101
|
Zhu P, Bi X, Su D, Li X, Chen B, Li J, Zhao L, Wang Y, Xu S, Wu X. Thiolutin, a selective NLRP3 inflammasome inhibitor, attenuates cyclophosphamide-induced impairment of sperm and fertility in mice. Immunopharmacol Immunotoxicol 2024; 46:172-182. [PMID: 38174705 DOI: 10.1080/08923973.2023.2298894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE The activation of the NLRP3 inflammasome has been implicated in male infertility. Our study aimed to investigate the therapeutic role of Thiolutin (THL), an inhibitor of the NLRP3 inflammasome, on oligoasthenospermia (OA) and to elucidate its mechanisms. MATERIALS AND METHODS Semen from 50 OA and 20 healthy males were analyzed to assess the sperm quality and levels of inflammatory markers. Their correlation was determined using Pearson's correlation coefficient. The BALB/c mice were intraperitoneal injected by cyclophosphamide at 60 mg/kg/day for five days to induce OA, followed by a two-week treatment with THL or L-carnitine. Reproductive organ size and H&E staining were determined to observe the organ and seminiferous tubule morphology. ELISA and western blotting were utilized to measure sex hormone levels, inflammatory markers, and NLRP3 inflammasome levels. Furthermore, male and female mice were co-housed to observe pregnancy success rates. RESULTS OA patients exhibited a decrease in sperm density and motility compared to healthy individuals, along with elevated levels of IL-1β, IL-18 and NLRP3 inflammasome. In vivo, THL ameliorated OA-induced atrophy of reproductive organs, hormonal imbalance, and improved sperm density, motility, spermatogenesis and pregnancy success rates with negligible adverse effects on weight or liver-kidney function. THL also demonstrated to be able to inhibit the activation of NLRP3 inflammasome and associated proteins in OA mice. DISCUSSION THL can improve sperm quality and hormonal balance in OA mice through the inhibition of NLRP3 inflammasome activation. Thus, THL holds promising potential as a therapeutic agent for OA.
Collapse
Affiliation(s)
- Pengfei Zhu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Xingyu Bi
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Dan Su
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Xiaoling Li
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Bingbing Chen
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Juhua Li
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Lijiang Zhao
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Yaoqing Wang
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Suming Xu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Xueqing Wu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| |
Collapse
|
102
|
Hong J, Huang L, Jin N, Zhao X, Hu J. Effect of dapagliflozin on left ventricular structure and function in patients with non-ischemic dilated cardiomyopathy: An observational study. Medicine (Baltimore) 2024; 103:e37579. [PMID: 38552078 PMCID: PMC10977548 DOI: 10.1097/md.0000000000037579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Non-ischemic dilated cardiomyopathy (NIDCM) is characterized by left ventricular dilatation and contractile dysfunction with severe morbidity and mortality. Sodium glucose cotransporter type 2 (SGLT2) inhibitors significantly reduce cardiovascular events for heart failure patients. We performed to investigate the impact of combined administration of SGLT2 inhibitors on cardiac structure and function in NIDCM patients undergoing conventional therapy. A total of 50 newly diagnosed NIDCM patients received conventional medical therapy, with 23 receiving dapagliflozin 10mg/day in addition (SGLT2i group) and the remaining 27 only receiving conventional therapy (non-SGLT2i group). After 12 months outpatient follow-up, NIDCM patients treated with conventional therapy alone showed a significant reduction of left ventricular end-diastolic dimensions (LVEDd), left ventricular end-systolic dimensions (LVESd), left ventricular end-diastolic volumes (LVEDV), left ventricular end-systolic volumes (LVESV), left ventricular end-diastolic volume index (LVEDVi) and left ventricular end-systolic volume index (LVESVi), while an increase in fractional shortening (FS) and left ventricular ejection fraction (LVEF). Patients receiving dapagliflozin combined with conventional treatment also demonstrated a significant reduction in left ventricular dimensions and volumes, and a marked increase in cardiac function. In non-SGLT2i groups, the % change in LVEDd, LVESd, LVEDV, LVESV, LVEDVi, LVESVi, FS and LVEF was -2.8%, -4.6%, -6.2%, -10.1%, -6.1%, -10.1%, +9.7%, +11%. A greater absolute % fall in left ventricular volume in SGLT2i groups compared to non-SGLT2i groups resulted in a significant improvement in cardiac function. The results showed that SGLT2i combined with conventional therapy has a better beneficial effect on left ventricular volumes and cardiac function in NIDCM patients.
Collapse
Affiliation(s)
- Jun Hong
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, China
| | - Lei Huang
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, China
| | - Nake Jin
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, China
| | - Xuechen Zhao
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, China
| | - Jianan Hu
- Department of Cardiology, Ningbo Hangzhou Bay Hospital, Ningbo, China
| |
Collapse
|
103
|
Zhao X, Luo H, Yao S, Yang T, Fu F, Yue M, Ruan H. Atrazine exposure promotes cardiomyocyte pyroptosis to exacerbate cardiotoxicity by activating NF-κB pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170028. [PMID: 38224882 DOI: 10.1016/j.scitotenv.2024.170028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/06/2023] [Accepted: 01/07/2024] [Indexed: 01/17/2024]
Abstract
Atrazine is a ubiquitous herbicide with persistent environmental presence and accumulation in the food chain, posing potential health hazards to organisms. Increasing evidence suggests that atrazine may have detrimental effects on various organ systems, including the nervous, digestive, and immune systems. However, the specific toxicity and underlying mechanism of atrazine-induced cardiac injury remain obscure. In this study, 4-week-old male C57BL/6 mice were administered atrazine via intragastric administration at doses of 50 and 200 mg/kg for 4 and 8 weeks, respectively. Our findings showed that atrazine exposure led to cardiac fibrosis, as evidenced by elevated heart index and histopathological scores, extensive myofiber damage, and interstitial collagen deposition. Moreover, atrazine induced cardiomyocyte apoptosis, macrophage infiltration, and excessive production of inflammatory factors. Importantly, atrazine upregulated the expressions of crucial pyroptosis proteins, including NLRP3, ASC, CASPASE1, and GSDMD, via the activation of NF-κB pathway, thus promoting cardiomyocyte pyroptosis. Collectively, our findings provide novel evidence demonstrating that atrazine may exacerbate myocardial fibrosis by inducing cardiomyocyte pyroptosis, highlighting its potential role in the development of cardiac fibrosis.
