101
|
Pan W, Luo Q, Yan X, Yuan L, Yi H, Zhang L, Li B, Zhang Y, Sun J, Qiu MZ, Yang DJ. A novel SMAC mimetic APG-1387 exhibits dual antitumor effect on HBV-positive hepatocellular carcinoma with high expression of cIAP2 by inducing apoptosis and enhancing innate anti-tumor immunity. Biochem Pharmacol 2018; 154:127-135. [PMID: 29679556 DOI: 10.1016/j.bcp.2018.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
Check point inhibitor anti-PD1 antibody produced some efficacy in Hepatocellular Carcinoma (HCC) patients previously treated with sorafenib. Unfortunately, HCC patients with hepatitis B virus (HBV) infection did not respond as well as uninfected patients. Previously, Second mitochondria-derived activator of caspases (SMAC) mimetics-the antagonist for inhibitor of apoptosis proteins (IAPs) can rapidly reduce serum hepatitis B virus DNA in animal model. APG-1387 is a novel SMAC-mimetic, small molecule inhibitor targeting inhibitor of apoptosis proteins (IAPs). In our study, firstly, we found that HCC patients with copy number alteration of cIAP1, cIAP2, and XIAP had a dismal prognosis. Then, we discovered that APG-1387 alone could induce apoptosis of PLC/PRF/5 which was HBV positive both in-vitro and in-vivo. Furthermore, we found that APG-1387 significantly up-regulated the expression of calreticulin and HLA-DR in PLC/PRF/5 via activating non-classic NF-κB pathway. Also, compared to vehicle group, APG-1387 increased NK cell counts by 5 folds in PLC/PRF/5 xenograft model. In-vitro, APG-1387 positively regulated T cells by reducing Treg differentiation and down-regulating PD1 expression in CD4 T cell. Moreover, APG-1387 had no impact on memory T cells. Consequently, our results suggest that APG1387 could be a good candidate to combine with anti-PD1 antibody treatment to overcome low responds of check point inhibitors in HBV positive HCC.
Collapse
Affiliation(s)
- Wentao Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 51000, PR China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Qiuyun Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 51000, PR China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Xianglei Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 51000, PR China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Luping Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 51000, PR China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Hanjie Yi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 51000, PR China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Lin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 51000, PR China; Department of Clinical Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Baoxia Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 51000, PR China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Yuxin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 51000, PR China; Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Jian Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 51000, PR China; Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China.
| | - Miao-Zhen Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 51000, PR China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China.
| | - Da-Jun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 51000, PR China; Suzhou Ascentage Pharma Inc., Jiangsu 215123, PR China.
| |
Collapse
|
102
|
Predicting the cell death responsiveness and sensitization of glioma cells to TRAIL and temozolomide. Oncotarget 2018; 7:61295-61311. [PMID: 27494880 PMCID: PMC5308652 DOI: 10.18632/oncotarget.10973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/18/2016] [Indexed: 12/28/2022] Open
Abstract
Genotoxic chemotherapy with temozolomide (TMZ) is a mainstay of treatment for glioblastoma (GBM); however, at best, TMZ provides only modest survival benefit to a subset of patients. Recent insight into the heterogeneous nature of GBM suggests a more personalized approach to treatment may be necessary to overcome cancer drug resistance and improve patient care. These include novel therapies that can be used both alone and with TMZ to selectively reactivate apoptosis within malignant cells. For this approach to work, reliable molecular signatures that can accurately predict treatment responsiveness need to be identified first. Here, we describe the first proof-of-principle study that merges quantitative protein-based analysis of apoptosis signaling networks with data- and knowledge-driven mathematical systems modeling to predict treatment responsiveness of GBM cell lines to various apoptosis-inducing stimuli. These include monotherapies with TMZ and TRAIL, which activate the intrinsic and extrinsic apoptosis pathways, respectively, as well as combination therapies of TMZ+TRAIL. We also successfully employed this approach to predict whether individual GBM cell lines could be sensitized to TMZ or TRAIL via the selective targeting of Bcl-2/Bcl-xL proteins with ABT-737. Our findings suggest that systems biology-based approaches could assist in personalizing treatment decisions in GBM to optimize cell death induction.
Collapse
|
103
|
Curtin BH, Manoni F, Park J, Sisto LJ, Lam YH, Gravel M, Roulston A, Harran PG. Assembly of Complex Macrocycles by Incrementally Amalgamating Unprotected Peptides with a Designed Four-Armed Insert. J Org Chem 2018; 83:3090-3108. [DOI: 10.1021/acs.joc.7b02958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brice H. Curtin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Francesco Manoni
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jiyong Park
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Luke J. Sisto
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yu-hong Lam
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michel Gravel
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Anne Roulston
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Patrick G. Harran
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
104
|
MK2–TNF–Signaling Comes Full Circle. Trends Biochem Sci 2018; 43:170-179. [DOI: 10.1016/j.tibs.2017.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022]
|
105
|
Werner TA, Nolten I, Dizdar L, Riemer JC, Schütte SC, Verde PE, Raba K, Schott M, Knoefel WT, Krieg A. IAPs cause resistance to TRAIL-dependent apoptosis in follicular thyroid cancer. Endocr Relat Cancer 2018; 25:295-308. [PMID: 29317481 DOI: 10.1530/erc-17-0479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/09/2018] [Indexed: 12/29/2022]
Abstract
Follicular thyroid cancer's (FTC) excellent long-term prognosis is mainly dependent on postoperative radioactive iodine (RAI) treatment. However, once the tumour becomes refractory, the 10-year disease-specific survival rate drops below 10%. The aim of our study was to evaluate the prognostic and biological role of the TRAIL system in FTC and to elucidate the influence of small-molecule-mediated antagonisation of inhibitor of apoptosis proteins (IAPs) on TRAIL sensitivity in vitro Tissue microarrays were constructed from forty-four patients with histologically confirmed FTC. Expression levels of TRAIL and its receptors were correlated with clinicopathological data and overall as well as recurrence-free survival. Non-iodine-retaining FTC cell lines TT2609-bib2 and FTC133 were treated with recombinant human TRAIL alone and in combination with Smac mimetics GDC-0152 or Birinapant. TRAIL-R2/DR5 as well as TRAIL-R3/DcR1 and TRAIL-R4/DcR2 were significantly higher expressed in advanced tumour stages. Both decoy receptors were negatively associated with recurrence-free and overall survival. TRAIL-R4/DcR2 additionally proved to be an independent negative prognostic marker in FTC (HR = 1.446, 95% CI: 1.144-1.826; P < 0.001). In vitro, the co-incubation of Birinapant or GDC-0152 with rh-TRAIL-sensitised FTC cell lines for TRAIL-induced apoptosis, through degradation of cIAP1/2. The TRAIL system plays an important role in FTC tumour biology. Its decoy receptors are associated with poor prognosis as well as earlier recurrence. The specific degradation of cIAP1/2 sensitises FTC cells to TRAIL-induced apoptosis and might highlight a new point of attack in patients with RAI refractory disease.
Collapse
Affiliation(s)
- Thomas A Werner
- Department of Surgery (A)Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Inga Nolten
- Department of Surgery (A)Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Levent Dizdar
- Department of Surgery (A)Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Jasmin C Riemer
- Institute of PathologyHeinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Sina C Schütte
- Department of Surgery (A)Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Pablo E Verde
- Coordination Centre for Clinical TrialsHeinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell TherapeuticsHeinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Matthias Schott
- Division of EndocrinologyHeinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wolfram T Knoefel
- Department of Surgery (A)Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A)Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
106
|
Ji J, Yu Y, Li ZL, Chen MY, Deng R, Huang X, Wang GF, Zhang MX, Yang Q, Ravichandran S, Feng GK, Xu XL, Yang CL, Qiu MZ, Jiao L, Yang D, Zhu XF. XIAP Limits Autophagic Degradation of Sox2 and Is A Therapeutic Target in Nasopharyngeal Carcinoma Stem Cells. Am J Cancer Res 2018; 8:1494-1510. [PMID: 29556337 PMCID: PMC5858163 DOI: 10.7150/thno.21717] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022] Open
Abstract
Rationale: Nasopharyngeal carcinoma (NPC) is the most frequent head and neck tumor in South China. The presence of cancer stem cells (CSCs) in NPC contributes to tumor maintenance and therapeutic resistance, while the ability of CSCs to escape from the apoptosis pathway may render them the resistant property to the therapies. Inhibitor of apoptosis proteins family proteins (IAPs), which are overexpressed in nasopharyngeal carcinoma stem cells, may play an important role in maintaining nasopharyngeal cancer stem cell properties. Here, we develop a novel CSC-targeting strategy to treat NPC through inhibiting IAPs. Methods: Human NPC S-18 and S-26 cell lines were used as the model system in vitro and in vivo. Fluorescence activated cell sorting (FACS) assay was used to detect nasopharyngeal SP cells and CD44+ cells. The characteristics of CSCs were defined by sphere suspension culture, colony formation assay and cell migration. The role of XIAP on the regulation of Sox2 protein stability and ERK1-mediated phosphorylation of Sox2 signaling pathway were analyzed using immunoblotting, immunoprecipitation, immunofluorescence, phosphorylation mass spectrometry, siRNA silencing and plasmid overexpression. The correlation between XIAP and Sox2 in NPC biopsies and their role in prognosis was performed by immunohistochemistry. APG-1387 or chemotherapies-induced cell death and apoptosis in S-18 and S-26 were determined by WST, immunoblotting and flow cytometry assay. Results: IAPs, especially X chromosome-linked IAP (XIAP), were elevated in CSCs of NPC, and these proteins were critically involved in the maintenance of CSCs properties by enhancing the stability of Sox2. Mechanistically, ERK1 kinase promoted autophagic degradation of Sox2 via phosphorylation of Sox2 at Ser251 and further SUMOylation of Sox2 at Lys245 in non-CSCs. However, XIAP blocked autophagic degradation of Sox2 by inhibiting ERK1 activation in CSCs. Additionally, XIAP was positively correlated with Sox2 expression in NPC tissues, which were associated with NPC progression. Finally, we discovered that a novel antagonist of IAPs, APG-1387, exerted antitumor effect on CSCs. Also, the combination of APG-1387 with CDDP /5-FU has a synergistic effect on NPC. Conclusion: Our study highlights the importance of IAPs in the maintenance of CSCs in NPC. Thus, XIAP is a promising therapeutic target in CSCs and suggests that NPC patients may benefit from a combination treatment of APG-1387 with conventional chemotherapy.
