10(-7) M compared with baseline (ANP from 5.4+/-0.4 to 3.9+/-0.2%; BNP from 5.0+/-0.2 to 3.5+/-0.1%; CNP from 5.6+/-0.3 to 4.0+/-0.3%). Maximum rate of shortening and relaxation were also decreased similarly and significantly. Intracellular cyclic GMP was significantly increased in myocytes treated with ANP, BNP or CNP (Baseline 1.0+/-0.2, ANP 2.1+/-0.2, BNP 2.3+/-0.3, CNP 2.0+/-0.2 pmol/10(5) myocytes). Furthermore, inhibition of the cyclic GMP protein kinase with KT5823 caused a reversal in the functional effects of CNP. We concluded that all natriuretic peptides had similar negative effects on ventricular myocyte function and their effects were accompanied by increased cyclic GMP. Blockade the effect of CNP by a cyclic GMP protein kinase inhibitor demonstrated that effects were mediated through the cyclic GMP signaling pathway.
Collapse
Affiliation(s)
- Qihang Zhang
- Heart and Brain Circulation Laboratory, Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, Piscataway, NJ 08854-5635, USA
| | | | | | | | | |
Collapse
|
150
|
Lee MC, Hu HC, Huang SC. Natriuretic peptides cause relaxation of human and guinea-pig gallbladder muscle through interaction with natriuretic peptide receptor-B. ACTA ACUST UNITED AC 2005; 129:31-6. [PMID: 15927695 DOI: 10.1016/j.regpep.2005.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 01/07/2005] [Indexed: 01/16/2023]
Abstract
Atrial natriuretic peptide (ANP) binding sites have been demonstrated in the guinea-pig gallbladder muscle with unclear function. To investigate effects of natriuretic peptides in the gallbladder, we measured relaxation of isolated human and guinea-pig gallbladder strips caused by natriuretic peptides, including C-type natriuretic peptide (CNP), brain natriuretic peptide (BNP) and ANP, as well as des[Gln18, Ser19, Gly20, Leu21, Gly22]ANP(4-23) amide (cANP(4-23)), a selective natriuretic peptide receptor-C (NPR-C) agonist. Results in the human gallbladder were similar to those in the guinea-pig gallbladder. CNP, BNP, ANP and cANP(4-23) alone did not cause contraction or relaxation in resting gallbladder strips. However, in carbachol or endothelin-1-contracted strips, CNP caused moderate, sustained and concentration-dependent relaxation. The relaxation was not affected by tetrodotoxin or atropine in endothelin-1-contracted gallbladder strips and not by tetrodotoxin in carbachol-contracted strips. These indicate a direct effect of CNP on the gallbladder muscle. The relative potencies for natriuretic peptides to cause relaxation were CNP>>BNP> or = ANP. cANP(4-23) did not cause relaxation. These indicate the existence of the natriuretic peptide receptor-B (NPR-B) mediating the relaxation. Taken together, these results demonstrate that natriuretic peptides cause relaxation of human and guinea-pig gallbladder muscle through interaction with the natriuretic peptide receptor-B.
Collapse
Affiliation(s)
- Ming-Che Lee
- Department of Surgery and Graduate Institute of Medicine, Taiwan
| | | | | |
Collapse
|