Collapse
Affiliation(s)
- Xuyan Zhao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, PR China; The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, PR China
| | - Ti Yang
- Department of Clinical Pharmacy, Gongli Hospital, Pudong New Area, Shanghai 200135, PR China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, PR China
| | - Ming Yue
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310053, PR China.
| |
Collapse
|
104
|
Kayar NA, Çelik İ, Gözlü M, Üstün K, Gürsel M, Alptekin NÖ. Immunologic burden links periodontitis to acute coronary syndrome: levels of CD4 + and CD8 + T cells in gingival granulation tissue. Clin Oral Investig 2024; 28:199. [PMID: 38451305 PMCID: PMC10920467 DOI: 10.1007/s00784-023-05448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/17/2023] [Indexed: 03/08/2024]
Abstract
OBJECTIVE To investigate the proportional variation of macrophage and T-lymphocytes subpopulations in acute coronary syndrome (ACS) patients, its association with periodontitis (P), and to compare with control individuals. SUBJECTS AND METHODS Three groups of subjects participated: one group consisted of 17 ACS patients with P (ACS + P), another group consisted of 22 no ACS + P patients, and a control group consisted of 23 participants with gingivitis (no ACS + G). Macrophage, CD4 + , and CD8 + T-lymphocytes and CD4 + /CD8 + ratio values in gingival tissue were determined histometrically. RESULTS Significant differences were found among three groups regarding the mean number of macrophage (no ACS + P > ACS + P > no ACS + G; p < 0.05) and CD8 + T-lymphocytes (no ACS + P > ACS + P > no ACS + G; p < 0.05). Significant variations were observed between the groups both CD4 + T-lymphocytes densities (ACS + P > no ACS + P and ACS + P > no ACS + G; p < 0.05) and CD4 + / CD8 + ratio (no ACS + P < no ACS + G and ACS + P < no ACS + G; p < 0.05). CONCLUSIONS The increased number of CD8 + T-lymphocytes in both group ACS + P and group no ACS + P resulted in a reduction of the CD4 + /CD8 + ratio in gingival tissue when compared with no ACS + G group. CLINICAL RELEVANCE The decrease of CD4 + /CD8 + ratio in gingival tissue reflects periodontitis and may be associated with severe adverse outcomes in people with ACS.
Collapse
Affiliation(s)
- Nezahat Arzu Kayar
- Department of Periodontology, Faculty of Dentistry, Akdeniz University, Antalya, 07058, Turkey.
| | - İlhami Çelik
- Department of Biochemistry, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | | | - Kemal Üstün
- Department of Periodontology, Faculty of Dentistry, Akdeniz University, Antalya, 07058, Turkey
| | - Mihtikar Gürsel
- Department of Periodontology, Faculty of Dentistry, Bezmialem University, Istanbul, Turkey
| | - Nilgün Özlem Alptekin
- Department of Periodontology, Faculty of Dentistry, Başkent University, Ankara, Turkey
| |
Collapse
|
105
|
Chen X, Zhang P, Zhang Y, Wei M, Tian T, Zhu D, Guan Y, Wei W, Ma Y. The research progression of direct NLRP3 inhibitors to treat inflammatory disorders. Cell Immunol 2024; 397-398:104810. [PMID: 38324950 DOI: 10.1016/j.cellimm.2024.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
The NLRP3 inflammasome represents a cytoplasmic multiprotein complex with the capability to recognize a wide range of pathogen-derived, environmental, and endogenous stress-related factors. Dysregulated activation of the NLRP3 inflammasome has been implicated in the development of various inflammasome-associated disorders, highlighting its significance as a pivotal target for the treatment of inflammatory diseases. Nonetheless, despite its clinical importance, there is currently a lack of specific drugs available for directly targeting the NLRP3 inflammasome. Several strategies have been explored to target different facets of the NLRP3 inflammasome, with interventions aimed at directly inhibiting NLRP3 demonstrating the most promising efficacy and safety profiles. In this review, we provide a summary of direct inhibitors targeting NLRP3, elucidating their inhibitory mechanisms, clinical trial phases, and potential applications. Through this discussion, we aim to shed light on the implications of NLRP3 inhibition for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xiu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammasome and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammasome and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Pingping Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammasome and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammasome and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Yu Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammasome and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammasome and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Mengzhu Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammasome and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammasome and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Tian Tian
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammasome and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammasome and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Dacheng Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammasome and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammasome and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Yanling Guan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammasome and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammasome and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammasome and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammasome and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Yang Ma
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammasome and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammasome and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
106
|
Martinez Naya N, Toldo S, Abbate A. Colchicine Leads the Charge in Post-percutaneous Coronary Intervention Anti-inflammatory Defense. J Cardiovasc Pharmacol 2024; 83:231-233. [PMID: 38064587 DOI: 10.1097/fjc.0000000000001523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA
| | | | | |
Collapse
|
107
|
Lazarou E, Koutsianas C, Theofilis P, Lazaros G, Vassilopoulos D, Vlachopoulos C, Tsioufis C, Imazio M, Brucato A, Tousoulis D. Interleukin-1 Blockers: A Paradigm Shift in the Treatment of Recurrent Pericarditis. Life (Basel) 2024; 14:305. [PMID: 38541631 PMCID: PMC10971740 DOI: 10.3390/life14030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2025] Open
Abstract
Recurrent pericarditis is a problematic clinical condition that impairs the quality of life of the affected patients due to the need for repeated hospital admissions, emergency department visits, and complications from medications, especially glucocorticoids. Unfortunately, available treatments for recurrent pericarditis are very limited, including only a handful of medications such as aspirin/NSAIDs, glucocorticoids, colchicine, and immunosuppressants (such as interleukin-1 (IL-1) blockers, azathioprine, and intravenous human immunoglobulins). Until recently, the clinical experience with the latter class of medications was very limited. Nevertheless, in the last decade, experience with IL-1 blockers has consistently grown, and valid clinical data have emerged from randomized clinical trials. Accordingly, IL-1 blockers are a typical paradigm shift in the treatment of refractory recurrent pericarditis with a clearly positive cost/benefit ratio for those unfortunate patients with multiple recurrences. A drawback related to the above-mentioned medications is the absence of universally accepted and established treatment protocols regarding the full dose administration period and the need for a tapering protocol for individual medications. Another concern is the need for long-standing treatments, which should be discussed with the patients. The above-mentioned unmet needs are expected to be addressed in the near future, such as further insights into pathophysiology and an individualized approach to affected patients.