Collapse
|
107
|
Nadella V, Mohanty A, Sharma L, Yellaboina S, Mollenkopf HJ, Mazumdar VB, Palaparthi R, Mylavarapu MB, Maurya R, Kurukuti S, Rudel T, Prakash H. Inhibitors of Apoptosis Protein Antagonists (Smac Mimetic Compounds) Control Polarization of Macrophages during Microbial Challenge and Sterile Inflammatory Responses. Front Immunol 2018; 8:1792. [PMID: 29375545 PMCID: PMC5767188 DOI: 10.3389/fimmu.2017.01792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is a physiological cell death process essential for development, tissue homeostasis, and for immune defense of multicellular animals. Inhibitors of apoptosis proteins (IAPs) regulate apoptosis in response to various cellular assaults. Using both genetic and pharmacological approaches we demonstrate here that the IAPs not only support opportunistic survival of intracellular human pathogens like Chlamydia pneumoniae but also control plasticity of iNOS+ M1 macrophage during the course of infection and render them refractory for immune stimulation. Treatment of Th1 primed macrophages with birinapant (IAP-specific antagonist) inhibited NO generation and relevant proteins involved in innate immune signaling. Accordingly, birinapant promoted hypoxia, angiogenesis, and tumor-induced M2 polarization of iNOS+ M1 macrophages. Interestingly, birinapant-driven changes in immune signaling were accompanied with changes in the expression of various proteins involved in the metabolism, and thus revealing the new role of IAPs in immune metabolic reprogramming in committed macrophages. Taken together, our study reveals the significance of IAP targeting approaches (Smac mimetic compounds) for the management of infectious and inflammatory diseases relying on macrophage plasticity.
Collapse
Affiliation(s)
- Vinod Nadella
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Telangana, India
| | - Aparna Mohanty
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Telangana, India
| | - Lalita Sharma
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Telangana, India
| | - Sailu Yellaboina
- YU-IOB Centre for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
| | - Hans-Joachim Mollenkopf
- Core Facility Genomics and Microarray, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Varadendra Balaji Mazumdar
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Telangana, India
| | | | | | - Radheshyam Maurya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Thomas Rudel
- Biocentre, Department of Microbiology, University of Würzburg, Würzburg, Germany
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Telangana, India
| |
Collapse
|
108
|
Cooney J, Allison C, Preston S, Pellegrini M. Therapeutic manipulation of host cell death pathways to facilitate clearance of persistent viral infections. J Leukoc Biol 2018; 103:287-293. [PMID: 29345371 DOI: 10.1189/jlb.3mr0717-289r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/04/2017] [Accepted: 09/20/2017] [Indexed: 11/24/2022] Open
Abstract
Most persistent viral infections can be controlled, but not cured, by current therapies. Abrogated antiviral immunity and stable latently infected cells represent major barriers to cure. This necessitates life-long suppressive antiviral therapy. Achieving a cure for HIV, hepatitis B virus, Epstein Barr-virus, and others, requires novel approaches to facilitate the clearance of infected cells from the host. One such approach is to target host cell death pathways, rather than the virus itself. Here, we summarize recent findings from studies that have utilized therapeutics to manipulate host cell death pathways as a means to treat and cure persistent viral infections.
Collapse
Affiliation(s)
- James Cooney
- Division of Infection and Immunity, Walter and Eliza Hall Institute, Melbourne, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Parkville, Australia
| | - Cody Allison
- Division of Infection and Immunity, Walter and Eliza Hall Institute, Melbourne, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Parkville, Australia
| | - Simon Preston
- Division of Infection and Immunity, Walter and Eliza Hall Institute, Melbourne, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Parkville, Australia
| | - Marc Pellegrini
- Division of Infection and Immunity, Walter and Eliza Hall Institute, Melbourne, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Parkville, Australia
| |
Collapse
|
109
|
Dizdar L, Jünemann LM, Werner TA, Verde PE, Baldus SE, Stoecklein NH, Knoefel WT, Krieg A. Clinicopathological and functional implications of the inhibitor of apoptosis proteins survivin and XIAP in esophageal cancer. Oncol Lett 2018; 15:3779-3789. [PMID: 29467895 DOI: 10.3892/ol.2018.7755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Based on their overexpression and important roles in progression and therapy-resistance in malignant diseases, the inhibitor of apoptosis protein family (IAP) members, survivin and X-linked inhibitor of apoptosis protein (XIAP), represent attractive candidates for targeted therapy. The present study investigated the prognostic and biological relevance of survivin and XIAP in esophageal squamous-cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). Survivin and XIAP expression was analyzed by immunohistochemistry using tissue microarrays containing 120 ESCC and 90 EAC samples as well as the corresponding non-neoplastic esophageal mucosa samples. IAP expression levels were then correlated to clinicopathological parameters and overall survival to identify any associations. In addition, esophageal cancer cell lines were treated with the survivin inhibitor YM155, and the XIAP inhibitors Birinapant and GDC-0152 in vitro. Survivin and XIAP expression were significantly increased in EAC and ESCC when compared with tumor-adjacent mucosa. In patients with ESCC XIAP expression was associated with female gender and advanced tumor stages, and nuclear survivin expression was associated with poor grading. High XIAP expression was identified as an independent negative prognostic marker in ESCC. By contrast, XIAP inhibitors did not affect cancer cell viability in vitro, and the small molecule survivin inhibitor YM155 significantly reduced cell viability and proliferation in esophageal cancer cell lines. Western blot analysis revealed a dose dependent decrease of survivin accompanied by an increased poly (adenosine diphosphate-ribose) polymerase cleavage following YM155 treatment. These findings underline the potential role of survivin and XIAP in the oncogenesis of esophageal cancer and provide a rationale for future clinical studies investigating the therapeutic efficacy of IAP directed therapies in patients with esophageal cancer.
Collapse
Affiliation(s)
- Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa M Jünemann
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Thomas A Werner
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Pablo E Verde
- Coordination Centre for Clinical Trials, Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan E Baldus
- Institute of Pathology, Cytology and Molecular Pathology, D-51465 Bergisch Gladbach, Germany
| | - Nikolas H Stoecklein
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Wolfram T Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
110
|
Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 2018; 25:46-55. [PMID: 29053143 PMCID: PMC5729535 DOI: 10.1038/cdd.2017.179] [Citation(s) in RCA: 455] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Apoptosis shapes development and differentiation, has a key role in tissue homeostasis, and is deregulated in cancer. In most cases, successful apoptosis is triggered by mitochondrial outer membrane permeabilization (MOMP), which defines the mitochondrial or intrinsic pathway and ultimately leads to caspase activation and protein substrate cleavage. The mitochondrial apoptotic pathway centered on MOMP is controlled by an intricate network of events that determine the balance of the cell fate choice between survival and death. Here we will review how MOMP proceeds and how the main effectors cytochrome c, a heme protein that has a crucial role in respiration, and second mitochondria-derived activator of caspase (SMAC), as well as other intermembrane space proteins, orchestrate caspase activation. Moreover, we discuss recent insights on the interplay of the upstream coordinators and initiators of MOMP, the BCL-2 family. This review highlights how our increasing knowledge on the regulation of critical checkpoints of apoptosis integrates with understanding of cancer development and has begun to translate into therapeutic clinical benefit.
Collapse
Affiliation(s)
- Halime Kalkavan
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
111
|
McComb S, Aguadé-Gorgorió J, Harder L, Marovca B, Cario G, Eckert C, Schrappe M, Stanulla M, von Stackelberg A, Bourquin JP, Bornhauser BC. Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL. Sci Transl Med 2017; 8:339ra70. [PMID: 27194728 DOI: 10.1126/scitranslmed.aad2986] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
More precise treatment strategies are urgently needed to decrease toxicity and improve outcomes for treatment-refractory leukemia. We used ex vivo drug response profiling of high-risk, relapsed, or refractory acute lymphoblastic leukemia (ALL) cases and identified a subset with exquisite sensitivity to small-molecule mimetics of the second mitochondria-derived activator of caspases (SMAC) protein. Potent ex vivo activity of the SMAC mimetic (SM) birinapant correlated with marked in vivo antileukemic effects, as indicated by delayed engraftment, decreased leukemia burden, and prolonged survival of xenografted mice. Antileukemic activity was dependent on simultaneous execution of apoptosis and necroptosis, as demonstrated by functional genomic dissection with a multicolored lentiCRISPR approach to simultaneously disrupt multiple genes in patient-derived ALL. SM specifically targeted receptor-interacting protein kinase 1 (RIP1)-dependent death, and CRISPR-mediated disruption of RIP1 completely blocked SM-induced death yet had no impact on the response to standard antileukemic agents. Thus, SM compounds such as birinapant circumvent escape from apoptosis in leukemia by activating a potent dual RIP1-dependent apoptotic and necroptotic cell death, which is not exploited by current therapy. Ex vivo drug activity profiling could provide important functional diagnostic information to identify patients who may benefit from targeted treatment with birinapant in early clinical trials.
