101
|
The emerging role of in vitro electrophysiological methods in CNS safety pharmacology. J Pharmacol Toxicol Methods 2016; 81:47-59. [DOI: 10.1016/j.vascn.2016.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 01/16/2023]
|
102
|
Yang F, Jiang X, Li J, Wang Y, Liu Y, Bi M, Wu C, Zhao Q, Chen W, Yin J, Zhang J, Xie Y, Hu T, Xu M, Guo S, Wang Z, He Y, Shen J. Synthesis, structure–activity relationships, and biological evaluation of a series of benzamides as potential multireceptor antipsychotics. Bioorg Med Chem Lett 2016; 26:3141-3147. [DOI: 10.1016/j.bmcl.2016.04.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
103
|
Zhang Y, Colenso CK, El Harchi A, Cheng H, Witchel HJ, Dempsey CE, Hancox JC. Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico docking. Biochem Pharmacol 2016; 113:24-35. [PMID: 27256139 PMCID: PMC4959829 DOI: 10.1016/j.bcp.2016.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/27/2016] [Indexed: 02/04/2023]
Abstract
The antiarrhythmic drug amiodarone delays cardiac repolarisation through inhibition of hERG-encoded potassium channels responsible for the rapid delayed rectifier potassium current (IKr). This study aimed to elucidate molecular determinants of amiodarone binding to the hERG channel. Whole-cell patch-clamp recordings were made at 37 °C of ionic current (IhERG) carried by wild-type (WT) or mutant hERG channels expressed in HEK293 cells. Alanine mutagenesis and ligand docking were used to investigate the roles of pore cavity amino-acid residues in amiodarone binding. Amiodarone inhibited WT outward IhERG tails with a half-maximal inhibitory concentration (IC50) of ∼45 nM, whilst inward IhERG tails in a high K+ external solution ([K+]e) of 94 mM were blocked with an IC50 of 117.8 nM. Amiodarone’s inhibitory action was contingent upon channel gating. Alanine-mutagenesis identified multiple residues directly or indirectly involved in amiodarone binding. The IC50 for the S6 aromatic Y652A mutation was increased to ∼20-fold that of WT IhERG, similar to the pore helical mutant S624A (∼22-fold WT control). The IC50 for F656A mutant IhERG was ∼17-fold its corresponding WT control. Computational docking using a MthK-based hERG model differentiated residues likely to interact directly with drug and those whose Ala mutation may affect drug block allosterically. The requirements for amiodarone block of aromatic residues F656 and Y652 within the hERG pore cavity are smaller than for other high affinity IhERG inhibitors, with relative importance to amiodarone binding of the residues investigated being S624A ∼ Y652A > F656A > V659A > G648A > T623A.
Collapse
Affiliation(s)
- Yihong Zhang
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Charlotte K Colenso
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Aziza El Harchi
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Hongwei Cheng
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Harry J Witchel
- Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9PX, UK
| | - Chris E Dempsey
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Jules C Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
104
|
Abstract
Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Robert S Kass
- Department of Pharmacology, College of Physicians & Surgeons of Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
105
|
Miles TJ, Hennessy AJ, Bax B, Brooks G, Brown BS, Brown P, Cailleau N, Chen D, Dabbs S, Davies DT, Esken JM, Giordano I, Hoover JL, Jones GE, Kusalakumari Sukmar SK, Markwell RE, Minthorn EA, Rittenhouse S, Gwynn MN, Pearson ND. Novel tricyclics (e.g., GSK945237) as potent inhibitors of bacterial type IIA topoisomerases. Bioorg Med Chem Lett 2016; 26:2464-2469. [PMID: 27055939 DOI: 10.1016/j.bmcl.2016.03.106] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 01/06/2023]
Abstract
During the course of our research on the lead optimisation of the NBTI (Novel Bacterial Type II Topoisomerase Inhibitors) class of antibacterials, we discovered a series of tricyclic compounds that showed good Gram-positive and Gram-negative potency. Herein we will discuss the various subunits that were investigated in this series and report advanced studies on compound 1 (GSK945237) which demonstrates good PK and in vivo efficacy properties.
Collapse
Affiliation(s)
- Timothy J Miles
- Diseases of the Developing World CEDD, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid, Spain.
| | - Alan J Hennessy
- Infectious Diseases CEDD, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Ben Bax
- Platform Technology & Science, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Gerald Brooks
- Infectious Diseases CEDD, GlaxoSmithKline, Third Avenue, Harlow CM19 5AW, UK
| | - Barry S Brown
- Infectious Diseases CEDD, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Pamela Brown
- Infectious Diseases CEDD, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Nathalie Cailleau
- Infectious Diseases CEDD, GlaxoSmithKline, Third Avenue, Harlow CM19 5AW, UK
| | - Dongzhao Chen
- Infectious Diseases CEDD, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Steven Dabbs
- Infectious Diseases CEDD, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - David T Davies
- Infectious Diseases CEDD, GlaxoSmithKline, Third Avenue, Harlow CM19 5AW, UK
| | - Joel M Esken
- Infectious Diseases CEDD, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Ilaria Giordano
- Diseases of the Developing World CEDD, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid, Spain
| | - Jennifer L Hoover
- Infectious Diseases CEDD, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Graham E Jones
- Infectious Diseases CEDD, GlaxoSmithKline, Third Avenue, Harlow CM19 5AW, UK
| | | | - Roger E Markwell
- Infectious Diseases CEDD, GlaxoSmithKline, Third Avenue, Harlow CM19 5AW, UK
| | - Elisabeth A Minthorn
- Oncology TA, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Steve Rittenhouse
- Infectious Diseases CEDD, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Michael N Gwynn
- Infectious Diseases CEDD, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Neil D Pearson
- Infectious Diseases CEDD, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| |
Collapse
|
106
|
Yang JE, Song MS, Shen Y, Ryu PD, Lee SY. The Role of KV7.3 in Regulating Osteoblast Maturation and Mineralization. Int J Mol Sci 2016; 17:407. [PMID: 26999128 PMCID: PMC4813262 DOI: 10.3390/ijms17030407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/02/2016] [Accepted: 03/10/2016] [Indexed: 11/19/2022] Open
Abstract
KCNQ (KV7) channels are voltage-gated potassium (KV) channels, and the function of KV7 channels in muscles, neurons, and sensory cells is well established. We confirmed that overall blockade of KV channels with tetraethylammonium augmented the mineralization of bone-marrow-derived human mesenchymal stem cells during osteogenic differentiation, and we determined that KV7.3 was expressed in MG-63 and Saos-2 cells at the mRNA and protein levels. In addition, functional KV7 currents were detected in MG-63 cells. Inhibition of KV7.3 by linopirdine or XE991 increased the matrix mineralization during osteoblast differentiation. This was confirmed by alkaline phosphatase, osteocalcin, and osterix in MG-63 cells, whereas the expression of Runx2 showed no significant change. The extracellular glutamate secreted by osteoblasts was also measured to investigate its effect on MG-63 osteoblast differentiation. Blockade of KV7.3 promoted the release of glutamate via the phosphorylation of extracellular signal-regulated kinase 1/2-mediated upregulation of synapsin, and induced the deposition of type 1 collagen. However, activation of KV7.3 by flupirtine did not produce notable changes in matrix mineralization during osteoblast differentiation. These results suggest that KV7.3 could be a novel regulator in osteoblast differentiation.
Collapse
Affiliation(s)
- Ji Eun Yang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | - Min Seok Song
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | - Yiming Shen
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
107
|
Wiśniowska B, Tylutki Z, Wyszogrodzka G, Polak S. Drug-drug interactions and QT prolongation as a commonly assessed cardiac effect - comprehensive overview of clinical trials. BMC Pharmacol Toxicol 2016; 17:12. [PMID: 26960809 PMCID: PMC4785617 DOI: 10.1186/s40360-016-0053-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/15/2016] [Indexed: 01/10/2023] Open
Abstract
Background Proarrhythmia assessment is one of the major concerns for regulatory bodies and pharmaceutical industry. ICH guidelines recommending preclinical tests have been established in attempt to eliminate the risk of drug-induced arrhythmias. However, in the clinic, arrhythmia occurrence is determined not only by the inherent property of a drug to block ion currents and disturb electrophysiological activity of cardiac myocytes, but also by many other factors modifying individual risk of QT prolongation and subsequent proarrhythmia propensity. One of those is drug-drug interactions. Since polypharmacy is a common practice in clinical settings, it can be anticipated that there is a relatively high risk that the patient will receive at least two drugs mutually modifying their proarrhythmic potential and resulting either in triggering the occurrence or mitigating the clinical symptoms. The mechanism can be observed either directly at the pharmacodynamic level by competing for the molecular targets, or indirectly by modifying the physiological parameters, or at the pharmacokinetic level by alteration of the active concentration of the victim drug. Methods This publication provides an overview of published clinical studies on pharmacokinetic and/or pharmacodynamic drug-drug interactions in humans and their electrophysiological consequences (QT interval modification). Databases of PubMed and Scopus were searched and combinations of the following keywords were used for Title, Abstract and Keywords fields: interaction, coadministration, combination, DDI and electrocardiographic, QTc interval, ECG. Only human studies were included. Over 4500 publications were retrieved and underwent preliminary assessment to identify papers accordant with the topic of this review. 76 papers reporting results for 96 drug combinations were found and analyzed. Results The results show the tremendous variability of drug-drug interaction effects, which makes one aware of complexity of the problem, and suggests the need for assessment of an additional risk factors and careful ECG monitoring before administration of drugs with anticipated QT prolongation. Conclusions DDIs can play significant roles in drugs’ cardiac safety, as evidenced by the provided examples. Assessment of the pharmacodynamic effects of the drug interactions is more challenging as compared to the pharmacokinetic due to the significant diversity in the endpoints which should be analyzed specifically for various clinical effects. Nevertheless, PD components of DDIs should be accounted for as PK changes alone do not allow to fully explain the electrophysiological effects in clinic situations. Electronic supplementary material The online version of this article (doi:10.1186/s40360-016-0053-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Krakow, Poland.