Collapse
Affiliation(s)
- Emilia Lazarou
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, Vas. Sofias 114, 11527 Athens, Greece; (E.L.); (P.T.); (G.L.); (C.V.); (C.T.)
| | - Christos Koutsianas
- Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, Joint Academic Rheumatology Program, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 114 Vass. Sophias Ave., 11527 Athens, Greece; (C.K.); (D.V.)
| | - Panagiotis Theofilis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, Vas. Sofias 114, 11527 Athens, Greece; (E.L.); (P.T.); (G.L.); (C.V.); (C.T.)
| | - George Lazaros
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, Vas. Sofias 114, 11527 Athens, Greece; (E.L.); (P.T.); (G.L.); (C.V.); (C.T.)
| | - Dimitrios Vassilopoulos
- Clinical Immunology-Rheumatology Unit, 2nd Department of Medicine and Laboratory, Joint Academic Rheumatology Program, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 114 Vass. Sophias Ave., 11527 Athens, Greece; (C.K.); (D.V.)
| | - Charalambos Vlachopoulos
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, Vas. Sofias 114, 11527 Athens, Greece; (E.L.); (P.T.); (G.L.); (C.V.); (C.T.)
| | - Costas Tsioufis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, Vas. Sofias 114, 11527 Athens, Greece; (E.L.); (P.T.); (G.L.); (C.V.); (C.T.)
| | - Massimo Imazio
- Cardiothoracic Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| | - Antonio Brucato
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy;
| | - Dimitris Tousoulis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, Vas. Sofias 114, 11527 Athens, Greece; (E.L.); (P.T.); (G.L.); (C.V.); (C.T.)
| |
Collapse
|
108
|
Chiuariu T, Șalaru D, Ureche C, Vasiliu L, Lupu A, Lupu VV, Șerban AM, Zăvoi A, Benchea LC, Clement A, Tudurachi BS, Sascău RA, Stătescu C. Cardiac and Renal Fibrosis, the Silent Killer in the Cardiovascular Continuum: An Up-to-Date. J Cardiovasc Dev Dis 2024; 11:62. [PMID: 38392276 PMCID: PMC10889423 DOI: 10.3390/jcdd11020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiovascular disease (CVD) and chronic kidney disease (CKD) often coexist and have a major impact on patient prognosis. Organ fibrosis plays a significant role in the pathogenesis of cardio-renal syndrome (CRS), explaining the high incidence of heart failure and sudden cardiac death in these patients. Various mediators and mechanisms have been proposed as contributors to the alteration of fibroblasts and collagen turnover, varying from hemodynamic changes to the activation of the renin-angiotensin system, involvement of FGF 23, and Klotho protein or collagen deposition. A better understanding of all the mechanisms involved has prompted the search for alternative therapeutic targets, such as novel inhibitors of the renin-angiotensin-aldosterone system (RAAS), serelaxin, and neutralizing interleukin-11 (IL-11) antibodies. This review focuses on the molecular mechanisms of cardiac and renal fibrosis in the CKD and heart failure (HF) population and highlights the therapeutic alternatives designed to target the responsible pathways.
Collapse
Affiliation(s)
- Traian Chiuariu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Delia Șalaru
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Carina Ureche
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Laura Vasiliu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Ancuta Lupu
- Department of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adela Mihaela Șerban
- Cardiology Department, Heart Institute Niculae Stăncioiu, 19-21 Motilor Street, 400001 Cluj-Napoca, Romania
| | - Alexandra Zăvoi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Laura Catalina Benchea
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Alexandra Clement
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Bogdan-Sorin Tudurachi
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Radu Andy Sascău
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| | - Cristian Stătescu
- Department of Internal Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 University Street, 700115 Iasi, Romania
- Prof. Dr. George I.M. Georgescu Institute of Cardiovascular Diseases, Carol I Boulevard, No. 50, 700503 Iasi, Romania
| |
Collapse
|
109
|
Cao Z, Li W, Shao Z, Liu X, Zeng Y, Lin P, Lin C, Zhao Y, Li T, Zhao Z, Li X, Zhang Y, Hu B. Apelin ameliorates sepsis-induced myocardial dysfunction via inhibition of NLRP3-mediated pyroptosis of cardiomyocytes. Heliyon 2024; 10:e24568. [PMID: 38356599 PMCID: PMC10864914 DOI: 10.1016/j.heliyon.2024.e24568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Sepsis-induced myocardial dysfunction (SMD) is the major cause of death in sepsis. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis contributes to the occurrence and development of SMD. Although Apelin confers direct protection against SMD, the potential mechanisms remain unclear. This study aimed to determine whether Apelin protects against SMD via regulation of NLRP3-mediated pyroptosis of cardiomyocytes. Experimental SMD was induced in wild-type (WT) control mice and Apelin knockout (Apelin-/-) mice by cecal ligation and puncture (CLP). Neonatal mouse cardiomyocytes (NMCs) were treated with lipopolysaccharide (LPS) to simulate the physiological environment of SMD in vitro. The expression of Apelin was greatly decreased in the plasma from septic patients and septic mouse heart. Knockout of Apelin aggravated SMD, evidenced by decreased cardiac function, and increased cardiac fibrosis and NLRP3 inflammasome and pyroptosis levels in CLP-treated Apelin-/- mice compared with WT mice. Overexpression of Apelin activated the AMPK pathway and thereby inhibited NLRP3 inflammasome-mediated pyroptosis of NMCs induced by LPS in vitro These protective effects were partially abrogated by AMPK inhibitor. In conclusion, Apelin attenuated SMD by inhibiting NLRP3-mediated pyroptosis via activation of the AMPK pathway. Apelin may serve as a promising therapeutic target for SMD.
Collapse
Affiliation(s)
- Zhi Cao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuang Shao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinqiang Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zeng
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Peijun Lin
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Chuangqiang Lin
- Medical College, Shantou University, Shantou, Guangdong, China
| | - Yuechu Zhao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zichao Zhao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
110
|
Gao Z, Xie S, Wang L, Jiang L, Zhou J, Liang M, Li G, Wang Z, Li Y, Li Y, Han G. Hypidone hydrochloride (YL-0919) protects mice from meningitis via Sigma1R-STAT1-NLRP3-GSDMD pathway. Int Immunopharmacol 2024; 128:111524. [PMID: 38232537 DOI: 10.1016/j.intimp.2024.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND A growing number of studies have found that antidepressants have anti-inflammatory effects while protecting nerves. Hypidone hydrochloride (YL-0919) is a novel highly selective 5-HT reuptake blocker. Our previous studies have demonstrated that YL-0919 exerts notable antidepressant- and anxiolytic-like as well as procognitive effects. However, whether YL-0919 can be used to treat inflammatory and infectious diseases remain unknown. In this study, we aimed to verify the anti-inflammatory effect of YL-0919 on bacterial meningitis and further explore the potential molecular mechanisms. METHODS We performed the experiments on pneumococcal meningitis mice in vivo and S. pneumoniae infected macrophages/microglia in vitro, with or without YL-0919 treatment. Cognitive function was evaluated by open-field task, Morris water maze test, and novel object recognition test. Histopathological staining and immunofluorescence staining were used to detect the pathological damage of meningitis and NLRP3 inflammasome activation in microglia/macrophages. The expression of the STAT1/NLRP3/GSDMD signal pathway was measured by western blots. Proinflammatory cytokines associated with pyroptosis were detected by ELISA. RESULTS YL-0919 protected mice from fatal pneumococcal meningitis, characterized by attenuated cytokine storms, decreased bacterial loads, improved neuroethology, and reduced mortality. NLRP3 plays a key role in the regulation of inflammation. When the underlying mechanisms were investigated, we found that YL-0919 inhibited the activation of NLRP3 via STAT1, and thus inhibited macrophages/microglia pyroptosis, resulting in downregulation of proinflammatory cytokines. In addition, Sigma1R was identified as a pivotal receptor that can be engaged by YL-0919 to inhibit NLRP3 activation and pyroptosis pathway in microglia/macrophages. CONCLUSIONS These results provide new insights into the mechanisms of inflammation regulation mediated by the antidepressant YL-0919. Moreover, targeting the STAT1/NLRP3 pyroptosis pathway is a promising strategy for the treatment of infectious diseases like bacterial meningitis.
