101
|
Grinchii D, Dremencov E. Mechanism of Action of Atypical Antipsychotic Drugs in Mood Disorders. Int J Mol Sci 2020; 21:ijms21249532. [PMID: 33333774 PMCID: PMC7765178 DOI: 10.3390/ijms21249532] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Atypical antipsychotic drugs were introduced in the early 1990s. Unlike typical antipsychotics, which are effective only against positive symptoms of schizophrenia, atypical antipsychotics are effective against negative and cognitive symptoms as well. Furthermore, they are effective not only in psychotic but also in affective disorders, on their own or as adjuncts to antidepressant drugs. This review presents the neural mechanisms of currently existing atypical antipsychotics and putative antipsychotics currently being investigated in preclinical and clinical studies and how these relate to their effectiveness in mood disorders such as depression, anxiety, and post-traumatic stress disorder (PTSD). Typical antipsychotics act almost exclusively on the dopamine system. Atypical drugs, however, modulate serotonin (5-HT), norepinephrine, and/or histamine neurotransmission as well. This multimodal mechanism of action putatively underlies the beneficial effect of atypical antipsychotics in mood and anxiety disorders. Interestingly, novel experimental drugs having dual antipsychotic and antidepressant therapeutic potential, such as histamine, adenosine, and trace amine-associated receptors (TAAR) ligand, are also characterized by a multimodal stimulatory effect on central 5-HT, norepinephrine, and/or histamine transmission. The multimodal stimulatory effect on central monoamine neurotransmission may be thus primarily responsible for the combined antidepressant and antipsychotic therapeutic potential of certain central nervous system (CNS) drugs.
Collapse
|
102
|
Novel 1-Amidino-4-Phenylpiperazines as Potent Agonists at Human TAAR1 Receptor: Rational Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Pharmaceuticals (Basel) 2020; 13:ph13110391. [PMID: 33202687 PMCID: PMC7697893 DOI: 10.3390/ph13110391] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
Targeting trace amine-associated receptor 1 (TAAR1) receptor continues to offer an intriguing opportunity to develop innovative therapies in different pharmacological settings. Pursuing our endeavors in the search for effective and safe human TAAR1 (hTAAR1) ligands, we synthesized a new series of 1-amidino-4-phenylpiperazine derivatives (1–16) based on the application of a combined pharmacophore model/scaffold simplification strategy for an in-house series of biguanide-based TAAR1 agonists. Most of the novel compounds proved to be more effective than their prototypes, showing nanomolar EC50 values in functional activity at hTAAR1 and low general cytotoxicity (CC50 > 80 µM) when tested on the Vero-76 cell line. In this new series, the main determinant for TAAR1 agonism ability appears to result from the appropriate combination between the steric size and position of the substituents on the phenyl ring rather than from their different electronic nature, since both electron-withdrawing and electron donor groups are permitted. In particular, the ortho-substitution seems to impose a more appropriate spatial geometry to the molecule that entails an enhanced TAAR1 potency profile, as experienced, in the following order, by compounds 15 (2,3-diCl, EC50 = 20 nM), 2 (2-CH3, EC50 = 30 nM), 6 (2-OCH3, EC50 = 93 nM) and 3 (2-Cl, EC50 = 160 nM). Apart from the interest in them as valuable leads for the development of promising hTAAR1 agonists, these simple small molecules have further allowed us to identify the minimal structural requirements for producing an efficient hTAAR1 targeting ability.
Collapse
|
103
|
Liu Y, Hou Y, Wang G, Zheng X, Hao H. Gut Microbial Metabolites of Aromatic Amino Acids as Signals in Host-Microbe Interplay. Trends Endocrinol Metab 2020; 31:818-834. [PMID: 32284282 DOI: 10.1016/j.tem.2020.02.012] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Gut microbial metabolism is intimately coupled with host health and disease. Aromatic amino acid (AAA) catabolism by the gut microbiome yields numerous metabolites that may regulate immune, metabolic, and neuronal responses at local and distant sites. Such a chemical dialog between host cells and the gut microbiome is shaped by environmental cues, and may become dysregulated in gastrointestinal and systems diseases. Increasing knowledge of the bacterial pathway and signaling basis may shed additional light on metabolic host-microbiome crosstalk that remains untapped for drug discovery. Here, we update our understanding of microbial AAA metabolism and its impacts on host physiology and disease. We also consider open questions related to therapeutically mining these signaling metabolites and how recent concepts and tools may drive this area forward.
Collapse
Affiliation(s)
- Yali Liu
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuanlong Hou
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao Zheng
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
104
|
Efimova EV, Kozlova AA, Razenkova V, Katolikova NV, Antonova KA, Sotnikova TD, Merkulyeva NS, Veshchitskii AS, Kalinina DS, Korzhevskii DE, Musienko PE, Kanov EV, Gainetdinov RR. Increased dopamine transmission and adult neurogenesis in trace amine-associated receptor 5 (TAAR5) knockout mice. Neuropharmacology 2020; 182:108373. [PMID: 33132188 DOI: 10.1016/j.neuropharm.2020.108373] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022]
Abstract
Trace amine-associated receptors (TAARs) are a class of sensory G protein-coupled receptors that detect biogenic amines, products of decarboxylation of amino acids. The majority of TAARs (TAAR2-TAAR9) have been described mainly in the olfactory epithelium and considered to be olfactory receptors sensing innate odors. However, there is recent evidence that one of the members of this family, TAAR5, is expressed also in the limbic brain areas receiving projection from the olfactory system and involved in the regulation of emotions. In this study, we further characterized a mouse line lacking TAAR5 (TAAR5 knockout, TAAR5-KO mice) that express beta-galactosidase mapping TAAR5 expression. We found that in TAAR5-KO mice the number of dopamine neurons, the striatal levels of dopamine and its metabolites, as well as striatal levels of GDNF mRNA, are elevated indicating a potential increase in dopamine neuron proliferation. Furthermore, an analysis of TAAR5 beta-galactosidase expression revealed that TAAR5 is present in the major neurogenic areas of the brain such as the subventricular zone (SVZ), the subgranular zone (SGZ) and the less characterized potentially neurogenic zone surrounding the 3rd ventricle. Direct analysis of neurogenesis by using specific markers doublecortin (DCX) and proliferating cell nuclear antigen (PCNA) revealed at least 2-fold increase in the number of proliferating neurons in the SVZ and SGZ of TAAR5-KO mice, but no such markers were detected in mutant or control mice in the areas surrounding the 3rd ventricle. These observations indicate that TAAR5 involved not only in regulation of emotional status but also adult neurogenesis and dopamine transmission. Thus, future TAAR5 antagonists may exert not only antidepressant and/or anxiolytic action but may also provide new treatment opportunity for neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Alena A Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Nataliia V Katolikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Kristina A Antonova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Tatyana D Sotnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Natalia S Merkulyeva
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; Pavlov Institute of Physiology RAS, St. Petersburg, Russia
| | | | - Daria S Kalinina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | | | - Pavel E Musienko
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; St. Petersburg State Research Institute of Phthisiopulmonology, Ministry of Healthcare of the RF, St. Petersburg, 191036, Russia
| | - Evgeny V Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia; St. Petersburg University Hospital, St. Petersburg State University, St. Petersburg, 199034, Russia.
| |
Collapse
|
105
|
Dodd S, F Carvalho A, Puri BK, Maes M, Bortolasci CC, Morris G, Berk M. Trace Amine-Associated Receptor 1 (TAAR1): A new drug target for psychiatry? Neurosci Biobehav Rev 2020; 120:537-541. [PMID: 33031817 DOI: 10.1016/j.neubiorev.2020.09.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
There are nine subfamilies of TAARs. They are predominantly intracellular, located in the central nervous system and peripherally. They have a role in homeostasis and rheostasis, and also in olfaction. They demonstrate significant cross-talk with the monoamine system and are involved in the regulation of cAMP signalling and K+ channels. There is evidence to suggest that TAAR1 may be a promising therapeutic target for the treatment of schizophrenia, psychosis in Parkinson's disease, substance use disorders, and the metabolic syndrome and obesity. TAAR1 expression may also be a prognostic biomarker for cancers. A number of TAAR modulators have been identified, including endogenous ligands and new chemical entities. Some of these agents have shown efficacy in animal models of addiction behaviours, depression and anxiety. Only one agent, SEP-363856, has progressed to randomised clinical trials in humans; however further, larger studies with SEP-363856 are required to clarify its suitability as a new treatment for schizophrenia spectrum disorders. SEP-363856 is an agonist of TAAR1 and 5HT1A and it is not clear to what extent its efficacy can be attributed to TAAR1 rather than to other drug targets. However, current research suggests that TAAR1 has an important role in human physiology and pathophysiology. TAAR1 modulators may become an important new drug class for the management of a wide array of mental disorders in the future.
Collapse
Affiliation(s)
- Seetal Dodd
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Youth Mental Health, University of Melbourne, Parkville, Australia; Department of Psychiatry, University of Melbourne, Parkville, Australia; University Hospital Geelong, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia.
| | - André F Carvalho
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, Toronto, ON, Canada
| | | | - Michael Maes
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Chiara C Bortolasci
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Gerwyn Morris
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia; Centre for Youth Mental Health, University of Melbourne, Parkville, Australia; Department of Psychiatry, University of Melbourne, Parkville, Australia; University Hospital Geelong, Barwon Health, PO Box 281, Geelong, Victoria, 3220, Australia
| |
Collapse
|
106
|
Pretorius L, Smith C. The trace aminergic system: a gender-sensitive therapeutic target for IBS? J Biomed Sci 2020; 27:95. [PMID: 32981524 PMCID: PMC7520957 DOI: 10.1186/s12929-020-00688-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Due to a lack of specific or sensitive biomarkers, drug discovery advances have been limited for individuals suffering from irritable bowel syndrome (IBS). While current therapies provide symptomatic relief, inflammation itself is relatively neglected, despite the presence of chronic immune activation and innate immune system dysfunction. Moreover, considering the microgenderome concept, gender is a significant aetiological risk factor. We believe that we have pinpointed a "missing link" that connects gender, dysbiosis, diet, and inflammation in the context of IBS, which may be manipulated as therapeutic target. The trace aminergic system is conveniently positioned at the interface of the gut microbiome, dietary nutrients and by-products, and mucosal immunity. Almost all leukocyte populations express trace amine associated receptors and significant amounts of trace amines originate from both food and the gut microbiota. Additionally, although IBS-specific data are sparse, existing data supports an interpretation in favour of a gender dependence in trace aminergic signalling. As such, trace aminergic signalling may be altered by fluctuations of especially female reproductive hormones. Utilizing a multidisciplinary approach, this review discusses potential mechanisms of actions, which include hyperreactivity of the immune system and aberrant serotonin signalling, and links outcomes to the symptomology clinically prevalent in IBS. Taken together, it is feasible that the additional level of regulation by the trace aminergic system in IBS has been overlooked, until now. As such, we suggest that components of the trace aminergic system be considered targets for future therapeutic action, with the specific focus of reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Lesha Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1, Stellenbosch, 7062, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch Private Bag X1, Stellenbosch, 7062, South Africa.
