101
|
Amin MR, Ali DW. Pharmacology of Medical Cannabis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1162:151-165. [DOI: 10.1007/978-3-030-21737-2_8] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
102
|
Bonini SA, Premoli M, Tambaro S, Kumar A, Maccarinelli G, Memo M, Mastinu A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:300-315. [PMID: 30205181 DOI: 10.1016/j.jep.2018.09.004] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cannabis sativa L. (C. sativa) is an annual dioecious plant, which shares its origins with the inception of the first agricultural human societies in Asia. Over the course of time different parts of the plant have been utilized for therapeutic and recreational purposes, for instance, extraction of healing oils from seed, or the use of inflorescences for their psychoactive effects. The key psychoactive constituent in C. sativa is called Δ-9-tetrahydrocannabinol (D9-THC). The endocannabinoid system seems to be phylogenetically ancient, as it was present in the most primitive vertebrates with a neuronal network. N-arachidonoylethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG) are the main endocannabinoids ligands present in the animal kingdom, and the main endocannabinoid receptors are cannabinoid type-1 (CB1) receptor and cannabinoid type-2 (CB2) receptor. AIM OF THE STUDY The review aims to provide a critical and comprehensive evaluation, from the ancient times to our days, of the ethnological, botanical, chemical and pharmacological aspects of C. sativa, with a vision for promoting further pharmaceutical research to explore its complete potential as a therapeutic agent. MATERIALS AND METHODS This study was performed by reviewing in extensive details the studies on historical significance and ethnopharmacological applications of C. sativa by using international scientific databases, books, Master's and Ph.D. dissertations and government reports. In addition, we also try to gather relevant information from large regional as well as global unpublished resources. In addition, the plant taxonomy was validated using certified databases such as Medicinal Plant Names Services (MPNS) and The Plant List. RESULTS AND CONCLUSIONS A detailed comparative analysis of the available resources for C. sativa confirmed its origin and traditional spiritual, household and therapeutic uses and most importantly its popularity as a recreational drug. The result of several studies suggested a deeper involvement of phytocannabinoids (the key compounds in C. sativa) in several others central and peripheral pathophysiological mechanisms such as food intake, inflammation, pain, colitis, sleep disorders, neurological and psychiatric illness. However, despite their numerous medicinal benefits, they are still considered as a menace to the society and banned throughout the world, except for few countries. We believe that this review will help lay the foundation for promoting exhaustive pharmacological and pharmaceutical studies in order to better understand the clinical relevance and applications of non-psychoactive cannabinoids in the prevention and treatment of life-threatening diseases and help to improve the legal status of C. sativa.
Collapse
Affiliation(s)
- Sara Anna Bonini
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Amit Kumar
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Brescia, Italy.
| |
Collapse
|
103
|
Cheeta S, Halil A, Kenny M, Sheehan E, Zamyadi R, Williams AL, Webb L. Does perception of drug-related harm change with age? A cross-sectional online survey of young and older people. BMJ Open 2018; 8:e021109. [PMID: 30401725 PMCID: PMC6231571 DOI: 10.1136/bmjopen-2017-021109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES To investigate how young and older people perceive the harms associated with legal and illegal drugs. DESIGN Cross-sectional study: adults aged 18-24 years versus 45+ completed an online survey ranking the perceived harms associated with 11 drugs on 16 drug-related harm criteria. SETTING Online survey. PARTICIPANTS 184 participants aged 18-24 years (113 female: mean age 21: SD 1.3) and 91 participants aged 45+ (51 female: mean age 60: SD 8.5). MAIN OUTCOME MEASURES 'Perception of drug-related harms': This was measured using a rating scale ranging from 1 (no risk of harm) to 4 (high risk of harm). Participants were also asked about sources which informed their perception on drug-related harms as well as their own personal self-reported drug experiences. RESULTS Of the illegal drugs, heroin, methamphetamine and cocaine were rated as the most harmful and cannabis was rated as the least harmful. Alcohol and tobacco were also rated as less harmful. The results showed that perceptions of drug-related harms were inconsistent with current knowledge from research on drugs. Furthermore, perceptions on drug harms were more conservative in the 45+ group for a number of illegal drugs and tobacco. However, the 45+ age group did not perceive alcohol as any more harmful than the younger group. CONCLUSIONS This survey demonstrates that the greatest misperception was in relation to alcohol-related harms which did not change with age. In order to minimise harms, this misperception needs to be addressed through education and policies that legislate drug use.
Collapse
Affiliation(s)
- Survjit Cheeta
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Adem Halil
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Matthew Kenny
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Erin Sheehan
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Roxanne Zamyadi
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Adrian Lloyd Williams
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Lucy Webb
- Substance Use and Addictive Behaviour (SUAB) Research Group, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
104
|
Scherma M, Masia P, Deidda M, Fratta W, Tanda G, Fadda P. New Perspectives on the Use of Cannabis in the Treatment of Psychiatric Disorders. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E107. [PMID: 30279403 PMCID: PMC6313625 DOI: 10.3390/medicines5040107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 12/11/2022]
Abstract
Following the discovery of the endocannabinoid system and its potential as a therapeutic target for various pathological conditions, growing interest led researchers to investigate the role of cannabis and its derivatives for medical purposes. The compounds Δ9-tetrahydrocannabinol and cannabidiol are the most abundant phytocannabinoids found in cannabis extracts, as well as the most studied. The present review aims to provide an overview of the current evidence for their beneficial effects in treating psychiatric disorders, including schizophrenia, anxiety, and depression. Nevertheless, further investigations are required to clarify many pending issues, especially those relative to the assessment of benefits and risks when using cannabis for therapeutic purposes, thereby also helping national and federal jurisdictions to remain updated.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Paolo Masia
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Matteo Deidda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
| | - Gianluigi Tanda
- Medication Development program, NIDA-IRP, NIH/DHHS, NIDA suite 3301, Baltimore, MD 21224, USA.
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy.
- Centre of Excellence "Neurobiology of Dependence", University of Cagliari, 09042 Monserrato, Italy.
- CNR Institute of Neuroscience ⁻ Cagliari, National Research Council, 09042 Monserrato, Italy.
- National Institute of Neuroscience (INN), University of Cagliari, 09042 Monserrato, Italy.
| |
Collapse
|
105
|
Rodríguez-Muñoz M, Onetti Y, Cortés-Montero E, Garzón J, Sánchez-Blázquez P. Cannabidiol enhances morphine antinociception, diminishes NMDA-mediated seizures and reduces stroke damage via the sigma 1 receptor. Mol Brain 2018; 11:51. [PMID: 30223868 PMCID: PMC6142691 DOI: 10.1186/s13041-018-0395-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD), the major non-psychotomimetic compound present in the Cannabis sativa plant, exhibits therapeutic potential for various human diseases, including chronic neurodegenerative diseases, such as Alzheimer's and Parkinson's, ischemic stroke, epilepsy and other convulsive syndromes, neuropsychiatric disorders, neuropathic allodynia and certain types of cancer. CBD does not bind directly to endocannabinoid receptors 1 and 2, and despite research efforts, its specific targets remain to be fully identified. Notably, sigma 1 receptor (σ1R) antagonists inhibit glutamate N-methyl-D-aspartate acid receptor (NMDAR) activity and display positive effects on most of the aforesaid diseases. Thus, we investigated the effects of CBD on three animal models in which NMDAR overactivity plays a critical role: opioid analgesia attenuation, NMDA-induced convulsive syndrome and ischemic stroke. In an in vitro assay, CBD disrupted the regulatory association of σ1R with the NR1 subunit of NMDAR, an effect shared by σ1R antagonists, such as BD1063 and progesterone, and prevented by σ1R agonists, such as 4-IBP, PPCC and PRE084. The in vivo administration of CBD or BD1063 enhanced morphine-evoked supraspinal antinociception, alleviated NMDA-induced convulsive syndrome, and reduced the infarct size caused by permanent unilateral middle cerebral artery occlusion. These positive effects of CBD were reduced by the σ1R agonists PRE084 and PPCC, and absent in σ1R-/- mice. Thus, CBD displays antagonist-like activity toward σ1R to reduce the negative effects of NMDAR overactivity in the abovementioned experimental situations.