Collapse
Affiliation(s)
- Scott McComb
- Department of Oncology and Children's Research Centre, University Children's Hospital Zürich, 8032 Zürich, Switzerland
| | - Júlia Aguadé-Gorgorió
- Department of Oncology and Children's Research Centre, University Children's Hospital Zürich, 8032 Zürich, Switzerland
| | - Lena Harder
- Department of Oncology and Children's Research Centre, University Children's Hospital Zürich, 8032 Zürich, Switzerland
| | - Blerim Marovca
- Department of Oncology and Children's Research Centre, University Children's Hospital Zürich, 8032 Zürich, Switzerland
| | - Gunnar Cario
- Department of General Pediatrics, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Charité Medical University Berlin, 13353 Berlin, Germany
| | - Martin Schrappe
- Department of General Pediatrics, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology and Hematology, Charité Medical University Berlin, 13353 Berlin, Germany
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Centre, University Children's Hospital Zürich, 8032 Zürich, Switzerland
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Centre, University Children's Hospital Zürich, 8032 Zürich, Switzerland.
| |
Collapse
|
112
|
Recurring Amplification at 11q22.1-q22.2 Locus Plays an Important Role in Lymph Node Metastasis and Radioresistance in OSCC. Sci Rep 2017; 7:16051. [PMID: 29167558 PMCID: PMC5700126 DOI: 10.1038/s41598-017-16247-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
A key feature in the pathogenesis of OSCC is genetic instability, which results in altered expression of genes located in amplified/deleted chromosomal regions. In a previous study we have shown that the amplification of the 11q22.1-q22.2 region, encoding cIAP1 and cIAP2, is associated with lymph node metastasis and poor clinical outcome in OSCC. Here, we validate the aCGH results by nuc ish and detect a weak amplification at the 11q22.1-q22.2 locus in 37% of the 182 samples tested. We find positive correlation of 11q22.1-q22.2 amplification with lymph node metastasis, reduced survival, and increased cancer recurrence, and we observe that patients with 11q22.1-q22.2 amplification fail to respond to radiotherapy. We confirm the concurrent overexpression of cIAP1 and cIAP2 and observe differential subcellular localization of the two proteins in OSCC. To ascertain the roles of cIAP1/cIAP2 in lymph node metastasis and radioresistance, we use an in vitro pre-clinical model and confirm the role of cIAP1 in invasion and the role of cIAP2 in invasion and migration. Studies of other tumor types in which cIAP1 is overexpressed suggest that multi-regimen treatments including SMAC mimetics may be effective. Thus, the evaluation of 11q22.1-q22.2 amplifications in OSCC patients may help choose the most effective treatment.
Collapse
|
113
|
Williams B, Dharmapatni A, Crotti T. Intracellular apoptotic pathways: a potential target for reducing joint damage in rheumatoid arthritis. Inflamm Res 2017; 67:219-231. [DOI: 10.1007/s00011-017-1116-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/19/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022] Open
|
114
|
Gabrielsen M, Buetow L, Nakasone MA, Ahmed SF, Sibbet GJ, Smith BO, Zhang W, Sidhu SS, Huang DT. A General Strategy for Discovery of Inhibitors and Activators of RING and U-box E3 Ligases with Ubiquitin Variants. Mol Cell 2017; 68:456-470.e10. [PMID: 29053960 PMCID: PMC5655547 DOI: 10.1016/j.molcel.2017.09.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 10/26/2022]
Abstract
RING and U-box E3 ubiquitin ligases regulate diverse eukaryotic processes and have been implicated in numerous diseases, but targeting these enzymes remains a major challenge. We report the development of three ubiquitin variants (UbVs), each binding selectively to the RING or U-box domain of a distinct E3 ligase: monomeric UBE4B, phosphorylated active CBL, or dimeric XIAP. Structural and biochemical analyses revealed that UbVs specifically inhibited the activity of UBE4B or phosphorylated CBL by blocking the E2∼Ub binding site. Surprisingly, the UbV selective for dimeric XIAP formed a dimer to stimulate E3 activity by stabilizing the closed E2∼Ub conformation. We further verified the inhibitory and stimulatory functions of UbVs in cells. Our work provides a general strategy to inhibit or activate RING/U-box E3 ligases and provides a resource for the research community to modulate these enzymes.
Collapse
Affiliation(s)
- Mads Gabrielsen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Lori Buetow
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Mark A Nakasone
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Syed Feroj Ahmed
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Gary J Sibbet
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Brian O Smith
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada.
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, 160 College Street, Toronto, ON M5S3E1, Canada.
| | - Danny T Huang
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK.
| |
Collapse
|
115
|
Bianchi F, Pretto S, Tagliabue E, Balsari A, Sfondrini L. Exploiting poly(I:C) to induce cancer cell apoptosis. Cancer Biol Ther 2017; 18:747-756. [PMID: 28881163 PMCID: PMC5678690 DOI: 10.1080/15384047.2017.1373220] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TLR3 belong to the Toll-like receptors family, it is mainly expressed on immune cells where it senses pathogen-associated molecular patterns and initiates innate immune response. TLR3 agonist poly(I:C) was developed to mimic pathogens infection and boost immune system activation to promote anti-cancer therapy. Accordingly, TLR agonists were included in the National Cancer Institute list of immunotherapeutic agents with the highest potential to cure cancer. Besides well known effects on immune cells, poly(I:C) was also shown, in experimental models, to directly induce apoptosis in cancer cells expressing TLR3. This review presents the current knowledge on the mechanism of poly(I:C)-induced apoptosis in cancer cells. Experimental evidences on positive or negative regulators of TLR3-mediated apoptosis induced by poly(I:C) are reported and strategies are proposed to successfully promote this event in cancer cells. Cancer cells apoptosis is an additional arm offered by poly(I:C), besides activation of immune system, for the treatment of various type of cancer. A further dissection of TLR3 signaling would contribute to greater resolution of the critical steps that impede full exploitation of the poly(I:C)-induced apoptosis. Experimental evidences about negative regulator of poly(I:C)-induced apoptotic program should be considered in combinations with TLR3 agonists in clinical trials.
Collapse
Affiliation(s)
- Francesca Bianchi
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy.,b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Samantha Pretto
- b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Elda Tagliabue
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy
| | - Andrea Balsari
- a Fondazione IRCCS Istituto Nazionale dei Tumori , Department of Research, Epidemiologia e Medicina Molecolare , via Amadeo 42, Milan , Italy.,b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| | - Lucia Sfondrini
- b Università degli Studi di Milano , Dipartimento di Scienze Biomediche per la Salute , via Mangiagalli 31, Milan , Italy
| |
Collapse
|
116
|
Thorlund K, Horwitz MS, Fife BT, Lester R, Cameron DW. Landscape review of current HIV 'kick and kill' cure research - some kicking, not enough killing. BMC Infect Dis 2017; 17:595. [PMID: 28851294 PMCID: PMC5576299 DOI: 10.1186/s12879-017-2683-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Current antiretroviral therapy (ART) used to treat human immunodeficiency virus (HIV) patients is life-long because it only suppresses de novo infections. Recent efforts to eliminate HIV have tested the ability of a number of agents to reactivate ('Kick') the well-known latent reservoir. This approach is rooted in the assumption that once these cells are reactivated the host's immune system itself will eliminate ('Kill') the virus. While many agents have been shown to reactivate large quantities of the latent reservoir, the impact on the size of the latent reservoir has been negligible. This suggests that the immune system is not sufficient to eliminate reactivated reservoirs. Thus, there is a need for more emphasis on 'kill' strategies in HIV cure research, and how these might work in combination with current or future kick strategies. METHODS We conducted a landscape review of HIV 'cure' clinical trials using 'kick and kill' approaches. We identified and reviewed current available clinical trial results in human participants as well as ongoing and planned clinical trials. We dichotomized trials by whether they did not include or include a 'kill' agent. We extracted potential reasons why the 'kill' is missing from current 'kick and kill' strategies. We subsequently summarized and reviewed current 'kill' strategies have entered the phase of clinical trial testing in human participants and highlighted those with the greatest promise. RESULTS The identified 'kick' trials only showed promise on surrogate measures activating latent T-cells, but did not show any positive effects on clinical 'cure' measures. Of the 'kill' agents currently being tested in clinical trials, early results have shown small but meaningful proportions of participants remaining off ART for several months with broadly neutralizing antibodies, as well as agents for regulating immune cell responses. A similar result was also recently observed in a trial combining a conventional 'kick' with a vaccine immune booster ('kill'). CONCLUSION While an understanding of the efficacy of each individual component is crucial, no single 'kick' or 'kill' agent is likely to be a fully effective cure. Rather, the solution is likely found in a combination of multiple 'kick and kill' interventions.
Collapse
Affiliation(s)
- Kristian Thorlund
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Marc S. Horwitz
- Faculty of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455 USA
| | - Richard Lester
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - D. William Cameron
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario Canada
- Division of Infectious Diseases, Department of Medicine, University of Ottawa at The Ottawa Hospital / Research Institute, 501 Smyth Road, Ottawa, K1H 6V2 Ontario Canada
| |
Collapse
|
117
|
Abstract
PURPOSE OF REVIEW This article provides an overview of anticancer therapies in various stages of clinical development as potential interventions to target HIV persistence. RECENT FINDINGS Epigenetic drugs developed for cancer have been investigated in vitro, ex vivo and in clinical trials as interventions aimed at reversing HIV latency and depleting the amount of virus that persists on antiretroviral therapy. Treatment with histone deacetylase inhibitors induced HIV expression in patients on antiretroviral therapy but did not reduce the frequency of infected cells. Other interventions that may accelerate the decay of latently infected cells, in the presence or absence of latency-reversing therapy, are now being explored. These include apoptosis-promoting agents, nonhistone deacetylase inhibitor compounds to reverse HIV latency and immunotherapy interventions to enhance antiviral immunity such as immune checkpoint inhibitors and Toll-like receptor agonists. SUMMARY A curative strategy in HIV will likely need to both reduce the amount of virus that persists on antiretroviral therapy and improve anti-HIV immune surveillance. Although we continue to explore advances in the field of oncology including cancer immunotherapy, there are major differences in the risk-benefit assessment between HIV-infected individuals and patients with malignancies. Drug development specifically targeting HIV persistence will be the key to developing effective interventions with an appropriate safety profile.
Collapse
|
118
|
Liu H, Su D, Zhang J, Ge S, Li Y, Wang F, Gravel M, Roulston A, Song Q, Xu W, Liang JG, Shore G, Wang X, Liang P. Improvement of Pharmacokinetic Profile of TRAIL via Trimer-Tag Enhances its Antitumor Activity in vivo. Sci Rep 2017; 7:8953. [PMID: 28827692 PMCID: PMC5566391 DOI: 10.1038/s41598-017-09518-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) has long been considered a tantalizing target for cancer therapy because it mediates activation of the extrinsic apoptosis pathway in a tumor-specific manner by binding to and trimerizing its functional receptors DR4 or DR5. Despite initial promise, both recombinant human TRAIL (native TRAIL) and dimeric DR4/DR5 agonist monoclonal antibodies (mAbs) failed in multiple human clinical trials. Here we show that in-frame fusion of human C-propeptide of α1(I) collagen (Trimer-Tag) to the C-terminus of mature human TRAIL leads to a disulfide bond-linked homotrimer which can be expressed at high levels as a secreted protein from CHO cells. The resulting TRAIL-Trimer not only retains similar bioactivity and receptor binding kinetics as native TRAIL in vitro which are 4-5 orders of magnitude superior to that of dimeric TRAIL-Fc, but also manifests more favorable pharmacokinetic and antitumor pharmacodynamic profiles in vivo than that of native TRAIL. Taken together, this work provides direct evidence for the in vivo antitumor efficacy of TRAIL being proportional to systemic drug exposure and suggests that the previous clinical failures may have been due to rapid systemic clearance of native TRAIL and poor apoptosis-inducing potency of dimeric agonist mAbs despite their long serum half-lives.