| |
Collapse
|
107
|
Han P, Weber C, Hummel T. Brain response to intranasal trimethylamine stimulation: A preliminary human fMRI study. Neurosci Lett 2020; 735:135166. [PMID: 32574795 DOI: 10.1016/j.neulet.2020.135166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022]
Abstract
The trace amine-associated receptors (TAARs) are a second class of olfactory receptors in humans. They are activated by volatile amines, including pheromone-like odors. However, in humans the neural processing of TAAR-associated signals is not known. Using functional magnetic resonance imaging, the current study investigated brain activation following intra-nasal stimulation with trimethylamine (TMA), an agonist of human TAAR5, and three "canonical" odors with varied valence (an unpleasant odor [n-butanol], a neutral to unpleasant odor [civet musk], and a pleasant odor [phenyl ethyl alcohol]) in 12 healthy young participants. Our hypothesis driven analysis showed that TMA induced a trend for stronger left amygdala activation as compared to the other odors (Family-Wise Error corrected p = 0.08). Whole-brain exploratory analyses revealed superior activation of the cerebellum and caudate to TMA compared to canonical odors, and stronger activation of the anterior cingulate and somatosensory regions (postcentral gyrus and mid cingulate) in response to canonical odors compared to TMA. The current results provide initial evidence on differential central processes of a TAAR mediated stimulus compared to odors targeting canonical olfactory receptors. Future research are needed to elucidate the physiological and psychological relevance of TAARs in humans.
Collapse
Affiliation(s)
- Pengfei Han
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany; Faculty of Psychology, Southwest University, Chongqing, China; The Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.
| | - Catharina Weber
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Thomas Hummel
- Interdisciplinary Center on Smell and Taste, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
108
|
Cadaverine and Spermine Elicit Ca 2+ Uptake in Human CP Cells via a Trace Amine-Associated Receptor 1 Dependent Pathway. J Mol Neurosci 2020; 71:625-637. [PMID: 32816235 DOI: 10.1007/s12031-020-01684-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022]
Abstract
The choroid plexus (CP) constitutes a barrier between the blood and the cerebrospinal fluid (CSF) which regulates the exchange of substances between these two fluids through mechanisms that are not completely understood. Polyamines as spermine, spermidine and putrescine are produced by all cells and are present in the CSF. Interestingly, their levels are altered in some neuronal disorders as Alzheimer's and Parkinson's diseases, thus increasing the interest in their signalling in the central nervous system (CNS). Cadaverine, on the other hand, is synthetized by the intestinal microbiome, suggesting that the presence of this bacterial metabolite in the CSF requires that it is up taken to the CNS across brain barriers. We knew that polyamines are detected by the olfactory signalling cascade operating at the CP, but the receptor involved had not been identified. The zebrafish TAAR13c was the only receptor known to bind a polyamine-cadaverine. Thus, we searched for a human receptor with homology to TAAR13c and found that some human TAARs including TAAR1 showed great homology. Then, we confirmed the expression of TAAR1 mRNA and protein in a human cell line of the CP, and in human CP samples. Calcium imaging assays after TAAR1 knockdown in these cells with a specific siRNA against TAAR1 showed a consistent reduction in the responses of these cells to cadaverine and spermidine, but not to spermine, suggesting that TAAR1 is activated by cadaverine and spermidine, but not spermine.
Collapse
|
109
|
Decker AM, Mathews KM, Blough BE, Gilmour BP. Validation of a High-Throughput Calcium Mobilization Assay for the Human Trace Amine-Associated Receptor 1. SLAS DISCOVERY 2020; 26:140-150. [PMID: 32734809 DOI: 10.1177/2472555220945279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human trace amine-associated receptor 1 (hTAAR1) is a G protein-coupled receptor (GPCR) that is widely expressed in monoaminergic nuclei in the central nervous system and has therapeutic potential for multiple diseases, including drug addiction and schizophrenia. Thus, identification of novel hTAAR1 ligands is critical to advancing our knowledge of hTAAR1 function and to the development of therapeutics for a wide range of diseases. Herein we describe the development of a robust, 3-addition high-throughput screening (HTS) calcium mobilization assay using stable CHO-Gαq16-hTAAR1 cells, which functionally couple hTAAR1 to the promiscuous Gαq16 protein and thus allow signal transduction to occur through mobilization of internal calcium. Our previously established 96-well hTAAR1 assay was first miniaturized to the 384-well format and optimized to provide an assay with a Z' factor of 0.84, which is indicative of a robust HTS assay. Using the 3-addition protocol, 22,000 compounds were screened and yielded a ~1% agonist hit rate and a ~0.2% antagonist hit rate. Of the antagonist hits, two confirmed hits are the most potent hTAAR1 antagonists identified to date (IC50 = 206 and 281 nM). While scientists have been studying hTAAR1 for years, the lack of suitable hTAAR1 antagonists has been a major roadblock for studying the basic pharmacology of hTAAR1. Thus, these new ligands will serve as valuable tools to study hTAAR1-mediated signaling mechanisms, therapeutic potential, and in vivo functions.
Collapse
Affiliation(s)
- Ann M Decker
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| | - Kelly M Mathews
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| | - Brian P Gilmour
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
110
|
Ruiz-Hernández A, Cabrera-Becerra S, Vera-Juárez G, Hong E, Fengyang H, Arauz J, Villafaña S. Diabetic nephropathy produces alterations in the tissue expression profile of the orphan receptors GPR149, GPR153, GPR176, TAAR3, TAAR5 and TAAR9 in Wistar rats. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1150-1161. [PMID: 32643557 DOI: 10.1080/15257770.2020.1780437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a debilitating health care problem affecting 382 million people around the world and one of the most common complications is diabetic nephropathy. For this reason, it is important to try to identify new mechanisms that could be involved in diabetes. A new class of receptors has been reported, called orphan receptors because the associated ligand and signaling cascades are unknown. These receptors could be an important source of targets for the treatment of many diseases such as diabetes and its associated complications like diabetic nephropathy. Therefore, the aim of this work was to study expression of the orphan receptors GPR149, GPR153, GPR176, TAAR3, TAAR5 and TAAR9 in the kidney of diabetic rats. We used male Wistar rats at 10-12 weeks of age. Diabetes was induced by a single dose of streptozotocin (60 mg/kg i.p.). After 4 weeks, tissues were obtained, and the expression of the mRNAs was measured by RT-PCR. Our results showed that the orphan receptors are expressed in a different way in the kidney. In conclusion, we suggest that orphan receptors could be involved in the development of diabetic nephropathy.
Collapse
Affiliation(s)
- A Ruiz-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - S Cabrera-Becerra
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - G Vera-Juárez
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - E Hong
- Departamento de Farmacología y Toxicología, Hospital Infantil de México Federico Gómez (HIMFG), Ciudad de México, México.,Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - H Fengyang
- Departamento de Farmacología y Toxicología, Hospital Infantil de México Federico Gómez (HIMFG), Ciudad de México, México
| | - J Arauz
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - S Villafaña
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
111
|
Mootz JRK, Miner NB, Phillips TJ. Differential genetic risk for methamphetamine intake confers differential sensitivity to the temperature-altering effects of other addictive drugs. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12640. [PMID: 31925906 PMCID: PMC7286770 DOI: 10.1111/gbb.12640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/03/2023]
Abstract
Mice selectively bred for high methamphetamine (MA) drinking (MAHDR), compared with mice bred for low MA drinking (MALDR), exhibit greater sensitivity to MA reward and insensitivity to aversive and hypothermic effects of MA. Previous work identified the trace amine-associated receptor 1 gene (Taar1) as a quantitative trait gene for MA intake that also impacts thermal response to MA. All MAHDR mice are homozygous for the mutant Taar1 m1J allele, whereas all MALDR mice possess at least one copy of the reference Taar1 + allele. To determine if their differential sensitivity to MA-induced hypothermia extends to drugs of similar and different classes, we examined sensitivity to the hypothermic effect of the stimulant cocaine, the amphetamine-like substance 3,4-methylenedioxymethamphetamine (MDMA), and the opioid morphine in these lines. The lines did not differ in thermal response to cocaine, only MALDR mice exhibited a hypothermic response to MDMA, and MAHDR mice were more sensitive to the hypothermic effect of morphine than MALDR mice. We speculated that the μ-opioid receptor gene (Oprm1) impacts morphine response, and genotyped the mice tested for morphine-induced hypothermia. We report genetic linkage between Taar1 and Oprm1; MAHDR mice more often inherit the Oprm1 D2 allele and MALDR mice more often inherit the Oprm1 B6 allele. Data from a family of recombinant inbred mouse strains support the influence of Oprm1 genotype, but not Taar1 genotype, on thermal response to morphine. These results nominate Oprm1 as a genetic risk factor for morphine-induced hypothermia, and provide additional evidence for a connection between drug preference and drug thermal response.
Collapse
Affiliation(s)
- John R K Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - Nicholas B Miner
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, Oregon
- Division of Research, Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
112
|
Putative TAAR5 agonist alpha-NETA affects event-related potentials in oddball paradigm in awake mice. Brain Res Bull 2020; 158:116-121. [PMID: 32151716 DOI: 10.1016/j.brainresbull.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 11/23/2022]
Abstract
Trace amines have been reported to be neuromodulators of monoaminergic systems. Trace amines receptor 5 (TAAR5) is expressed in several regions of mice central nervous system, such as amygdala, arcuate nucleus and ventromedial hypothalamus, but very limited information is available on its functional role. The purpose of this study is to examine the effect of TAAR5 agonist alpha-NETA on the generation of mismatch negativity (MMN) analogue in C57BL/6 mice. Event-related potentials have been recorded from awake mice in oddball paradigms before and after the alpha-NETA administration. Alpha-NETA has been found to decrease N40 MMN-like difference, which resulted from the increased response to standard stimuli. An opposite effect has been found for the P80 component: the amplitude increased in response both to standard and deviant stimuli. A significant increase in N40 peak latency after the alpha-NETA administration has been found. This may suggest a reduced speed of information processing similar to the increase in P50 and N100 components latencies in schizophrenia patients. These results provide new evidence for a role of TAAR5 in cognitive processes.