Collapse
Affiliation(s)
- María Rodríguez-Muñoz
- Neuropharmacology. Department of Traslational Neuroscience, Cajal Institute, CSIC, E-28002 Madrid, Spain
| | - Yara Onetti
- Neuropharmacology. Department of Traslational Neuroscience, Cajal Institute, CSIC, E-28002 Madrid, Spain
| | - Elsa Cortés-Montero
- Neuropharmacology. Department of Traslational Neuroscience, Cajal Institute, CSIC, E-28002 Madrid, Spain
| | - Javier Garzón
- Neuropharmacology. Department of Traslational Neuroscience, Cajal Institute, CSIC, E-28002 Madrid, Spain
| | - Pilar Sánchez-Blázquez
- Neuropharmacology. Department of Traslational Neuroscience, Cajal Institute, CSIC, E-28002 Madrid, Spain
| |
Collapse
|
106
|
Sanmartin PE, Detyniecki K. Cannabidiol for Epilepsy: New Hope on the Horizon? Clin Ther 2018; 40:1438-1441. [DOI: 10.1016/j.clinthera.2018.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/18/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
|
107
|
Sartim AG, Sales AJ, Guimarães FS, Joca SR. Hippocampal mammalian target of rapamycin is implicated in stress-coping behavior induced by cannabidiol in the forced swim test. J Psychopharmacol 2018; 32:922-931. [PMID: 29968502 DOI: 10.1177/0269881118784877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cannabidiol is a non-psychotomimetic compound with antidepressant-like effects. However, the mechanisms and brain regions involved in cannabidiol effects are not yet completely understood. Brain-derived neurotrophic factor/tropomyosin-receptor kinase B/mammalian target of rapamycin (BDNF-TrkB-mTOR) signaling, especially in limbic structures, seems to play a central role in mediating the effects of antidepressant drugs. AIM Since it is not yet known if BDNF-TrkB-mTOR signaling in the hippocampus is critical to the antidepressant-like effects of cannabidiol, we investigated the effects produced by cannabidiol (10/30/60 nmol/0.2 µL) micro-injection into the hippocampus of mice submitted to the forced swim test and to the open field test. METHODS Independent groups received intra-hippocampal injections of rapamycin (mTOR inhibitor, 0.2 nmol/0.2 µL) or K252 (Trk antagonist, 0.01 nmol/0.2 µL), before the systemic (10 mg/kg) or hippocampal (10 nmol/0.2µL) injection of cannabidiol, and were submitted to the same tests. BDNF levels were analyzed in the hippocampus of animals treated with cannabidiol (10 mg/kg). RESULTS Systemic cannabidiol administration induced antidepressant-like effects and increased BDNF levels in the dorsal hippocampus. Rapamycin, but not K252a, injection into the dorsal hippocampus prevented the antidepressant-like effect induced by systemic cannabidiol treatment (10 mg/kg). Differently, hippocampal administration of cannabidiol (10 nmol/0.2 µL) reduced immobility time, an effect that was blocked by both rapamycin and K252a local microinjection. CONCLUSION Altogether, our data suggest that the hippocampal BDNF-TrkB-mTOR pathway is vital for cannabidiol-induced antidepressant-like effect when the drug is locally administered. However, other brain regions may also be involved in cannabidiol-induced antidepressant effect upon systemic administration.
Collapse
Affiliation(s)
- Ariandra G Sartim
- 1 Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | - Amanda J Sales
- 2 Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Francisco S Guimarães
- 2 Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil.,3 Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil.,5 National Institute of Science and Translational Medicine, (INCT), Ribeirão Preto, Brazil
| | - Sâmia Rl Joca
- 1 Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil.,3 Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil.,4 Translational Neuropsychiatry Unit (TNU), Aarhus University, Denmark.,5 National Institute of Science and Translational Medicine, (INCT), Ribeirão Preto, Brazil
| |
Collapse
|
108
|
The Confrontation between Ethnopharmacology and Pharmacological Tests of Medicinal Plants Associated with Mental and Neurological Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7686913. [PMID: 30057646 PMCID: PMC6051267 DOI: 10.1155/2018/7686913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/16/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Abstract
For neurological disorders, pharmacological tests have shown promising results in the reduction of side effects when using plants with known therapeutic effects in the treatment of some types of dementia. Therefore, the goals of this study are to gather data about the major medicinal plants used in the nervous system as described in ethnopharmacological surveys from South America and Brazil and to compare this data with the results from pharmacological tests on the active principles of those same plants found in the scientific literature. After collecting the data about each plant, their respective popular indication was compared with the results found through pharmacological tests. The discrepancy rate between the effects observed by ethnopharmacological and pharmacological methods in this study is greater than 50%. In conclusion, despite the importance of ethnopharmacological data, it is important to make comparisons with pharmacological tests for the same plants, since the pharmacological studies, although few, have shown a high rate of discrepancy in the results.
Collapse
|
109
|
Maurya N, Velmurugan BK. Therapeutic applications of cannabinoids. Chem Biol Interact 2018; 293:77-88. [PMID: 30040916 DOI: 10.1016/j.cbi.2018.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/10/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
Abstract
The psychoactive property of cannabinoids is well known and there has been a continuous controversy regarding the usage of these compounds for therapeutic purposes all over the world. Their use for medical and research purposes are restricted in various countries. However, their utility as medications should not be overshadowed by its negative physiological activities. This review article is focused on the therapeutic potential and applications of phytocannabinoids and endocannabinoids. We further highlights their mode of action, overall effects on physiology, various in vitro and in vivo studies that have been done so far and the extent to which these compounds can be useful in different disease conditions such as cancer, Alzheimer's disease, multiple sclerosis, pain, inflammation, glaucoma and many others. Thus, this work is an attempt to make the readers understand the positive implications of these compounds and indicates the significant developments of utilizing cannabinoids as therapeutic agents.
Collapse
Affiliation(s)
- Nancy Maurya
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India
| | | |
Collapse
|
110
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
Affiliation(s)
- Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - Zoltan V. Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| | - George Hasko
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
111
|
Prandi C, Blangetti M, Namdar D, Koltai H. Structure-Activity Relationship of Cannabis Derived Compounds for the Treatment of Neuronal Activity-Related Diseases. Molecules 2018; 23:molecules23071526. [PMID: 29941830 PMCID: PMC6099582 DOI: 10.3390/molecules23071526] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cannabis sativa active compounds are extensively studied for their therapeutic effects, beyond the well-known psychotropic activity. C. Sativa is used to treat different medical indications, such as multiple sclerosis, spasticity, epilepsy, ulcerative colitis and pain. Simultaneously, basic research is discovering new constituents of cannabis-derived compounds and their receptors capable of neuroprotection and neuronal activity modulation. The function of the various phytochemicals in different therapeutic processes is not fully understood, but their significant role is starting to emerge and be appreciated. In this review, we will consider the structure-activity relationship (SAR) of cannabinoid compounds able to bind to cannabinoid receptors and act as therapeutic agents in neuronal diseases, e.g., Parkinson’s disease.
Collapse
Affiliation(s)
- Cristina Prandi
- Department of Chemistry, University of Turin, 10125 Torino, Italy.
| | - Marco Blangetti
- Department of Chemistry, University of Turin, 10125 Torino, Italy.
| | - Dvora Namdar
- ARO, Volcani Center, Rishon LeZion 7505101, Israel.
| | | |
Collapse
|
112
|
Mouhamed Y, Vishnyakov A, Qorri B, Sambi M, Frank SMS, Nowierski C, Lamba A, Bhatti U, Szewczuk MR. Therapeutic potential of medicinal marijuana: an educational primer for health care professionals. Drug Healthc Patient Saf 2018; 10:45-66. [PMID: 29928146 PMCID: PMC6001746 DOI: 10.2147/dhps.s158592] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With the proposed Canadian July 2018 legalization of marijuana through the Cannabis Act, a thorough critical analysis of the current trials on the efficacy of medicinal marijuana (MM) as a treatment option is necessary. This review is particularly important for primary care physicians whose patients may be interested in using MM as an alternative therapy. In response to increased interest in MM, Health Canada released a document in 2013 for general practitioners (GPs) as an educational tool on the efficacy of MM in treating some chronic and acute conditions. Although additional studies have filled in some of the gaps since the release of the Health Canada document, conflicting and inconclusive results continue to pose a challenge for physicians. This review aims to supplement the Health Canada document by providing physicians with a critical yet concise update on the recent advancements made regarding the efficacy of MM as a potential therapeutic option. An update to the literature of 2013 is important given the upcoming changes in legislation on the use of marijuana. Also, we briefly highlight the current recommendations provided by Canadian medical colleges on the parameters that need to be considered prior to authorizing MM use, routes of administration as well as a general overview of the endocannabinoid system as it pertains to cannabis. Lastly, we outline the appropriate medical conditions for which the authorization of MM may present as a practical alternative option in improving patient outcomes as well as individual considerations of which GPs should be mindful. The purpose of this paper is to offer physicians an educational tool that provides a necessary, evidence-based analysis of the therapeutic potential of MM and to ensure physicians are making decisions on the therapeutic use of MM in good faith.