| | - Zofia Tylutki
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Krakow, Poland
| | - Gabriela Wyszogrodzka
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9 Street, 30-688, Kraków, Poland
| | - Sebastian Polak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Krakow, Poland. .,Simcyp Ltd. (part of Certara), Blades Enterprise Centre, S2 4SU, Sheffield, UK.
| |
Collapse
|
108
|
Bains W. Low potency toxins reveal dense interaction networks in metabolism. BMC SYSTEMS BIOLOGY 2016; 10:19. [PMID: 26897366 PMCID: PMC4761184 DOI: 10.1186/s12918-016-0262-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/29/2016] [Indexed: 11/13/2022]
Abstract
BACKGROUND The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. RESULTS Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. CONCLUSIONS The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved.
Collapse
Affiliation(s)
- William Bains
- Earth, Atmospheric and Planetary Sciences Department, MIT, 77 Mass Avenue, Cambridge, MA, 02139, USA.
- Rufus Scientific Ltd., 37 The Moor, Melbourn, Royston, Herts, SG8 6ED, UK.
| |
Collapse
|
109
|
Champeroux P, Le Guennec JY, Jude S, Laigot C, Maurin A, Sola ML, Fowler JSL, Richard S, Thireau J. The high frequency relationship: implications for torsadogenic hERG blockers. Br J Pharmacol 2016; 173:601-12. [PMID: 26589499 DOI: 10.1111/bph.13391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 11/11/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Ventricular arrhythmias induced by human ether-a-go-go related gene (hERG; Kv 11.1 channel) blockers are a consequence of alterations in ventricular repolarisation in association with high-frequency (HF) oscillations, which act as a primary trigger; the autonomic nervous system plays a modulatory role. In the present study, we investigated the role of β1 -adrenoceptors in the HF relationship between magnitude of heart rate and QT interval changes within discrete 10 s intervals (sorted into 5 bpm heart rate increments) and its implications for torsadogenic hERG blockers. EXPERIMENTAL APPROACH The HF relationship was studied under conditions of autonomic blockade with atenolol (β1 -adrenoceptor blocker) in the absence or presence of five hERG blockers in beagle dogs. In total, the effects of 14 hERG blockers on the HF relationship were investigated. KEY RESULTS All the torsadogenic hERG blockers tested caused a vertical shift in the HF relationship, while hERG blockers associated with a low risk of Torsades de Pointes did not cause any vertical shift. Atenolol completely prevented the effects four torsadogenic agents (quinidine, thioridazine, risperidone and terfenadine) on the HF relationship, but only partially reduced those of dofetilide, leading to the characterization of two types of torsadogenic agent. CONCLUSIONS AND IMPLICATIONS Analysis of the vertical shift in the HF relationship demonstrated that signs of transient sympathetic activation during HF oscillations in the presence of torsadogenic hERG blockers are mediated by β1 -adrenoceptors. We suggest the HF relationship as a new biomarker for assessing Torsades de pointes liability, with potential implications in both preclinical studies and the clinic.
Collapse
Affiliation(s)
- P Champeroux
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - J Y Le Guennec
- Laboratoire PHYMEDEXP, Physiologie et Médecine Expérimentale, Cœur et Muscles, INSERM U1046, CNRS UMR 9214, Université de Montpellier, CHU Arnaud de Villeneuve, 371 Avenue du doyen G. Giraud, 34295, Montpellier cedex 05, France
| | - S Jude
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - C Laigot
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - A Maurin
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - M L Sola
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - J S L Fowler
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - S Richard
- Centre de Recherches Biologiques, CERB, Chemin de Montifault, 18800, Baugy, France
| | - J Thireau
- Laboratoire PHYMEDEXP, Physiologie et Médecine Expérimentale, Cœur et Muscles, INSERM U1046, CNRS UMR 9214, Université de Montpellier, CHU Arnaud de Villeneuve, 371 Avenue du doyen G. Giraud, 34295, Montpellier cedex 05, France
| |
Collapse
|
110
|
Liu Z, Zhou Y, Du L, Li M. Novel intramolecular photoinduced electron transfer-based probe for the Human Ether-a-go-go-Related Gene (hERG) potassium channel. Analyst 2015; 140:8101-8. [PMID: 26526230 PMCID: PMC4658274 DOI: 10.1039/c5an01974e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug induced long QT syndrome is a high risk event in clinic, which mainly results from their high affinity to the Human Ether-a-go-go-Related Gene (hERG) potassium channel. Therefore, evaluation of the drug's inhibitory activity against the hERG potassium channel is a required step in drug discovery and development. In this study, we developed a series of novel conformation-mediated intramolecular photoinduced electron transfer fluorogenic probes for the hERG potassium channel. After careful evaluation, probes N4 and N6 showed good activity and may have a promising application in the cell-based hERG potassium channel inhibitory activity assay, as well as potential hERG-associated cardiotoxicity evaluation. Compared with other assay methods, such as patch clamp assay, radio-ligand competitive binding assay, fluorescence polarization and potential-sensitive fluorescent probes, this method is convenient and can also selectively measure the inhibitory activity in the native state of the hERG potassium channel. Meanwhile, these probes can also be used for hERG potassium channel imaging without complex washing steps.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | - Yubin Zhou
- Institute of Biosciences & Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
111
|
Carrió P, Sanz F, Pastor M. Toward a unifying strategy for the structure-based prediction of toxicological endpoints. Arch Toxicol 2015; 90:2445-60. [PMID: 26553148 DOI: 10.1007/s00204-015-1618-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023]
Abstract
Most computational methods used for the prediction of toxicity endpoints are based on the assumption that similar compounds have similar biological properties. This principle can be exploited using computational methods like read across or quantitative structure-activity relationships. However, there is no general agreement about which method is the most appropriate for quantifying compound similarity neither for exploiting the similarity principle in order to obtain reliable estimations of the compound properties. Moreover, optimal similarity metrics and modeling methods might depend on the characteristics of the endpoints and training series used in each case. This study describes a comparative analysis of the predictive performance of diverse similarity metrics and modeling methods in toxicological applications. A collection of two quantitative (n = 660, n = 1114) and three qualitative (n = 447, n = 905, n = 1220) datasets representing very different endpoints of interest in drug safety evaluation and rigorous methods were used to estimate the external predictive ability in each case. The results confirm that no single approach produces the best results in all instances, and the best predictions were obtained using different tools in different situations. The trends observed in this study were exploited to propose a unifying strategy allowing the use of the most suitable method for every compound. A comparison of the quality of the predictions obtained by the unifying strategy with those obtained by standard prediction methods confirmed the usefulness of the proposed approach.
Collapse
Affiliation(s)
- Pau Carrió
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ferran Sanz
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Manuel Pastor
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
112
|
Regulation of the human ether-a-go-go-related gene (hERG) potassium channel by Nedd4 family interacting proteins (Ndfips). Biochem J 2015; 472:71-82. [DOI: 10.1042/bj20141282] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 09/10/2015] [Indexed: 01/01/2023]
Abstract
The human ether-a-go-go-related gene (hERG)-encoded K+ channel is critical for cardiac repolarization. In the present study, we demonstrate that the E3 ubiquitin (Ub) ligase neural precursor cell expressed developmentally down-regulated protein 4-2 (Nedd4-2) is directed to specific cellular compartments by Nedd4 family-interacting proteins (Ndfips) to selectively target the mature hERG channels for degradation.
Collapse
|
113
|
A Computer Simulation Study of Anatomy Induced Drift of Spiral Waves in the Human Atrium. BIOMED RESEARCH INTERNATIONAL 2015; 2015:731386. [PMID: 26587545 PMCID: PMC4637448 DOI: 10.1155/2015/731386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/09/2014] [Indexed: 12/03/2022]
Abstract
The interaction of spiral waves of excitation with atrial anatomy remains unclear. This simulation study isolates the role of atrial anatomical structures on spiral wave spontaneous drift in the human atrium. We implemented realistic and idealised 3D human atria models to investigate the functional impact of anatomical structures on the long-term (∼40 s) behaviour of spiral waves. The drift of a spiral wave was quantified by tracing its tip trajectory, which was correlated to atrial anatomical features. The interaction of spiral waves with the following idealised geometries was investigated: (a) a wedge-like structure with a continuously varying atrial wall thickness; (b) a ridge-like structure with a sudden change in atrial wall thickness; (c) multiple bridge-like structures consisting of a bridge connected to the atrial wall. Spiral waves drifted from thicker to thinner regions and along ridge-like structures. Breakthrough patterns caused by pectinate muscles (PM) bridges were also observed, albeit infrequently. Apparent anchoring close to PM-atrial wall junctions was observed. These observations were similar in both the realistic and the idealised models. We conclude that spatially altering atrial wall thickness is a significant cause of drift of spiral waves. PM bridges cause breakthrough patterns and induce transient anchoring of spiral waves.