Collapse
Affiliation(s)
- Zhenfang Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shun Xie
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lanying Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | | | - Jie Zhou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Meng Liang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhiding Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuxiang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Yunfeng Li
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
111
|
Hu J, Xu J, Zhao J, Liu Y, Huang R, Yao D, Xie J, Lei Y. Colchicine ameliorates short-term abdominal aortic aneurysms by inhibiting the expression of NLRP3 inflammasome components in mice. Eur J Pharmacol 2024; 964:176297. [PMID: 38135264 DOI: 10.1016/j.ejphar.2023.176297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Abdominal aortic aneurysms (AAA) are often associated with chronic inflammation and pose a significant risk to affected individuals. Colchicine, known for its anti-inflammatory properties, has shown promise in managing cardiovascular diseases. However, its specific role in the development of AAA remains poorly understood. METHODS AND RESULTS In this study, we employed a short-term AAA model induced by angiotensin II (Ang II, 1000 ng/kg/min) and calcium chloride (CaCl2, 0.5 mol/l) in male ApoE-/- and C57BL/6 mice (8-12 weeks old) to investigate the effects of colchicine on AAA progression. Colchicine (0.4 mg/kg) was administered orally once daily, starting on the same day as AAA induction. After a 4-week duration, we observed a significant reduction in AAA diameter, degradation of elastic fibers, and expression of components related to the Nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome in the vessel wall of colchicine-treated mice compared to the saline group. Mechanistically, colchicine (5 μm/l, for 24h) inhibited the expression of NLRP3 inflammasome components through the P38-ERK/MicroRNA145-toll-like receptor 4 (TLR4) pathway in RAW264.7 cells. CONCLUSIONS Our study demonstrates the effectiveness of colchicine in suppressing NLRP3 inflammasome components, thereby delaying AAA progression in the Ang II and CaCl2-induced short-term model. These findings suggest the potential of colchicine as a pharmacological treatment option for AAA.
Collapse
Affiliation(s)
- Jiaxin Hu
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China; Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, China
| | - Jiamin Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiling Zhao
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Yuwei Liu
- Department of Medical Ultrasound, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Rui Huang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Dejiang Yao
- Surgical Division III, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Jun Xie
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Anhui, China.
| | - Yuhua Lei
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China.
| |
Collapse
|
112
|
Korhonen E. Inflammasome activation in response to aberrations of cellular homeostasis in epithelial cells from human cornea and retina. Acta Ophthalmol 2024; 102 Suppl 281:3-68. [PMID: 38386419 DOI: 10.1111/aos.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
|
113
|
Corna G, Golino M, Talasaz AH, Moroni F, Del Buono MG, Damonte JI, Chiabrando JG, Mbualungu J, Trankle CR, Thomas GK, Markley R, Canada JM, Turlington J, Agatiello CR, VAN Tassell B, Abbate A. Response to interleukin-1 blockade with anakinra in women and men with ST-segment elevation myocardial infarction. Minerva Cardiol Angiol 2024; 72:67-75. [PMID: 37987681 DOI: 10.23736/s2724-5683.23.06439-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
BACKGROUND Interleukin-1 blockade with anakinra reduces high-sensitivity C-reactive protein (hsCRP) levels and prevents heart failure (HF) events after ST-segment myocardial infarction (STEMI). Sex-based differences in STEMI patients have been reported, but no data are available regarding response to anakinra. METHODS We analyzed the systemic inflammation and composite end-point of new-onset HF or death in women and men with STEMI treated with anakinra from three different Virginia Commonwealth University Anakinra Response Trial (VCUART) randomized clinical trials. RESULTS We analyzed 139 patients, 29 (21%) were women while 110 (79%) were men. Baseline hsCRP was higher in women compared to men (8.9 [5.2-13.5] vs. 4.2 [2.1-7.7] mg/L, P<0.001). Eighty-four patients were treated with anakinra (22 [75%] women and 62 [56%] men). The area under the curve of hsCRP (hsCRP-AUC) after 14 days was numerically lower in patients receiving anakinra versus placebo both in men (86 [37-130] vs. 223 [119-374] mg day/L) and in women (73 [46-313] vs. 242 [102-988] mg day/L) (P<0.001 for multiple groups, P for interaction 0.22). The incidence of the composite endpoint was also numerically lower in the anakinra group compared to placebo, both in men (4 [6.4%] vs. 14 [29.1%]) and in women (3 [13.6%] vs. 2 [28.5%]) (P=0.019 for multiple groups, P for interaction 0.44). There were no statistically significant differences between women and men in hsCRP-AUC and death or HF events when comparing separately the anakinra and placebo groups (all P>0.05). CONCLUSIONS Women were underrepresented in the VCUART trials, they appeared to have higher hsCRP levels at time of presentation, yet to benefit similar to men by treatment with anakinra in STEMI.