Collapse
Affiliation(s)
- Haipeng Liu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Danmei Su
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinlong Zhang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuaishuai Ge
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Youwei Li
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fei Wang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Michel Gravel
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal (QC), Canada
| | - Anne Roulston
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal (QC), Canada
| | - Qin Song
- Clover Biopharmaceuticals, Chengdu, China
| | - Wei Xu
- Clover Biopharmaceuticals, Chengdu, China
| | | | - Gordon Shore
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal (QC), Canada
| | - Xiaodong Wang
- National Institute of Biological Sciences, Beijing, China
| | - Peng Liang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China.
- Clover Biopharmaceuticals, Chengdu, China.
- GenHunter Corporation, 624 Grassmere Park, Nashville, TN, 37211, USA.
| |
Collapse
|
119
|
IAPs protect host target tissues from graft-versus-host disease in mice. Blood Adv 2017; 1:1517-1532. [PMID: 29296793 DOI: 10.1182/bloodadvances.2017004242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/01/2017] [Indexed: 12/13/2022] Open
Abstract
Inhibitors of apoptosis proteins (IAPs) regulate apoptosis, but little is known about the role of IAPs in the regulation of immunity. Development of IAP inhibition by second mitochondria-derived activator of caspase (SMAC) mimetics is emerging as a novel therapeutic strategy to treat malignancies. We explored the role of IAPs in allogeneic immunity with 2 distinct yet complementary strategies, namely, chemical and genetic approaches, in clinically relevant models of experimental bone marrow transplantation (BMT). The small-molecule pan-IAP inhibitor SMAC mimetic AT-406 aggravated gastrointestinal graft-versus-host disease (GVHD) in multiple models. The role of specific IAPs in various host and donor cellular compartments was explored by utilizing X-linked IAP (XIAP)- and cellular IAP (cIAP)-deficient animals as donors or recipients. Donor T cells from C57BL/6 cIAP1-/- or XIAP-/- animals demonstrated equivalent GVHD severity and allogeneic responses, both in vivo and in vitro, when compared with B6 wild-type (B6-WT) T cells. By contrast, when used as recipient animals, both XIAP-/- and cIAP1-/- animals demonstrated increased mortality from GVHD when compared with B6-WT animals. BM chimera studies revealed that cIAP and XIAP deficiency in host nonhematopoietic target cells, but not in host hematopoietic-derived cells, is critical for exacerbation of GVHD. Intestinal epithelial cells from IAP-deficient animals showed reduced levels of antiapoptotic proteins as well as autophagy-related protein LC3 after allogeneic BMT. Collectively, our data highlight a novel immune cell-independent but target tissue-intrinsic role for IAPs in the regulation of gastrointestinal damage from GVHD.
Collapse
|
120
|
Jo SJ, Park PG, Cha HR, Ahn SG, Kim MJ, Kim H, Koo JS, Jeong J, Park JH, Dong SM, Lee JM. Cellular inhibitor of apoptosis protein 2 promotes the epithelial-mesenchymal transition in triple-negative breast cancer cells through activation of the AKT signaling pathway. Oncotarget 2017; 8:78781-78795. [PMID: 29108265 PMCID: PMC5667998 DOI: 10.18632/oncotarget.20227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents approximately 10–17% of all breast cancers, and patients with TNBC show a poorer short-term prognosis than patients with other types of breast cancer. TNBCs also have a higher tendency for early distant metastasis and cancer recurrence due to induction of the epithelial-mesenchymal transition (EMT). Several recent reports have suggested that inhibitor of apoptosis (IAP) proteins function as regulators of the EMT. However, the roles of these proteins in TNBC are not clear. Accordingly, we investigated the roles of cIAP2 in TNBC. Among eight IAP genes, only cIAP2 was upregulated in TNBC cells compared with that in other breast cancer subtypes. Analysis of TMAs revealed that expression of cIAP2 was upregulated in TNBCs. In vitro studies showed that cIAP2 was highly expressed in TNBC cells compared with that in other types of breast cancer cells. Furthermore, silencing of cIAP2 in TNBC cells induced mesenchymal-epithelial transition (MET)-like processes and subsequently suppressed the migratory ability and invasion capacity of the cells by regulation of Snail through the AKT signaling pathway. In contrast, ectopic expression of cIAP2 in luminal-type breast cancer cells induced activation of the AKT signaling pathway. These results collectively indicated that cIAP2 regulated the EMT in TNBC via activation of the AKT signaling pathway, contributing to metastasis in TNBC. Our study proposes a novel mechanism through which cIAP2 regulates the EMT involving AKT signaling in TNBC cells. We suggest that cIAP2 may be an attractive candidate molecule for the development of targeted therapeutics in the future.
Collapse
Affiliation(s)
- Su Ji Jo
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye-Ran Cha
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Gwe Ahn
- Breast Cancer Center, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jung Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyemi Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Jeong
- Breast Cancer Center, Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeon Han Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Myung Dong
- Research Institute, National Cancer Center, Goyang, Republic of Korea.,IMK Bio-Convergence R&D Center, International Vaccine Institute, Seoul, Republic of Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
121
|
Tamanini E, Buck IM, Chessari G, Chiarparin E, Day JEH, Frederickson M, Griffiths-Jones CM, Hearn K, Heightman TD, Iqbal A, Johnson CN, Lewis EJ, Martins V, Peakman T, Reader M, Rich SJ, Ward GA, Williams PA, Wilsher NE. Discovery of a Potent Nonpeptidomimetic, Small-Molecule Antagonist of Cellular Inhibitor of Apoptosis Protein 1 (cIAP1) and X-Linked Inhibitor of Apoptosis Protein (XIAP). J Med Chem 2017; 60:4611-4625. [DOI: 10.1021/acs.jmedchem.6b01877] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Emiliano Tamanini
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Ildiko M. Buck
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Gianni Chessari
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Elisabetta Chiarparin
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - James E. H. Day
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Martyn Frederickson
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | | | - Keisha Hearn
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Tom D. Heightman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Aman Iqbal
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | | | - Edward J. Lewis
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Vanessa Martins
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Torren Peakman
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Michael Reader
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Sharna J. Rich
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - George A. Ward
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Pamela A. Williams
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| | - Nicola E. Wilsher
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton
Road, Cambridge CB4 0QA, U.K
| |
Collapse
|
122
|
Liang W, Liao Y, Zhang J, Huang Q, Luo W, Yu J, Gong J, Zhou Y, Li X, Tang B, He S, Yang J. Heat shock factor 1 inhibits the mitochondrial apoptosis pathway by regulating second mitochondria-derived activator of caspase to promote pancreatic tumorigenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:64. [PMID: 28482903 PMCID: PMC5422968 DOI: 10.1186/s13046-017-0537-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/04/2017] [Indexed: 12/20/2022]
Abstract
Background As a relatively conservative transcriptional regulator in biological evolution, heat shock factor 1 (HSF1) is activated by, and regulates the expression of heat shock proteins (HSPs) in response to a variety of stress conditions. HSF1 also plays a key role in regulating the development of various tumors; however, its role in pancreatic cancer and the specific underlying mechanism are not clear. Methods We first examined HSF1 expression in pancreatic cancer tissues by immunohistochemistry, and then studied its clinical significance. We then constructed HSF1-siRNA to investigate the potential of HSF1 to regulate apoptosis, proliferation and the cell cycle of pancreatic cancer cells and the underlying mechanism both in vitro and in vivo. Protein chip analysis was used subsequently to explore the molecular regulation pathway. Finally, second mitochondria-derived activator of caspase (SMAC)-siRNA was used to validate the signaling pathway. Results HSF1 was highly expressed in pancreatic cancer tissues and the level of upregulation was found to be closely related to the degree of pancreatic cancer differentiation and poor prognosis. After HSF1-silencing, we found that pancreatic cancer cell proliferation decreased both in vitro and in vivo and the apoptotic cell ratio increased, while the mitochondrial membrane potential decreased, and the cells were arrested at the G0/G1 phase. In terms of the molecular mechanism, we confirmed that HSF1 regulated SMAC to inhibit mitochondrial apoptosis in pancreatic cancer cells, and to promote the occurrence of pancreatic tumors. SMAC silencing reversed the effects of HSF1 silencing. Conclusion Our study provides evidence that HSF1 functions as a novel oncogene in pancreatic tumors and is implicated as a target for the diagnosis and treatment of pancreatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0537-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjin Liang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Yong Liao
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Jing Zhang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Qi Huang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Wei Luo
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Jidong Yu
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Jianhua Gong
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Yi Zhou
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Xuan Li
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Bo Tang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China.
| | - Songqing He
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China.
| | - Jinghong Yang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China.
| |
Collapse
|
123
|
Abstract
Conjugates of cytotoxic agents with RGD peptides (Arg-Gly-Asp) addressed to ανβ3, α5β1 and ανβ6 integrin receptors overexpressed by cancer cells, have recently gained attention as potential selective anticancer chemotherapeutics. In this review, the design and the development of RGD conjugates coupled to different small molecules including known cytotoxic drugs and natural products will be discussed.