Collapse
|
114
|
Vijayvergiya V, Acharya S, Poulos J, Schmidt J. Single channel and ensemble hERG conductance measured in droplet bilayers. Biomed Microdevices 2015; 17:12. [PMID: 25653065 DOI: 10.1007/s10544-014-9919-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The human ether-a-go-go related gene (hERG) encodes the potassium channel Kv11.1, which plays a key role in the cardiac action potential and has been implicated in cardiac disorders as well as a number of off-target pharmaceutical interactions. The electrophysiology of this channel has been predominantly studied using patch clamp, but lipid bilayers have the potential to offer some advantages, including apparatus simplicity, ease of use, and the ability to control the membrane and solution compositions. We made membrane preparations from hERG-expressing cells and measured them using droplet bilayers, allowing measurement of channel ensemble currents and 13.5 pS single channel currents. These currents were ion selective and were blockable by E-4031 and dofetilide in a dose-dependent manner, allowing determination of IC50 values of 17 nM and 9.65 μM for E-4031 and dofetilide, respectively. We also observed time- and voltage- dependent currents following step changes in applied potential that were similar to previously reported patch clamp measurements.
Collapse
Affiliation(s)
- Viksita Vijayvergiya
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | | | | |
Collapse
|
115
|
Gualdani R, Tadini-Buoninsegni F, Roselli M, Defrenza I, Contino M, Colabufo NA, Lentini G. Inhibition of hERG potassium channel by the antiarrhythmic agent mexiletine and its metabolite m-hydroxymexiletine. Pharmacol Res Perspect 2015; 3:e00160. [PMID: 26516576 PMCID: PMC4618635 DOI: 10.1002/prp2.160] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 02/05/2023] Open
Abstract
Mexiletine is a sodium channel blocker, primarily used in the treatment of ventricular arrhythmias. Moreover, recent studies have demonstrated its therapeutic value to treat myotonic syndromes and to relieve neuropathic pain. The present study aims at investigating the direct blockade of hERG potassium channel by mexiletine and its metabolite m-hydroxymexiletine (MHM). Our data show that mexiletine inhibits hERG in a time- and voltage-dependent manner, with an IC50 of 3.7 ± 0.7 μmol/L. Analysis of the initial onset of current inhibition during a depolarizing test pulse indicates mexiletine binds preferentially to the open state of the hERG channel. Looking for a possible mexiletine alternative, we show that m-hydroxymexiletine (MHM), a minor mexiletine metabolite recently reported to be as active as the parent compound in an arrhythmia animal model, is a weaker hERG channel blocker, compared to mexiletine (IC50 = 22.4 ± 1.2 μmol/L). The hERG aromatic residues located in the S6 helix (Tyr652 and Phe656) are crucial in the binding of mexiletine and the different affinities of mexiletine and MHM with hERG channel are interpreted by modeling their corresponding binding interactions through ab initio calculations. The simulations demonstrate that the introduction of a hydroxyl group on the meta-position of the aromatic portion of mexiletine weakens the interaction of the drug xylyloxy moiety with Tyr652. These results provide further insights into the molecular basis of drug/hERG interactions and, in agreement with previously reported results on clofilium and ibutilide analogs, support the possibility of reducing hERG potency and related toxicity by modifying the aromatic pattern of substitution of clinically relevant compounds.
Collapse
Affiliation(s)
- Roberta Gualdani
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze via della Lastruccia 3, Sesto Fiorentino, FI, 50019, Italy
| | - Francesco Tadini-Buoninsegni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze via della Lastruccia 3, Sesto Fiorentino, FI, 50019, Italy
| | - Mariagrazia Roselli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro" via Orabona 4, Bari, 70125, Italy
| | - Ivana Defrenza
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro" via Orabona 4, Bari, 70125, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro" via Orabona 4, Bari, 70125, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro" via Orabona 4, Bari, 70125, Italy
| | - Giovanni Lentini
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro" via Orabona 4, Bari, 70125, Italy
| |
Collapse
|
116
|
De Mieri M, Du K, Neuburger M, Saxena P, Zietsman PC, Hering S, van der Westhuizen JH, Hamburger M. hERG Channel Inhibitory Daphnane Diterpenoid Orthoesters and Polycephalones A and B with Unprecedented Skeletons from Gnidia polycephala. JOURNAL OF NATURAL PRODUCTS 2015; 78:1697-1707. [PMID: 26091146 DOI: 10.1021/acs.jnatprod.5b00344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The hERG channel is an important antitarget in safety pharmacology. Several drugs have been withdrawn from the market or received severe usage restrictions because of hERG-related cardiotoxicity. In a screening of medicinal plants for hERG channel inhibition using a two-microelectrode voltage clamp assay with Xenopus laevis oocytes, a dichloromethane extract of the roots of Gnidia polycephala reduced the peak tail hERG current by 58.8 ± 13.4% (n = 3) at a concentration of 100 μg/mL. By means of HPLC-based activity profiling daphnane-type diterpenoid orthoesters (DDOs) 1, 4, and 5 were identified as the active compounds [55.4 ± 7.0% (n = 4), 42.5 ± 16.0% (n = 3), and 51.3 ± 9.4% (n = 4), respectively, at 100 μM]. In a detailed phytochemical profiling of the active extract, 16 compounds were isolated and characterized, including two 2-phenylpyranones (15 and 16) with an unprecedented tetrahydro-4H-5,8-epoxypyrano[2,3-d]oxepin-4-one skeleton, two new DDOs (3 and 4), two new guaiane sesquiterpenoids (11 and 12), and 10 known compounds (1, 2, 5-10, 13, and 14). Structure elucidation was achieved by extensive spectroscopic analysis (1D and 2D NMR, HRMS, and electronic circular dichroism), computational methods, and X-ray crystallography.
Collapse
Affiliation(s)
| | | | | | - Priyanka Saxena
- ⊥Institute of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | | | - Steffen Hering
- ⊥Institute of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | | | | |
Collapse
|
117
|
Braga RC, Alves VM, Silva MFB, Muratov E, Fourches D, Lião LM, Tropsha A, Andrade CH. Pred-hERG: A Novel web-Accessible Computational Tool for Predicting Cardiac Toxicity. Mol Inform 2015; 34:698-701. [PMID: 27490970 DOI: 10.1002/minf.201500040] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/10/2015] [Indexed: 01/17/2023]
Abstract
The blockage of the hERG K(+) channels is closely associated with lethal cardiac arrhythmia. The notorious ligand promiscuity of this channel earmarked hERG as one of the most important antitargets to be considered in early stages of drug development process. Herein we report on the development of an innovative and freely accessible web server for early identification of putative hERG blockers and non-blockers in chemical libraries. We have collected the largest publicly available curated hERG dataset of 5,984 compounds. We succeed in developing robust and externally predictive binary (CCR≈0.8) and multiclass models (accuracy≈0.7). These models are available as a web-service freely available for public at http://labmol.farmacia.ufg.br/predherg/. Three following outcomes are available for the users: prediction by binary model, prediction by multi-class model, and the probability maps of atomic contribution. The Pred-hERG will be continuously updated and upgraded as new information became available.
Collapse
Affiliation(s)
- Rodolpho C Braga
- Labmol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Goiania, Goiás 74605-170, Brazil phone: +55 62 3209-6451; fax: +55 62 3209-6037.,Chemistry Institute, Federal University of Goias, P. O. Box 131, Goiania, Goiás 74001-970, Brazil
| | - Vinicius M Alves
- Labmol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Goiania, Goiás 74605-170, Brazil phone: +55 62 3209-6451; fax: +55 62 3209-6037
| | - Meryck F B Silva
- Labmol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Goiania, Goiás 74605-170, Brazil phone: +55 62 3209-6451; fax: +55 62 3209-6037
| | - Eugene Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Luciano M Lião
- Chemistry Institute, Federal University of Goias, P. O. Box 131, Goiania, Goiás 74001-970, Brazil
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Carolina H Andrade
- Labmol - Laboratory for Molecular Modeling and Drug Design, Faculty of Pharmacy, Federal University of Goias, Goiania, Goiás 74605-170, Brazil phone: +55 62 3209-6451; fax: +55 62 3209-6037.
| |
Collapse
|
118
|
Fermini B, Hancox JC, Abi-Gerges N, Bridgland-Taylor M, Chaudhary KW, Colatsky T, Correll K, Crumb W, Damiano B, Erdemli G, Gintant G, Imredy J, Koerner J, Kramer J, Levesque P, Li Z, Lindqvist A, Obejero-Paz CA, Rampe D, Sawada K, Strauss DG, Vandenberg JI. A New Perspective in the Field of Cardiac Safety Testing through the Comprehensive In Vitro Proarrhythmia Assay Paradigm. ACTA ACUST UNITED AC 2015; 21:1-11. [PMID: 26170255 DOI: 10.1177/1087057115594589] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/11/2015] [Indexed: 12/31/2022]
Abstract
For the past decade, cardiac safety screening to evaluate the propensity of drugs to produce QT interval prolongation and Torsades de Pointes (TdP) arrhythmia has been conducted according to ICH S7B and ICH E14 guidelines. Central to the existing approach are hERG channel assays and in vivo QT measurements. Although effective, the present paradigm carries a risk of unnecessary compound attrition and high cost, especially when considering costly thorough QT (TQT) studies conducted later in drug development. The C: omprehensive I: n Vitro P: roarrhythmia A: ssay (CiPA) initiative is a public-private collaboration with the aim of updating the existing cardiac safety testing paradigm to better evaluate arrhythmia risk and remove the need for TQT studies. It is hoped that CiPA will produce a standardized ion channel assay approach, incorporating defined tests against major cardiac ion channels, the results of which then inform evaluation of proarrhythmic actions in silico, using human ventricular action potential reconstructions. Results are then to be confirmed using human (stem cell-derived) cardiomyocytes. This perspective article reviews the rationale, progress of, and challenges for the CiPA initiative, if this new paradigm is to replace existing practice and, in time, lead to improved and widely accepted cardiac safety testing guidelines.