Collapse
|
113
|
Espinoza S, Sukhanov I, Efimova EV, Kozlova A, Antonova KA, Illiano P, Leo D, Merkulyeva N, Kalinina D, Musienko P, Rocchi A, Mus L, Sotnikova TD, Gainetdinov RR. Trace Amine-Associated Receptor 5 Provides Olfactory Input Into Limbic Brain Areas and Modulates Emotional Behaviors and Serotonin Transmission. Front Mol Neurosci 2020; 13:18. [PMID: 32194374 PMCID: PMC7066256 DOI: 10.3389/fnmol.2020.00018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Trace amine-associated receptors (TAARs) are a class of G-protein-coupled receptors found in mammals. While TAAR1 is expressed in several brain regions, all the other TAARs have been described mainly in the olfactory epithelium and the glomerular layer of the olfactory bulb and are believed to serve as a new class of olfactory receptors sensing innate odors. However, there is evidence that TAAR5 could play a role also in the central nervous system. In this study, we characterized a mouse line lacking TAAR5 (TAAR5 knockout, TAAR5-KO) expressing beta-galactosidase mapping TAAR5 expression. We found that TAAR5 is expressed not only in the glomerular layer in the olfactory bulb but also in deeper layers projecting to the limbic brain olfactory circuitry with prominent expression in numerous limbic brain regions, such as the anterior olfactory nucleus, the olfactory tubercle, the orbitofrontal cortex (OFC), the amygdala, the hippocampus, the piriform cortex, the entorhinal cortex, the nucleus accumbens, and the thalamic and hypothalamic nuclei. TAAR5-KO mice did not show gross developmental abnormalities but demonstrated less anxiety- and depressive-like behavior in several behavioral tests. TAAR5-KO mice also showed significant decreases in the tissue levels of serotonin and its metabolite in several brain areas and were more sensitive to the hypothermic action of serotonin 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propilamino)tetralin (8-OH-DPAT). These observations indicate that TAAR5 is not just innate odor-sensing olfactory receptor but also serves to provide olfactory input into limbic brain areas to regulate emotional behaviors likely via modulation of the serotonin system. Thus, anxiolytic and/or antidepressant action of future TAAR5 antagonists could be predicted. In general, "olfactory" TAAR-mediated brain circuitry may represent a previously unappreciated neurotransmitter system involved in the transmission of innate odors into emotional behavioral responses.
Collapse
Affiliation(s)
- Stefano Espinoza
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ilya Sukhanov
- Department of Pharmacology, St. Petersburg State Medical University, St. Petersburg, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Alena Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Kristina A Antonova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Placido Illiano
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Damiana Leo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Natalia Merkulyeva
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Pavlov Institute of Physiology RAS, St. Petersburg, Russia
| | - Daria Kalinina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg, Russia
| | - Pavel Musienko
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,St. Petersburg State Research Institute of Phthisiopulmonology, Ministry of Healthcare of the RF, St. Petersburg, Russia
| | - Anna Rocchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - Liudmila Mus
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Pharmacology, St. Petersburg State Medical University, St. Petersburg, Russia
| | - Tatiana D Sotnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,St. Petersburg State University Hospital, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
114
|
Dorotenko A, Tur M, Dolgorukova A, Bortnikov N, Belozertseva IV, Zvartau EE, Gainetdinov RR, Sukhanov I. The Action of TAAR1 Agonist RO5263397 on Executive Functions in Rats. Cell Mol Neurobiol 2020; 40:215-228. [PMID: 31734895 PMCID: PMC11448851 DOI: 10.1007/s10571-019-00757-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 12/26/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a widely recognized new perspective target for the neuropsychiatric pharmacological treatment. Despite a growing number of studies investigating TAAR1 role in the animal models of different pathologies, information of TAAR1 agonists impact on executive cognitive functions is limited. The goal of the present study was to evaluate the activity of highly selective partial TAAR1 agonist RO5263397 on various executive cognitive functions. The results of the present study demonstrated that the pretreatment with RO5263397 was able to increase attention and decrease cognitive flexibility in rats. The analysis of the RO5263397 action on impulsivity demonstrated that the TAAR1 activation failed to affect premature responding but was able to slightly modify impulsive choice. Problem solving was resistant to the pharmacological intervention.
Collapse
Affiliation(s)
- Artem Dorotenko
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Margarita Tur
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Antonina Dolgorukova
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Nikita Bortnikov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Irina V Belozertseva
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Edwin E Zvartau
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya Emb. 7-9, St. Petersburg, Russia, 199034
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, St. Petersburg, Russia, 199034
| | - Ilya Sukhanov
- Valdman Institute of Pharmacology, Pavlov First St. Petersburg State Medical University, Lev Tolstoy str. 6-8, St. Petersburg, Russia, 197022.
| |
Collapse
|
115
|
Zhukov IS, Kubarskaya LG, Tissen IY, Kozlova AA, Dagayev SG, Kashuro VA, Vlasova OL, Sinitca EL, Karpova IV, Gainetdinov RR. Minimal Age-Related Alterations in Behavioral and Hematological Parameters in Trace Amine-Associated Receptor 1 (TAAR1) Knockout Mice. Cell Mol Neurobiol 2020; 40:273-282. [PMID: 31399838 PMCID: PMC11448943 DOI: 10.1007/s10571-019-00721-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022]
Abstract
Since the discovery in 2001, the G protein-coupled trace amine-associated receptor 1 (TAAR1) has become an important focus of research targeted on evaluation of its role in the central nervous system (CNS). Meanwhile, impact of TAAR1 in the peripheral organs is less investigated. Expression of TAAR1 was demonstrated in different peripheral tissues: pancreatic β-cells, stomach, intestines, white blood cells (WBC), and thyroid. However, the role of TAAR1 in regulation of hematological parameters has not been investigated yet. In this study, we performed analysis of anxiety-related behaviors, a complete blood count (CBC), erythrocyte fragility, as well as FT3/FT4 thyroid hormones levels in adult and middle-aged TAAR1 knockout mice. Complete blood count analysis was performed on a Siemens Advia 2120i hematology analyzer and included more than 35 measured and calculated parameters. Erythrocyte fragility test evaluated spherocytosis pathologies of red blood cells (RBC). No significant alterations in essentially all these parameters were found in mice without TAAR1. However, comparative aging analysis has revealed a decreased neutrophils level in the middle-aged TAAR1 knockout mouse group. Minimal alterations in these parameters observed in TAAR1 knockout mice suggest that future TAAR1-based therapies should exert little hematological effect and thus will likely have a good safety profile.
Collapse
Affiliation(s)
- I S Zhukov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, Russia, 199034.
- Institute of Experimental Medicine, Acad. Pavlov str. 12, Saint Petersburg, Russia, 197376.
| | - L G Kubarskaya
- Institute of Toxicology of Federal Medical-Biological Agency, Bekhtereva str. 1., Saint Petersburg, Russia, 192019
| | - I Y Tissen
- Institute of Experimental Medicine, Acad. Pavlov str. 12, Saint Petersburg, Russia, 197376
| | - A A Kozlova
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, Russia, 199034
| | - S G Dagayev
- Institute of Toxicology of Federal Medical-Biological Agency, Bekhtereva str. 1., Saint Petersburg, Russia, 192019
| | - V A Kashuro
- Institute of Toxicology of Federal Medical-Biological Agency, Bekhtereva str. 1., Saint Petersburg, Russia, 192019
| | - O L Vlasova
- Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya str. 29, Saint Petersburg, Russia, 195251
| | - E L Sinitca
- Institute of Experimental Medicine, Acad. Pavlov str. 12, Saint Petersburg, Russia, 197376
| | - I V Karpova
- Institute of Experimental Medicine, Acad. Pavlov str. 12, Saint Petersburg, Russia, 197376
| | - R R Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, Russia, 199034
| |
Collapse
|
116
|
Abstract
Trace amine-associated receptors (TAARs) are a family of G protein-coupled receptors (GPCRs) that are evolutionarily conserved in vertebrates. The first discovered TAAR1 is mainly expressed in the brain, and is able to detect low abundant trace amines. TAAR1 is also activated by several synthetic compounds and psychostimulant drugs like amphetamine. Activation of TAAR1 by specific agonists can regulate the classical monoaminergic systems in the brain. Further studies have revealed that other TAAR family members are highly expressed in the olfactory system which are termed olfactory TAARs. In vertebrates, olfactory TAARs can specifically recognize volatile or water-soluble amines. Some of these TAAR agonists are produced by decarboxylation of amino acids. In addition, some TAAR agonists are ethological odors that mediate animal innate behaviors. In this study, we provide a comprehensive review of TAAR agonists, including their structures, biosynthesis pathways, and functions.
Collapse
Affiliation(s)
- Zhengrong Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Qian Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| |
Collapse
|
117
|
Belov DR, Efimova EV, Fesenko ZS, Antonova KA, Kolodyazhny SF, Lakstygal AM, Gainetdinov RR. Putative Trace-Amine Associated Receptor 5 (TAAR5) Agonist α-NETA Increases Electrocorticogram Gamma-Rhythm in Freely Moving Rats. Cell Mol Neurobiol 2020; 40:203-213. [PMID: 31385135 PMCID: PMC11448819 DOI: 10.1007/s10571-019-00716-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 11/28/2022]
Abstract
Cortical gamma rhythm is involved in transmission of information (communication) between brain areas that are believed to be involved in the pathogenesis of cognitive dysfunctions. Trace amines represent a group of endogenous biogenic amines that are known to be involved in modulation of function of classical monoamines, such as dopamine. To evaluate potential modulatory influence of a specific receptor for trace amines Trace Amine-Associated Receptor 5 (TAAR5) on the dopamine system, we used HPLC measurements of dopamine and its metabolites in the mouse striatum following administration of the putative TAAR5 agonist α-NETA. Administration of α-NETA caused significant modulation of dopaminergic system as evidenced by an altered dopamine turnover rate in the striatum. Then, to evaluate potential modulatory influence of TAAR5 on the rat brain gamma rhythm, we investigated the changes of electrocorticogram (ECoG) spectral power in the gamma-frequency range (40-50 Hz) following administration of the putative TAAR5 agonist α-NETA. In addition, we analyzed the changes of spatial synchronization of gamma oscillations of rat ECoG by multichannel recording. Significant complex changes were observed in the ECoG spectrum, including an increase in the spectral power in the ranges of delta (1 Hz), theta (7 Hz), and gamma rhythms (40-50 Hz) after the introduction of α-NETA. Furthermore, a decrease in the spatial synchronization of gamma oscillations of 40-50 Hz and its increase for theta oscillations of 7 Hz were detected after the introduction of α-NETA. In conclusion, putative TAAR5 agonist α-NETA can modulate striatal dopamine transmission and cause significant alterations of gamma rhythm of brain activity in a manner consistent with schizophrenia-related deficits described in humans and experimental animals. These observations suggest a role of TAAR5 in the modulation of cognitive functions affected in brain pathologies.