Collapse
Affiliation(s)
- Yara Mouhamed
- Graduate Diploma & Professional Master in Medical Sciences, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Andrey Vishnyakov
- Graduate Diploma & Professional Master in Medical Sciences, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - SM Signy Frank
- Graduate Diploma & Professional Master in Medical Sciences, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Catherine Nowierski
- Graduate Diploma & Professional Master in Medical Sciences, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Anmol Lamba
- Graduate Diploma & Professional Master in Medical Sciences, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Umrao Bhatti
- Graduate Diploma & Professional Master in Medical Sciences, School of Medicine, Queen’s University, Kingston, ON, Canada
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
113
|
Maroon J, Bost J. Review of the neurological benefits of phytocannabinoids. Surg Neurol Int 2018; 9:91. [PMID: 29770251 PMCID: PMC5938896 DOI: 10.4103/sni.sni_45_18] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Numerous physical, psychological, and emotional benefits have been attributed to marijuana since its first reported use in 2,600 BC in a Chinese pharmacopoeia. The phytocannabinoids, cannabidiol (CBD), and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied extracts from cannabis sativa subspecies hemp and marijuana. CBD and Δ9-THC interact uniquely with the endocannabinoid system (ECS). Through direct and indirect actions, intrinsic endocannabinoids and plant-based phytocannabinoids modulate and influence a variety of physiological systems influenced by the ECS. Methods: In 1980, Cunha et al. reported anticonvulsant benefits in 7/8 subjects with medically uncontrolled epilepsy using marijuana extracts in a phase I clinical trial. Since then neurological applications have been the major focus of renewed research using medical marijuana and phytocannabinoid extracts. Results: Recent neurological uses include adjunctive treatment for malignant brain tumors, Parkinson's disease, Alzheimer's disease, multiple sclerosis, neuropathic pain, and the childhood seizure disorders Lennox-Gastaut and Dravet syndromes. In addition, psychiatric and mood disorders, such as schizophrenia, anxiety, depression, addiction, postconcussion syndrome, and posttraumatic stress disorders are being studied using phytocannabinoids. Conclusions: In this review we will provide animal and human research data on the current clinical neurological uses for CBD individually and in combination with Δ9-THC. We will emphasize the neuroprotective, antiinflammatory, and immunomodulatory benefits of phytocannabinoids and their applications in various clinical syndromes.
Collapse
Affiliation(s)
- Joseph Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeff Bost
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
114
|
Khan AA, Shekh-Ahmad T, Khalil A, Walker MC, Ali AB. Cannabidiol exerts antiepileptic effects by restoring hippocampal interneuron functions in a temporal lobe epilepsy model. Br J Pharmacol 2018; 175:2097-2115. [PMID: 29574880 PMCID: PMC5979781 DOI: 10.1111/bph.14202] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/13/2017] [Accepted: 02/27/2018] [Indexed: 12/29/2022] Open
Abstract
Background and Purpose A non‐psychoactive phytocannabinoid, cannabidiol (CBD), shows promising results as an effective potential antiepileptic drug in some forms of refractory epilepsy. To elucidate the mechanisms by which CBD exerts its anti‐seizure effects, we investigated its effects at synaptic connections and on the intrinsic membrane properties of hippocampal CA1 pyramidal cells and two major inhibitory interneurons: fast spiking, parvalbumin (PV)‐expressing and adapting, cholecystokinin (CCK)‐expressing interneurons. We also investigated whether in vivo treatment with CBD altered the fate of CCK and PV interneurons using immunohistochemistry. Experimental Approach Electrophysiological intracellular whole‐cell recordings combined with neuroanatomy were performed in acute brain slices of rat temporal lobe epilepsy in in vivo (induced by kainic acid) and in vitro (induced by Mg2+‐free solution) epileptic seizure models. For immunohistochemistry experiments, CBD was administered in vivo (100 mg·kg−1) at zero time and 90 min post status epilepticus, induced with kainic acid. Key Results Bath application of CBD (10 μM) dampened excitability at unitary synapses between pyramidal cells but enhanced inhibitory synaptic potentials elicited by fast spiking and adapting interneurons at postsynaptic pyramidal cells. Furthermore, CBD restored impaired membrane excitability of PV, CCK and pyramidal cells in a cell type‐specific manner. These neuroprotective effects of CBD were corroborated by immunohistochemistry experiments that revealed a significant reduction in atrophy and death of PV‐ and CCK‐expressing interneurons after CBD treatment. Conclusions and Implications Our data suggest that CBD restores excitability and morphological impairments in epileptic models to pre‐epilepsy control levels through multiple mechanisms to reinstate normal network function.
Collapse
Affiliation(s)
| | | | | | | | - Afia B Ali
- UCL School of Pharmacy, London, WC1N 1AX, UK
| |
Collapse
|
115
|
Whalley BJ, Lin H, Bell L, Hill T, Patel A, Gray RA, Elizabeth Roberts C, Devinsky O, Bazelot M, Williams CM, Stephens GJ. Species-specific susceptibility to cannabis-induced convulsions. Br J Pharmacol 2018; 176:1506-1523. [PMID: 29457829 PMCID: PMC6487554 DOI: 10.1111/bph.14165] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose Numerous claims are made for cannabis' therapeutic utility upon human seizures, but concerns persist about risks. A potential confounder is the presence of both Δ9‐tetrahydrocannabinol (THC), variously reported to be pro‐ and anticonvulsant, and cannabidiol (CBD), widely confirmed as anticonvulsant. Therefore, we investigated effects of prolonged exposure to different THC/CBD cannabis extracts on seizure activity and associated measures of endocannabinoid (eCB) system signalling. Experimental Approach Cannabis extract effects on in vivo neurological and behavioural responses, and on bioanalyte levels, were measured in rats and dogs. Extract effects on seizure activity were measured using electroencephalography telemetry in rats. eCB signalling was also investigated using radioligand binding in cannabis extract‐treated rats and treatment‐naïve rat, mouse, chicken, dog and human tissue. Key Results Prolonged exposure to cannabis extracts caused spontaneous, generalized seizures, subserved by epileptiform discharges in rats, but not dogs, and produced higher THC, but lower 11‐hydroxy‐THC (11‐OH‐THC) and CBD, plasma concentrations in rats versus dogs. In the same rats, prolonged exposure to cannabis also impaired cannabinoid type 1 receptor (CB1 receptor)‐mediated signalling. Profiling CB1 receptor expression, basal activity, extent of activation and sensitivity to THC suggested interspecies differences in eCB signalling, being more pronounced in a species that exhibited cannabis extract‐induced seizures (rat) than one that did not (dog). Conclusions and Implications Sustained cannabis extract treatment caused differential seizure, behavioural and bioanalyte levels between rats and dogs. Supporting radioligand binding data suggest species differences in eCB signalling. Interspecies variations may have important implications for predicting cannabis‐induced convulsions from animal models. Linked Articles This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc
Collapse
Affiliation(s)
- Benjamin J Whalley
- Division of Pharmacology, School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Reading, UK.,GW Research Ltd, Salisbury, UK
| | - Hong Lin
- Division of Pharmacology, School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Reading, UK
| | - Lynne Bell
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Thomas Hill
- Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | - Orrin Devinsky
- Department of Neurology, Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
| | | | - Claire M Williams
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Gary J Stephens
- Division of Pharmacology, School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Reading, UK
| |
Collapse
|
116
|
Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System. Int J Mol Sci 2018. [PMID: 29533978 PMCID: PMC5877694 DOI: 10.3390/ijms19030833] [Citation(s) in RCA: 787] [Impact Index Per Article: 112.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana) are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R) and 2. The CB1R is the prominent subtype in the central nervous system (CNS) and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids.
Collapse
|
117
|
Eroli F, Loonen IC, van den Maagdenberg AM, Tolner EA, Nistri A. Differential neuromodulatory role of endocannabinoids in the rodent trigeminal sensory ganglion and cerebral cortex relevant to pain processing. Neuropharmacology 2018; 131:39-50. [DOI: 10.1016/j.neuropharm.2017.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/19/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022]
|
118
|
Ramlugon S, Levendal RA, Frost C. Time-dependent effect of phytocannabinoid treatments in fat cells. Phytother Res 2018; 32:1080-1089. [DOI: 10.1002/ptr.6047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/25/2022]
Affiliation(s)
- S. Ramlugon
- Department of Biochemistry and Microbiology; Nelson Mandela Metropolitan University; PO Box 77000 6031 Port Elizabeth South Africa
| | - R.-A. Levendal
- Department of Biochemistry and Microbiology; Nelson Mandela Metropolitan University; PO Box 77000 6031 Port Elizabeth South Africa
| | - C.L. Frost
- Department of Biochemistry and Microbiology; Nelson Mandela Metropolitan University; PO Box 77000 6031 Port Elizabeth South Africa
| |
Collapse
|
119
|
Wiley JL, Owens RA, Lichtman AH. Discriminative Stimulus Properties of Phytocannabinoids, Endocannabinoids, and Synthetic Cannabinoids. Curr Top Behav Neurosci 2018; 39:153-173. [PMID: 27278640 DOI: 10.1007/7854_2016_24] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Psychoactive cannabinoids from the marijuana plant (phytocannabinoids), from the body (endocannabinoids), and from the research lab (synthetic cannabinoids) produce their discriminative stimulus effects by stimulation of CB1 receptors in the brain. Early discrimination work with phytocannabinoids confirmed that Δ9-tetrahydrocannabinol (Δ9-THC) is the primary psychoactive constituent of the marijuana plant, with more recent work focusing on characterization of the contribution of the major endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), to Δ9-THC-like internal states. Collectively, these latter studies suggest that endogenous increases in both anandamide and 2-AG seem to be optimal for mimicking Δ9-THC's discriminative stimulus effects, although suprathreshold concentrations of anandamide also appear to be Δ9-THC-like in discrimination assays. Recently, increased abuse of synthetic cannabinoids (e.g., "fake marijuana") has spurred discrimination studies to inform regulatory authorities by predicting which of the many synthetic compounds on the illicit market are most likely to share Δ9-THC's abuse liability. In the absence of a reliable model of cannabinoid self-administration (specifically, Δ9-THC self-administration), cannabinoid discrimination represents the most validated and pharmacologically selective animal model of an abuse-related property of cannabinoids - i.e., marijuana's subjective effects. The influx of recent papers in which cannabinoid discrimination is highlighted attests to its continued relevance as a valuable method for scientific study of cannabinoid use and abuse.