Collapse
Affiliation(s)
| | - Jules C Hancox
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Najah Abi-Gerges
- Translational Safety, Drug Safety and Metabolism, Innovative Medicines and Early Development, AstraZeneca R&D, Macclesfield, UK AnaBios Corporation, San Diego, CA, USA
| | - Matthew Bridgland-Taylor
- Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Macclesfield, UK
| | | | - Thomas Colatsky
- Division of Applied Regulatory Science, CDER, US Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - Bruce Damiano
- Global Safety Pharmacology, Discovery Sciences, Janssen Research & Development LLC, Spring House, PA, USA
| | - Gul Erdemli
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Inc, Cambridge, MA, USA
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences & Technology, AbbVie, North Chicago, IL, USA
| | - John Imredy
- Department of Safety Assessment, Merck & Co, Kenilworth, NJ, USA
| | - John Koerner
- Division of Cardiovascular and Renal Products, CDER, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - James Kramer
- ChanTest, A Charles River Company, Cleveland, OH, USA
| | - Paul Levesque
- Bristol Myers Squibb Research & Development, Princeton, NJ, USA
| | - Zhihua Li
- Division of Applied Regulatory Science, CDER, US Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - David Rampe
- Preclinical Safety, Sanofi, Bridgewater, NJ, USA
| | - Kohei Sawada
- Global Cardiovascular Assessment, Eisai Co., Ltd., Ibaraki, Japan
| | - David G Strauss
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, St Vincent's Clinical School, University of NSW, Darlinghurst, NSW, Australia
| |
Collapse
|
119
|
Melgari D, Zhang Y, El Harchi A, Dempsey CE, Hancox JC. Molecular basis of hERG potassium channel blockade by the class Ic antiarrhythmic flecainide. J Mol Cell Cardiol 2015; 86:42-53. [PMID: 26159617 PMCID: PMC4564290 DOI: 10.1016/j.yjmcc.2015.06.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/19/2015] [Accepted: 06/30/2015] [Indexed: 11/02/2022]
Abstract
The class Ic antiarrhythmic drug flecainide inhibits KCNH2-encoded "hERG" potassium channels at clinically relevant concentrations. The aim of this study was to elucidate the underlying molecular basis of this action. Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. Wild-type (WT) IhERG was inhibited with an IC50 of 1.49μM and this was not significantly altered by reversing the direction of K(+) flux or raising external [K(+)]. The use of charged and uncharged flecainide analogues showed that the charged form of the drug accesses the channel from the cell interior to produce block. Promotion of WT IhERG inactivation slowed recovery from inhibition, whilst the N588K and S631A attenuated-inactivation mutants exhibited IC50 values 4-5 fold that of WT IhERG. The use of pore-helix/selectivity filter (T623A, S624A V625A) and S6 helix (G648A, Y652A, F656A) mutations showed <10-fold shifts in IC50 for all but V625A and F656A, which respectively exhibited IC50s 27-fold and 142-fold their WT controls. Docking simulations using a MthK-based homology model suggested an allosteric effect of V625A, since in low energy conformations flecainide lay too low in the pore to interact directly with that residue. On the other hand, the molecule could readily form π-π stacking interactions with aromatic residues and particularly with F656. We conclude that flecainide accesses the hERG channel from the cell interior on channel gating, binding low in the inner cavity, with the S6 F656 residue acting as a principal binding determinant.
Collapse
Affiliation(s)
- Dario Melgari
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Yihong Zhang
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Aziza El Harchi
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Christopher E Dempsey
- School of Biochemistry, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jules C Hancox
- School of Physiology & Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
120
|
Computational investigations of hERG channel blockers: New insights and current predictive models. Adv Drug Deliv Rev 2015; 86:72-82. [PMID: 25770776 DOI: 10.1016/j.addr.2015.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/13/2015] [Accepted: 03/04/2015] [Indexed: 01/08/2023]
Abstract
Identification of potential human Ether-a-go-go Related-Gene (hERG) potassium channel blockers is an essential part of the drug development and drug safety process in pharmaceutical industries or academic drug discovery centers, as they may lead to drug-induced QT prolongation, arrhythmia and Torsade de Pointes. Recent reports also suggest starting to address such issues at the hit selection stage. In order to prioritize molecules during the early drug discovery phase and to reduce the risk of drug attrition due to cardiotoxicity during pre-clinical and clinical stages, computational approaches have been developed to predict the potential hERG blockage of new drug candidates. In this review, we will describe the current in silico methods developed and applied to predict and to understand the mechanism of actions of hERG blockers, including ligand-based and structure-based approaches. We then discuss ongoing research on other ion channels and hERG polymorphism susceptible to be involved in LQTS and how systemic approaches can help in the drug safety decision.
Collapse
|
121
|
High-performance beating pattern function of human induced pluripotent stem cell-derived cardiomyocyte-based biosensors for hERG inhibition recognition. Biosens Bioelectron 2015; 67:146-53. [DOI: 10.1016/j.bios.2014.07.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/25/2014] [Accepted: 07/31/2014] [Indexed: 12/11/2022]
|
122
|
Melgari D, Brack KE, Zhang C, Zhang Y, El Harchi A, Mitcheson JS, Dempsey CE, Ng GA, Hancox JC. hERG potassium channel blockade by the HCN channel inhibitor bradycardic agent ivabradine. J Am Heart Assoc 2015; 4:jah3927. [PMID: 25911606 PMCID: PMC4579960 DOI: 10.1161/jaha.115.001813] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Ivabradine is a specific bradycardic agent used in coronary artery disease and heart failure, lowering heart rate through inhibition of sinoatrial nodal HCN‐channels. This study investigated the propensity of ivabradine to interact with KCNH2‐encoded human Ether‐à‐go‐go–Related Gene (hERG) potassium channels, which strongly influence ventricular repolarization and susceptibility to torsades de pointes arrhythmia. Methods and Results Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. IhERG was inhibited with an IC50 of 2.07 μmol/L for the hERG 1a isoform and 3.31 μmol/L for coexpressed hERG 1a/1b. The voltage and time‐dependent characteristics of IhERG block were consistent with preferential gated‐state‐dependent channel block. Inhibition was partially attenuated by the N588K inactivation‐mutant and the S624A pore‐helix mutant and was strongly reduced by the Y652A and F656A S6 helix mutants. In docking simulations to a MthK‐based homology model of hERG, the 2 aromatic rings of the drug could form multiple π‐π interactions with the aromatic side chains of both Y652 and F656. In monophasic action potential (MAP) recordings from guinea‐pig Langendorff‐perfused hearts, ivabradine delayed ventricular repolarization and produced a steepening of the MAPD90 restitution curve. Conclusions Ivabradine prolongs ventricular repolarization and alters electrical restitution properties at concentrations relevant to the upper therapeutic range. In absolute terms ivabradine does not discriminate between hERG and HCN channels: it inhibits IhERG with similar potency to that reported for native If and HCN channels, with S6 binding determinants resembling those observed for HCN4. These findings may have important implications both clinically and for future bradycardic drug design.
Collapse
Affiliation(s)
- Dario Melgari
- School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.)
| | - Kieran E Brack
- Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, United Kingdom (K.E.B., C.Z., A.N.)
| | - Chuan Zhang
- Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, United Kingdom (K.E.B., C.Z., A.N.)
| | - Yihong Zhang
- School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.)
| | - Aziza El Harchi
- School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.)
| | - John S Mitcheson
- Department of Cell Physiology and Pharmacology, Maurice Shock Medical Sciences Building, Leicester, United Kingdom (J.S.M.)
| | | | - G André Ng
- Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, United Kingdom (K.E.B., C.Z., A.N.) NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, United Kingdom (A.N.)
| | - Jules C Hancox
- School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.)
| |
Collapse
|
123
|
Liu Z, Wang B, Ma Z, Zhou Y, Du L, Li M. Fluorogenic probe for the human Ether-a-Go-Go-Related Gene potassium channel imaging. Anal Chem 2015; 87:2550-4. [PMID: 25665091 PMCID: PMC4374661 DOI: 10.1021/ac504763b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The
first small-molecule fluorogenic probe A1 for imaging the human Ether-a-go-go-Related
Gene (hERG) potassium channel based on the photoinduced electron transfer
(PET) off–on mechanism was described herein. After careful
biological evaluation, this probe had the potential of detecting and
imaging the hERG channel at the molecular and cellular level. Moreover,
the competitive binding mechanism of this probe would presumably minimize
the effects on the electrophysiological properties of the hERG channel.