Collapse
Affiliation(s)
- D R Belov
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia.
| | - E V Efimova
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia
| | - Z S Fesenko
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia
| | - K A Antonova
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia
| | - S F Kolodyazhny
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia
| | - A M Lakstygal
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia
| | - R R Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg, 199034, Russia
| |
Collapse
|
118
|
Bugda Gwilt K, González DP, Olliffe N, Oller H, Hoffing R, Puzan M, El Aidy S, Miller GM. Actions of Trace Amines in the Brain-Gut-Microbiome Axis via Trace Amine-Associated Receptor-1 (TAAR1). Cell Mol Neurobiol 2020; 40:191-201. [PMID: 31836967 PMCID: PMC11448870 DOI: 10.1007/s10571-019-00772-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Trace amines and their primary receptor, Trace Amine-Associated Receptor-1 (TAAR1) are widely studied for their involvement in the pathogenesis of neuropsychiatric disorders despite being found in the gastrointestinal tract at physiological levels. With the emergence of the "brain-gut-microbiome axis," we take the opportunity to review what is known about trace amines in the brain, the defined sources of trace amines in the gut, and emerging understandings on the levels of trace amines in various gastrointestinal disorders. Similarly, we discuss localization of TAAR1 expression in the gut, novel findings that TAAR1 may be implicated in inflammatory bowel diseases, and the reported comorbidities of neuropsychiatric disorders and gastrointestinal disorders. With the emergence of TAAR1 specific compounds as next-generation therapeutics for schizophrenia (Roche) and Parkinson's related psychoses (Sunovion), we hypothesize a therapeutic benefit of these compounds in clinical trials in the brain-gut-microbiome axis, as well as a potential for thoughtful manipulation of the brain-gut-microbiome axis to modulate symptoms of neuropsychiatric disease.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA.
- Center for Drug Discovery, Northeastern University, Boston, MA, USA.
- Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, USA.
| | - Dulce Pamela González
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Neva Olliffe
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Biology, College of Science, Northeastern University, Boston, MA, USA
| | - Haley Oller
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Rachel Hoffing
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Department of Biology, College of Science, Northeastern University, Boston, MA, USA
| | - Marissa Puzan
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA
| | - Sahar El Aidy
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
119
|
Stohs SJ, Shara M, Ray SD. p-Synephrine, ephedrine, p-octopamine and m-synephrine: Comparative mechanistic, physiological and pharmacological properties. Phytother Res 2020; 34:1838-1846. [PMID: 32101364 PMCID: PMC7496387 DOI: 10.1002/ptr.6649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/23/2023]
Abstract
Confusion and misunderstanding exist regarding the lack of cardiovascular and other adverse health effects of p-synephrine and p-octopamine relative to ephedrine and m-synephrine (phenylephrine) which are known for their effects on the cardiovascular system. These four molecules have some structural similarities. However, the structural and stereochemical differences of p-synephrine and p-octopamine as related to ephedrine and m-synephrine result in markedly different adrenergic receptor binding characteristics as well as other mechanistic differences which are reviewed. p-Synephrine and p-octopamine exhibit little binding to α-1, α-2, β-1 and β-2 adrenergic receptors, nor are they known to exhibit indirect actions leading to an increase in available levels of endogenous norepinephrine and epinephrine at commonly used doses. The relative absence of these mechanistic actions provides an explanation for their lack of production of cardiovascular effects at commonly used oral doses as compared to ephedrine and m-synephrine. As a consequence, the effects of ephedrine and m-synephrine cannot be directly extrapolated to p-synephrine and p-octopamine which exhibit significantly different pharmacokinetic, and physiological/pharmacological properties. These conclusions are supported by human, animal and in vitro studies that are discussed.
Collapse
Affiliation(s)
- Sidney J Stohs
- School of Pharmacy and Health Professions, Creighton University Medical Center, Omaha, Nebraska.,Department of Pharmaceutical & Biomedical Sciences, Kitsto Consulting LLC, Frisco, Texas
| | - Mohd Shara
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | | |
Collapse
|
120
|
Cajanding RJM. MDMA-Associated Liver Toxicity: Pathophysiology, Management, and Current State of Knowledge. AACN Adv Crit Care 2020; 30:232-248. [PMID: 31462520 DOI: 10.4037/aacnacc2019852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) has become a popular recreational drug of abuse among young adults, partly because of the belief that it is relatively safe compared with other drugs with the same stimulant and hallucinogenic effects. However, MDMA use has been associated with a wide spectrum of organ toxicities, with the liver being severely affected by its deleterious effects. This article discusses the essential pharmacology of MDMA and describes the effects MDMA has on various organ systems of the body, with particular focus on the liver. The putative mechanisms by which MDMA can cause liver damage are explored, with emphasis on patient-related factors that explain why some individuals are more susceptible than others to damage from MDMA. The incidence of hepatotoxicity related to MDMA use is presented, and the nursing management of patients who develop acute liver failure due to MDMA overuse is explored in light of current evidence.
Collapse
Affiliation(s)
- Ruff Joseph Macale Cajanding
- Ruff Joseph Macale Cajanding is Charge Nurse, Adult Critical Care Unit, 6th Floor, King George V Building, St. Bartholomew's Hospital, Barts Health NHS Trust, 2 King Edward Street, London EC1A 1HQ, United Kingdom
| |
Collapse
|
121
|
Cripps MJ, Bagnati M, Jones TA, Ogunkolade BW, Sayers SR, Caton PW, Hanna K, Billacura MP, Fair K, Nelson C, Lowe R, Hitman GA, Berry MD, Turner MD. Identification of a subset of trace amine-associated receptors and ligands as potential modulators of insulin secretion. Biochem Pharmacol 2020; 171:113685. [DOI: 10.1016/j.bcp.2019.113685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
|
122
|
Tonelli M, Cichero E. Trace amine associated receptor 1 (TAAR1) modulators: a patent review (2010-present). Expert Opin Ther Pat 2019; 30:137-145. [DOI: 10.1080/13543776.2020.1708900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michele Tonelli
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, Genova, Italy
| | - Elena Cichero
- Dipartimento di Farmacia, Università di Genova, Viale Benedetto XV 3, Genova, Italy
| |
Collapse
|
123
|
Aleksandrov AA, Dmitrieva ES, Volnova AB, Knyazeva VM, Polyakova NV, Ptukha MA, Gainetdinov RR. Effect of alpha-NETA on auditory event related potentials in sensory gating study paradigm in mice. Neurosci Lett 2019; 712:134470. [DOI: 10.1016/j.neulet.2019.134470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/01/2019] [Accepted: 08/29/2019] [Indexed: 01/20/2023]
|
124
|
Molecular Variants in Human Trace Amine-Associated Receptors and Their Implications in Mental and Metabolic Disorders. Cell Mol Neurobiol 2019; 40:239-255. [PMID: 31643000 PMCID: PMC7028809 DOI: 10.1007/s10571-019-00743-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive review of the available evidence on the pathophysiological implications of genetic variants in the human trace amine-associated receptor (TAAR) superfamily. Genes coding for trace amine-associated receptors (taars) represent a multigene family of G-protein-coupled receptors, clustered to a small genomic region of 108 kb located in chromosome 6q23, which has been consistently identified by linkage analyses as a susceptibility locus for schizophrenia and affective disorders. Most TAARs are expressed in brain areas involved in emotions, reward and cognition. TAARs are activated by endogenous trace amines and thyronamines, and evidence for a modulatory action on other monaminergic systems has been reported. Therefore, linkage analyses were followed by fine mapping association studies in schizophrenia and affective disorders. However, none of these reports has received sufficient universal replication, so their status remains uncertain. Single nucleotide polymorphisms in taars have emerged as susceptibility loci from genome-wide association studies investigating migraine and brain development, but none of the detected variants reached the threshold for genome-wide significance. In the last decade, technological advances enabled single-gene or whole-exome sequencing, thus allowing the detection of rare genetic variants, which may have a greater impact on the risk of complex disorders. Using these approaches, several taars (especially taar1) variants have been detected in patients with mental and metabolic disorders, and in some cases, defective receptor function has been demonstrated in vitro. Finally, with the use of transcriptomic and peptidomic techniques, dysregulations of TAARs (especially TAAR6) have been identified in brain disorders characterized by cognitive impairment.
Collapse
|
125
|
Effect of trace amine-associated receptor 1 agonist RO5263397 on sensory gating in mice. Neuroreport 2019; 30:1004-1007. [DOI: 10.1097/wnr.0000000000001313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
126
|
Loftis JM, Lasarev M, Shi X, Lapidus J, Janowsky A, Hoffman WF, Huckans M. Trace amine-associated receptor gene polymorphism increases drug craving in individuals with methamphetamine dependence. PLoS One 2019; 14:e0220270. [PMID: 31600226 PMCID: PMC6786581 DOI: 10.1371/journal.pone.0220270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/27/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Methamphetamine (MA) is a potent agonist at the trace amine-associated receptor 1 (TAAR1). This study evaluated a common variant (CV) in the human TAAR1 gene, synonymous single nucleotide polymorphism (SNP) V288V, to determine the involvement of TAAR1 in MA dependence. METHODS Participants (n = 106) with active MA dependence (MA-ACT), in remission from MA dependence (MA-REM), with active polysubstance dependence, in remission from polysubstance dependence, and with no history of substance dependence completed neuropsychiatric symptom questionnaires and provided blood samples. In vitro expression and function of CV and wild type TAAR1 receptors were also measured. RESULTS The V288V polymorphism demonstrated a 40% increase in TAAR1 protein expression in cell culture, but message sequence and protein function were unchanged, suggesting an increase in translation efficiency. Principal components analysis resolved neuropsychiatric symptoms into four components, PC1 (depression, anxiety, memory, and fatigue), PC2 (pain), PC3 (drug and alcohol craving), and PC4 (sleep disturbances). Analyses of study group and TAAR1 genotype revealed a significant interaction for PC3 (craving response) (p = 0.003). The control group showed no difference in PC3 associated with TAAR1, while adjusted mean craving for the MA-ACT and MA-REM groups, among those with at least one copy of V288V, was estimated to be, respectively, 1.55 (p = 0.036) and 1.77 (p = 0.071) times the adjusted mean craving for those without the TAAR1 SNP. CONCLUSIONS Neuroadaptation to chronic MA use may be altered by TAAR1 genotype and result in increased dopamine signaling and craving in individuals with the V288V genotype.