Collapse
Affiliation(s)
- Jenny L Wiley
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC, 27709, USA.
| | - R Allen Owens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, USA
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, USA
| |
Collapse
|
120
|
Perucca E. Cannabinoids in the Treatment of Epilepsy: Hard Evidence at Last? J Epilepsy Res 2017; 7:61-76. [PMID: 29344464 PMCID: PMC5767492 DOI: 10.14581/jer.17012] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
The interest in cannabis-based products for the treatment of refractory epilepsy has skyrocketed in recent years. Marijuana and other cannabis products with high content in Δ(9) - tetrahydrocannabinol (THC), utilized primarily for recreational purposes, are generally unsuitable for this indication, primarily because THC is associated with many undesired effects. Compared with THC, cannabidiol (CBD) shows a better defined anticonvulsant profile in animal models and is largely devoid of adverse psychoactive effects and abuse liability. Over the years, this has led to an increasing use of CBD-enriched extracts in seizure disorders, particularly in children. Although improvement in seizure control and other benefits on sleep and behavior have been often reported, interpretation of the data is made difficult by the uncontrolled nature of these observations. Evidence concerning the potential anti-seizure efficacy of cannabinoids reached a turning point in the last 12 months, with the completion of three high-quality placebo-controlled adjunctive-therapy trials of a purified CBD product in patients with Dravet syndrome and Lennox-Gastaut syndrome. In these studies, CBD was found to be superior to placebo in reducing the frequency of convulsive (tonic-clonic, tonic, clonic, and atonic) seizures in patients with Dravet syndrome, and the frequency of drop seizures in patients with Lennox-Gastaut syndrome. For the first time, there is now class 1 evidence that adjunctive use of CBD improves seizure control in patients with specific epilepsy syndromes. Based on currently available information, however, it is unclear whether the improved seizure control described in these trials was related to a direct action of CBD, or was mediated by drug interactions with concomitant medications, particularly a marked increased in plasma levels of N-desmethylclobazam, the active metabolite of clobazam. Clarification of the relative contribution of CBD to improved seizure outcome requires re-assessment of trial data for the subgroup of patients not comedicated with clobazam, or the conduction of further studies controlling for the confounding effect of this interaction.
Collapse
Affiliation(s)
- Emilio Perucca
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|
121
|
Yang Y, Lewis MM, Bello AM, Wasilewski E, Clarke HA, Kotra LP. Cannabis sativa (Hemp) Seeds, Δ 9-Tetrahydrocannabinol, and Potential Overdose. Cannabis Cannabinoid Res 2017; 2:274-281. [PMID: 29098190 PMCID: PMC5665515 DOI: 10.1089/can.2017.0040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction:Cannabis sativa (hemp) seeds are popular for their high nutrient content, and strict regulations are in place to limit the amount of potentially harmful phytocannabinoids, especially Δ9-tetrahydrocannabinol (Δ9-THC). In Canada, this limit is 10 μg of Δ9-THC per gram of hemp seeds (10 ppm), and other jurisdictions in the world follow similar guidelines. Materials and Methods: We investigated three different brands of consumer-grade hemp seeds using four different procedures to extract phytocannabinoids, and quantified total Δ9-THC and cannabidiol (CBD). Discussion: We discovered that Δ9-THC concentrations in these hemp seeds could be as high as 1250% of the legal limit, and the amount of phytocannabinoids depended on the extraction procedure employed, Soxhlet extraction being the most efficient across all three brands of seeds. Δ9-THC and CBD exhibited significant variations in their estimated concentrations even from the same brand, reflecting the inhomogeneous nature of seeds and variability due to the extraction method, but almost in all cases, Δ9-THC concentrations were higher than the legal limit. These quantities of total Δ9-THC may reach as high as 3.8 mg per gram of hemp seeds, if one were consuming a 30-g daily recommended amount of hemp seeds, and is a cause for concern for potential toxicity. It is not clear if these high quantities of Δ9-THC are due to contamination of the seeds, or any other reason. Conclusion: Careful consideration of the extraction method is very important for the measurement of cannabinoids in hemp seeds.
Collapse
Affiliation(s)
- Yi Yang
- Center for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Melissa M Lewis
- Center for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Angelica M Bello
- Center for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Ewa Wasilewski
- Center for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Hance A Clarke
- Department of Anaesthesia, Faculty of Medicine, University of Toronto, Toronto, Canada.,The Pain Research Unit, Department of Anesthesia and Pain Management, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Lakshmi P Kotra
- Center for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.,Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
122
|
Vilela LR, Lima IV, Kunsch ÉB, Pinto HPP, de Miranda AS, Vieira ÉLM, de Oliveira ACP, Moraes MFD, Teixeira AL, Moreira FA. Anticonvulsant effect of cannabidiol in the pentylenetetrazole model: Pharmacological mechanisms, electroencephalographic profile, and brain cytokine levels. Epilepsy Behav 2017; 75:29-35. [PMID: 28821005 DOI: 10.1016/j.yebeh.2017.07.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/01/2017] [Accepted: 07/07/2017] [Indexed: 11/26/2022]
Abstract
Cannabidiol (CBD), the main nonpsychotomimetic compound from Cannabis sativa, inhibits experimental seizures in animal models and alleviates certain types of intractable epilepsies in patients. Its pharmacological profile, however, is still uncertain. Here we tested the hypothesis that CBD anticonvulsant mechanisms are prevented by cannabinoid (CB1 and CB2) and vanilloid (TRPV1) receptor blockers. We also investigated its effects on electroencephalographic (EEG) activity and hippocampal cytokines in the pentylenetetrazole (PTZ) model. Pretreatment with CBD (60mg/kg) attenuated seizures induced by intraperitoneal, subcutaneous, and intravenous PTZ administration in mice. The effects were reversed by CB1, CB2, and TRPV1 selective antagonists (AM251, AM630, and SB366791, respectively). Additionally, CBD delayed seizure sensitization resulting from repeated PTZ administration (kindling). This cannabinoid also prevented PTZ-induced EEG activity and interleukin-6 increase in prefrontal cortex. In conclusion, the robust anticonvulsant effects of CBD may result from multiple pharmacological mechanisms, including facilitation of endocannabinoid signaling and TRPV1 mechanisms. These findings advance our understanding on CBD inhibition of seizures, EEG activity, and cytokine actions, with potential implications for the development of new treatments for certain epileptic syndromes.
Collapse
Affiliation(s)
- Luciano R Vilela
- Graduate School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Isabel V Lima
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Érica B Kunsch
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Hyorrana Priscila P Pinto
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Aline S de Miranda
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Érica Leandro M Vieira
- Graduate School in Neuroscience, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | | | - Marcio Flávio D Moraes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Antônio L Teixeira
- Department of Internal Medicine, School of Medicine, Universidade Federal de Minas Gerais, Brazil.
| | - Fabricio A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
123
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
124
|
Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation Link between Inflammatory State and Neuro-Immune Alterations. Int J Mol Sci 2017; 18:ijms18071425. [PMID: 28671614 PMCID: PMC5535916 DOI: 10.3390/ijms18071425] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022] Open
Abstract
Several studies highlight a key involvement of endocannabinoid (EC) system in autism pathophysiology. The EC system is a complex network of lipid signaling pathways comprised of arachidonic acid-derived compounds (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. In addition to autism, the EC system is also involved in several other psychiatric disorders (i.e., anxiety, major depression, bipolar disorder and schizophrenia). This system is a key regulator of metabolic and cellular pathways involved in autism, such as food intake, energy metabolism and immune system control. Early studies in autism animal models have demonstrated alterations in the brain's EC system. Autism is also characterized by immune system dysregulation. This alteration includes differential monocyte and macrophage responses, and abnormal cytokine and T cell levels. EC system dysfunction in a monocyte and macrophagic cellular model of autism has been demonstrated by showing that the mRNA and protein for CB2 receptor and EC enzymes were significantly dysregulated, further indicating the involvement of the EC system in autism-associated immunological disruptions. Taken together, these new findings offer a novel perspective in autism research and indicate that the EC system could represent a novel target option for autism pharmacotherapy.