Therefore, this probe may serve as a powerful toolkit to the hERG-associated
study.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University , Jinan, Shandong 250012, China
| | | | | | | | | | | |
Collapse
|
124
|
Abstract
Nonclinical safety pharmacology and toxicology testing of drug candidates assess the potential adverse effects caused by the drug in relation to its intended use in humans. Hazards related to a drug have to be identified and the potential risks at the intended exposure have to be evaluated in comparison to the potential benefit of the drug. Preclinical safety is thus an integral part of drug discovery and drug development. It still causes significant attrition during drug development.Therefore, there is a need for smart selection of drug candidates in drug discovery including screening of important safety endpoints. In the recent years,there was significant progress in computational and in vitro technology allowing in silico assessment as well as high-throughput screening of some endpoints at very early stages of discovery. Despite all this progress, in vivo evaluation of drug candidates is still an important part to safety testing. The chapter provides an overview on the most important areas of nonclinical safety screening during drug discovery of small molecules.
Collapse
|
125
|
Yu Z, IJzerman AP, Heitman LH. Kv 11.1 (hERG)-induced cardiotoxicity: a molecular insight from a binding kinetics study of prototypical Kv 11.1 (hERG) inhibitors. Br J Pharmacol 2014; 172:940-55. [PMID: 25296617 DOI: 10.1111/bph.12967] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/08/2014] [Accepted: 09/23/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Drug-induced arrhythmia due to blockade of the Kv 11.1 channel (also known as the hERG K(+) channel) is a frequent side effect. Previous studies have primarily focused on equilibrium parameters, i.e. affinity or potency, of drug candidates at the channel. The aim of this study was to determine the kinetics of the interaction with the channel for a number of known Kv 11.1 blockers and to explore a possible correlation with the affinity or physicochemical properties of these compounds. EXPERIMENTAL APPROACH The affinity and kinetic parameters of 15 prototypical Kv 11.1 inhibitors were evaluated in a number of [(3) H]-dofetilide binding assays. The lipophilicity (logKW - C8 ) and membrane partitioning (logKW - IAM ) of these compounds were determined by means of HPLC analysis. KEY RESULTS A novel [(3) H]-dofetilide competition association assay was set up and validated, which allowed us to determine the binding kinetics of the Kv 11.1 blockers used in this study. Interestingly, the compounds' affinities (Ki values) were correlated to their association rates rather than dissociation rates. Overall lipophilicity or membrane partitioning of the compounds were not correlated to their affinity or rate constants for the channel. CONCLUSIONS AND IMPLICATIONS A compound's affinity for the Kv 11.1 channel is determined by its rate of association with the channel, while overall lipophilicity and membrane affinity are not. In more general terms, our findings provide novel insights into the mechanism of action for a compound's activity at the Kv 11.1 channel. This may help to elucidate how Kv 11.1-induced cardiotoxicity is governed and how it can be circumvented in the future.
Collapse
Affiliation(s)
- Z Yu
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
126
|
Brindisi M, Butini S, Franceschini S, Brogi S, Trotta F, Ros S, Cagnotto A, Salmona M, Casagni A, Andreassi M, Saponara S, Gorelli B, Weikop P, Mikkelsen JD, Scheel-Kruger J, Sandager-Nielsen K, Novellino E, Campiani G, Gemma S. Targeting Dopamine D3 and Serotonin 5-HT1A and 5-HT2A Receptors for Developing Effective Antipsychotics: Synthesis, Biological Characterization, and Behavioral Studies. J Med Chem 2014; 57:9578-97. [DOI: 10.1021/jm501119j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | | | | | | | - Alfredo Cagnotto
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | | | | | - Simona Saponara
- Dipartimento
di Scienze della Vita, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Beatrice Gorelli
- Dipartimento
di Scienze della Vita, Università degli Studi di Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Pia Weikop
- Laboratory
of Neuropsychiatry, Psychiatric Centre, University of Copenhagen, Blegdamsvej 3 DK-2100 Copenhagen, Denmark
| | - Jens D. Mikkelsen
- Neurobiology
Research Unit, University Hospital Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | | | | | - Ettore Novellino
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy
| | | | | |
Collapse
|
127
|
Melgari D, Du C, El Harchi A, Zhang Y, Hancox JC. Suppression of the hERG potassium channel response to premature stimulation by reduction in extracellular potassium concentration. Physiol Rep 2014; 2:2/10/e12165. [PMID: 25318749 PMCID: PMC4254092 DOI: 10.14814/phy2.12165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Potassium channels encoded by human ether‐à‐go‐go‐related gene (hERG) mediate the cardiac rapid delayed rectifier K+ current (IKr), which participates in ventricular repolarization and has a protective role against unwanted premature stimuli late in repolarization and early in diastole. Ionic current carried by hERG channels (IhERG) is known to exhibit a paradoxical dependence on external potassium concentration ([K+]e), but effects of acute [K+]e changes on the response of IhERG to premature stimulation have not been characterized. Whole‐cell patch‐clamp measurements of hERG current were made at 37°C from hERG channels expressed in HEK293 cells. Under conventional voltage‐clamp, both wild‐type (WT) and S624A pore‐mutant IhERG during depolarization to +20 mV and subsequent repolarization to −40 mV were decreased when superfusate [K+]e was decreased from 4 to 1 mmol/L. When [K+]e was increased from 4 to 10 mmol/L, pulse current was increased and tail IhERG was decreased. Increasing [K+]e produced a +10 mV shift in voltage‐dependent inactivation of WT IhERG and slowed inactivation time course, while lowering [K+]e from 4 to 1 mmol/L produced little change in inactivation voltage dependence, but accelerated inactivation time course. Under action potential (AP) voltage‐clamp, lowering [K+]e reduced the amplitude of IhERG during the AP and suppressed the maximal IhERG response to premature stimuli. Raising [K+]e increased IhERG early during the AP and augmented the IhERG response to premature stimuli. Our results are suggestive that during hypokalemia not only is the contribution of IKr to ventricular repolarization reduced but its ability to protect against unwanted premature stimuli also becomes impaired. hERG potassium channels are important for ventricular repolarization and for protecting the ventricles of the heart from unwanted premature stimuli. This study shows that, in addition to reducing the contribution of hERG channel current to ventricular repolarization, hypokalemia impairs the protective response of hERG to premature stimulation.
Collapse
Affiliation(s)
- Dario Melgari
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| | - Chunyun Du
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| | - Aziza El Harchi
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| | - Yihong Zhang
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| | - Jules C Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, University of Bristol, Medical Sciences Building, Bristol, BS8 1TD, UK
| |
Collapse
|
128
|
Ferreiro SF, Vilariño N, Louzao MC, Nicolaou KC, Frederick MO, Botana LM. In vitro chronic effects on hERG channel caused by the marine biotoxin azaspiracid-2. Toxicon 2014; 91:69-75. [PMID: 25286396 DOI: 10.1016/j.toxicon.2014.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/16/2014] [Accepted: 09/25/2014] [Indexed: 11/27/2022]
Abstract
Azaspiracids (AZAs) are marine biotoxins produced by the dinoflagellate Azadinium spinosum that accumulate in many shellfish species. Azaspiracid poisoning caused by AZA-contaminated seafood consumption is primarily manifested by diarrhea in humans. To protect human health, AZA-1, AZA-2 and AZA-3 content in seafood has been regulated by food safety authorities in many countries. Recently AZAs have been reported as a low/moderate hERG channel blockers. Furthermore AZA-2 has been related to arrhythmia appearance in rats, suggesting potential heart toxicity. In this study AZA-2 in vitro effects on hERG channel after chronic exposure are analyzed to further explore potential cardiotoxicity. The amount of hERG channel in the plasma membrane, hERG channel trafficking and hERG currents were evaluated up to 12 h of toxin exposure. In these conditions AZA-2 caused an increase of hERG levels in the plasma membrane, probably related to hERG retrograde trafficking impairment. Although this alteration did not translate into an increase of hERG channel-related current, more studies will be necessary to understand its mechanism and to know what consequences could have in vivo. These findings suggest that azaspiracids might have chronic cardiotoxicity related to hERG channel trafficking and they should not be overlooked when evaluating the threat to human health.