Collapse
Affiliation(s)
- Giuliana Corna
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Interventional Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Michele Golino
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Azita H Talasaz
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Francesco Moroni
- Department of Internal Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Milano-Bicocca, Milan, Italy
| | - Marco G Del Buono
- Department of Cardiovascular Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Juan I Damonte
- Department of Interventional Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Juan G Chiabrando
- Department of Interventional Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - James Mbualungu
- Division of Cardiology, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Cory R Trankle
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Georgia K Thomas
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Roshanak Markley
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Justin M Canada
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jeremy Turlington
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Carla R Agatiello
- Department of Interventional Cardiology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Benjamin VAN Tassell
- Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Antonio Abbate
- Division of Cardiology, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA -
| |
Collapse
|
114
|
Lu L, Shao Y, Xiong X, Ma J, Zhai M, Lu G, Jiang L, Jin P, Tang J, Yang J, Liu Y, Duan W, Liu J. Irisin improves diabetic cardiomyopathy-induced cardiac remodeling by regulating GSDMD-mediated pyroptosis through MITOL/STING signaling. Biomed Pharmacother 2024; 171:116007. [PMID: 38171238 DOI: 10.1016/j.biopha.2023.116007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM). However, the mechanisms underlying DCM-induced cardiac injury remain unclear. Recently, the role of cyclic GMP-AMP synthase/stimulator of interferon gene (cGAS/STING) signaling and pyroptosis in DCM has been investigated. Based on our previous results, this study was designed to examine the impact of irisin, mitochondrial ubiquitin ligase (MITOL/MARCH5), and cGAS/STING signaling in DCM-induced cardiac dysfunction and the effect of gasdermin D (GSDMD)-dependent pyroptosis. High-fat diet-induced mice and H9c2 cells were used for cardiac geometry and function or pyroptosis-related biomarker assessment at the end of the experiments. Here, we show that DCM impairs cardiac function by increasing cardiac fibrosis and GSDMD-dependent pyroptosis, including the activation of MITOL and cGAS/STING signaling. Our results confirmed that the protective role of irisin and MITOL was partially offset by the activation of cGAS/STING signaling. We also demonstrated that GSDMD-dependent pyroptosis plays a pivotal role in the pathological process of DCM pathogenesis. Our results indicate that irisin treatment protects against DCM injury, mitochondrial homeostasis, and pyroptosis through MITOL upregulation.
Collapse
Affiliation(s)
- Linhe Lu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yalan Shao
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiang Xiong
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Cardiothoracic Surgery, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guofang Lu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
115
|
He Q, Hu D, Zheng F, Chen W, Hu K, Liu J, Yao C, Li H, Wei Y. Investigating the Nexus of NLRP3 Inflammasomes and COVID-19 Pathogenesis: Unraveling Molecular Triggers and Therapeutic Strategies. Viruses 2024; 16:213. [PMID: 38399989 PMCID: PMC10892947 DOI: 10.3390/v16020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) global pandemic, caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has been marked by severe cases demonstrating a "cytokine storm", an upsurge of pro-inflammatory cytokines in the bloodstream. NLRP3 inflammasomes, integral to the innate immune system, are speculated to be activated by SARS-CoV-2 within host cells. This review investigates the potential correlation between NLRP3 inflammasomes and COVID-19, exploring the cellular and molecular mechanisms through which SARS-CoV-2 triggers their activation. Furthermore, promising strategies targeting NLRP3 inflammasomes are proposed to mitigate the excessive inflammatory response provoked by SARS-CoV-2 infection. By synthesizing existing studies, this paper offers insights into NLRP3 as a therapeutic target, elucidating the interplay between COVID-19 and its pathophysiology. It serves as a valuable reference for future clinical approaches in addressing COVID-19 by targeting NLRP3, thus providing potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Qun He
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Da Hu
- Sinopharm Animal Health Corporation Ltd., Wuhan 430075, China;
| | - Fuqiang Zheng
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Wenxuan Chen
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Kanghong Hu
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Jinbiao Liu
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Chenguang Yao
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Hanluo Li
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (Q.H.); (F.Z.); (W.C.); (K.H.); (J.L.); (C.Y.); (H.L.)
| |
Collapse
|
116
|
Villacampa A, Alfaro E, Morales C, Díaz-García E, López-Fernández C, Bartha JL, López-Sánchez F, Lorenzo Ó, Moncada S, Sánchez-Ferrer CF, García-Río F, Cubillos-Zapata C, Peiró C. SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates coagulation factors in endothelial and immune cells. Cell Commun Signal 2024; 22:38. [PMID: 38225643 PMCID: PMC10788971 DOI: 10.1186/s12964-023-01397-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/12/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Hyperinflammation, hypercoagulation and endothelial injury are major findings in acute and post-COVID-19. The SARS-CoV-2 S protein has been detected as an isolated element in human tissues reservoirs and is the main product of mRNA COVID-19 vaccines. We investigated whether the S protein alone triggers pro-inflammatory and pro-coagulant responses in primary cultures of two cell types deeply affected by SARS-CoV-2, such are monocytes and endothelial cells. METHODS In human umbilical vein endothelial cells (HUVEC) and monocytes, the components of NF-κB and the NLRP3 inflammasome system, as well as coagulation regulators, were assessed by qRT-PCR, Western blot, flow cytometry, or indirect immunofluorescence. RESULTS S protein activated NF-κB, promoted pro-inflammatory cytokines release, and triggered the priming and activation of the NLRP3 inflammasome system resulting in mature IL-1β formation in both cell types. This was paralleled by enhanced production of coagulation factors such as von Willebrand factor (vWF), factor VIII or tissue factor, that was mediated, at least in part, by IL-1β. Additionally, S protein failed to enhance ADAMTS-13 levels to counteract the pro-coagulant activity of vWF multimers. Monocytes and HUVEC barely expressed angiotensin-converting enzyme-2. Pharmacological approaches and gene silencing showed that TLR4 receptors mediated the effects of S protein in monocytes, but not in HUVEC. CONCLUSION S protein behaves both as a pro-inflammatory and pro-coagulant stimulus in human monocytes and endothelial cells. Interfering with the receptors or signaling pathways evoked by the S protein may help preventing immune and vascular complications driven by such an isolated viral element. Video Abstract.
Collapse
Affiliation(s)
- Alicia Villacampa
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Cristina Morales
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Cristina López-Fernández
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - José Luis Bartha
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Gynecology and Obstetrics Service, La Paz University Hospital, Madrid, Spain
| | | | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Biomedical Research Networking Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Moncada
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Francisco García-Río
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain.
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain.