Collapse
|
125
|
Badal S, Smith KN, Rajnarayanan R. Analysis of natural product regulation of cannabinoid receptors in the treatment of human disease. Pharmacol Ther 2017; 180:24-48. [PMID: 28583800 DOI: 10.1016/j.pharmthera.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The organized, tightly regulated signaling relays engaged by the cannabinoid receptors (CBs) and their ligands, G proteins and other effectors, together constitute the endocannabinoid system (ECS). This system governs many biological functions including cell proliferation, regulation of ion transport and neuronal messaging. This review will firstly examine the physiology of the ECS, briefly discussing some anomalies in the relay of the ECS signaling as these are consequently linked to maladies of global concern including neurological disorders, cardiovascular disease and cancer. While endogenous ligands are crucial for dispatching messages through the ECS, there are also commonalities in binding affinities with copious exogenous ligands, both natural and synthetic. Therefore, this review provides a comparative analysis of both types of exogenous ligands with emphasis on natural products given their putative safer efficacy and the role of Δ9-tetrahydrocannabinol (Δ9-THC) in uncovering the ECS. Efficacy is congruent to both types of compounds but noteworthy is the effect of a combination therapy to achieve efficacy without unideal side-effects. An example is Sativex that displayed promise in treating Huntington's disease (HD) in preclinical models allowing for its transition to current clinical investigation. Despite the in vitro and preclinical efficacy of Δ9-THC to treat neurodegenerative ailments, its psychotropic effects limit its clinical applicability to treating feeding disorders. We therefore propose further investigation of other compounds and their combinations such as the triterpene, α,β-amyrin that exhibited greater binding affinity to CB1 than CB2 and was more potent than Δ9-THC and the N-alkylamides that exhibited CB2 selective affinity; the latter can be explored towards peripherally exclusive ECS modulation. The synthetic CB1 antagonist, Rimonabant was pulled from commercial markets for the treatment of diabetes, however its analogue SR144528 maybe an ideal lead molecule towards this end and HU-210 and Org27569 are also promising synthetic small molecules.
Collapse
Affiliation(s)
- S Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Mona, Jamaica.
| | - K N Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Rajnarayanan
- Jacobs School of Medicine and Biomedical Sciences, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14228, USA
| |
Collapse
|
126
|
de Carvalho CR, Takahashi RN. Cannabidiol disrupts the reconsolidation of contextual drug-associated memories in Wistar rats. Addict Biol 2017; 22:742-751. [PMID: 26833888 DOI: 10.1111/adb.12366] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 11/27/2022]
Abstract
In addicts, craving and relapse are frequently induced by the recall of memories related to a drug experience. Several studies have demonstrated that drug-related memories are reactivated after exposure to environmental cues and may undergo reconsolidation, a process that can strengthen memories. Thus, reactivation of mnemonic traces provides an opportunity for disrupting memories that contribute to the pathological cycle of addiction. Here we used drug-induced conditioned place preference (CPP) to investigate whether cannabidiol (CBD), a phytocannabinoid, given just after reactivation sessions, would affect reconsolidation of drug-reward memory, reinstatement of morphine-CPP, or conditioned place aversion precipitated by naltrexone in Wistar rats. We found that CBD impaired the reconsolidation of preference for the environment previously paired with both morphine and cocaine. This disruption seems to be persistent, as the preference did not return after further reinstatement induced by priming drug and stress reinstatement. Moreover, in an established morphine-CPP, an injection of CBD after the exposure to a conditioning session led to a significant reduction of both morphine-CPP and subsequent conditioned place aversion precipitated by naltrexone in the same context. Thus, established memories induced by a drug of abuse can be blocked after reactivation of the drug experience. Taken together, these results provide evidence for the disruptive effect of CBD on reconsolidation of contextual drug-related memories and highlight its therapeutic potential to attenuate contextual memories associated with drugs of abuse and consequently to reduce the risk of relapse.
Collapse
Affiliation(s)
- Cristiane Ribeiro de Carvalho
- Laboratory of Psychopharmacology, Department of Pharmacology; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Reinaldo Naoto Takahashi
- Laboratory of Psychopharmacology, Department of Pharmacology; Universidade Federal de Santa Catarina; Florianópolis Brazil
| |
Collapse
|
127
|
Robertson JM, Achua JK, Smith JP, Prince MA, Staton CD, Ronan PJ, Summers TR, Summers CH. Anxious behavior induces elevated hippocampal Cb 2 receptor gene expression. Neuroscience 2017; 352:273-284. [PMID: 28392296 DOI: 10.1016/j.neuroscience.2017.03.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 11/25/2022]
Abstract
Anxiety is differentially expressed across a continuum of stressful/fearful intensity, influenced by endocannabinoid systems and receptors. The hippocampus plays important roles in the regulation of affective behavior, emotion, and anxiety, as well as memory. Location of Cb1/Cb2 receptor action could be important in determining emotional valence, because while the dorsal hippocampus is involved in spatial memory and cognition, the ventral hippocampus has projections to the PFC, BNST, amygdala, and HPA axis, and is important for emotional responses to stress. During repeated social defeat in a Stress-Alternatives Model arena (SAM; an oval open field with escape portals only large enough for smaller mice), smaller C57BL6/N mice are subject to fear conditioning (tone=CS), and attacked by novel larger aggressive CD1 mice (US) over four daily (5min) trials. Each SAM trial presents an opportunity for escape or submission, with stable behavioral responses established by the second day of interaction. Additional groups had access to a running wheel. Social aggression plus fear conditioning stimulates enhanced Cb2 receptor gene expression in the dorsal CA1, dorsal and ventral dentate gyrus subregions in animals displaying a submissive behavioral phenotype. Escape behavior is associated with reduced Cb2 expression in the dorsal CA1 region, with freezing and escape latency correlated with mRNA levels. Escaping and submitting animals with access to running wheels had increased Cb2 mRNA in dorsal DG/CA1. These results suggest that the Cb2 receptor system is rapidly induced during anxiogenic social interactions plus fear conditioning or exercise; with responses potentially adaptive for coping mechanisms.
Collapse
Affiliation(s)
- James M Robertson
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Justin K Achua
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA; Avera McKennan Hospital & University Health Center, Sioux Falls, SD 57105, USA
| | - Justin P Smith
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA; Institute of Possibility, 322 E. 8th Street, Suite 302, Sioux Falls, SD 57103, USA; Sanford Health, 2301 E. 60th St. N., Sioux Falls, SD 57104, USA
| | - Melissa A Prince
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Clarissa D Staton
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Patrick J Ronan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA; Department of Psychiatry, University of South Dakota School of Medicine Vermillion, SD, USA; Laboratory for Clinical and Translational Research in Psychiatry, Department of Veterans Affairs Medical Center, Denver, CO 80220, USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA.
| |
Collapse
|
128
|
Piscitelli F, Pagano E, Lauritano A, Izzo AA, Di Marzo V. Development of a Rapid LC-MS/MS Method for the Quantification of Cannabidiol, Cannabidivarin, Δ9-Tetrahydrocannabivarin, and Cannabigerol in Mouse Peripheral Tissues. Anal Chem 2017; 89:4749-4755. [DOI: 10.1021/acs.analchem.7b01094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
- Endocannabinoid
Research Group (ERG), Pozzuoli (NA), Italy
| | - Ester Pagano
- Department
of Pharmacy, University of Naples Federico II, Naples, Italy
- Endocannabinoid
Research Group (ERG), Pozzuoli (NA), Italy
| | - Anna Lauritano
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
- Endocannabinoid
Research Group (ERG), Pozzuoli (NA), Italy
| | - Angelo A. Izzo
- Department
of Pharmacy, University of Naples Federico II, Naples, Italy
- Endocannabinoid
Research Group (ERG), Pozzuoli (NA), Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
- Endocannabinoid
Research Group (ERG), Pozzuoli (NA), Italy
| |
Collapse
|
129
|
Conte R, Marturano V, Peluso G, Calarco A, Cerruti P. Recent Advances in Nanoparticle-Mediated Delivery of Anti-Inflammatory Phytocompounds. Int J Mol Sci 2017; 18:E709. [PMID: 28350317 PMCID: PMC5412295 DOI: 10.3390/ijms18040709] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/18/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022] Open
Abstract
Phytocompounds have been used in medicine for decades owing to their potential in anti-inflammatory applications. However, major difficulties in achieving sustained delivery of phyto-based drugs are related to their low solubility and cell penetration, and high instability. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in the pharmaceutical sector. This review focuses on the recent advances in nanocarrier-mediated drug delivery of bioactive molecules of plant origin in the field of anti-inflammatory research. In particular, special attention is paid to the relationship between structure and properties of the nanocarrier and phytodrug release behavior.