Collapse
Affiliation(s)
- Sara F Ferreiro
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - K C Nicolaou
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Michael O Frederick
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
129
|
Mitcheson J, Arcangeli A. The Therapeutic Potential of hERG1 K+ Channels for Treating Cancer and Cardiac Arrhythmias. ION CHANNEL DRUG DISCOVERY 2014. [DOI: 10.1039/9781849735087-00258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
hERG potassium channels present pharmacologists and medicinal chemists with a dilemma. On the one hand hERG is a major reason for drugs being withdrawn from the market because of drug induced long QT syndrome and the associated risk of inducing sudden cardiac death, and yet hERG blockers are still widely used in the clinic to treat cardiac arrhythmias. Moreover, in the last decade overwhelming evidence has been provided that hERG channels are aberrantly expressed in cancer cells and that they contribute to tumour cell proliferation, resistance to apoptosis, and neoangiogenesis. Here we provide an overview of the properties of hERG channels and their role in excitable cells of the heart and nervous system as well as in cancer. We consider the therapeutic potential of hERG, not only with regard to the negative impact due to drug induced long QT syndrome, but also its future potential as a treatment in the fight against cancer.
Collapse
Affiliation(s)
- John Mitcheson
- University of Leicester, Department of Cell Physiology and Pharmacology, Medical Sciences Building University Road Leicester LE1 9HN UK
| | - Annarosa Arcangeli
- Department of Experimental Pathology and Oncology, University of Florence Viale GB Morgagni, 50 50134 Firenze Italy
| |
Collapse
|
130
|
Hancox JC, Du C, Harchi AE, Baranchuk A, Zhang H. A novel genetic modifier for clarithromycin-related cardiac arrhythmia risk? Ther Adv Infect Dis 2014; 2:71-2. [PMID: 25165557 DOI: 10.1177/2049936114522996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jules C Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD
| | - Chunyun Du
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, Bristol, UK
| | - Aziza El Harchi
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, Bristol, UK
| | - Adrian Baranchuk
- Department of Cardiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
131
|
Hancox JC, Hasnain M, Vieweg WVR, Gysel M, Methot M, Baranchuk A. Erythromycin, QTc interval prolongation, and torsade de pointes: Case reports, major risk factors and illness severity. Ther Adv Infect Dis 2014; 2:47-59. [PMID: 25165555 DOI: 10.1177/2049936114527744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Erythromycin is a macrolide antibiotic that is widely used for various infections of the upper respiratory tract, skin, and soft tissue. Similar to other macrolides (clarithromycin, azithromycin), erythromycin has been linked to QTc interval prolongation and torsade de pointes (TdP) arrhythmia. We sought to identify factors that link to erythromycin-induced/associated QTc interval prolongation and TdP. METHODS AND RESULTS In a critical evaluation of case reports, we found 29 cases: 22 women and 7 men (age range 18-95 years). With both oral and intravenous erythromycin administration, there was no significant relationship between dose and QTc interval duration in these cases. Notably, all patients had severe illness. Other risk factors included female sex, older age, presence of heart disease, concomitant administration of either other QTc prolonging drugs or agents that were substrates for or inhibitors of CYP3A4. Most patients had at least two risk factors. CONCLUSIONS On the basis of case report evaluation, we believe that major risk factors for erythromycin-associated TdP are female sex, heart disease and old age, particularly against a background of severe illness. Coadministration of erythromycin with other drugs that inhibit or are metabolized by CYP3A4 or with QTc prolonging drugs should be avoided in this setting.
Collapse
Affiliation(s)
| | - Mehrul Hasnain
- Department of Psychiatry, Memorial University, St John's, Newfoundland, Canada
| | - W Victor R Vieweg
- Departments of Psychiatry and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Michael Gysel
- School of Medicine, Department of Cardiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Michelle Methot
- Department of Pharmacy, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- School of Medicine, Department of Cardiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
132
|
Huang P, Zhang Y, Chen X, Zhu L, Yin D, Zeng X, Liang S. The activation effect of hainantoxin-I, a peptide toxin from the Chinese spider, Ornithoctonus hainana, on intermediate-conductance Ca2+-activated K+ channels. Toxins (Basel) 2014; 6:2568-79. [PMID: 25153257 PMCID: PMC4147597 DOI: 10.3390/toxins6082568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/28/2014] [Accepted: 08/14/2014] [Indexed: 11/24/2022] Open
Abstract
Intermediate-conductance Ca2+-activated K+ (IK) channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molecules limits their therapeutic value. Venom-derived peptides usually block their targets with high specificity. Therefore, we searched for novel peptide activators of IK channels by testing a series of toxins from spiders. Using electrophysiological experiments, we identified hainantoxin-I (HNTX-I) as an IK-channel activator. HNTX-I has little effect on voltage-gated Na+ and Ca2+ channels from rat dorsal root ganglion neurons and on the heterologous expression of voltage-gated rapidly activating delayed rectifier K+ channels (human ether-à-go-go-related gene; human ERG) in HEK293T cells. Only 35.2% ± 0.4% of the currents were activated in SK channels, and there was no effect on BK channels. We demonstrated that HNTX-I was not a phrenic nerve conduction blocker or acutely toxic. This is believed to be the first report of a peptide activator effect on IK channels. Our study suggests that the activity and selectivity of HNTX-I on IK channels make HNTX-I a promising template for designing new drugs for cardiovascular diseases.
Collapse
Affiliation(s)
- Pengfei Huang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Yiya Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Xinyi Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Li Zhu
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Dazhong Yin
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Xiongzhi Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Songping Liang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
133
|
Kogut C, Crouse EB, Vieweg WVR, Hasnain M, Baranchuk A, Digby GC, Koneru JN, Fernandez A, Deshmukh A, Hancox JC, Pandurangi AK. Selective serotonin reuptake inhibitors and torsade de pointes: new concepts and new directions derived from a systematic review of case reports. Ther Adv Drug Saf 2014; 4:189-98. [PMID: 25114780 DOI: 10.1177/2042098613492366] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE In the light of the recent United States Food and Drug Administration (FDA) warning to clinicians on using previously approved doses of citalopram because of the purported higher risk of torsade de pointes (TdP), we pursued the broader question: are selective serotonin reuptake inhibitor (SSRI) antidepressant agents as a group unsafe because they might induce QTc interval prolongation and TdP? METHOD We reviewed the literature and found only 15 case reports (6 of fluoxetine, 1 of sertraline and 8 of citalopram) of SSRI-associated QTc interval prolongation linking to TdP. RESULTS A total of 13 cases contained sufficient information for analysis. In the setting of TdP, QTc interval prolongation does not clearly relate to SSRI dose. CONCLUSION Applying conventional statistics as the FDA does may not be the best tool to study this phenomenon because SSRI-associated TdP is a very rare event and hence best understood as an 'extreme outlier'. Despite the limitations inherent in case report material, case reports on drug-associated QTc interval prolongation and TdP provide valuable information that should be considered along with other sources of information for clinical guidance.
Collapse
Affiliation(s)
- Christopher Kogut
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | | | - W Victor R Vieweg
- Departments of Psychiatry and Internal Medicine, Virginia Commonwealth University, 17 Runswick Drive, Richmond, VA 23238-5414, USA
| | - Mehrul Hasnain
- Department of Psychiatry, Memorial University, St John's, Newfoundland, Canada
| | - Adrian Baranchuk
- Department of Cardiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Geneviève C Digby
- Department of Cardiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Jayanthi N Koneru
- Department of Internal Medicine, Division of Cardiology and Cardiac Electrophysiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Antony Fernandez
- Department of Psychiatry, Virginia Commonwealth University, and Psychiatry Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, VA, USA
| | - Anand Deshmukh
- Department of Cardiovascular Medicine, The Cardiac Center of Creighton University, Omaha, NE, USA
| | - Jules C Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Ananda K Pandurangi
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
134
|
Hasnain M, Vieweg WVR, Howland RH, Kogut C, Breden Crouse EL, Koneru JN, Hancox JC, Digby GC, Baranchuk A, Deshmukh A, Pandurangi AK. Quetiapine, QTc interval prolongation, and torsade de pointes: a review of case reports. Ther Adv Psychopharmacol 2014; 4:130-8. [PMID: 25057346 PMCID: PMC4107702 DOI: 10.1177/2045125313510194] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently, both the manufacturer of quetiapine and the US Food and Drug Administration warned healthcare providers and patients about quetiapine-induced QTc interval prolongation and torsade de pointes (TdP) when using this drug within the approved labeling. We reviewed the case-report literature and found 12 case reports of QTc interval prolongation in the setting of quetiapine administration. There were no cases of quetiapine-induced TdP or sudden cardiac death (SCD) among patients using quetiapine appropriately and free of additional risk factors for QTc interval prolongation and TdP. Among the 12 case reports risk factors included female sex (nine cases), coadministration of a drug associated with QTc interval prolongation (eight cases), hypokalemia or hypomagnesemia (six cases) quetiapine overdose (five cases), cardiac problems (four cases), and coadministration of cytochrome P450 3A4 inhibitors (two cases). There were four cases of TdP. As drug-induced TdP is a rare event, prospective studies to evaluate the risk factors associated with QTc prolongation and TdP are difficult to design, would be very costly, and would require very large samples to capture TdP rather than its surrogate markers. Furthermore, conventional statistical methods may not apply to studies of TdP, which is rare and an 'outlier' manifestation of QTc prolongation. We urge drug manufacturers and regulatory agencies to periodically publish full case reports of psychotropic drug-induced QTc interval prolongation, TdP, and SCD so that clinicians and investigators may better understand the clinical implications of prescribing such drugs as quetiapine.