| |
Collapse
|
117
|
Zhang S, Li M, Chang L, Mao X, Jiang Y, Shen X, Niu K, Lu X, Zhang R, Song Y, Ma K, Li H, Wei C, Hou Y, Wu Y. Bazi Bushen capsule improves the deterioration of the intestinal barrier function by inhibiting NLRP3 inflammasome-mediated pyroptosis through microbiota-gut-brain axis. Front Microbiol 2024; 14:1320202. [PMID: 38260869 PMCID: PMC10801200 DOI: 10.3389/fmicb.2023.1320202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose The senescence-accelerated prone mouse 8 (SAMP8) is a widely used model for accelerating aging, especially in central aging. Mounting evidence indicates that the microbiota-gut-brain axis may be involved in the pathogenesis and progression of central aging-related diseases. This study aims to investigate whether Bazi Bushen capsule (BZBS) attenuates the deterioration of the intestinal function in the central aging animal model. Methods In our study, the SAMP8 mice were randomly divided into the model group, the BZ-low group (0.5 g/kg/d BZBS), the BZ-high group (1 g/kg/d BZBS) and the RAPA group (2 mg/kg/d rapamycin). Age-matched SAMR1 mice were used as the control group. Next, cognitive function was detected through Nissl staining and two-photon microscopy. The gut microbiota composition of fecal samples was analyzed by 16S rRNA gene sequencing. The Ileum tissue morphology was observed by hematoxylin and eosin staining, and the intestinal barrier function was observed by immunofluorescence. The expression of senescence-associated secretory phenotype (SASP) factors, including P53, TNF-α, NF-κB, IL-4, IL-6, and IL-10 was measured by real-time quantitative PCR. Macrophage infiltration and the proliferation and differentiation of intestinal cells were assessed by immunohistochemistry. We also detected the inflammasome and pyroptosis levels in ileum tissue by western blotting. Results BZBS improved the cognitive function and neuronal density of SAMP8 mice. BZBS also restored the intestinal villus structure and barrier function, which were damaged in SAMP8 mice. BZBS reduced the expression of SASP factors and the infiltration of macrophages in the ileum tissues, indicating a lower level of inflammation. BZBS enhanced the proliferation and differentiation of intestinal cells, which are essential for maintaining intestinal homeostasis. BZBS modulated the gut microbiota composition, by which BZBS inhibited the activation of inflammasomes and pyroptosis in the intestine. Conclusion BZBS could restore the dysbiosis of the gut microbiota and prevent the deterioration of intestinal barrier function by inhibiting NLRP3 inflammasome-mediated pyroptosis. These results suggested that BZBS attenuated the cognitive aging of SAMP8 mice, at least partially, by targeting the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Shixiong Zhang
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Mengnan Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Liping Chang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Xinjing Mao
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Yuning Jiang
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Xiaogang Shen
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Kunxu Niu
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Xuan Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Runtao Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Yahui Song
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Kun Ma
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Hongrong Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Cong Wei
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Yunlong Hou
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Yiling Wu
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| |
Collapse
|
118
|
Shao BZ, Jiang JJ, Zhao YC, Zheng XR, Xi N, Zhao GR, Huang XW, Wang SL. Neutrophil extracellular traps in central nervous system (CNS) diseases. PeerJ 2024; 12:e16465. [PMID: 38188146 PMCID: PMC10771765 DOI: 10.7717/peerj.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 01/09/2024] Open
Abstract
Excessive induction of inflammatory and immune responses is widely considered as one of vital factors contributing to the pathogenesis and progression of central nervous system (CNS) diseases. Neutrophils are well-studied members of inflammatory and immune cell family, contributing to the innate and adaptive immunity. Neutrophil-released neutrophil extracellular traps (NETs) play an important role in the regulation of various kinds of diseases, including CNS diseases. In this review, current knowledge on the biological features of NETs will be introduced. In addition, the role of NETs in several popular and well-studied CNS diseases including cerebral stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and neurological cancers will be described and discussed through the reviewing of previous related studies.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | | | - Yi-Cheng Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Rui Zheng
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Na Xi
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Guan-Ren Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Wu Huang
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
119
|
Tan Y, Qiao J, Yang S, Wang Q, Liu H, Liu Q, Feng W, Yang B, Li Z, Cui L. ARID5B-mediated LINC01128 epigenetically activated pyroptosis and apoptosis by promoting the formation of the BTF3/STAT3 complex in β2GPI/anti-β2GPI-treated monocytes. Clin Transl Med 2024; 14:e1539. [PMID: 38224186 PMCID: PMC10788880 DOI: 10.1002/ctm2.1539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Alterations of the trimethylation of histone 3 lysine 4 (H3K4me3) mark in monocytes are implicated in the development of autoimmune diseases. Therefore, the purpose of our study was to elucidate the role of H3K4me3-mediated epigenetics in the pathogenesis of antiphospholipid syndrome (APS). METHODS H3K4me3 Cleavage Under Targets and Tagmentation and Assay for Transposase-Accessible Chromatin were performed to determine the epigenetic profiles. Luciferase reporter assay, RNA immunoprecipitation, RNA pull-down, co-immunoprecipitation and chromatin immunoprecipitation were performed for mechanistic studies. Transmission electron microscopy and propidium iodide staining confirmed cell pyroptosis. Primary monocytes from patients with primary APS (PAPS) and healthy donors were utilised to test the levels of key molecules. A mouse model mimicked APS was constructed with beta2-glycoprotein I (β2GPI) injection. Blood velocity was detected using murine Doppler ultrasound. RESULTS H3K4me3 signal and open chromatin at the ARID5B promoter were increased in an in vitro model of APS. The epigenetic factor ARID5B directly activated LINC01128 transcription at its promoter. LINC01128 promoted the formation of the BTF3/STAT3 complex to enhance STAT3 phosphorylation. Activated STAT3 interacted with the NLRP3 promoter and subsequently stimulated pyroptosis and apoptosis. ARID5B or BTF3 depletion compensated for LINC01128-induced pyroptosis and apoptosis by inhibiting STAT3 phosphorylation. In mice with APS, β2GPI exposure elevated the levels of key proteins of pyroptosis and apoptosis pathways in bone marrow-derived monocytes, reduced the blood velocity of the ascending aorta, increased the thrombus size of the carotid artery, and promoted the release of interleukin (IL)-18, IL-1β and tissue factor. Patients with PAPS had the high-expressed ARID5B and LINC01128, especially those with triple positivity for antiphospholipid antibodies. Moreover, there was a positive correlation between ARID5B and LINC01128 expression. CONCLUSION This study indicated that ARID5B/LINC01128 was synergistically upregulated in APS, and they aggravated disease pathogenesis by enhancing the formation of the BTF3/STAT3 complex and boosting p-STAT3-mediated pyroptosis and apoptosis, thereby providing candidate therapeutic targets for APS. HIGHLIGHTS The H3K4me3 mark and chromatin accessibility at the ARID5B promoter are increased in vitro model mimicked APS. ARID5B-mediated LINC01128 induces pyroptosis and apoptosis via p-STAT3 by binding to BTF3. ARID5B is high- expressed in patients with primary APS and positively correlated with LINC01128 expression. OICR-9429 treatment mitigates pyroptosis and related inflammation in vivo and in vitro models mimicked APS.