Collapse
|
124
|
Attaran-Bandarabadi F, Abhari BA, Neishabouri SH, Davoodi J. Integrity of XIAP is essential for effective activity recovery of apoptosome and its downstream caspases by Smac/Diablo. Int J Biol Macromol 2017; 101:283-289. [PMID: 28322955 DOI: 10.1016/j.ijbiomac.2017.03.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 01/20/2023]
Abstract
Contribution of individual BIR domains to Smac antagonism is investigated. Ammonium citrate was used to activate caspase-9 and pro-caspase-9 (D315, D330/A). However, the presence of citrate resulted in autoproteolysis of pro-caspase-9 and its inhibition by XIAP BIR3, which was not observed for apoptosome activated pro-caspase-9 indicating abnormal behavior of pro-caspase-9 in kosmotropic citrate salt. Thus, we used Apaf-1(residues 1-591) to activate caspase-9 through the formation of mini-apoptosome instead. Inhibition of apoptosome by XIAP BIR-1-2-3 was observed to be similar to that of BIR3 indicating that the cleavage of XIAP does not affect its potency. However, BIR1-2-3 was more prone to Smac antagonism due to simultaneous interaction of two BIR domains from XIAP with two N-terminal binding sites of Smac. Therefore, despite the role in caspase-9 activation, Apaf-1 does not influence caspase-9 inhibition by XIAP. In addition, caspase-3, -7 and -9 activity recovery by Smac protein and peptide were more efficient for BIR1-2-3 than for BIR1-2. Consequently, it can be proposed that the presence of multiple BIR domains for XIAP among different species along with dimeric nature of Smac are evolutionary designed to strengthen the antagonistic activity of Smac culminating in efficient induction of cell death.
Collapse
Affiliation(s)
| | | | | | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
125
|
Derakhshan A, Chen Z, Van Waes C. Therapeutic Small Molecules Target Inhibitor of Apoptosis Proteins in Cancers with Deregulation of Extrinsic and Intrinsic Cell Death Pathways. Clin Cancer Res 2017; 23:1379-1387. [PMID: 28039268 PMCID: PMC5354945 DOI: 10.1158/1078-0432.ccr-16-2172] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023]
Abstract
The Cancer Genome Atlas (TCGA) has unveiled genomic deregulation of various components of the extrinsic and intrinsic apoptotic pathways in different types of cancers. Such alterations are particularly common in head and neck squamous cell carcinomas (HNSCC), which frequently display amplification and overexpression of the Fas-associated via death domain (FADD) and inhibitor of apoptosis proteins (IAP) that complex with members of the TNF receptor family. Second mitochondria-derived activator of caspases (SMAC) mimetics, modeled after the endogenous IAP antagonist SMAC, and IAP inhibitors represent important classes of novel small molecules currently in phase I/II clinical trials. Here we review the physiologic roles of IAPs, FADD, and other components involved in cell death, cell survival, and NF-κB signaling pathways in cancers, including HNSCC. We summarize the results of targeting IAPs in preclinical models of HNSCC using SMAC mimetics. Synergistic activity of SMAC mimetics together with death agonists TNFα or TRAIL occurred in vitro, whereas their antitumor effects were augmented when combined with radiation and chemotherapeutic agents that induce TNFα in vivo In addition, clinical trials testing SMAC mimetics as single agents or together with chemo- or radiation therapies in patients with HNSCC and solid tumors are summarized. As we achieve a deeper understanding of the genomic alterations and molecular mechanisms underlying deregulated death and survival pathways in different cancers, the role of SMAC mimetics and IAP inhibitors in cancer treatment will be elucidated. Such developments could enhance precision therapeutics and improve outcomes for cancer patients. Clin Cancer Res; 23(6); 1379-87. ©2016 AACR.
Collapse
Affiliation(s)
- Adeeb Derakhshan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
126
|
Morini J, Babini G, Barbieri S, Baiocco G, Ottolenghi A. The Interplay between Radioresistant Caco-2 Cells and the Immune System Increases Epithelial Layer Permeability and Alters Signaling Protein Spectrum. Front Immunol 2017; 8:223. [PMID: 28316601 PMCID: PMC5334346 DOI: 10.3389/fimmu.2017.00223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/16/2017] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer is one of the most frequent type of cancer, with a higher incidence in the developed countries. Colorectal cancer is usually managed with both surgeries, chemotherapy and radiotherapy. Radiotherapy has the well-known advantage of targeting the tumor, minimizing normal tissue exposure. Nevertheless, during radiation treatment, exposure of healthy tissues is of great concern, in particular because of the effects on the intestinal barrier functions and on cells belonging to the immune system. The functional role of intestinal barrier in avoiding paracellular trafficking and controlling bacterial spread from gut it is well known and it is due to the presence of tight junction complexes. However, intestinal barrier is fundamental in participating to the interplay with immune system, especially considering the gut-associated lymphoid tissue. Until few years ago, radiotherapy was considered to bear only a depressive action on the immune system. However, it is now recognized that the release of pro-inflammatory signals and phenotypic changes in tumoral cells due to ionizing radiation could trigger the immune system against the tumor. In this work, we address how intestinal barrier functions are perturbed by X-ray doses in the range 0–10 Gy, focusing on the interplay between tumoral cells and the immune system. To this aim, we adopted a coculture model in which Caco-2 cells can be grown in presence/absence of peripheral blood mononuclear cells (PBMC). We focused our attention on changes in the proliferation, trans-epithelial electrical resistance (TEER), cytokine release, and proteins of the junctional complexes. Our results indicate a high radioresistance of Caco-2 in the investigated dose range, and an increased permeability of the tumoral cell layer due to the presence of PBMC. This is found to be correlated with activation of PBMC, inhibiting the apoptotic pathway, with the enhancement of cytokine release and with variation of tight junction scaffold protein expression levels, assumed to be related to IFN-γ- and TNF-α-mediated signaling.
Collapse
Affiliation(s)
- Jacopo Morini
- Laboratory of Radiobiology and Radiation Biophysics, Department of Physics, University of Pavia , Pavia , Italy
| | - Gabriele Babini
- Laboratory of Radiobiology and Radiation Biophysics, Department of Physics, University of Pavia , Pavia , Italy
| | - Sofia Barbieri
- Laboratory of Radiobiology and Radiation Biophysics, Department of Physics, University of Pavia , Pavia , Italy
| | - Giorgio Baiocco
- Laboratory of Radiobiology and Radiation Biophysics, Department of Physics, University of Pavia , Pavia , Italy
| | - Andrea Ottolenghi
- Laboratory of Radiobiology and Radiation Biophysics, Department of Physics, University of Pavia , Pavia , Italy
| |
Collapse
|
127
|
Neirinckx V, Hedman H, Niclou SP. Harnessing LRIG1-mediated inhibition of receptor tyrosine kinases for cancer therapy. Biochim Biophys Acta Rev Cancer 2017; 1868:109-116. [PMID: 28259645 DOI: 10.1016/j.bbcan.2017.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
Leucine-rich repeats and immunoglobulin-like domains containing protein 1 (LRIG1) is an endogenous feedback regulator of receptor tyrosine kinases (RTKs) and was recently shown to inhibit growth of different types of malignancies. Additionally, this multifaceted RTK inhibitor was reported to be a tumor suppressor, a stem cell regulator, and a modulator of different cellular phenotypes. This mini-review provides a concise and up-to-date summary about the known functions of LRIG1 and its related family members, with a special emphasis on underlying molecular mechanisms and the opportunities for harnessing its therapeutic potential against cancer.
Collapse
Affiliation(s)
- Virginie Neirinckx
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg
| | - Hakan Hedman
- Oncology Research Laboratory, Department of Radiation Sciences, Umeå University, 90187 Umeå, Sweden
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, 1526, Luxembourg; K.G. Jebsen Brain Tumour Research Centre, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
128
|
Paiva SL, da Silva SR, de Araujo ED, Gunning PT. Regulating the Master Regulator: Controlling Ubiquitination by Thinking Outside the Active Site. J Med Chem 2017; 61:405-421. [DOI: 10.1021/acs.jmedchem.6b01346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Stacey-Lynn Paiva
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Sara R. da Silva
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Elvin D. de Araujo
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Patrick T. Gunning
- Department
of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department
of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
129
|
Impact of inhibitor of apoptosis proteins on immune modulation and inflammation. Immunol Cell Biol 2016; 95:236-243. [DOI: 10.1038/icb.2016.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022]
|
130
|
Sensitizing acute myeloid leukemia cells to induced differentiation by inhibiting the RIP1/RIP3 pathway. Leukemia 2016; 31:1154-1165. [PMID: 27748372 DOI: 10.1038/leu.2016.287] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor-α (TNF-α)-induced RIP1/RIP3 (receptor-interacting protein kinase 1/receptor-interacting protein kinase 3)-mediated necroptosis has been proposed as an alternative strategy for treating apoptosis-resistant leukemia. However, we found that most acute myeloid leukemia (AML) cells, especially M4 and M5 subtypes, produce TNF and show basal level activation of RIP1/RIP3/MLKL signaling, yet do not undergo necroptosis. TNF, through RIP1/RIP3 signaling, prevents degradation of SOCS1, a key negative regulator of interferon-γ (IFN-γ) signaling. Using both pharmacologic and genetic assays, we show here that inactivation of RIP1/RIP3 resulted in reduction of SOCS1 protein levels and partial differentiation of AML cells. AML cells with inactivated RIP1/RIP3 signaling show increased sensitivity to IFN-γ-induced differentiation. RIP1/RIP3 inactivation combined with IFN-γ treatment significantly attenuated the clonogenic capacity of both primary AML cells and AML cell lines. This combination treatment also compromised the leukemogenic ability of murine AML cells in vivo. Our studies suggest that inhibition of RIP1/RIP3-mediated necroptotic signaling might be a novel strategy for the treatment of AML when combined with other differentiation inducers.
Collapse
|
131
|
Novel C6-substituted 1,3,4-oxadiazinones as potential anti-cancer agents. Oncotarget 2016; 6:40598-610. [PMID: 26515601 PMCID: PMC4747355 DOI: 10.18632/oncotarget.5839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) is a membrane receptor tyrosine kinase over-expressed in a number of tumors. However, combating resistance is one of the main challenges in the currently available IGF-1R inhibitor-based cancer therapies. Increased Src activation has been reported to confer resistance to anti-IGF-1R therapeutics in various tumor cells. An urgent unmet need for IGF-1R inhibitors is to suppress Src rephosphorylation induced by current anti-IGF-1R regimens. In efforts to develop effective anticancer agents targeting the IGF-1R signaling pathway, we explored 2-aryl-1,3,4-oxadiazin-5-ones as a novel scaffold that is structurally unrelated to current tyrosine kinase inhibitors (TKIs). The compound, LL-2003, exhibited promising antitumor effects in vitro and in vivo; it effectively suppressed IGF-1R and Src and induced apoptosis in various non-small cell lung cancer cells. Further optimizations for enhanced potency in cellular assays need to be followed, but our strategy to identify novel IGF-1R/Src inhibitors may open a new avenue to develop more efficient anticancer agents.