Collapse
Affiliation(s)
- Jennifer M. Loftis
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
| | - Michael Lasarev
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Oregon Health & Science University and Portland State University School of Public Health, Portland, OR, United States of America
| | - Xiao Shi
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
| | - Jodi Lapidus
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Oregon Health & Science University and Portland State University School of Public Health, Portland, OR, United States of America
| | - Aaron Janowsky
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States of America
| | - William F. Hoffman
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States of America
- Mental Health and Clinical Neurosciences Division, VA Portland Health Care System, Portland, OR, United States of America
| | - Marilyn Huckans
- Research & Development Service, VA Portland Health Care System, Portland, OR, United States of America
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States of America
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States of America
- Mental Health and Clinical Neurosciences Division, VA Portland Health Care System, Portland, OR, United States of America
| |
Collapse
|
127
|
Bugda Gwilt K, Olliffe N, Hoffing RA, Miller GM. Trace amine associated receptor 1 (TAAR1) expression and modulation of inflammatory cytokine production in mouse bone marrow-derived macrophages: a novel mechanism for inflammation in ulcerative colitis. Immunopharmacol Immunotoxicol 2019; 41:577-585. [DOI: 10.1080/08923973.2019.1672178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Katlynn Bugda Gwilt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Neva Olliffe
- Department of Biology, Northeastern University, Boston, MA, USA
- Honors Program, Northeastern University, Boston, MA, USA
| | | | - Gregory M. Miller
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
128
|
Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol Ther 2019; 204:107402. [PMID: 31470029 DOI: 10.1016/j.pharmthera.2019.107402] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Current medication for anxiety disorders is suboptimal in terms of efficiency and tolerability, highlighting the need for improved drug treatments. In this review an overview of drugs being studied in different phases of clinical trials for their potential in the treatment of fear-, anxiety- and trauma-related disorders is presented. One strategy followed in drug development is refining and improving compounds interacting with existing anxiolytic drug targets, such as serotonergic and prototypical GABAergic benzodiazepines. A more innovative approach involves the search for compounds with novel mechanisms of anxiolytic action using the growing knowledge base concerning the relevant neurocircuitries and neurobiological mechanisms underlying pathological fear and anxiety. The target systems evaluated in clinical trials include glutamate, endocannabinoid and neuropeptide systems, as well as ion channels and targets derived from phytochemicals. Examples of promising novel candidates currently in clinical development for generalised anxiety disorder, social anxiety disorder, panic disorder, obsessive compulsive disorder or post-traumatic stress disorder include ketamine, riluzole, xenon with one common pharmacological action of modulation of glutamatergic neurotransmission, as well as the neurosteroid aloradine. Finally, compounds such as D-cycloserine, MDMA, L-DOPA and cannabinoids have shown efficacy in enhancing fear-extinction learning in humans. They are thus investigated in clinical trials as an augmentative strategy for speeding up and enhancing the long-term effectiveness of exposure-based psychotherapy, which could render chronic anxiolytic drug treatment dispensable for many patients. These efforts are indicative of a rekindled interest and renewed optimism in the anxiety drug discovery field, after decades of relative stagnation.
Collapse
Affiliation(s)
- Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
129
|
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
130
|
Trace amine-associated receptor 1 agonism promotes wakefulness without impairment of cognition in Cynomolgus macaques. Neuropsychopharmacology 2019; 44:1485-1493. [PMID: 30954024 PMCID: PMC6784974 DOI: 10.1038/s41386-019-0386-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 11/08/2022]
Abstract
Trace amine-associated receptor 1 (TAAR1) is a G-protein coupled receptor with affinity for the trace amines. TAAR1 agonists have pro-cognitive, antidepressant-, and antipsychotic-like properties in both rodents and non-human primates (NHPs). TAAR1 agonism also increases wakefulness and suppresses rapid-eye movement (REM) sleep in mice and rats and reduces cataplexy in two mouse models of narcolepsy. We investigated the effects of TAAR1 agonism in Cynomolgus macaques, a diurnal species that exhibits consolidated night-time sleep, and evaluated the effects of TAAR1 agonists on cognition using a working memory (WM) paradigm in this species. Adult male Cynomolgus macaques (n = 6) were surgically implanted to record the electroencephalogram (EEG), electromyogram, and locomotor activity (LMA) and the efficacy of the TAAR1 partial agonist RO5263397 (0.1,1,10 mg/kg, p.o.) on sleep/wake, EEG spectra, and LMA was determined. In a second experiment, the acute effects of RO5263397 (0.1,1,10 mg/kg, p.o.) were assessed on a delayed-match-to-sample test of WM in adult male macaques (n = 7). RO5263397 (10 mg/kg) administered at lights off, when sleep pressure was high, promoted wakefulness and reduced both REM and non-REM sleep without inducing hyperlocomotion. RO5263397 (10 mg/kg) also increased delta/theta activity during all vigilance states. RO5263397 had no effect on WM at either short (2 sec) or long (10 sec) delay intervals. The wake-enhancing and REM-suppressing effects of R05263397 shown here in a diurnal primate are consistent with previous results in nocturnal rodents. These effects and the associated alterations in EEG spectra occurred without inducing hyperlocomotion or affecting WM, encouraging further study of TAAR1 agonists as potential narcolepsy therapeutics.
Collapse
|
131
|
TAAR1 levels and sub-cellular distribution are cell line but not breast cancer subtype specific. Histochem Cell Biol 2019; 152:155-166. [PMID: 31111198 DOI: 10.1007/s00418-019-01791-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/23/2022]
Abstract
Trace amine-associated receptors are G protein-coupled receptors of which TAAR1 is the most well-studied. Recently, Vattai et al. (J Cancer Res Clin Oncol 143:1637-1647 https://doi.org/10.1007/s00432-017-2420-8 , 2017) reported that expression of TAAR1 may be a marker of breast cancer (BC) survival, with a positive correlation also suggested between TAAR1 expression and HER2 positivity. Neither a role for TAAR1 in breast tissue, nor in cancer, had previously been suspected. We, therefore, sought to provide independent validation and to further examine these putative relationships. First, a bioinformatic analysis on 58 total samples including normal breast tissue, BC-related cell lines, and tumour samples representing different BC sub-types found no clear correlation between TAAR1 mRNA levels and any BC subtype, including HER2 + . We next confirmed the bioinformatics data correlated to protein expression using a well validated anti-human TAAR1 antibody. TAAR1 mRNA levels correlated with the relative intensity of immunofluorescence staining in six BC cell lines (MCF-7, T47D, MDA-MB-231, SKBR3, MDA-MB-468, BT-474), but not in the MCF-10A immortalized mammary gland line, which had high mRNA but low protein levels. As expected, TAAR1 protein was intracellular in all cell lines. Surprisingly MCF-7, SKBR3, and MDA-MB-468 showed pronounced nuclear localization. The relative protein expression in MCF-7, MDA-MB-231, and MCF-10A lines was further confirmed by semi-quantitative flow cytometry. Finally, we demonstrate that the commercially available anti-TAAR1 antibody has poor selectivity, which likely explains the lack of correlation with the previous study. Therefore, while we clearly demonstrate variable expression and sub-cellular localization of TAAR1 across BC cell lines, we find no evidence for association with BC subtype.
Collapse
|
132
|
Aleksandrov AA, Knyazeva VM, Volnova AB, Dmitrieva ES, Polyakova NV, Gainetdinov RR. Trace Amine-Associated Receptor 1 Agonist Modulates Mismatch Negativity-Like Responses in Mice. Front Pharmacol 2019; 10:470. [PMID: 31130864 PMCID: PMC6509589 DOI: 10.3389/fphar.2019.00470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/15/2019] [Indexed: 01/12/2023] Open
Abstract
The trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor widely expressed in the mammalian brain, particularly in limbic system and monoaminergic areas. It has proven to be an important modulator of dopaminergic, serotoninergic, and glutamatergic neurotransmission and is considered to be a potential useful target for the pharmacotherapy of neuropsychiatric disorders, including schizophrenia. One of the promising schizophrenia endophenotypes is a deficit in neurocognitive abilities manifested as mismatch negativity (MMN) deficit. This study examines the effect of TAAR1 partial agonist RO5263397 on the MMN-like response in freely moving C57BL/6 mice. Event-related potentials (ERPs) were recorded from awake mice in the oddball paradigm before and after RO5263397 administration. The RO5263397 (but not saline) administration increased the N40 amplitude in response to deviant stimuli. That provided the MMN-like difference at the 36-44 ms interval after the injection. The pitch deviance-elicited changes before the injection and in the control paradigm were established for the P68 component. After TAAR1 agonist administration the P68 amplitude in response both to standard and deviant stimuli was increased. These results suggest that the MMN-like response in mice may be modulated through TAAR1-dependent processes (possibly acting through the direct or indirect glutamate NMDA receptor modulation), indicating the TAAR1 agonists potential antipsychotic and pro-cognitive activity.
Collapse
Affiliation(s)
- Aleksander A. Aleksandrov
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Veronika M. Knyazeva
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anna B. Volnova
- Department of General Physiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Elena S. Dmitrieva
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Nadezhda V. Polyakova
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
133
|
Rodrigues AVSL, Almeida FJ, Vieira-Coelho MA. Dimethyltryptamine: Endogenous Role and Therapeutic Potential. J Psychoactive Drugs 2019; 51:299-310. [DOI: 10.1080/02791072.2019.1602291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexandra VSL Rodrigues
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisco Jcg Almeida
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria A Vieira-Coelho
- Department of Biomedicine-Pharmacology and Therapeutics unit, Faculty of Medicine, University of Porto, Porto, Portugal
- Psychiatry and Mental Health Clinic, Hospital de São João, Porto, Portugal
| |
Collapse
|
134
|
D'Andrea G, Pizzolato G, Gucciardi A, Stocchero M, Giordano G, Baraldi E, Leon A. Different Circulating Trace Amine Profiles in De Novo and Treated Parkinson's Disease Patients. Sci Rep 2019; 9:6151. [PMID: 30992490 PMCID: PMC6467876 DOI: 10.1038/s41598-019-42535-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/29/2019] [Indexed: 12/18/2022] Open
Abstract
Early diagnosis of Parkinson’s disease (PD) remains a challenge to date. New evidence highlights the potential clinical value of circulating trace amines (TAs) in early-stage PD and their involvement in disease progression. A new ultra performance chromatography mass spectrometry (UPLC-MS/MS) method was developed to quantify plasmatic TAs, and the catecholamines and indolamines pertaining to the same biochemical pathways. Three groups of subjects were recruited: 21 de novo, drug untreated, PD patients, 27 in treatment PD patients and 10 healthy subjects as controls. Multivariate and univariate data analyses were applied to reveal metabolic changes among the groups in attempt to discover new putative markers for early PD detection and disease progression. Different circulating levels of tyrosine (p = 0.002), tyramine (p < 0.001), synephrine (p = 0.015), norepinephrine (p = 0.012), metanephrine (p = 0.001), β-phenylethylamine (p = 0.001) and serotonin (p = 0.006) were found among the three groups. While tyramine behaves as a putative biomarker for early-stage PD (AUC = 0.90) tyramine, norepinephrine, and tyrosine appear to act as biomarkers of disease progression (AUC > 0.75). The findings of this pilot cross-sectional study suggest that biochemical anomalies of the aminergic and indolic neurotransmitters occur in PD patients. Compounds within the TAs family may constitute putative markers for early stage detection and progression of PD.