Collapse
Affiliation(s)
- Yuan Tan
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Jiao Qiao
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Shuo Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Qingchen Wang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Hongchao Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Qi Liu
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Weimin Feng
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Boxin Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Zhongxin Li
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Liyan Cui
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
120
|
Gao J, Gao Z. The regulatory role and mechanism of USP14 in endothelial cell pyroptosis induced by coronary heart disease. Clin Hemorheol Microcirc 2024; 86:495-508. [PMID: 38073382 DOI: 10.3233/ch-232003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
OBJECTIVE The present study probes into the role and mechanism of ubiquitin specific peptidase 14 (USP14) in coronary heart disease (CHD)-triggered endothelial cell pyroptosis. METHODS An in vitro CHD model was established by inducing human coronary artery endothelial cells (HCAECs) with oxidized low-density lipoprotein (ox-LDL). HCAECs were transfected with si-USP14, followed by evaluation of cell viability by CCK-8 assay, detection of lactate dehydrogenase (LDH) activity by assay kit, detection of USP14, miR-15b-5p, NLRP3, GSDMD-N, and Cleaved-Caspase-1 expressions by qRT-PCR or Western blot, as well as IL-1β and IL-18 concentrations by ELISA. Co-IP confirmed the binding between USP14 and NLRP3. The ubiquitination level of NLRP3 in cells was measured after protease inhibitor MG132 treatment. Dual-luciferase reporter assay verified the targeting relationship between miR-15b-5p and USP14. RESULTS USP14 and NLRP3 were highly expressed but miR-15b-5p was poorly expressed in ox-LDL-exposed HCAECs. USP14 silencing strengthened the viability of ox-LDL-exposed HCAECs, reduced the intracellular LDH activity, and diminished the NLRP3, GSDMD-N, Cleaved-Caspase-1, IL-1β, and IL-18 expressions. USP14 bound to NLRP3 protein and curbed its ubiquitination. Repression of NLRP3 ubiquitination counteracted the inhibitory effect of USP14 silencing on HCAEC pyroptosis. miR-15b-5p restrained USP14 transcription and protein expression. miR-15b-5p overexpression alleviated HCAEC pyroptosis by suppressing USP14/NLRP3. CONCLUSION USP14 stabilizes NLRP3 protein expression through deubiquitination, thereby facilitating endothelial cell pyroptosis in CHD. miR-15b-5p restrains endothelial cell pyroptosis by targeting USP14 expression.
Collapse
Affiliation(s)
- Jie Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Zhao Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| |
Collapse
|
121
|
Lou S, Wu M, Cui S. Targeting NLRP3 Inflammasome: Structure, Function, and Inhibitors. Curr Med Chem 2024; 31:2021-2051. [PMID: 38310392 DOI: 10.2174/0109298673289984231127062528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 02/05/2024]
Abstract
Inflammasomes are multimeric protein complexes that can detect various physiological stimuli and danger signals. As a result, they perform a crucial function in the innate immune response. The NLRP3 inflammasome, as a vital constituent of the inflammasome family, is significant in defending against pathogen invasion and preserving cellhomeostasis. NLRP3 inflammasome dysregulation is connected to various pathological conditions, including inflammatory diseases, cancer, and cardiovascular and neurodegenerative diseases. This profile makes NLRP3 an applicable target for treating related diseases, and therefore, there are rising NLRP3 inhibitors disclosed for therapy. Herein, we summarized the updated advances in the structure, function, and inhibitors of NLRP3 inflammasome. Moreover, we aimed to provide an overview of the existing products and future directions for drug research and development.
Collapse
Affiliation(s)
- Shengying Lou
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Miaolian Wu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| |
Collapse
|
122
|
Vaziri Z, Saleki K, Aram C, Alijanizadeh P, Pourahmad R, Azadmehr A, Ziaei N. Empagliflozin treatment of cardiotoxicity: A comprehensive review of clinical, immunobiological, neuroimmune, and therapeutic implications. Biomed Pharmacother 2023; 168:115686. [PMID: 37839109 DOI: 10.1016/j.biopha.2023.115686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023] Open
Abstract
Cancer and cardiovascular disorders are known as the two main leading causes of mortality worldwide. Cardiotoxicity is a critical and common adverse effect of cancer-related chemotherapy. Chemotherapy-induced cardiotoxicity has been associated with various cancer treatments, such as anthracyclines, immune checkpoint inhibitors, and kinase inhibitors. Different methods have been reported for the management of chemotherapy-induced cardiotoxicity. In this regard, sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of antidiabetic agents, have recently been applied to manage heart failure patients. Further, SGLT2i drugs such as EMPA exert protective cardiac and systemic effects. Moreover, it can reduce inflammation through the mediation of major inflammatory components, such as Nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasomes, Adenosine 5'-monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal kinase (JNK) pathways, Signal transducer and activator of transcription (STAT), and overall decreasing transcription of proinflammatory cytokines. The clinical outcome of EMPA administration is related to improving cardiovascular risk factors, including body weight, lipid profile, blood pressure, and arterial stiffness. Intriguingly, SGLT2 suppressors can regulate microglia-driven hyperinflammation affecting neurological and cardiovascular disorders. In this review, we discuss the protective effects of EMPA in chemotherapy-induced cardiotoxicity from molecular, immunological, and neuroimmunological aspects to preclinical and clinical outcomes.
Collapse
Affiliation(s)
- Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran
| | - Naghmeh Ziaei
- Clinical Research Development unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran; Department of Cardiology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
123
|
Ye T, Tao WY, Chen XY, Jiang C, Di B, Xu LL. Mechanisms of NLRP3 inflammasome activation and the development of peptide inhibitors. Cytokine Growth Factor Rev 2023; 74:1-13. [PMID: 37821254 DOI: 10.1016/j.cytogfr.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
The Nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3), a member of the nucleotide-binding oligomerization domain (NOD) like receptors (NLRs) family, plays an important role in the innate immune response against pathogen invasions. NLRP3 inflammasome consisting of NLRP3 protein, the adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC), and the effector protein pro-caspase-1, is central to this process. Upon activation, NLRP3 inflammasome initiates the release of inflammatory cytokines and triggers a form of cell death known as pyroptosis. Dysregulation or inappropriate activation of NLRP3 has been implicated in various human diseases, including type 2 diabetes, colitis, depression, and gout. Consequently, understanding the mechanism underlying NLRP3 inflammasome activation is critical for the development of therapeutic drugs. In the pursuit of potential therapeutic agents, peptides present several advantages over small molecules. They offer higher selectivity, increased potency, reduced toxicity, and fewer off-target effects. The advancements in molecular biology have expanded the opportunities for applying peptides in medicine, unlocking their vast medical potential. This review begins by providing a comprehensive summary of recent research progress regarding the mechanisms governing NLRP3 inflammasome activation. Subsequently, we offer an overview of current peptide inhibitors capable of modulating the NLRP3 inflammasome activation pathway.