Collapse
|
132
|
Langdon CG, Wiedemann N, Held MA, Mamillapalli R, Iyidogan P, Theodosakis N, Platt JT, Levy F, Vuagniaux G, Wang S, Bosenberg MW, Stern DF. SMAC mimetic Debio 1143 synergizes with taxanes, topoisomerase inhibitors and bromodomain inhibitors to impede growth of lung adenocarcinoma cells. Oncotarget 2016; 6:37410-25. [PMID: 26485762 PMCID: PMC4741938 DOI: 10.18632/oncotarget.6138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 12/16/2022] Open
Abstract
Targeting anti-apoptotic proteins can sensitize tumor cells to conventional chemotherapies or other targeted agents. Antagonizing the Inhibitor of Apoptosis Proteins (IAPs) with mimetics of the pro-apoptotic protein SMAC is one such approach. We used sensitization compound screening to uncover possible agents with the potential to further sensitize lung adenocarcinoma cells to the SMAC mimetic Debio 1143. Several compounds in combination with Debio 1143, including taxanes, topoisomerase inhibitors, and bromodomain inhibitors, super-additively inhibited growth and clonogenicity of lung adenocarcinoma cells. Co-treatment with Debio 1143 and the bromodomain inhibitor JQ1 suppresses the expression of c-IAP1, c-IAP2, and XIAP. Non-canonical NF-κB signaling is also activated following Debio 1143 treatment, and Debio 1143 induces the formation of the ripoptosome in Debio 1143-sensitive cell lines. Sensitivity to Debio 1143 and JQ1 co-treatment was associated with baseline caspase-8 expression. In vivo treatment of lung adenocarcinoma xenografts with Debio 1143 in combination with JQ1 or docetaxel reduced tumor volume more than either single agent alone. As Debio 1143-containing combinations effectively inhibited both in vitro and in vivo growth of lung adenocarcinoma cells, these data provide a rationale for Debio 1143 combinations currently being evaluated in ongoing clinical trials and suggest potential utility of other combinations identified here.
Collapse
Affiliation(s)
- Casey G Langdon
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | | | - Matthew A Held
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Ramanaiah Mamillapalli
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Pinar Iyidogan
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Nicholas Theodosakis
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - James T Platt
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Breast Medical Oncology Group, Yale Cancer Center, New Haven, CT, USA
| | | | | | - Shaomeng Wang
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Marcus W Bosenberg
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.,Departments of Dermatology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - David F Stern
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
133
|
El-Mesery M, Shaker ME, Elgaml A. The SMAC mimetic BV6 induces cell death and sensitizes different cell lines to TNF-α and TRAIL-induced apoptosis. Exp Biol Med (Maywood) 2016; 241:2015-2022. [PMID: 27465142 DOI: 10.1177/1535370216661779] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The inhibitors of apoptosis proteins are implicated in promoting cancer cells survival and resistance toward immune surveillance and chemotherapy. Second mitochondria-derived activator of caspases (SMAC) mimetics are novel compounds developed to mimic the inhibitory effect of the endogenous SMAC/DIABLO on these IAPs. Here, we examined the potential effects of the novel SMAC mimetic BV6 on different human cancer cell lines. Our results indicated that BV6 was able to induce cell death in different human cancer cell lines. Mechanistically, BV6 dose dependently induced degradation of IAPs, including cIAP1 and cIAP2. This was coincided with activating the non-canonical NF -kappa B (NF-κB) pathway, as indicated by stabilizing NF-κB-inducing kinase (NIK) for p100 processing to p52. More interestingly, BV6 was able to sensitize some of the resistant cancer cell lines to apoptosis induced by the death ligands tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) that are produced by different cells of the immune system. Such cell death enhancement was mediated by inducing an additional cleavage of caspase-9 to augment that of caspase-8 induced by death ligands. This eventually led to more processing of the executioner caspase-3 and poly (ADP-ribose) polymerase (PARP). In conclusion, therapeutic targeting of IAPs by BV6 might be an effective approach to enhance cancer regression induced by immune system. Our data also open up the future possibility of using BV6 in combination with other antitumor therapies to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Mohamed El-Mesery
- 1 Faculty of Pharmacy, Department of Biochemistry, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed E Shaker
- 2 Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura 35516, Egypt
| | - Abdelaziz Elgaml
- 3 Faculty of Pharmacy, Department of Microbiology and Immunology, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
134
|
Bryant SA, Herdy JR, Amemiya CT, Smith JJ. Characterization of Somatically-Eliminated Genes During Development of the Sea Lamprey (Petromyzon marinus). Mol Biol Evol 2016; 33:2337-44. [PMID: 27288344 DOI: 10.1093/molbev/msw104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The sea lamprey (Petromyzon marinus) is a basal vertebrate that undergoes developmentally programmed genome rearrangements (PGRs) during early development. These events facilitate the elimination of ∼20% of the genome from the somatic cell lineage, resulting in distinct somatic and germline genomes. Thus far only a handful of germline-specific genes have been definitively identified within the estimated 500 Mb of DNA that is deleted during PGR, although a few thousand germline-specific genes are thought to exist. To improve our understanding of the evolutionary/developmental logic of PGR, we generated computational predictions to identify candidate germline-specific genes within a new transcriptomic dataset derived from adult germline and the early embryonic stages during which PGR occurs. Follow-up validation studies identified 44 germline-specific genes and further characterized patterns of transcription and DNA loss during early embryogenesis. Expression analyses reveal that many of these genes are differentially expressed during early embryogenesis and presumably function in the early development of the germline. Ontology analyses indicate that many of these germline-specific genes play known roles in germline development, pluripotency, and oncogenesis (when misexpressed). These studies provide support for the theory that PGR serves to segregate molecular functions related to germline development/pluripotency in order to prevent their potential misexpression in somatic cells. This larger set of eliminated genes also allows us to extend the evolutionary/developmental breadth of this theory, as some deleted genes (or their gnathostome homologs) appear to be associated with the early development of somatic lineages, perhaps through the evolution of novel functions within gnathostome lineages.
Collapse
Affiliation(s)
| | | | - Chris T Amemiya
- Benaroya Research Institute at Virginia Mason, Seattle Department of Biology, University of Washington, Seattle
| | | |
Collapse
|
135
|
Min DJ, He S, Green JE. Birinapant (TL32711) Improves Responses to GEM/AZD7762 Combination Therapy in Triple-negative Breast Cancer Cell Lines. Anticancer Res 2016; 36:2649-2657. [PMID: 27272773 PMCID: PMC6953430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/28/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer currently lacking targeted therapies. Our previous work demonstrated a therapeutic synergism with gemcitabine (GEM) and the CHK1 inhibitor (AZD7762) combination treatment in a TNBC cell line. We hypothesized that the response to this combination therapy would differ among heterogeneous TNBC patients and that addition of a SMAC mimetic (TL32711) could improve efficacy. MATERIALS AND METHODS Therapeutic responses to GEM, GEM/AZD7762, and GEM/AZD7762/TL32711 combinations were investigated by XTT assays and western blotting of cell cycle and apoptosis-related proteins in ten TNBC cell lines. RESULTS TNBC cell lines harboring low levels of endogenous CHK1, cIAP1 and cIAP2 were responsive to GEM alone, whereas cell lines demonstrating a minimal increase in phospho-S345 CHK1 after treatment were responsive to GEM/AZD7762 or GEM/AZD7762/TL32711 combination. CONCLUSION The response of TNBC cells to particular therapies varies and will require development of predictive biomarkers.
Collapse
Affiliation(s)
- Dong-Joon Min
- Transgenic Oncogenesis and Genomics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, U.S.A
| | - Siping He
- Transgenic Oncogenesis and Genomics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, U.S.A
| | - Jeffrey E Green
- Transgenic Oncogenesis and Genomics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, U.S.A.
| |
Collapse
|
136
|
BIRC2/cIAP1 Is a Negative Regulator of HIV-1 Transcription and Can Be Targeted by Smac Mimetics to Promote Reversal of Viral Latency. Cell Host Microbe 2016; 18:345-53. [PMID: 26355217 DOI: 10.1016/j.chom.2015.08.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/22/2015] [Accepted: 08/25/2015] [Indexed: 11/23/2022]
Abstract
Combination antiretroviral therapy (ART) is able to suppress HIV-1 replication to undetectable levels. However, the persistence of latent viral reservoirs allows for a rebound of viral load upon cessation of therapy. Thus, therapeutic strategies to eradicate the viral latent reservoir are critically needed. Employing a targeted RNAi screen, we identified the ubiquitin ligase BIRC2 (cIAP1), a repressor of the noncanonical NF-κB pathway, as a potent negative regulator of LTR-dependent HIV-1 transcription. Depletion of BIRC2 through treatment with small molecule antagonists known as Smac mimetics enhanced HIV-1 transcription, leading to a reversal of latency in a JLat latency model system. Critically, treatment of resting CD4+ T cells isolated from ART-suppressed patients with the histone deacetylase inhibitor (HDACi) panobinostat together with Smac mimetics resulted in synergistic activation of the latent reservoir. These data implicate Smac mimetics as useful agents for shock-and-kill strategies to eliminate the latent HIV reservoir.