Collapse
Affiliation(s)
- Raffaele Conte
- Institute of Agro-Environmental and Forest Biology (IBAF-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Valentina Marturano
- Institute for Polymers, Composites, and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
- Department of Chemical Sciences, University of Naples "Federico II", Via Cynthia 4, 80125 Napoli, Italy.
| | - Gianfranco Peluso
- Institute of Agro-Environmental and Forest Biology (IBAF-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Anna Calarco
- Institute of Agro-Environmental and Forest Biology (IBAF-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites, and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| |
Collapse
|
130
|
Giacoppo S, Gugliandolo A, Trubiani O, Pollastro F, Grassi G, Bramanti P, Mazzon E. Cannabinoid CB2 receptors are involved in the protection of RAW264.7 macrophages against the oxidative stress: an in vitro study. Eur J Histochem 2017; 61:2749. [PMID: 28348416 PMCID: PMC5289301 DOI: 10.4081/ejh.2017.2749] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/06/2023] Open
Abstract
Research in the last decades has widely investigated the anti-oxidant properties of natural products as a therapeutic approach for the prevention and the treatment of oxidative-stress related disorders. In this context, several studies were aimed to evaluate the therapeutic potential of phytocannabinoids, the bioactive compounds of Cannabis sativa. Here, we examined the anti-oxidant ability of Cannabigerol (CBG), a non-psychotropic cannabinoid, still little known, into counteracting the hydrogen peroxide (H2O2)-induced oxidative stress in murine RAW264.7 macrophages. In addition, we tested selective receptor antagonists for cannabinoid receptors and specifically CB1R (SR141716A) and CB2R (AM630) in order to investigate through which CBG may exert its action. Taken together, our in vitro results showed that CBG is able to counteract oxidative stress by activation of CB2 receptors. CB2 antagonist pre-treatment indeed blocked the protective effects of CBG in H2O2 stimulated macrophages, while CB1R was not involved. Specifically, CBG exhibited a potent action in inhibiting oxidative stress, by down-regulation of the main oxidative markers (iNOS, nitrotyrosine and PARP-1), by preventing IκB-α phosphorylation and translocation of the nuclear factor-κB (NF-κB) and also via the modulation of MAP kinases pathway. On the other hand, CBG was found to increase anti-oxidant defense of cells by modulating superoxide dismutase-1 (SOD-1) expression and thus inhibiting cell death (results focused on balance between Bax and Bcl-2). Based on its anti-oxidant activities, CBG may hold great promise as an anti-oxidant agent and therefore used in clinical practice as a new approach in oxidative-stress related disorders.
Collapse
|
131
|
Davidson C, Opacka-Juffry J, Arevalo-Martin A, Garcia-Ovejero D, Molina-Holgado E, Molina-Holgado F. Spicing Up Pharmacology: A Review of Synthetic Cannabinoids From Structure to Adverse Events. CANNABINOID PHARMACOLOGY 2017; 80:135-168. [DOI: 10.1016/bs.apha.2017.05.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
132
|
Garberg HT, Solberg R, Barlinn J, Martinez-Orgado J, Løberg EM, Saugstad OD. High-Dose Cannabidiol Induced Hypotension after Global Hypoxia-Ischemia in Piglets. Neonatology 2017; 112:143-149. [PMID: 28564654 DOI: 10.1159/000471786] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/17/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is considered a promising neuroprotectant after perinatal hypoxia-ischemia (HI). We have previously studied the effects of CBD 1 mg/kg in the early phase after global HI in piglets. In contrast to prior studies, we found no evidence of neuroprotection and hypothesized that higher doses might be required to demonstrate efficacy in this animal model. OBJECTIVE To assess the safety and potential neuroprotective effects of high-dose CBD. METHODS Anesthetized newborn piglets underwent global HI by ventilation with 8% O2 until the point of severe metabolic acidosis (base excess -20 mmol/L) and/or hypotension (mean arterial blood pressure ≤20 mm Hg). Piglets were randomized to intravenous treatment with vehicle (n = 9) or CBD (n = 13). The starting dose, CBD 50 mg/kg, was reduced if adverse effects occurred. The piglets were euthanized 9.5 h after HI and tissue was collected for analysis. RESULTS CBD 50 mg/kg (n = 4) induced significant hypotension in 2 out of 4 piglets, and 1 out of 4 piglets suffered a fatal cardiac arrest. CBD 25 mg/kg (n = 4) induced significant hypotension in 1 out of 4 piglets, while 10 mg/kg (n = 5) was well tolerated. A significant negative correlation between the plasma concentration of CBD and hypotension during drug infusion was observed (p < 0.005). Neuroprotective effects were evaluated in piglets that did not display significant hypotension (n = 9) and CBD did not alter the degree of neuronal damage as measured by a neuropathology score, levels of the astrocytic marker S100B in CSF, magnetic resonance spectroscopy markers (Lac/NAA and Glu/NAA ratios), or plasma troponin T. CONCLUSIONS High-dose CBD can induce severe hypotension and did not offer neuroprotection in the early phase after global HI in piglets.
Collapse
Affiliation(s)
- Håvard T Garberg
- Division of Pediatric and Adolescent Medicine, Department of Pediatric Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
133
|
Babayeva M, Assefa H, Basu P, Chumki S, Loewy Z. Marijuana Compounds: A Nonconventional Approach to Parkinson's Disease Therapy. PARKINSON'S DISEASE 2016; 2016:1279042. [PMID: 28050308 PMCID: PMC5165161 DOI: 10.1155/2016/1279042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is the second most common neurological illness in United States. Neurologically, it is characterized by the selective degeneration of a unique population of cells, the nigrostriatal dopamine neurons. The current treatment is symptomatic and mainly involves replacement of dopamine deficiency. This therapy improves only motor symptoms of Parkinson's disease and is associated with a number of adverse effects including dyskinesia. Therefore, there is unmet need for more comprehensive approach in the management of PD. Cannabis and related compounds have created significant research interest as a promising therapy in neurodegenerative and movement disorders. In this review we examine the potential benefits of medical marijuana and related compounds in the treatment of both motor and nonmotor symptoms as well as in slowing the progression of the disease. The potential for cannabis to enhance the quality of life of Parkinson's patients is explored.
Collapse
Affiliation(s)
- Mariana Babayeva
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Haregewein Assefa
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Paramita Basu
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Sanjeda Chumki
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Zvi Loewy
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| |
Collapse
|
134
|
Imam A, Ajao MS, Amin A, Abdulmajeed WI, Ibrahim A, Olajide OJ, Ajibola MI, Alli-Oluwafuyi A, Balogun WG. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa. Malays J Med Sci 2016; 23:17-28. [PMID: 27904421 DOI: 10.21315/mjms2016.23.5.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. METHODS Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. RESULTS Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. CONCLUSIONS The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.
Collapse
Affiliation(s)
- Aminu Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Moyosore Saliu Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Abdulbasit Amin
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Wahab Imam Abdulmajeed
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Abdulmumin Ibrahim
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Olayemi Joseph Olajide
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Musa Iyiola Ajibola
- Institute of Neuroscience, National Yang-Ming University, Shih-Pai, Taipei 11221, Taiwan
| | - Abdulmusawir Alli-Oluwafuyi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Wasiu Gbolahan Balogun
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
135
|
Pagano E, Capasso R, Piscitelli F, Romano B, Parisi OA, Finizio S, Lauritano A, Marzo VD, Izzo AA, Borrelli F. An Orally Active Cannabis Extract with High Content in Cannabidiol attenuates Chemically-induced Intestinal Inflammation and Hypermotility in the Mouse. Front Pharmacol 2016; 7:341. [PMID: 27757083 PMCID: PMC5047908 DOI: 10.3389/fphar.2016.00341] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for "CBD botanical drug substance," on mucosal inflammation and hypermotility in mouse models of intestinal inflammation. Colitis was induced in mice by intracolonic administration of dinitrobenzenesulfonic acid (DNBS). Motility was evaluated in the experimental model of intestinal hypermotility induced by irritant croton oil. CBD BDS or pure CBD were given - either intraperitoneally or by oral gavage - after the inflammatory insult (curative protocol). The amounts of CBD in the colon, brain, and liver after the oral treatments were measured by high-performance liquid chromatography coupled to ion trap-time of flight mass spectrometry. CBD BDS, both when given intraperitoneally and by oral gavage, decreased the extent of the damage (as revealed by the decrease in the colon weight/length ratio and myeloperoxidase activity) in the DNBS model of colitis. It also reduced intestinal hypermotility (at doses lower than those required to affect transit in healthy mice) in the croton oil model of intestinal hypermotility. Under the same experimental conditions, pure CBD did not ameliorate colitis while it normalized croton oil-induced hypermotility when given intraperitoneally (in a dose-related fashion) or orally (only at one dose). In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation. These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment.
Collapse
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, University of Naples Federico IINaples, Italy
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
| | - Raffaele Capasso
- Department of Pharmacy, University of Naples Federico IINaples, Italy
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
| | - Fabiana Piscitelli
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Barbara Romano
- Department of Pharmacy, University of Naples Federico IINaples, Italy
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
| | - Olga A. Parisi
- Department of Pharmacy, University of Naples Federico IINaples, Italy
| | - Stefania Finizio
- Department of Pharmacy, University of Naples Federico IINaples, Italy
| | - Anna Lauritano
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Vincenzo Di Marzo
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Angelo A. Izzo
- Department of Pharmacy, University of Naples Federico IINaples, Italy
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
| | - Francesca Borrelli
- Department of Pharmacy, University of Naples Federico IINaples, Italy
- Institute of Bimolecular Chemistry, ICB, National Research Council, PozzuoliItaly
| |
Collapse
|
136
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
137
|
Reyes-Parada M, Iturriaga-Vasquez P. The development of novel polypharmacological agents targeting the multiple binding sites of nicotinic acetylcholine receptors. Expert Opin Drug Discov 2016; 11:969-81. [DOI: 10.1080/17460441.2016.1227317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
138
|
Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation. Mediators Inflamm 2016; 2016:5831315. [PMID: 27597805 PMCID: PMC4997072 DOI: 10.1155/2016/5831315] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 02/08/2023] Open
Abstract
Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them.