Collapse
Affiliation(s)
| | - Gilberto Pizzolato
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Antonina Gucciardi
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy. .,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy.
| | - Matteo Stocchero
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy
| | - Giuseppe Giordano
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy
| | - Eugenio Baraldi
- Mass Spectrometry and Metabolomic Laboratory, Women's and Children's Health Department, University of Padova, Padova, Italy.,Fondazione Istituto di Ricerca Pediatrica Cittàdella Speranza, Padova, Italy
| | - Alberta Leon
- Research and Innovation (R&I Genetics) s.r.l., Padova, Italy
| |
Collapse
|
135
|
Aleksandrov AA, Polyakova NV, Vinogradova EP, Gainetdinov RR, Knyazeva VM. The TAAR5 agonist α-NETA causes dyskinesia in mice. Neurosci Lett 2019; 704:208-211. [PMID: 30986441 DOI: 10.1016/j.neulet.2019.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022]
Abstract
It is known that trace amine-associated receptor 5 (TAAR5) is expressed in various regions of the central nervous system. However, very limited information is available on the behavioral effects of TAAR5 activation and the TAAR5 functional role, in general. We studied the effect of TAAR5 agonist (2-(alpha-naphthoyl) ethyltrimethylammonium iodide) systemic administration on animal behavior. The study was performed on male C57BL/6 mice. It was observed that α-NETA in 10 mg/kg dose caused specific impairment of motor behavior, similar to the manifestations of tardive dyskinesia in humans. It can be assumed that trace amines and TAAR5 may be involved in the human tardive dyskinesia pathogenesis.
Collapse
Affiliation(s)
- Aleksander A Aleksandrov
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034, St Petersburg, Russia
| | - Nadezhda V Polyakova
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034, St Petersburg, Russia
| | - Ekaterina P Vinogradova
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034, St Petersburg, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034, St Petersburg, Russia
| | - Veronika M Knyazeva
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034, St Petersburg, Russia.
| |
Collapse
|
136
|
Brial F, Le Lay A, Hedjazi L, Tsang T, Fearnside JF, Otto GW, Alzaid F, Wilder SP, Venteclef N, Cazier JB, Nicholson JK, Day C, Burt AD, Gut IG, Lathrop M, Dumas ME, Gauguier D. Systems Genetics of Hepatic Metabolome Reveals Octopamine as a Target for Non-Alcoholic Fatty Liver Disease Treatment. Sci Rep 2019; 9:3656. [PMID: 30842494 PMCID: PMC6403227 DOI: 10.1038/s41598-019-40153-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is often associated with obesity and type 2 diabetes. To disentangle etiological relationships between these conditions and identify genetically-determined metabolites involved in NAFLD processes, we mapped 1H nuclear magnetic resonance (NMR) metabolomic and disease-related phenotypes in a mouse F2 cross derived from strains showing resistance (BALB/c) and increased susceptibility (129S6) to these diseases. Quantitative trait locus (QTL) analysis based on single nucleotide polymorphism (SNP) genotypes identified diet responsive QTLs in F2 mice fed control or high fat diet (HFD). In HFD fed F2 mice we mapped on chromosome 18 a QTL regulating liver micro- and macrovesicular steatosis and inflammation, independently from glucose intolerance and adiposity, which was linked to chromosome 4. Linkage analysis of liver metabolomic profiling data identified a QTL for octopamine, which co-localised with the QTL for liver histopathology in the cross. Functional relationship between these two QTLs was validated in vivo in mice chronically treated with octopamine, which exhibited reduction in liver histopathology and metabolic benefits, underlining its role as a mechanistic biomarker of fatty liver with potential therapeutic applications.
Collapse
Affiliation(s)
- Francois Brial
- Sorbonne University, University Paris Descartes, University Paris Diderot, INSERM UMR_S 1138, Cordeliers Research Centre, 75006, Paris, France
| | - Aurélie Le Lay
- Sorbonne University, University Paris Descartes, University Paris Diderot, INSERM UMR_S 1138, Cordeliers Research Centre, 75006, Paris, France
| | - Lyamine Hedjazi
- Sorbonne University, University Paris Descartes, University Paris Diderot, INSERM UMR_S 1138, Cordeliers Research Centre, 75006, Paris, France
| | - Tsz Tsang
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Jane F Fearnside
- School of Health and Related Research, The University of Sheffield, 30 Regent Court, Sheffield, S10 2TA, United Kingdom
| | - Georg W Otto
- Genetics and Genomic Medicine, University College London Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Fawaz Alzaid
- Sorbonne University, University Paris Descartes, University Paris Diderot, INSERM UMR_S 1138, Cordeliers Research Centre, 75006, Paris, France
| | - Steven P Wilder
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, United Kingdom
- Genomics Plc, King Charles House, Oxford, Park End Street, OX1 1JD, United Kingdom
| | - Nicolas Venteclef
- Sorbonne University, University Paris Descartes, University Paris Diderot, INSERM UMR_S 1138, Cordeliers Research Centre, 75006, Paris, France
| | - Jean-Baptiste Cazier
- Centre for Computational Biology, Medical School, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Jeremy K Nicholson
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
- The Australian National Phenome Centre, Murdoch University, Perth, WA6150, Australia
| | - Chris Day
- Faculty of Medical Sciences, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Alastair D Burt
- Faculty of Medical Sciences, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ivo G Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Marc-Emmanuel Dumas
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Dominique Gauguier
- Sorbonne University, University Paris Descartes, University Paris Diderot, INSERM UMR_S 1138, Cordeliers Research Centre, 75006, Paris, France.
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom.
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, OX3 7BN, United Kingdom.
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
137
|
Shabani S, Schmidt B, Ghimire B, Houlton SK, Hellmuth L, Mojica E, Phillips TJ. Depression-like symptoms of withdrawal in a genetic mouse model of binge methamphetamine intake. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12533. [PMID: 30375183 PMCID: PMC6399044 DOI: 10.1111/gbb.12533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/05/2018] [Accepted: 10/27/2018] [Indexed: 12/25/2022]
Abstract
Binge methamphetamine (MA) users have higher MA consumption, relapse rates and depression-like symptoms during early periods of withdrawal, compared with non-binge users. The impact of varying durations of MA abstinence on depression-like symptoms and on subsequent MA intake was examined in mice genetically prone to binge-level MA consumption. Binge-level MA intake was induced using a multiple-bottle choice procedure in which mice were offered one water drinking tube and three tubes containing increasing concentrations of MA in water, or four water tubes (control group). In two studies, depression-like symptoms were measured using a tail-suspension test and a subsequent forced-swim test, after forced abstinence of 6 and 30 hours from a 28-day course of chronic MA intake. An additional study measured the same depression-like symptoms, as well as MA intake, after prolonged abstinence of 1 and 2 weeks. MA high drinking mice and one of their progenitor strains DBA/2J escalated their MA intake with increasing MA concentration; however, MA high drinking mice consumed almost twice as much MA as DBA/2J mice. Depression-like symptoms were significantly higher early after MA access was withdrawn, compared to levels in drug-naïve controls, with more robust effects of MA withdrawal observed in MA high drinking than DBA/2J mice. When depression-like symptoms were examined after 1 or 2 weeks of forced abstinence in MA high drinking mice, depression-like symptoms dissipated, and subsequent MA intake was high. The MA high drinking genetic mouse model has strong face validity for human binge MA use and behavioral sequelae associated with abstinence.
Collapse
Affiliation(s)
- Shkelzen Shabani
- Grand Valley State University, Allendale, MI, USA
- Minot State University, Minot, ND, USA
| | | | | | | | | | | | - Tamara J. Phillips
- Oregon Health & Science University, Portland, OR, USA
- VA Portland Health Care System, Portland, OR, USA
| |
Collapse
|
138
|
Tremmel E, Hofmann S, Kuhn C, Heidegger H, Heublein S, Hermelink K, Wuerstlein R, Harbeck N, Mayr D, Mahner S, Ditsch N, Jeschke U, Vattai A. Thyronamine regulation of TAAR1 expression in breast cancer cells and investigation of its influence on viability and migration. BREAST CANCER-TARGETS AND THERAPY 2019; 11:87-97. [PMID: 30858725 PMCID: PMC6385785 DOI: 10.2147/bctt.s178721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objectives A correlation exists between breast cancer and thyroid disorders, which are common in elderly women. Thyroid hormones are degraded into trace amines, which can bind to the G-protein-coupled receptor trace amine-associated receptor 1 (TAAR1) and thereby activate it. The transformation of thyroid hormones into trace amines is carried out by the ornithine decarboxylase. Previously, we showed that TAAR1 overexpression (IRS ≥6) was associated with a significantly longer OS in primary breast cancer patients during a long-term follow-up of up to 14 years. Aim of the present study was to analyze the regulation of TAAR1 in breast cancer cell lines and the influence of triiodothyronine (T3), thyronamines, and tetraiodothyroacetic acid (Tetrac) on the expression of TAAR1 in breast cancer cells. Methods The effect of T3, thyronamines, and Tetrac on the expression of TAAR1 in breast cancer cell lines MCF-7 and T47D was analyzed via PCR and Western blot. A MTT assay was performed to test the metabolic cell viability. A scratch assay was performed to analyze cell migration. Results Stimulation of MCF-7 cells with 10 nM 3-iodothyronamine (T1AM) significantly increased TAAR1 protein expression (P=0.008). In T47D cells, TAAR1 expression was significantly upregulated after the addition of 10 µg/mL estradiol to 10 nM T1AM (P=0.008). A significant (P=0.028) reduction in MCF-7 cell viability through the incubation with T1AM could be detected. Cell migration of MCF cells was significantly reduced through incubation with 10 nM T1AM. Conclusion A significant upregulation of TAAR1 induced by stimulation with T1AM may be a sign for an increased decarboxylation of thyroid hormones in breast cancer cells. In addition, there seems to be an influence of estradiol for the T1AM-induced upregulation of TAAR1 in T47D cells. TAAR1-related cell transduction mechanisms seem to be an interesting target for endocrine treatment options of breast cancer patients.