Collapse
|
137
|
APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood 2016; 127:3225-36. [PMID: 27127303 DOI: 10.1182/blood-2016-01-691162] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/13/2016] [Indexed: 01/01/2023] Open
Abstract
Here we show that overexpression or activation of B-cell maturation antigen (BCMA) by its ligand, a proliferation-inducing ligand (APRIL), promotes human multiple myeloma (MM) progression in vivo. BCMA downregulation strongly decreases viability and MM colony formation; conversely, BCMA overexpression augments MM cell growth and survival via induction of protein kinase B (AKT), MAPK, and nuclear factor (NF)-κB signaling cascades. Importantly, BCMA promotes in vivo growth of xenografted MM cells harboring p53 mutation in mice. BCMA-overexpressing tumors exhibit significantly increased CD31/microvessel density and vascular endothelial growth factor compared with paired control tumors. These tumors also express increased transcripts crucial for osteoclast activation, adhesion, and angiogenesis/metastasis, as well as genes mediating immune inhibition including programmed death ligand 1, transforming growth factor β, and interleukin 10. These target genes are consistently induced by paracrine APRIL binding to BCMA on MM cells, which is blocked by an antagonistic anti-APRIL monoclonal antibody hAPRIL01A (01A). 01A is cytotoxic against MM cells even in the presence of protective bone marrow (BM) myeloid cells including osteoclasts, macrophages, and plasmacytoid dendritic cells. 01A further decreases APRIL-induced adhesion and migration of MM cells via blockade of canonical and noncanonical NF-κB pathways. Moreover, 01A prevents in vivo MM cell growth within implanted human bone chips in SCID mice. Finally, the effect of 01A on MM cell viability is enhanced by lenalidomide and bortezomib. Taken together, these data delineate new molecular mechanisms of in vivo MM growth and immunosuppression critically dependent on BCMA and APRIL in the BM microenvironment, further supporting targeting this prominent pathway in MM.
Collapse
|
138
|
López-Arencibia A, Martín-Navarro CM, Sifaoui I, Reyes-Batlle M, Wagner C, Lorenzo-Morales J, Piñero JE. Apoptotic protein profile in Leishmania donovani after treatment with hexaazatrinaphthylenes derivatives. Exp Parasitol 2016; 166:83-8. [PMID: 27060614 DOI: 10.1016/j.exppara.2016.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
Two hexaazatrinaphthylene derivatives, DGV-B and DGV-C previously known to induce an apoptotic-like process in Leishmania donovani parasites were used in this study. For this purpose, two different human protein commercial arrays were used to determine the proteomic profile of the treated parasites compared to non-treated ones. One of the commercial arrays is able to detect the relative expression of 35 human apoptosis-related proteins and the other one is able to identify 9 different human kinases. The obtained results showed that the two tested molecules were able to activate a programmed cell death process by different pathways in the promastigote stage of the parasite. The present study reports the potential application of two commercialised human apoptotic arrays to evaluate the action mechanism of active compounds at least against Leishmania donovani. The obtained data would be useful to establish the putative activated apoptosis pathways in the treated parasites and to further support the use of hexaazatrinaphthylene derivatives for the treatment of leishmaniasis in the near future. Nevertheless, further molecular studies should be developed in order to design and evaluate specific apoptotic arrays for Leishmania genus.
Collapse
Affiliation(s)
- Atteneri López-Arencibia
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, La Laguna, Canary Islands, Spain.
| | - Carmen M Martín-Navarro
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, La Laguna, Canary Islands, Spain
| | - Ines Sifaoui
- Laboratoire Matériaux-Molécules et Applications, IPEST, University of Carthage, La Marsa, Tunisia
| | - María Reyes-Batlle
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, La Laguna, Canary Islands, Spain
| | - Carolina Wagner
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, La Laguna, Canary Islands, Spain; Cátedra de Parasitología, Escuela de Bioanálisis, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Jacob Lorenzo-Morales
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, La Laguna, Canary Islands, Spain
| | - José E Piñero
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, La Laguna, Canary Islands, Spain
| |
Collapse
|
139
|
Petta I, Lievens S, Libert C, Tavernier J, De Bosscher K. Modulation of Protein-Protein Interactions for the Development of Novel Therapeutics. Mol Ther 2016; 24:707-18. [PMID: 26675501 PMCID: PMC4886928 DOI: 10.1038/mt.2015.214] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/12/2015] [Indexed: 01/10/2023] Open
Abstract
Protein-protein interactions (PPIs) underlie most biological processes. An increasing interest to investigate the unexplored potential of PPIs in drug discovery is driven by the need to find novel therapeutic targets for a whole range of diseases with a high unmet medical need. To date, PPI inhibition with small molecules is the mechanism that has most often been explored, resulting in significant progress towards drug development. However, also PPI stabilization is gradually gaining ground. In this review, we provide a focused overview of a number of PPIs that control critical regulatory pathways and constitute targets for the design of novel therapeutics. We discuss PPI-modulating small molecules that are already pursued in clinical trials. In addition, we review a number of PPIs that are still under preclinical investigation but for which preliminary data support their use as therapeutic targets.
Collapse
Affiliation(s)
- Ioanna Petta
- Receptor Research Laboratories, Cytokine Receptor Lab (CRL), VIB Department of Medical Protein Research, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sam Lievens
- Receptor Research Laboratories, Cytokine Receptor Lab (CRL), VIB Department of Medical Protein Research, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- Receptor Research Laboratories, Cytokine Receptor Lab (CRL), VIB Department of Medical Protein Research, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Cytokine Receptor Lab (CRL), VIB Department of Medical Protein Research, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL), VIB Department of Medical Protein Research, Ghent, Belgium
| |
Collapse
|
140
|
JIN GONGSHENG, LAN YADONG, HAN FUSHENG, SUN YIMING, LIU ZHE, ZHANG MINGLIANG, LIU XIANFU, ZHANG XIAOJING, HU JIANGUO, LIU HAO, WANG BENZHONG. Smac mimetic-induced caspase-independent necroptosis requires RIP1 in breast cancer. Mol Med Rep 2016; 13:359-66. [DOI: 10.3892/mmr.2015.4542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
|
141
|
Zakaria Z, Tivnan A, Flanagan L, Murray DW, Salvucci M, Stringer BW, Day BW, Boyd AW, Kögel D, Rehm M, O'Brien DF, Byrne AT, Prehn JHM. Patient-derived glioblastoma cells show significant heterogeneity in treatment responses to the inhibitor-of-apoptosis-protein antagonist birinapant. Br J Cancer 2015; 114:188-98. [PMID: 26657652 PMCID: PMC4815807 DOI: 10.1038/bjc.2015.420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022] Open
Abstract
Background: Resistance to temozolomide (TMZ) greatly limits chemotherapeutic effectiveness in glioblastoma (GBM). Here we analysed the ability of the Inhibitor-of-apoptosis-protein (IAP) antagonist birinapant to enhance treatment responses to TMZ in both commercially available and patient-derived GBM cells. Methods: Responses to TMZ and birinapant were analysed in a panel of commercial and patient-derived GBM cell lines using colorimetric viability assays, flow cytometry, morphological analysis and protein expression profiling of pro- and antiapoptotic proteins. Responses in vivo were analysed in an orthotopic xenograft GBM model. Results: Single-agent treatment experiments categorised GBM cells into TMZ-sensitive cells, birinapant-sensitive cells, and cells that were insensitive to either treatment. Combination treatment allowed sensitisation to therapy in only a subset of resistant GBM cells. Cell death analysis identified three principal response patterns: Type A cells that readily activated caspase-8 and cell death in response to TMZ while addition of birinapant further sensitised the cells to TMZ-induced cell death; Type B cells that readily activated caspase-8 and cell death in response to birinapant but did not show further sensitisation with TMZ; and Type C cells that showed no significant cell death or moderately enhanced cell death in the combined treatment paradigm. Furthermore, in vivo, a Type C patient-derived cell line that was TMZ-insensitive in vitro and showed a strong sensitivity to TMZ and TMZ plus birinapant treatments. Conclusions: Our results demonstrate remarkable differences in responses of patient-derived GBM cells to birinapant single and combination treatments, and suggest that therapeutic responses in vivo may be greatly affected by the tumour microenvironment.
Collapse
Affiliation(s)
- Z Zakaria
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,National Centre for Neurosurgery, Beaumont Hospital, Dublin 9, Ireland
| | - A Tivnan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - L Flanagan
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - D W Murray
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - M Salvucci
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - B W Stringer
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - B W Day
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - A W Boyd
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - D Kögel
- Experimental Neurosurgery, Neuroscience Center, Frankfurt University Hospital, Frankfurt am Main, Germany
| | - M Rehm
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - D F O'Brien
- National Centre for Neurosurgery, Beaumont Hospital, Dublin 9, Ireland
| | - A T Byrne
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - J H M Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
142
|
Micewicz ED, Ratikan JA, Waring AJ, Whitelegge JP, McBride WH, Ruchala P. Lipid-conjugated Smac analogues. Bioorg Med Chem Lett 2015; 25:4419-27. [PMID: 26384289 PMCID: PMC4592835 DOI: 10.1016/j.bmcl.2015.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 11/26/2022]
Abstract
A small library of monovalent and bivalent Smac mimics was synthesized based on 2 types of monomers, with general structure NMeAla-Xaa-Pro-BHA (Xaa=Cys or Lys). Position 2 of the compounds was utilized to dimerize both types of monomers employing various bis-reactive linkers, as well as to modify selected compounds with lipids. The resulting library was screened in vitro against metastatic human breast cancer cell line MDA-MB-231, and the two most active compounds selected for in vivo studies. The most active lipid-conjugated analogue M11, showed in vivo activity while administered both subcutaneously and orally. Collectively, our findings suggest that lipidation may be a viable approach in the development of new Smac-based therapeutic leads.