Collapse
|
139
|
Sharkey KA, Wiley JW. The Role of the Endocannabinoid System in the Brain-Gut Axis. Gastroenterology 2016; 151:252-66. [PMID: 27133395 PMCID: PMC4961581 DOI: 10.1053/j.gastro.2016.04.015] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system. The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid (CB) receptors CB1 and CB2. The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility. Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation. We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain. The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic-pituitary-adrenal pathways via actions in specific brain regions, notably the prefrontal cortex, amygdala, and hypothalamus. Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders.
Collapse
Affiliation(s)
- Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada,Corresponding author: Dr. Keith Sharkey, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada, , Tel: 403-220-4601
| | - John W. Wiley
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
140
|
McMahon LR. Enhanced discriminative stimulus effects of Δ(9)-THC in the presence of cannabidiol and 8-OH-DPAT in rhesus monkeys. Drug Alcohol Depend 2016; 165:87-93. [PMID: 27289270 PMCID: PMC4947395 DOI: 10.1016/j.drugalcdep.2016.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/10/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cannabidiol, a therapeutic with potential serotonin (5-hydroxytryptamine; 5-HT) 5-HT1A receptor agonist activity, is the second most prevalent cannabinoid in Cannabis after Δ(9)-THC. The extent to which cannabidiol modifies the effects of Δ(9)-THC has not been firmly established, especially with respect to abuse-related effects in rhesus monkeys where previously antagonistic interactions have been reported for some behavioral outcomes. METHODS Cannabidiol and the 5-HT1A receptor agonist (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) were tested in two separate discrimination assays in rhesus monkeys. One group (n=6) discriminated Δ(9)-tetrahydrocannabinol (Δ(9)-THC; 0.1mg/kg i.v.); a second group (n=6) discriminated the cannabinoid antagonist rimonabant (1mg/kg i.v.) while receiving Δ(9)-THC daily (1mg/kg/12hs.c.). Responding was maintained under a fixed ratio 5 schedule of stimulus-shock termination. RESULTS Both training drugs dose-dependently increased the percentage of responses on the respective drug-associated levers. Cannabidiol (up to 17.8mg/kg) and 8-OH-DPAT (up to 0.178mg/kg) did not substitute for either training drug; however, both significantly increased the potency of Δ(9)-THC to produce discriminative stimulus effects. Moreover, 8-OH-DPAT significantly attenuated the discriminative stimulus effects of rimonabant, whereas cannabidiol did not modify the rimonabant discriminative stimulus. CONCLUSIONS These results, which are consistent with cannabidiol lacking CB1 receptor agonist or antagonist activity in vivo, demonstrate enhancement of the effects of Δ(9)-THC by cannabidiol, albeit at cannabidiol amounts larger than those in Cannabis or cannabidiol-based therapeutics (nabiximols). In addition to showing that cannabidiol and a 5-HT1A receptor agonist have overlapping behavioral effects, the current results suggest that 5-HT1A agonism enhances the CB1 receptor-mediated effects of Δ(9)-THC.
Collapse
Affiliation(s)
- Lance R. McMahon
- The University of Texas Health Science Center at San Antonio, Department of Pharmacology, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, 210 567 0143
| |
Collapse
|
141
|
Ojha S, Javed H, Azimullah S, Haque ME. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease. Mol Cell Biochem 2016; 418:59-70. [DOI: 10.1007/s11010-016-2733-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
|
142
|
Stephens GJ. Does modulation of the endocannabinoid system have potential therapeutic utility in cerebellar ataxia? J Physiol 2016; 594:4631-41. [PMID: 26970080 PMCID: PMC4983615 DOI: 10.1113/jp271106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022] Open
Abstract
Cerebellar ataxias represent a spectrum of disorders which are, however, linked by common symptoms of motor incoordination and typically associated with deficiency in Purkinje cell firing activity and, often, degeneration. Cerebellar ataxias currently lack a curative agent. The endocannabinoid (eCB) system includes eCB compounds and their associated metabolic enzymes, together with cannabinoid receptors, predominantly the cannabinoid CB1 receptor (CB1R) in the cerebellum; activation of this system in the cerebellar cortex is associated with deficits in motor coordination characteristic of ataxia, effects which can be prevented by CB1R antagonists. Of further interest are various findings that CB1R deficits may also induce a progressive ataxic phenotype. Together these studies suggest that motor coordination is reliant on maintaining the correct balance in eCB system signalling. Recent work also demonstrates deficient cannabinoid signalling in the mouse ‘ducky2J’ model of ataxia. In light of these points, the potential mechanisms whereby cannabinoids may modulate the eCB system to ameliorate dysfunction associated with cerebellar ataxias are considered.
![]()
Collapse
Affiliation(s)
- G J Stephens
- School of Pharmacy, University of Reading, Reading, RG6 6AJ, UK
| |
Collapse
|
143
|
Abstract
The lipid landscapes of cellular membranes are complex and dynamic, are tissue dependent, and can change with the age and the development of a variety of diseases. Researchers are now gaining new appreciation for the regulation of ion channel proteins by the membrane lipids in which they are embedded. Thus, as membrane lipids change, for example, during the development of disease, it is likely that the ionic currents that conduct through the ion channels embedded in these membranes will also be altered. This chapter provides an overview of the complex regulation of prokaryotic and eukaryotic voltage-dependent sodium (Nav) channels by fatty acids, sterols, glycerophospholipids, sphingolipids, and cannabinoids. The impact of lipid regulation on channel gating kinetics, voltage-dependence, trafficking, toxin binding, and structure are explored for Nav channels that have been examined in heterologous expression systems, native tissue, and reconstituted into artificial membranes. Putative mechanisms for Nav regulation by lipids are also discussed.
Collapse
Affiliation(s)
- N D'Avanzo
- Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
144
|
Abstract
The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB
1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB
1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB
1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB
1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.
Collapse
Affiliation(s)
- Arnau Busquets Garcia
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Edgar Soria-Gomez
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Luigi Bellocchio
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|
145
|
Cannabidiol and epilepsy: Rationale and therapeutic potential. Pharmacol Res 2016; 107:85-92. [PMID: 26976797 DOI: 10.1016/j.phrs.2016.03.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/30/2022]
Abstract
Despite the introduction of new antiepileptic drugs (AEDs), the quality of life and therapeutic response for patients with epilepsy remains still poor. Unfortunately, besides several advantages, these new AEDs have not satisfactorily reduced the number of refractory patients. Therefore, the need for different other therapeutic options to manage epilepsy is still a current issue. To this purpose, emphasis has been given to phytocannabinoids, which have been medicinally used since ancient time in the treatment of neurological disorders including epilepsy. In particular, the nonpsychoactive compound cannabidiol (CBD) has shown anticonvulsant properties, both in preclinical and clinical studies, with a yet not completely clarified mechanism of action. However, it should be made clear that most phytocannabinoids do not act on the endocannabinoid system as in the case of CBD. In in vivo preclinical studies, CBD has shown significant anticonvulsant effects mainly in acute animal models of seizures, whereas restricted data exist in chronic models of epilepsy as well as in animal models of epileptogenesis. Likewise, clinical evidence seems to indicate that CBD is able to manage epilepsy both in adults and children affected by refractory seizures, with a favourable side effect profile. However, to date, clinical trials are both qualitatively and numerically limited, thus yet inconsistent. Therefore, further preclinical and clinical studies are undoubtedly needed to better evaluate the potential therapeutic profile of CBD in epilepsy, although the actually available data is promising.
Collapse
|
146
|
Rubio M, Valdeolivas S, Piscitelli F, Verde R, Satta V, Barroso E, Montolio M, Aras LM, Di Marzo V, Sagredo O, Fernández-Ruiz J. Analysis of endocannabinoid signaling elements and related proteins in lymphocytes of patients with Dravet syndrome. Pharmacol Res Perspect 2016; 4:e00220. [PMID: 27069631 PMCID: PMC4804326 DOI: 10.1002/prp2.220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/20/2016] [Indexed: 11/09/2022] Open
Abstract
Cannabidiol (CBD) reduces seizures in childhood epilepsy syndromes including Dravet syndrome (DS). A formulation of CBD has obtained orphan drug designation for these syndromes and clinical trials are currently underway. The mechanism responsible for CBD effects is not known, although it could involve targets sensitive to CBD in other neurological disorders. We believe of interest to investigate whether these potential targets are altered in DS, in particular whether the endocannabinoid system is dysregulated. To this end, lymphocytes from patients and controls were used for analysis of gene expression of transmitter receptors and transporters, ion channels, and enzymes associated with CBD effects, as well as endocannabinoid genes. Plasma endocannabinoid levels were also analyzed. There were no differences between DS patients and controls in most of the CBD targets analyzed, except an increase in the voltage-dependent calcium channel α-1h subunit. We also found that cannabinoid type-2 (CB 2) receptor gene expression was elevated in DS patients, with no changes in other endocannabinoid-related receptors and enzymes, as well as in plasma levels of endocannabinoids. Such elevation was paralleled by an increase in CD70, a marker of lymphocyte activation, and certain trends in inflammation-related proteins (e.g., peroxisome proliferator-activated receptor-γ receptors, cytokines). In conclusion, together with changes in the voltage-dependent calcium channel α-1h subunit, we found an upregulation of CB 2 receptors, associated with an activation of lymphocytes and changes in inflammation-related genes, in DS patients. Such changes were also reported in inflammatory disorders and may indirectly support the occurrence of a potential dysregulation of the endocannabinoid system in the brain.