Collapse
Affiliation(s)
- Eileen Tremmel
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, University of Munich (LMU), 81377 Munich, Germany,
| | - Simone Hofmann
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, University of Munich (LMU), 81377 Munich, Germany,
| | - Christina Kuhn
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, University of Munich (LMU), 81377 Munich, Germany,
| | - Helene Heidegger
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, University of Munich (LMU), 81377 Munich, Germany,
| | - Sabine Heublein
- Department of Gynecology and Obstetrics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kerstin Hermelink
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, University of Munich (LMU), 81377 Munich, Germany,
| | - Rachel Wuerstlein
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, University of Munich (LMU), 81377 Munich, Germany,
| | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, University of Munich (LMU), 81377 Munich, Germany,
| | - Doris Mayr
- Department of Pathology, Ludwig-Maximilians University of Munich, 81337 Munich, Germany
| | - Sven Mahner
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, University of Munich (LMU), 81377 Munich, Germany,
| | - Nina Ditsch
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, University of Munich (LMU), 81377 Munich, Germany,
| | - Udo Jeschke
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, University of Munich (LMU), 81377 Munich, Germany,
| | - Aurelia Vattai
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich, University of Munich (LMU), 81377 Munich, Germany,
| |
Collapse
|
139
|
Lebois LAM, Seligowski AV, Wolff JD, Hill SB, Ressler KJ. Augmentation of Extinction and Inhibitory Learning in Anxiety and Trauma-Related Disorders. Annu Rev Clin Psychol 2019; 15:257-284. [PMID: 30698994 DOI: 10.1146/annurev-clinpsy-050718-095634] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although the fear response is an adaptive response to threatening situations, a number of psychiatric disorders feature prominent fear-related symptoms caused, in part, by failures of extinction and inhibitory learning. The translational nature of fear conditioning paradigms has enabled us to develop a nuanced understanding of extinction and inhibitory learning based on the molecular substrates to systems neural circuitry and psychological mechanisms. This knowledge has facilitated the development of novel interventions that may augment extinction and inhibitory learning. These interventions include nonpharmacological techniques, such as behavioral methods to implement during psychotherapy, as well as device-based stimulation techniques that enhance or reduce activity in different regions of the brain. There is also emerging support for a number of psychopharmacological interventions that may augment extinction and inhibitory learning specifically if administered in conjunction with exposure-based psychotherapy. This growing body of research may offer promising novel techniques to address debilitating transdiagnostic fear-related symptoms.
Collapse
Affiliation(s)
- Lauren A M Lebois
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| | - Antonia V Seligowski
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| | - Jonathan D Wolff
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| | - Sarah B Hill
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA;
| |
Collapse
|
140
|
Batista‐Lima FJ, Rodrigues FMDS, Gadelha KKL, Oliveira DMND, Carvalho EF, Oliveira TL, Nóbrega FC, Brito TS, Magalhães PJC. Dual excitatory and smooth muscle‐relaxant effect of β‐phenylethylamine on gastric fundus strips in rats. Clin Exp Pharmacol Physiol 2018; 46:40-47. [DOI: 10.1111/1440-1681.13033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/27/2018] [Accepted: 09/12/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Francisco José Batista‐Lima
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | | | - Kalinne Kelly Lima Gadelha
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | | | - Emanuella Feitosa Carvalho
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | - Tatyanne Linhares Oliveira
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | - Fernanda Carlos Nóbrega
- Department of Physiology and Pharmacology School of Medicine Federal University of Ceará Fortaleza CE Brazil
| | - Teresinha Silva Brito
- Departament of Health Sciences Rural Federal University of the Semiarid Mossoró RN Brazil
| | | |
Collapse
|
141
|
Kostrzewa RM, Wydra K, Filip M, Crawford CA, McDougall SA, Brown RW, Borroto-Escuela DO, Fuxe K, Gainetdinov RR. Dopamine D 2 Receptor Supersensitivity as a Spectrum of Neurotoxicity and Status in Psychiatric Disorders. J Pharmacol Exp Ther 2018; 366:519-526. [PMID: 29921706 PMCID: PMC6094354 DOI: 10.1124/jpet.118.247981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
Abnormality of dopamine D2 receptor (D2R) function, often observed as D2R supersensitivity (D2RSS), is a commonality of schizophrenia and related psychiatric disorders in humans. Moreover, virtually all psychotherapeutic agents for schizophrenia target D2R in brain. Permanent D2RSS as a feature of a new animal model of schizophrenia was first reported in 1991, and then behaviorally and biochemically characterized over the next 15-20 years. In this model of schizophrenia characterized by production of D2RSS in ontogeny, there are demonstrated alterations of signaling processes, as well as functional links between the biologic template of the animal model and ability of pharmacotherapeutics to modulate or reverse biologic and behavioral modalities toward normality. Another such animal model, featuring knockout of trace amine-associated receptor 1 (TAAR1), demonstrates D2RSS with an increase in the proportion of D2R in the high-affinity state. Currently, TAAR1 agonists are being explored as a therapeutic option for schizophrenia. There is likewise an overlay of D2RSS with substance use disorder. The aspect of adenosine A2A-D2 heteroreceptor complexes in substance use disorder is highlighted, and the association of adenosine A2A receptor antagonists in discriminative and rewarding effects of psychostimulants is outlined. In summary, these new animal models of schizophrenia have face, construct, and predictive validity, and distinct advantages over earlier models. While the review summarizes elements of D2RSS in schizophrenia per se, and its interplay with substance use disorder, a major focus is on presumed new molecular targets attending D2RSS in schizophrenia and related clinical entities.
Collapse
Affiliation(s)
- Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Karolina Wydra
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Malgorzata Filip
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Cynthia A Crawford
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Sanders A McDougall
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Russell W Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Dasiel O Borroto-Escuela
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Kjell Fuxe
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| | - Raul R Gainetdinov
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee (R.M.K., R.W.B.); Institute of Pharmacology, Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Krakow, Poland (K.W., M.F.); Department of Psychology, California State University, San Bernardino, California (C.A.C., S.A.M.); Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (D.O.B.-E., K.F.); Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); and Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia (R.R.G.)
| |
Collapse
|
142
|
Harmeier A, Meyer CA, Staempfli A, Casagrande F, Petrinovic MM, Zhang YP, Künnecke B, Iglesias A, Höner OP, Hoener MC. How Female Mice Attract Males: A Urinary Volatile Amine Activates a Trace Amine-Associated Receptor That Induces Male Sexual Interest. Front Pharmacol 2018; 9:924. [PMID: 30158871 PMCID: PMC6104183 DOI: 10.3389/fphar.2018.00924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/26/2018] [Indexed: 11/27/2022] Open
Abstract
Individuals of many species rely on odors to communicate, find breeding partners, locate resources and sense dangers. In vertebrates, odorants are detected by chemosensory receptors of the olfactory system. One class of these receptors, the trace amine-associated receptors (TAARs), was recently suggested to mediate male sexual interest and mate choice. Here we tested this hypothesis in mice by generating a cluster deletion mouse (Taar2-9−/−) lacking all TAARs expressed in the olfactory epithelium, and evaluating transduction pathways from odorants to TAARs, neural activity and behaviors reflecting sexual interest. We found that a urinary volatile amine, isobutylamine (IBA), was a potent ligand for TAAR3 (but not TAAR1, 4, 5, and 6). When males were exposed to IBA, brain regions associated with sexual behaviors were less active in Taar2-9−/− than in wild type males. Accordingly, Taar2-9−/− males spent less time sniffing both the urine of females and pure IBA than wild type males. This is the first demonstration of a comprehensive transduction pathway linking odorants to TAARs and male sexual interest. Interestingly, the concentration of IBA in female urine varied across the estrus cycle with a peak during estrus. This variation in IBA concentration may represent a simple olfactory cue for males to recognize receptive females. Our results are consistent with the hypothesis that IBA and TAARs play an important role in the recognition of breeding partners and mate choice.
Collapse
Affiliation(s)
- Anja Harmeier
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Claas A Meyer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andreas Staempfli
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Fabio Casagrande
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Marija M Petrinovic
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.,Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Yan-Ping Zhang
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Basil Künnecke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Antonio Iglesias
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Oliver P Höner
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marius C Hoener
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.,Department of Neurosymptomatic Domains, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
143
|
Mechanisms of the antilipolytic response of human adipocytes to tyramine, a trace amine present in food. J Physiol Biochem 2018; 74:623-633. [PMID: 30039351 DOI: 10.1007/s13105-018-0643-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Tyramine is found in foodstuffs, the richest being cheeses, sausages, and wines. Tyramine has been recognized to release catecholamines from nerve endings and to trigger hypertensive reaction. Thereby, tyramine-free diet is recommended for depressed patients treated with irreversible inhibitors of monoamine oxidases (MAO) to limit the risk of hypertension. Tyramine is a substrate of amine oxidases and also an agonist at trace amine-associated receptors. Our aim was to characterize the dose-dependent effects of tyramine on human adipocyte metabolic functions. Lipolytic activity was determined in adipocytes from human subcutaneous abdominal adipose tissue. Glycerol release was increased by a fourfold factor with classical lipolytic agents (1 μM isoprenaline, 1 mM isobutylmethylxanthine) while the amine was ineffective from 0.01 to 100 μM and hardly stimulatory at 1 mM. Tyramine exhibited a partial antilipolytic effect at 100 μM and 1 mM, which was similar to that of insulin but weaker than that obtained with agonists at purinergic A1 receptors, α2-adrenoceptors, or nicotinic acid receptors. Gi-protein blockade by Pertussis toxin abolished all these antilipolytic responses save that of tyramine. Indeed, tyramine antilipolytic effect was impaired by MAO-A inhibition. Tyramine inhibited protein tyrosine phosphatase activities in a manner sensitive to ascorbic acid and amine oxidase inhibitors. Thus, millimolar tyramine restrained lipolysis via the hydrogen peroxide it generates when oxidized by MAO. Since tyramine plasma levels have been reported to reach 0.2 μM after ingestion of 200 mg tyramine in healthy individuals, the direct effects we observed in vitro on adipocytes could be nutritionally relevant only when the MAO-dependent hepato-intestinal detoxifying system is overpassed.
Collapse
|
144
|
Filer CN, Orphanos D. An efficient synthesis of trace amine-associated receptor agonist [1- 14 C]tyramine. J Labelled Comp Radiopharm 2018; 62:24-27. [PMID: 30007086 DOI: 10.1002/jlcr.3671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 11/09/2022]
Abstract
The 2-step synthesis of [1-14 C]tyramine hydrochloride is described with the product being characterized by TLC, HPLC, and UV spectroscopy. Several methods are provided to purify [1-14 C]tyramine hydrochloride, and its storage and stability are also discussed.