Collapse
Affiliation(s)
- Mehrul Hasnain
- Department of Psychiatry, Memorial University, St John's, Newfoundland, Canada A1E4J8
| | - W Victor R Vieweg
- Departments of Psychiatry and Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert H Howland
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Christopher Kogut
- Departments of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Jayanthi N Koneru
- Cardiac Electrophysiology and Department of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Geneviève C Digby
- Department of Cardiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Department of Cardiology, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Anand Deshmukh
- Department of Cardiovascular Medicine, The Cardiac Center of Creighton University, Omaha, NE, USA
| | - Ananda K Pandurangi
- Departments of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
135
|
Ranolazine inhibition of hERG potassium channels: drug-pore interactions and reduced potency against inactivation mutants. J Mol Cell Cardiol 2014; 74:220-30. [PMID: 24877995 PMCID: PMC4121676 DOI: 10.1016/j.yjmcc.2014.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 01/06/2023]
Abstract
The antianginal drug ranolazine, which combines inhibitory actions on rapid and sustained sodium currents with inhibition of the hERG/IKr potassium channel, shows promise as an antiarrhythmic agent. This study investigated the structural basis of hERG block by ranolazine, with lidocaine used as a low potency, structurally similar comparator. Recordings of hERG current (IhERG) were made from cell lines expressing wild-type (WT) or mutant hERG channels. Docking simulations were performed using homology models built on MthK and KvAP templates. In conventional voltage clamp, ranolazine inhibited IhERG with an IC50 of 8.03 μM; peak IhERG during ventricular action potential clamp was inhibited ~ 62% at 10 μM. The IC50 values for ranolazine inhibition of the S620T inactivation deficient and N588K attenuated inactivation mutants were respectively ~ 73-fold and ~ 15-fold that for WT IhERG. Mutations near the bottom of the selectivity filter (V625A, S624A, T623A) exhibited IC50s between ~ 8 and 19-fold that for WT IhERG, whilst the Y652A and F656A S6 mutations had IC50s ~ 22-fold and 53-fold WT controls. Low potency lidocaine was comparatively insensitive to both pore helix and S6 mutations, but was sensitive to direction of K+ flux and particularly to loss of inactivation, with an IC50 for S620T-hERG ~ 49-fold that for WT IhERG. Docking simulations indicated that the larger size of ranolazine gives it potential for a greater range of interactions with hERG pore side chains compared to lidocaine, in particular enabling interaction of its two aromatic groups with side chains of both Y652 and F656. The N588K mutation is responsible for the SQT1 variant of short QT syndrome and our data suggest that ranolazine is unlikely to be effective against IKr/hERG in SQT1 patients. hERG K+ channels regulate cardiac action potential repolarization. The molecular basis of hERG block by ranolazine and structurally related lidocaine was studied. S6 Y652A and F656A mutations affected greatly ranolazine but not lidocaine binding. T623 and S624 residues may directly interact with ranolazine but not lidocaine. N588K and S620T attenuated inactivation mutants had reduced sensitivity to both drugs.
Collapse
|
136
|
Lee MJ, Cho KH, Park HM, Sung HJ, Choi S, Im W. Pharmacological profile of DA-6886, a novel 5-HT4 receptor agonist to accelerate colonic motor activity in mice. Eur J Pharmacol 2014; 735:115-22. [PMID: 24769304 DOI: 10.1016/j.ejphar.2014.03.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 02/07/2023]
Abstract
DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation.
Collapse
Affiliation(s)
- Min Jung Lee
- Dong-A ST Research Institute, 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si 446-905, Gyeonggi-do, Republic of Korea; Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon-si 440-746, Gyeonggi-do, Republic of Korea.
| | - Kang Hun Cho
- Dong-A ST Research Institute, 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si 446-905, Gyeonggi-do, Republic of Korea
| | - Hyun Min Park
- Dong-A ST Research Institute, 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si 446-905, Gyeonggi-do, Republic of Korea
| | - Hyun Jung Sung
- Dong-A ST Research Institute, 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si 446-905, Gyeonggi-do, Republic of Korea
| | - Sunghak Choi
- Dong-A ST Research Institute, 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si 446-905, Gyeonggi-do, Republic of Korea
| | - Weonbin Im
- Dong-A ST Research Institute, 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin-si 446-905, Gyeonggi-do, Republic of Korea
| |
Collapse
|
137
|
Kramer C, Fuchs JE, Whitebread S, Gedeck P, Liedl KR. Matched Molecular Pair Analysis: Significance and the Impact of Experimental Uncertainty. J Med Chem 2014; 57:3786-802. [DOI: 10.1021/jm500317a] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christian Kramer
- Department
of Theoretical Chemistry, Faculty for Chemistry and Pharmacy, Center
for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Julian E. Fuchs
- Department
of Theoretical Chemistry, Faculty for Chemistry and Pharmacy, Center
for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Steven Whitebread
- Preclinical
Safety Profiling, Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter Gedeck
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, No. 05-01 Chromos, Singapore 138670, Singapore
| | - Klaus R. Liedl
- Department
of Theoretical Chemistry, Faculty for Chemistry and Pharmacy, Center
for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens University Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
138
|
Heijman J, Voigt N, Carlsson LG, Dobrev D. Cardiac safety assays. Curr Opin Pharmacol 2014; 15:16-21. [DOI: 10.1016/j.coph.2013.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 12/22/2022]
|
139
|
Frolov RV, Singh S. Celecoxib and ion channels: a story of unexpected discoveries. Eur J Pharmacol 2014; 730:61-71. [PMID: 24630832 DOI: 10.1016/j.ejphar.2014.02.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 01/28/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Celecoxib (Celebrex), a highly popular selective inhibitor of cyclooxygenase-2, can modulate ion channels and alter functioning of neurons and myocytes at clinically relevant concentrations independently of cyclooxygenase inhibition. In experimental systems varying from Drosophila to primary mammalian and human cell lines, celecoxib inhibits many voltage-activated Na(+), Ca(2+), and K(+) channels, including NaV1.5, L- and T-type Ca(2+) channels, KV1.5, KV2.1, KV4.3, KV7.1, KV11.1 (hERG), while stimulating other K(+) channels-KV7.2-5 and, possibly, KV11.1 (hERG) channels under certain conditions. In this review, we summarize the information currently available on the effects of celecoxib on ion channels, examine mechanistic aspects of drug action and the concomitant changes at the cellular and organ levels, and discuss these findings in the therapeutic context.
Collapse
Affiliation(s)
- Roman V Frolov
- Department of Physical Sciences, Division of Biophysics, University of Oulu, PO Box 3000, 90014 Oulun Yliopisto, Finland.
| | - Satpal Singh
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
140
|
Dempsey CE, Wright D, Colenso CK, Sessions RB, Hancox JC. Assessing hERG pore models as templates for drug docking using published experimental constraints: the inactivated state in the context of drug block. J Chem Inf Model 2014; 54:601-12. [PMID: 24471705 PMCID: PMC3977586 DOI: 10.1021/ci400707h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
Many
structurally and therapeutically diverse drugs interact with
the human heart K+ channel hERG by binding within the K+ permeation pathway of the open channel, leading to drug-induced
‘long QT syndrome’. Drug binding to hERG is often stabilized
by inactivation gating. In the absence of a crystal structure, hERG
pore homology models have been used to characterize drug interactions.
Here we assess potentially inactivated states of the bacterial K+ channel, KcsA, as templates for inactivated state hERG pore
models in the context of drug binding using computational docking.
Although Flexidock and GOLD docking produced low energy score poses
in the models tested, each method selected a MthK K+ channel-based
model over models based on the putative inactivated state KcsA structures
for each of the 9 drugs tested. The variety of docking poses found
indicates that an optimal arrangement for drug binding of aromatic
side chains in the hERG pore can be achieved in several different
configurations. This plasticity of the drug “binding site”
is likely to be a feature of the hERG inactivated state. The results
demonstrate that experimental data on specific drug interactions can
be used as structural constraints to assess and refine hERG homology
models.