Collapse
Affiliation(s)
- Marta Rubio
- Departamento de Bioquímica y Biología Molecular Facultad de Medicina Instituto Universitario de Investigación en Neuroquímica Universidad Complutense Madrid Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Madrid Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Sara Valdeolivas
- Departamento de Bioquímica y Biología Molecular Facultad de Medicina Instituto Universitario de Investigación en Neuroquímica Universidad Complutense Madrid Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Madrid Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Fabiana Piscitelli
- Endocannabinoid Research Group Institute of Biomolecular Chemistry Consiglio Nazionale delle Ricerche Pozzuoli, Naples Italy
| | - Roberta Verde
- Endocannabinoid Research Group Institute of Biomolecular Chemistry Consiglio Nazionale delle Ricerche Pozzuoli, Naples Italy
| | - Valentina Satta
- Departamento de Bioquímica y Biología Molecular Facultad de Medicina Instituto Universitario de Investigación en Neuroquímica Universidad Complutense Madrid Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Madrid Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Eva Barroso
- Instituto de Genética Médica y Molecular (INGEMM)Hospital Universitario La Paz Universidad Autónoma de MadridIdi PAZ Madrid Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) Instituto de Salud Carlos III Madrid Spain
| | - Marisol Montolio
- Dravet Syndrome Foundation Madrid Spain; Departamento de Biología Celular Facultad de Biología Universidad de Barcelona Barcelona Spain
| | - Luis Miguel Aras
- Dravet Syndrome Foundation Madrid Spain; Servicio Navarro de Salud Osasunbidea Estella Spain
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group Institute of Biomolecular Chemistry Consiglio Nazionale delle Ricerche Pozzuoli, Naples Italy
| | - Onintza Sagredo
- Departamento de Bioquímica y Biología Molecular Facultad de Medicina Instituto Universitario de Investigación en Neuroquímica Universidad Complutense Madrid Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Madrid Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular Facultad de Medicina Instituto Universitario de Investigación en Neuroquímica Universidad Complutense Madrid Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Madrid Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| |
Collapse
|
147
|
Zlebnik NE, Cheer JF. Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation? Annu Rev Neurosci 2016; 39:1-17. [PMID: 27023732 DOI: 10.1146/annurev-neuro-070815-014038] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Cannabis sativa plant has been used to treat various physiological and psychiatric conditions for millennia. Current research is focused on isolating potentially therapeutic chemical constituents from the plant for use in the treatment of many central nervous system disorders. Of particular interest is the primary nonpsychoactive constituent cannabidiol (CBD). Unlike Δ(9)-tetrahydrocannabinol (THC), CBD does not act through the cannabinoid type 1 (CB1) receptor but has many other receptor targets that may play a role in psychiatric disorders. Here we review preclinical and clinical data outlining the therapeutic efficacy of CBD for the treatment of motivational disorders such as drug addiction, anxiety, and depression. Across studies, findings suggest promising treatment effects and potentially overlapping mechanisms of action for CBD in these disorders and indicate the need for further systematic investigation of the viability of CBD as a psychiatric pharmacotherapy.
Collapse
Affiliation(s)
- Natalie E Zlebnik
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201; .,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201;
| |
Collapse
|
148
|
The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways. Sci Rep 2016; 6:21703. [PMID: 26887982 PMCID: PMC4757881 DOI: 10.1038/srep21703] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
Scleroderma is a group of rare diseases associated with early and transient inflammation and vascular injury, followed by fibrosis affecting the skin and multiple internal organs. Fibroblast activation is the hallmark of scleroderma, and disrupting the intracellular TGFβ signaling may provide a novel approach to controlling fibrosis. Because of its potential role in modulating inflammatory and fibrotic responses, both PPARγ and CB2 receptors represent attractive targets for the development of cannabinoid-based therapies. We have developed a non-thiophilic and chemically stable derivative of the CBD quinol (VCE-004.8) that behaves as a dual agonist of PPARγ and CB2 receptors, VCE-004.8 inhibited TGFβ-induced Col1A2 gene transcription and collagen synthesis. Moreover, VCE-004.8 inhibited TGFβ–mediated myofibroblast differentiation and impaired wound-healing activity. The anti-fibrotic efficacy in vivo was investigated in a murine model of dermal fibrosis induced by bleomycin. VCE-004.8 reduced dermal thickness, blood vessels collagen accumulation and prevented mast cell degranulation and macrophage infiltration in the skin. These effects were impaired by the PPARγ antagonist T0070907 and the CB2 antagonist AM630. In addition, VCE-004.8 downregulated the expression of several key genes associated with fibrosis, qualifying this semi-synthetic cannabinoid as a novel compound for the management of scleroderma and, potentially, other fibrotic diseases.
Collapse
|
149
|
Andre CM, Hausman JF, Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. FRONTIERS IN PLANT SCIENCE 2016; 7:19. [PMID: 26870049 PMCID: PMC4740396 DOI: 10.3389/fpls.2016.00019] [Citation(s) in RCA: 737] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
Cannabis sativa L. is an important herbaceous species originating from Central Asia, which has been used in folk medicine and as a source of textile fiber since the dawn of times. This fast-growing plant has recently seen a resurgence of interest because of its multi-purpose applications: it is indeed a treasure trove of phytochemicals and a rich source of both cellulosic and woody fibers. Equally highly interested in this plant are the pharmaceutical and construction sectors, since its metabolites show potent bioactivities on human health and its outer and inner stem tissues can be used to make bioplastics and concrete-like material, respectively. In this review, the rich spectrum of hemp phytochemicals is discussed by putting a special emphasis on molecules of industrial interest, including cannabinoids, terpenes and phenolic compounds, and their biosynthetic routes. Cannabinoids represent the most studied group of compounds, mainly due to their wide range of pharmaceutical effects in humans, including psychotropic activities. The therapeutic and commercial interests of some terpenes and phenolic compounds, and in particular stilbenoids and lignans, are also highlighted in view of the most recent literature data. Biotechnological avenues to enhance the production and bioactivity of hemp secondary metabolites are proposed by discussing the power of plant genetic engineering and tissue culture. In particular two systems are reviewed, i.e., cell suspension and hairy root cultures. Additionally, an entire section is devoted to hemp trichomes, in the light of their importance as phytochemical factories. Ultimately, prospects on the benefits linked to the use of the -omics technologies, such as metabolomics and transcriptomics to speed up the identification and the large-scale production of lead agents from bioengineered Cannabis cell culture, are presented.
Collapse
Affiliation(s)
- Christelle M. Andre
- Environmental Research and Innovation, Luxembourg Institute of Science and TechnologyEsch-sur-Alzette, Luxembourg
| | | | | |
Collapse
|
150
|
Nikan M, Nabavi SM, Manayi A. Ligands for cannabinoid receptors, promising anticancer agents. Life Sci 2016; 146:124-30. [PMID: 26764235 DOI: 10.1016/j.lfs.2015.12.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/08/2015] [Accepted: 12/31/2015] [Indexed: 11/19/2022]
Abstract
Cannabinoid compounds are unique to cannabis and provide some interesting biological properties. These compounds along with endocannabinoids, a group of neuromodulator compounds in the body especially in brain, express their effects by activation of G-protein-coupled cannabinoid receptors, CB1 and CB2. There are several physiological properties attributed to the endocannabinoids including pain relief, enhancement of appetite, blood pressure lowering during shock, embryonic development, and blocking of working memory. On the other hand, activation of endocannabinoid system may be suppresses evolution and progression of several types of cancer. According to the results of recent studies, CB receptors are over-expressed in cancer cell lines and application of multiple cannabinoid or cannabis-derived compounds reduce tumor size through decrease of cell proliferation or induction of cell cycle arrest and apoptosis along with desirable effect on decrease of tumor-evoked pain. Therefore, modulation of endocannabinoid system by inhibition of fatty acid amide hydrolase (FAAH), the enzyme, which metabolized endocannabinoids, or application of multiple cannabinoid or cannabis-derived compounds, may be appropriate for the treatment of several cancer subtypes. This review focuses on how cannabinoid affect different types of cancers.
Collapse
Affiliation(s)
- Marjan Nikan
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|