Collapse
Affiliation(s)
- Crist N Filer
- Custom Synthesis, PerkinElmer Health Sciences Inc., Waltham, MA, USA
| | - Demetri Orphanos
- Custom Synthesis, PerkinElmer Health Sciences Inc., Waltham, MA, USA
| |
Collapse
|
145
|
Christian SL, Berry MD. Trace Amine-Associated Receptors as Novel Therapeutic Targets for Immunomodulatory Disorders. Front Pharmacol 2018; 9:680. [PMID: 30013475 PMCID: PMC6036138 DOI: 10.3389/fphar.2018.00680] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Trace amines and their receptors (trace amine-associated receptors; TAARs) are an emerging pharmacological target for the treatment of human disorders. While most studies have focused on their therapeutic potential for neurologic and psychiatric disorders, TAARs are also expressed throughout the periphery, including prominent expression in human leukocytes. Furthermore, recent independent, unbiased metabolomic studies have consistently identified one or more TAAR ligands as potential etiologic factors in inflammatory bowel disease (IBD). The putative role of TAARs in diseases such as IBD that are associated with hyperactive immune responses has not, however, previously been systematically addressed. Here, we review the current state of the knowledge of the effects of TAARs on leukocyte function, in particular in the context of mucosal epithelial cells that interface with the environment; developing a model whereby TAARs may be considered as a novel therapeutic target for disorders associated with dysregulated immune responses to environmental factors. In this model, we hypothesize that altered trace amine homeostasis results in hyperactivity of the immune system. Such loss of homeostasis can occur through many different mechanisms including TAAR polymorphisms and altered trace amine load due to changes in host synthesis and/or degradative enzymes, diet, or microbial dysbiosis. The resulting alterations in TAAR functioning can then lead to a loss of homeostasis of leukocyte chemotaxis, differentiation, and activation, as well as an altered ability of members of the microbiota to adhere to and penetrate the epithelial cell layers. Such changes would generate a pro-inflammatory state at mucosal epithelial barrier layers that can manifest as clinical symptomatology such as that seen in IBD. These alterations may also have the potential to induce systemic effects, which could possibly contribute to immunomodulatory disorders in other systems, including neurological diseases.
Collapse
|
146
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
147
|
Espinoza S, Leo D, Sotnikova TD, Shahid M, Kääriäinen TM, Gainetdinov RR. Biochemical and Functional Characterization of the Trace Amine-Associated Receptor 1 (TAAR1) Agonist RO5263397. Front Pharmacol 2018; 9:645. [PMID: 29977204 PMCID: PMC6022153 DOI: 10.3389/fphar.2018.00645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor, which signals through elevating intracellular cAMP levels, and expressed in most vertebrates, including rodents and humans. In recent years, several lines of evidence indicated the role of TAAR1 in the regulation of dopaminergic system and its importance in physiological processes such as locomotion, control of emotional states and cognition. In our study, we used RO5263397, a selective TAAR1 agonist, as a tool and characterized its pharmacology in vitro in HEK293 cells and its effects in vivo in tests assessing potential antidepressant and antipsychotic actions. We found that RO5263397 not only increases cAMP levels at very low concentrations but also can induce the phosphorylation of ERK and CREB in a concentration- and time-dependent manner. Like other TAAR1 agonists, RO5263397 potently suppressed high dopamine-dependent hyperactivity in mice lacking the dopamine transporter. Moreover, RO5263397 produced a strong antidepressant-like effect in the forced swim test comparable to fluoxetine. Furthermore, the antidepressant-like activity was blocked by pretreatment with SCH23390 (dopamine D1 receptor antagonist) or NBQX (glutamate AMPA receptor antagonist) but only in part by WAY100635 (serotonin 5HT1A receptor antagonist). In conclusion, our study confirms some previous in vitro and in vivo findings in relation to the pharmacological effects of RO5263397 but more importantly provides new insight on intracellular signaling pathway and other neurotransmitter receptors modulated by TAAR1 receptor activation.
Collapse
Affiliation(s)
- Stefano Espinoza
- Fondazione Istituto Italiano di Tecnologia, Department of Neuroscience and Brain Technologies, Genoa, Italy
| | - Damiana Leo
- Fondazione Istituto Italiano di Tecnologia, Department of Neuroscience and Brain Technologies, Genoa, Italy.,Department of Neurosciences, University of Mons, Mons, Belgium
| | - Tatyana D Sotnikova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | | | | | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
148
|
Schwartz MD, Canales JJ, Zucchi R, Espinoza S, Sukhanov I, Gainetdinov RR. Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opin Ther Targets 2018; 22:513-526. [DOI: 10.1080/14728222.2018.1480723] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Juan J. Canales
- Division of Psychology, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | | | - Stefano Espinoza
- Fondazione Istituto Italiano di Tecnologia, Neuroscience and Brain Technologies Dept., Genoa, Italy
| | - Ilya Sukhanov
- Institute of Pharmacology, Pavlov Medical University, St. Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Center for Translational Biomedicine, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
149
|
Qatato M, Szumska J, Skripnik V, Rijntjes E, Köhrle J, Brix K. Canonical TSH Regulation of Cathepsin-Mediated Thyroglobulin Processing in the Thyroid Gland of Male Mice Requires Taar1 Expression. Front Pharmacol 2018; 9:221. [PMID: 29615904 PMCID: PMC5870035 DOI: 10.3389/fphar.2018.00221] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/27/2018] [Indexed: 12/26/2022] Open
Abstract
Trace amine-associated receptor 1 (Taar1) has been suggested as putative receptor of thyronamines. These are aminergic messengers with potential metabolic and neurological effects countering their contingent precursors, the thyroid hormones (THs). Recently, we found Taar1 to be localized at the primary cilia of rodent thyroid epithelial cells in vitro and in situ. Thus, Taar1 is present in a location of thyroid follicles where it might be involved in regulation of cathepsin-mediated proteolytic processing of thyroglobulin, and consequently TH synthesis. In this study, taar1 knock-out male mice (taar1-/-) were used to determine whether Taar1 function would entail differential alterations in thyroid states of young and adult animals. Analyses of blood serum revealed unaltered T4 and T3 concentrations and unaltered T3-over-T4 ratios upon Taar1 deficiency accompanied, however, by elevated TSH concentrations. Interestingly, TSH receptors, typically localized at the basolateral plasma membrane domain of wild type controls, were located at vesicular membranes in thyrocytes of taar1-/- mice. In addition, determination of epithelial extensions in taar1-/- thyroids showed prismatic cells, which might indicate activation states higher than in the wild type. While gross degradation of thyroglobulin was comparable to controls, deregulated thyroglobulin turnover in taar1-/- mice was indicated by luminal accumulation of covalently cross-linked thyroglobulin storage forms. These findings were in line with decreased proteolytic activities of thyroglobulin-solubilizing and -processing proteases, due to upregulated cystatins acting as their endogenous inhibitors in situ. In conclusion, Taar1-deficient mice are hyperthyrotropinemic in the absence of respective signs of primary hypothyroidism such as changes in body weight or TH concentrations in blood serum. Thyrocytes of taar1-/- mice are characterized by non-canonical TSH receptor localization in intracellular compartments, which is accompanied by altered thyroglobulin turnover due to a disbalanced proteolytic network. These finding are of significance considering the rising popularity of using TAAR1 agonists or antagonists as neuromodulating pharmacological drugs. Our study highlights the importance of further evaluating potential off-target effects regarding TSH receptor mislocalization and the thyroglobulin processing machinery, which may not only affect the TH-generating thyroid gland, but may emanate to other TH target organs like the CNS dependent on their proper supply.
Collapse
Affiliation(s)
- Maria Qatato
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Joanna Szumska
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Vladislav Skripnik
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin-Humboldt-Universität zu Berlin-Berlin Institute of Health, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin-Humboldt-Universität zu Berlin-Berlin Institute of Health, Berlin, Germany
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
150
|
Zhang X, Mantas I, Alvarsson A, Yoshitake T, Shariatgorji M, Pereira M, Nilsson A, Kehr J, Andrén PE, Millan MJ, Chergui K, Svenningsson P. Striatal Tyrosine Hydroxylase Is Stimulated via TAAR1 by 3-Iodothyronamine, But Not by Tyramine or β-Phenylethylamine. Front Pharmacol 2018; 9:166. [PMID: 29545750 PMCID: PMC5837966 DOI: 10.3389/fphar.2018.00166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/14/2018] [Indexed: 01/16/2023] Open
Abstract
The trace amine-associated receptor 1 (TAAR1) is expressed by dopaminergic neurons, but the precise influence of trace amines upon their functional activity remains to be fully characterized. Here, we examined the regulation of tyrosine hydroxylase (TH) by tyramine and beta-phenylethylamine (β-PEA) compared to 3-iodothyronamine (T1AM). Immunoblotting and amperometry were performed in dorsal striatal slices from wild-type (WT) and TAAR1 knockout (KO) mice. T1AM increased TH phosphorylation at both Ser19 and Ser40, actions that should promote functional activity of TH. Indeed, HPLC data revealed higher rates of L-dihydroxyphenylalanine (DOPA) accumulation in WT animals treated with T1AM after the administration of a DOPA decarboxylase inhibitor. These effects were abolished both in TAAR1 KO mice and by the TAAR1 antagonist, EPPTB. Further, they were specific inasmuch as Ser845 phosphorylation of the post-synaptic GluA1 AMPAR subunit was unaffected. The effects of T1AM on TH phosphorylation at both Ser19 (CamKII-targeted), and Ser40 (PKA-phosphorylated) were inhibited by KN-92 and H-89, inhibitors of CamKII and PKA respectively. Conversely, there was no effect of an EPAC analog, 8-CPT-2Me-cAMP, on TH phosphorylation. In line with these data, T1AM increased evoked striatal dopamine release in TAAR1 WT mice, an action blunted in TAAR1 KO mice and by EPPTB. Mass spectrometry imaging revealed no endogenous T1AM in the brain, but detected T1AM in several brain areas upon systemic administration in both WT and TAAR1 KO mice. In contrast to T1AM, tyramine decreased the phosphorylation of Ser40-TH, while increasing Ser845-GluA1 phosphorylation, actions that were not blocked in TAAR1 KO mice. Likewise, β-PEA reduced Ser40-TH and tended to promote Ser845-GluA1 phosphorylation. The D1 receptor antagonist SCH23390 blocked tyramine-induced Ser845-GluA1 phosphorylation, but had no effect on tyramine- or β-PEA-induced Ser40-TH phosphorylation. In conclusion, by intracellular cascades involving CaMKII and PKA, T1AM, but not tyramine and β-PEA, acts via TAAR1 to promote the phosphorylation and functional activity of TH in the dorsal striatum, supporting a modulatory influence on dopamine transmission.
Collapse
Affiliation(s)
- Xiaoqun Zhang
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Ioannis Mantas
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Alexandra Alvarsson
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Takashi Yoshitake
- Section of Pharmacological Neurochemistry, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Mohammadreza Shariatgorji
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Marcela Pereira
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Nilsson
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jan Kehr
- Section of Pharmacological Neurochemistry, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Per E Andrén
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mark J Millan
- Centre for Therapeutic Innovation-CNS, Institut de Recherches Servier, Centre de Recherches de Croissy, Paris, France
| | - Karima Chergui
- Section of Molecular Neurophysiology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Per Svenningsson
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|