Collapse
Affiliation(s)
- Christopher E Dempsey
- School of Biochemistry, Medical Sciences Building, University of Bristol , University Walk, Bristol BS8 1TD, U.K
| | | | | | | | | |
Collapse
|
141
|
Analysis of beat fluctuations and oxygen consumption in cardiomyocytes by scanning electrochemical microscopy. Anal Biochem 2014; 447:39-42. [DOI: 10.1016/j.ab.2013.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/18/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022]
|
142
|
Ferreiro SF, Vilariño N, Carrera C, Louzao MC, Santamarina G, Cantalapiedra AG, Rodríguez LP, Cifuentes JM, Vieira AC, Nicolaou KC, Frederick MO, Botana LM. In vivo arrhythmogenicity of the marine biotoxin azaspiracid-2 in rats. Arch Toxicol 2014; 88:425-34. [PMID: 23934164 PMCID: PMC3946725 DOI: 10.1007/s00204-013-1115-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/01/2013] [Indexed: 12/16/2022]
Abstract
Azaspiracids (AZAs) are marine biotoxins produced by the dinoflagellate Azadinium spinosum that accumulate in several shellfish species. Azaspiracid poisoning episodes have been described in humans due to ingestion of AZA-contaminated seafood. Therefore, the contents of AZA-1, AZA-2 and AZA-3, the best-known analogs of the group, in shellfish destined to human consumption have been regulated by food safety authorities of many countries to protect human health. In vivo and in vitro toxicological studies have described effects of AZAs at different cellular levels and on several organs, however, AZA target remains unknown. Very recently, AZAs have been demonstrated to block the hERG cardiac potassium channel. In this study, we explored the potential cardiotoxicity of AZA-2 in vivo. The effects of AZA-2 on rat electrocardiogram (ECG) and cardiac biomarkers were evaluated for cardiotoxicity signs besides corroborating the hERG-blocking activity of AZA-2. Our results demonstrated that AZA-2 does not induce QT interval prolongation on rat ECGs in vivo, in spite of being an in vitro blocker of the hERG cardiac potassium channel. However, AZA-2 alters the heart electrical activity causing prolongation of PR intervals and the appearance of arrhythmias. More studies will be needed to clarify the mechanism by which AZA-2 causes these ECG alterations; however, the potential cardiotoxicity of AZAs demonstrated in this in vivo study should be taken into consideration when evaluating the possible threat that these toxins pose to human health, mainly for individuals with pre-existing cardiovascular disease when regulated toxin limits are exceeded.
Collapse
Affiliation(s)
- Sara F. Ferreiro
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Cristina Carrera
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
- Hospital Veterinario Universitario Rof Codina, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - M. Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Germán Santamarina
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
- Hospital Veterinario Universitario Rof Codina, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Antonio G. Cantalapiedra
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
- Hospital Veterinario Universitario Rof Codina, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Laura P. Rodríguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - J. Manuel Cifuentes
- Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés C. Vieira
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - K. C. Nicolaou
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Michael O. Frederick
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
143
|
|
144
|
Yu Z, Klaasse E, Heitman LH, IJzerman AP. Allosteric modulators of the hERG K+ channel. Toxicol Appl Pharmacol 2014; 274:78-86. [DOI: 10.1016/j.taap.2013.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/29/2022]
|
145
|
Hausammann GJ, Grütter MG. Chimeric hERG channels containing a tetramerization domain are functional and stable. Biochemistry 2013; 52:9237-45. [PMID: 24325597 DOI: 10.1021/bi401100a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biochemical and detailed structural information of human ether-a-go-go-related gene (hERG) potassium channels are scarce but are a prerequisite to understand the unwanted interactions of hERG with drugs and the effect of mutations that lead to long QT syndrome. Despite the huge interest in hERG, to our knowledge, procedures that provide a purified, functional, and tetrameric hERG channel are not available. Here, we describe hybrid hERG molecules, termed chimeric hERG channels, in which the N-terminal Per-Arnt-Sim (PAS) domain is deleted and the C-terminal C-linker as well as the cyclic nucleotide binding domain (CNBD) portion is replaced by an artificial tetramerization domain. These chimeric hERG channels can be overexpressed in HEK cells, solubilized in detergent, and purified as tetramers. When expressed in Xenopus laevis oocytes, the chimeric channels exhibit efficient trafficking to the cell surface, whereas a hERG construct lacking the PAS and C-linker/CNBD domains is retained in the cytoplasm. The chimeric hERG channels retain essential hERG functions such as voltage-dependent gating and inhibition by astemizole and the scorpion toxin BeKm-1. The chimeric channels are thus powerful tools for helping to understand the contribution of the cytoplasmic hERG domains to the gating process and are suitable for in vitro biochemical and structural studies.
Collapse
Affiliation(s)
- Georg J Hausammann
- From the Department of Biochemistry, University of Zürich , Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
146
|
Mayer C, Janin YL. Non-quinolone inhibitors of bacterial type IIA topoisomerases: a feat of bioisosterism. Chem Rev 2013; 114:2313-42. [PMID: 24313284 DOI: 10.1021/cr4003984] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudine Mayer
- Unité de Microbiologie Structurale, Département de Biologie Structurale et Chimie, Institut Pasteur , 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
147
|
Safety pharmacology — Current and emerging concepts. Toxicol Appl Pharmacol 2013; 273:229-41. [DOI: 10.1016/j.taap.2013.04.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/31/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022]
|
148
|
Du C, El Harchi A, Zhang H, Hancox JC. Modification by KCNE1 variants of the hERG potassium channel response to premature stimulation and to pharmacological inhibition. Physiol Rep 2013; 1:e00175. [PMID: 24400172 PMCID: PMC3871485 DOI: 10.1002/phy2.175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/02/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023] Open
Abstract
human Ether-à-go-go-Related Gene (hERG) encodes the pore-forming subunit of cardiac rapid delayed rectifier K(+) current (I Kr) channels, which play important roles in ventricular repolarization, in protecting the myocardium from unwanted premature stimuli, and in drug-induced Long QT Syndrome (LQTS). KCNE1, a small transmembrane protein, can coassemble with hERG. However, it is not known how KCNE1 variants influence the channel's response to premature stimuli or if they influence the sensitivity of hERG to pharmacological inhibition. Accordingly, whole-cell patch-clamp measurements of hERG current (I hERG) were made at 37°C from hERG channels coexpressed with either wild-type (WT) KCNE1 or with one of three KCNE1 variants (A8V, D76N, and D85N). Under both conventional voltage clamp and ventricular action potential (AP) clamp, the amplitude of I hERG was smaller for A8V, D76N, and D85N KCNE1 + hERG than for WT KCNE1 + hERG. Using paired AP commands, with the second AP waveform applied at varying time intervals following the first to mimic premature ventricular excitation, the response of I hERG carried by each KCNE1 variant was reduced compared to that with WT KCNE1 + hERG. The I hERG blocking potency of the antiarrhythmic drug quinidine was similar between WT KCNE1 and the three KCNE1 variants. However, the I hERG inhibitory potency of the antibiotic clarithromycin and of the prokinetic drug cisapride was altered by KCNE1 variants. These results demonstrate that naturally occurring KCNE1 variants can reduce the response of hERG channels to premature excitation and also alter the sensitivity of hERG channels to inhibition by some drugs linked to acquired LQTS.
Collapse
Affiliation(s)
- Chunyun Du
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol Bristol, BS8 1TD, U.K
| | - Aziza El Harchi
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol Bristol, BS8 1TD, U.K
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester Manchester, M13 9PL, U.K
| | - Jules C Hancox
- School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol Bristol, BS8 1TD, U.K
| |
Collapse
|
149
|
Gysel M, Vieweg WVR, Hasnain M, Hancox JC, Kunanithy V, Baranchuk A. Torsades de pointes following clarithromycin treatment. Expert Rev Cardiovasc Ther 2013; 11:1485-93. [PMID: 24147515 DOI: 10.1586/14779072.2013.840535] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A 75-year-old woman presenting with pre-syncope, shortness of breath and nausea was admitted to the emergency department following treatment with clarithromycin. Shortly after admission she developed a prolonged QT interval leading to torsades de pointes (TdP) and cardiac arrest. She was successfully cardioverted and clarithromycin was discontinued resulting in restoration of her usual QT interval. This case is an example of acquired long QT syndrome; a disorder that can be precipitated by macrolide antibiotics such as clarithromycin. Additional risk factors present in this case include: female gender, old age, heart disease, hypokalemia and hypomagnesemia. In this manuscript we comprehensively review past cases of clarithromycin-induced long QT syndrome (LQTS) and discuss them within the context of this case.
Collapse
Affiliation(s)
- Michael Gysel
- Department of Medicine, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
150
|
Doggrell SA, Hancox JC. Cardiac safety concerns for domperidone, an antiemetic and prokinetic, and galactogogue medicine. Expert Opin Drug Saf 2013; 13:131-8. [PMID: 24147629 DOI: 10.1517/14740338.2014.851193] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Domperidone is a dopamine D2-receptor antagonist developed as an antiemetic and prokinetic agent. Oral domperidone is not approved in the United States, but it is used in many countries to treat nausea and vomiting, gastroparesis and as a galactogogue (to promote lactation). The US Food and Drug Administration (FDA) have issued a warning about the cardiac safety of domperidone. AREAS COVERED The authors undertook a review of the cardiac safety of oral domperidone. EXPERT OPINION The data from preclinical studies are unambiguous in identifying domperidone as able to produce marked hERG channel inhibition and action potential prolongation at clinically relevant concentrations. The compound's propensity to augment instability of action potential duration and action potential triangulation are also indicative of proarrhythmic potential. Domperidone should not be administered to subjects with pre-existing QT prolongation/LQTS, subjects receiving drugs that inhibit CYP3A4, subjects with electrolyte abnormalities or with other risk factors for QT-prolongation. With these provisos, it is possible that domperidone may be used as a galactogogue without direct risk to healthy breast feeding women, but more safety information should be sought in this situation. Also, more safety information is required regarding risk to breast feeding infants before domperidone is routinely used in gastroparesis or gastroesphageal reflux in children.
Collapse
Affiliation(s)
- Sheila A Doggrell
- Queensland University of Technology, School of Biomedical Sciences, Faculty of Health , Brisbane, QLD4002 , Australia +61 7 3138 2015 ; +61 7 3138 1534 ;
| | | |
Collapse
|