Collapse
Affiliation(s)
- Ewa D Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Josephine A Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Alan J Waring
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA; Department of Physiology and Biophysics, University of California Irvine, 1001 Health Sciences Road, Irvine, CA 92697, USA
| | - Julian P Whitelegge
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - William H McBride
- Department of Radiation Oncology, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Piotr Ruchala
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; The Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, 760 Westwood Plaza, Los Angeles, CA 90024, USA.
| |
Collapse
|
143
|
Amaravadi RK, Schilder RJ, Martin LP, Levin M, Graham MA, Weng DE, Adjei AA. A Phase I Study of the SMAC-Mimetic Birinapant in Adults with Refractory Solid Tumors or Lymphoma. Mol Cancer Ther 2015; 14:2569-75. [PMID: 26333381 DOI: 10.1158/1535-7163.mct-15-0475] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/18/2015] [Indexed: 11/16/2022]
Abstract
The inhibitor of apoptosis (IAP) family of antiapoptotic proteins has been identified as a target for small molecule inhibitors in cancer. Second mitochondrial-derived activator of caspases (SMAC) efficiently and naturally antagonizes IAPs, and preclinical studies have determined that SMAC mimetics have potent anticancer properties. Here, we report a first-in-human trial designed to determine the maximum tolerated dose (MTD), safety, and pharmacokinetics/pharmacodynamics (PK/PD) of birinapant, a novel SMAC mimetic. Patients with advanced solid tumors or lymphoma were enrolled in a 3+3 dose escalation design with birinapant administered intravenously from 0.18 to 63 mg/m(2) once weekly every 3 of 4 weeks. Fifty patients were enrolled to 12 dose cohorts. Birinapant 47 mg/m(2) was determined to be the MTD. At 63 mg/m(2), dose-limiting toxicities included headache, nausea, and vomiting. Two cases of Bell's palsy (grade 2) also occurred at 63 mg/m(2). Birinapant had a plasma half-life of 30 to 35 hours and accumulated in tumor tissue. Birinapant suppressed cIAP1 and increased apoptosis in peripheral blood mononuclear cells and tumor tissue. Prolonged stable disease was observed in 3 patients: non-small cell lung cancer (5 months), colorectal cancer (5 months), and liposarcoma (9 months). Two patients with colorectal cancer had radiographic evidence of tumor shrinkage. In conclusion, birinapant was well tolerated with an MTD of 47 mg/m(2) and exhibited favorable PK and PD properties. Several patients demonstrated stable disease and evidence of antitumor activity. These results support the ongoing clinical trials of birinapant in patients with cancer.
Collapse
Affiliation(s)
- Ravi K Amaravadi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Russell J Schilder
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Myron Levin
- Pediatric Infectious Diseases and Vaccine Clinical Trials, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | | | - David E Weng
- TetraLogic Pharmaceuticals, Malvern, Pennsylvania
| | - Alex A Adjei
- Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
144
|
Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. ACTA ACUST UNITED AC 2015; 21:1102-14. [PMID: 25237857 DOI: 10.1016/j.chembiol.2014.09.001] [Citation(s) in RCA: 780] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
The past 20 years have seen many advances in our understanding of protein-protein interactions (PPIs) and how to target them with small-molecule therapeutics. In 2004, we reviewed some early successes; since then, potent inhibitors have been developed for diverse protein complexes, and compounds are now in clinical trials for six targets. Surprisingly, many of these PPI clinical candidates have efficiency metrics typical of "lead-like" or "drug-like" molecules and are orally available. Successful discovery efforts have integrated multiple disciplines and make use of all the modern tools of target-based discovery-structure, computation, screening, and biomarkers. PPIs become progressively more challenging as the interfaces become more complex, i.e., as binding epitopes are displayed on primary, secondary, or tertiary structures. Here, we review the last 10 years of progress, focusing on the properties of PPI inhibitors that have advanced to clinical trials and prospects for the future of PPI drug discovery.
Collapse
|
145
|
Hird AW, Aquila BM, Hennessy EJ, Vasbinder MM, Yang B. Small molecule inhibitor of apoptosis proteins antagonists: a patent review. Expert Opin Ther Pat 2015; 25:755-74. [PMID: 25980951 DOI: 10.1517/13543776.2015.1041922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The family of inhibitor of apoptosis proteins (IAPs) plays a key role in the suppression of proapoptotic signaling; hence, a small molecule that disrupts the binding of IAPs with their functional partner should restore apoptotic response to proapoptotic stimuli in cells. The continued publication of new patent applications of IAP antagonists over the past 4 years is a testament to the continued interest surrounding the IAP family of proteins. AREAS COVERED This review summarizes the IAP antagonist patent literature from 2010 to 2014. Monovalent and bivalent Smac mimetics will be covered as well as two new developments in the field: IAP antagonists coupled to or merged with other targeted agents and new BIR2 selective IAP antagonists. EXPERT OPINION In addition to the well-explored scaffolds for monovalent and bivalent Smac-mimetics, some companies have taken more drastic approaches to explore new chemical space - for example, fragment-based approaches and macrocyclic inhibitors. Furthermore, other companies have designed compounds with alternative biological profiles - tethering to known kinase binding structures, trying to target to the mitochondria or introducing selective binding to the BIR2 domain. An overview of the status for the four small molecule IAP antagonists being evaluated in active human clinical trials is also provided.
Collapse
Affiliation(s)
- Alexander W Hird
- AstraZeneca, Medicinal Chemistry, Oncology iMed , 35 Gatehouse Drive, Waltham, MA 02451 , USA +1 781 839 4145 ;
| | | | | | | | | |
Collapse
|
146
|
Lee EW, Song J. USP11: A key regulator of cIAP2 stability and sensitivity to SMAC mimetics. Mol Cell Oncol 2015; 3:e1029829. [PMID: 27314066 PMCID: PMC4909448 DOI: 10.1080/23723556.2015.1029829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 01/09/2023]
Abstract
The critical function of cellular inhibitor of apoptosis proteins (cIAPs) in the protection of cancer cells from numerous apoptotic stimuli prompted the development of second mitochondria-derived activator of caspases (SMAC) mimetics. We recently addressed a novel survival pathway in which cIAP2 is induced by tumor necrosis factor-α and is stabilized by its specific deubiquitylase, USP11, rendering cells resistant to SMAC mimetics.
Collapse
Affiliation(s)
- Eun-Woo Lee
- Department of Biochemistry; College of Life Science and Biotechnology; Yonsei University ; Seoul, Korea
| | - Jaewhan Song
- Department of Biochemistry; College of Life Science and Biotechnology; Yonsei University ; Seoul, Korea
| |
Collapse
|
147
|
Aguilar C, Latour S. X-linked inhibitor of apoptosis protein deficiency: more than an X-linked lymphoproliferative syndrome. J Clin Immunol 2015; 35:331-8. [PMID: 25737324 DOI: 10.1007/s10875-015-0141-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
X-linked inhibitor of apoptosis (XIAP) deficiency (also known as X-linked lymphoproliferative syndrome type 2, XLP-2) is a rare primary immunodeficiency. Since the disease was first described in 2006, more than 70 patients suffering from XIAP-deficiency have been reported, thus extending the clinical presentations of the disease. The main clinical features of XLP-2 are (i) elevated susceptibility to hemophagocytic lymphohistiocytosis (HLH, frequently in response to infection with Epstein-Barr virus (EBV)), (ii) recurrent splenomegaly and (iii) inflammatory bowel disease (IBD) with the characteristics of Crohn's disease. XIAP deficiency is now considered to be one of the genetic causes of IBD in infancy. Although XIAP is an anti-apoptotic molecule, it is also involved in many other pathways, including the regulation of innate immunity and inflammation. XIAP is required for signaling through the Nod-like receptors NOD1 and 2, which are intracellular sensors of bacterial infection. XIAP-deficient T cells (including innate natural killer T cells and mucosal-associated invariant T cells) are overly sensitive to apoptosis. NOD2 function is impaired in XIAP-deficient monocytes. However, the physiopathological mechanisms underlying the clinical phenotypes in XIAP deficiency, notably the HLH and the EBV susceptibility, are not well understood. Here, we review the clinical aspects, molecular etiology and physiopathology of XIAP deficiency.
Collapse
Affiliation(s)
- Claire Aguilar
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Descartes-Sorbonne Paris Cité University of Paris and Institut Imagine, Paris, France
| | | |
Collapse
|
148
|
XIAP deficiency syndrome in humans. Semin Cell Dev Biol 2015; 39:115-23. [DOI: 10.1016/j.semcdb.2015.01.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/15/2023]
|
149
|
Qin S, Xu C, Li S, Yang C, Sun X, Wang X, Tang SC, Ren H. Indomethacin induces apoptosis in the EC109 esophageal cancer cell line by releasing second mitochondria-derived activator of caspase and activating caspase-3. Mol Med Rep 2015; 11:4694-700. [PMID: 25673090 DOI: 10.3892/mmr.2015.3331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 12/19/2014] [Indexed: 11/05/2022] Open
Abstract
The use of non‑steroidal anti‑inflammatory drugs (NSAIDs) has been associated with a reduced risk of various types of cancer, including esophageal cancer. However, the mechanisms underlying the antineoplastic effects of NSAIDs in esophageal cancer remain to be elucidated. In the present study, a significant inhibition in cell viability was observed in the EC109 cells following treatment with different concentrations of indomethacin, and these effects occurred in a dose‑ and time‑dependent manner. This inhibition was due to the release of second mitochondria‑derived activator of caspase (Smac) into the cytosol and the activation of caspase‑3. Subsequently, flow cytometry was performed to investigate indomethacin‑induced apoptosis following the overexpression or knockdown of Smac, and western blot analysis was performed to determine the expression of Smac and the activation of caspase‑3. Overexpression of Smac was promoted apoptosis, while downregulation of Smac significantly inhibited apoptosis. Western blot analysis demonstrated that indomethacin induced apoptosis through releasing Smac into the cytosol and activating caspase‑3. These results indicated that Smac is essential for the apoptosis induced by indomethacin in esophageal cancer cells.
Collapse
Affiliation(s)
- Sida Qin
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chongwen Xu
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuo Li
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chengcheng Yang
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Sun
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xifang Wang
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shou-Ching Tang
- Department of Hematology and Oncology, Georgia Regents University Cancer Center, Augusta, GA 30912, USA
| | - Hong Ren
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
150
|
Perez HL, Chaudhry C, Emanuel SL, Fanslau C, Fargnoli J, Gan J, Kim KS, Lei M, Naglich JG, Traeger SC, Vuppugalla R, Wei DD, Vite GD, Talbott RL, Borzilleri RM. Discovery of Potent Heterodimeric Antagonists of Inhibitor of Apoptosis Proteins (IAPs) with Sustained Antitumor Activity. J Med Chem 2015; 58:1556-62. [DOI: 10.1021/jm501482t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Heidi L. Perez
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Charu Chaudhry
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Stuart L. Emanuel
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Caroline Fanslau
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joseph Fargnoli
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Jinping Gan
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Kyoung S. Kim
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Ming Lei
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Joseph G. Naglich
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Sarah C. Traeger
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Ragini Vuppugalla
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Donna D. Wei
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Gregory D. Vite
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Randy L. Talbott
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Robert M. Borzilleri
- Bristol-Myers Squibb Research, P.O. Box 4000, Princeton, New Jersey 08543, United States
| |
Collapse
|