Collapse
Affiliation(s)
- Tao Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Yan Tao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
124
|
Deng Y, Liu X, Xie M, Zhao R, Ji L, Tang K, Yang W, Ou W, Xie M, Li T. Obesity Enables NLRP3 Activation and Induces Myocardial Fibrosis via Hyperacetylation of HADHa. Diabetes 2023; 72:1597-1608. [PMID: 37625146 DOI: 10.2337/db23-0264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Obesity increases the risk of myocardial fibrosis, a pathological change in most heart diseases, but the mechanism has not been fully elucidated. Here, we found that mice with high-fat diet-induced obesity had more severe myocardial fibrosis than control mice under normal and ischemia/reperfusion (I/R) conditions, which could be alleviated by neutralizing antibodies against interleukin (IL)-1β and IL-18, downstream products of the nucleotide-binding oligomerization-like receptor protein 3 (NLRP3) inflammasome, and the NLRP3 inhibitor MCC950. Mechanistically, mitochondrial hyperacetylation in obese mouse hearts recruited apoptosis-associated speck-like protein containing a CARD (ASC) to mitochondria and thus facilitated NLRP3 inflammasome assembly. Acetylation of K255 on hydroxyl-CoA dehydrogenase α subunit (HADHa) was identified to trigger the mitochondrial localization of ASC. Blockade of HADHa-K255 acetylation downregulated mitochondrial ASC, suppressed the NLRP3 inflammasome, and attenuated post-I/R myocardial fibrosis in obese mouse hearts. In obese human patients, the extent of myocardial fibrosis according to T1 MRI was positively correlated with the plasma levels of IL-1β and IL-18, supporting the connection of NLRP3 inflammation to obesity-induced myocardial fibrosis. In conclusion, our study demonstrates that the heart is susceptible to fibrosis under obesity through hyperacetylated HADHa-mediated activation of the NLRP3 inflammasome. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yan Deng
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Liu
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Min Xie
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Rui Zhao
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liwei Ji
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Kuo Tang
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Yang
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Ou
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Maodi Xie
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
125
|
Qiu B, Zhang ZL, Zhao XH, Wang CM, Wang T, Wang ZP. Acute exacerbation of postoperative idiopathic pulmonary fibrosis in a patient with lung cancer caused by invasive mechanical ventilation: A case report. Heliyon 2023; 9:e21538. [PMID: 38027643 PMCID: PMC10665659 DOI: 10.1016/j.heliyon.2023.e21538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Study design and objection Idiopathic pulmonary fibrosis (IPF) is a progressive chronic disease characterized by damage to alveolar epithelial cells and abnormal deposition of the extracellular matrix. Although the disease course for most patients with IPF is progressive, in some cases the disease may appear as an acute exacerbation. Mechanical ventilation life support plays an important role in the treatment of patients with IPF but is associated with an increased risk of acute exacerbation of IPF (AE-IPF). Treatment is controversial and is not supported by sufficient clinical evidence. AE-IPF after lung cancer surgery is extremely rare, and the etiology and mechanism remain unclear, and its clinical manifestations are very similar to acute pulmonary edema and are easily misdiagnosed. Summaryof background data We describe a 66-year-old male patient with IPF complicated with lung cancer who underwent thoracoscopic resection of the right upper lobe of the lung. Seventy-two hours after surgery, chest computed tomography indicated that AE-IPF in the mechanically ventilated lung was significantly greater than that in the operated lung. The patient's own lung was used as a control and proved that mechanical ventilation can lead to AE-IPF. Results and conclusions By highlighting the clinical characteristics of patients with acute exacerbation of idiopathic pulmonary fibrosis, this article will enhance the vigilance of clinicians on AE-IPF caused by mechanical ventilation. Importantly, preoperative nintedanib therapy should be applied in advance to prevent AE-IPF on in patients with mild IPF. Precise pulmonary protective ventilation strategies need to be formulated for patients with IPF to reduce mortality.
Collapse
Affiliation(s)
- Bin Qiu
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zhen Liang Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiao Hua Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chun Mei Wang
- Department of Intensive Care Unit, Affiliated Hospital of Weifang Medical University, WeiFang, China
| | - Tong Wang
- Weifang Medical University, Weifang, China
| | - Zhi Peng Wang
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
126
|
Wu S, Liao J, Hu G, Yan L, Su X, Ye J, Zhang C, Tian T, Wang H, Wang Y. Corilagin alleviates LPS-induced sepsis through inhibiting pyroptosis via targeting TIR domain of MyD88 and binding CARD of ASC in macrophages. Biochem Pharmacol 2023; 217:115806. [PMID: 37714273 DOI: 10.1016/j.bcp.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Sepsis is a dysregulated systemic inflammatory response caused by infection that leads to multiple organ injury and high mortality without effective treatment. Corilagin, a natural polyphenol extracted from traditional Chinese herbs, exhibits strong anti-inflammatory properties. However, the role for Corilagin in lipopolysaccharide (LPS)-induced sepsis and the molecular mechanisms underlying this process have not been completely explored. Here we determine the effect of Corilagin on LPS-treated mice and use a screening approach integrating surface plasmon resonance with liquid chromatography-tandem mass spectrometry (SPR-LC-MS/MS) to further explore the therapeutic target of Corilagin. We discovered that Corilagin significantly prolonged the survival time of septic mice, attenuated the multi-organ injury and the expression of pyroptosis-related proteins in tissues of LPS-treated mice. In vitro studies revealed that Corilagin inhibited pyroptosis and NLRP3 inflammasome activation in LPS-treated macrophages followed with ATP stimulation, as reflected by decreased levels of GSDMD-NT and activated caspase-1, and reduced ASC specks formation. Mechanistically, Corilagin alleviated the formation of ASC specks and blocked the interaction of ASC and pro-caspase1 by competitively binding with the caspase recruitment domain (CARD) of ASC. Additionally, Corilagin interrupted the TLR4-MyD88 interaction through targeting TIR domain of MyD88, leading to the inhibition of NF-κB activation and NLRP3 production. In addition, Corilagin downregulated genes associated with several inflammatory responses and inflammasome-related signaling pathways in LPS-stimulated macrophages. Overall, our results indicate that the inhibitory effect of Corilagin on pyroptosis through targeting TIR domain of MyD88 and binding the CARD domain of ASC in macrophages plays an essential role in protection against LPS-induced sepsis.
Collapse
Affiliation(s)
- Senquan Wu
- Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, Dongguan 523059, China; Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jia Liao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guodong Hu
- Department of Respiratory and Critical Care Medicine, Dongguan People's Hospital, Dongguan 523059, China
| | - Liang Yan
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xingyu Su
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiezhou Ye
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Chanjuan Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tian Tian
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
127
|
Zhang J, Zhao Y, Gong N. XBP1 Modulates the Aging Cardiorenal System by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1933. [PMID: 38001786 PMCID: PMC10669121 DOI: 10.3390/antiox12111933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic-region leucine zipper (bZIP) transcription factor. Over recent years, the powerful biological functions of XBP1 in oxidative stress have been gradually revealed. When the redox balance remains undisturbed, oxidative stress plays a role in physiological adaptations and signal transduction. However, during the aging process, increased cellular senescence and reduced levels of endogenous antioxidants cause an oxidative imbalance in the cardiorenal system. Recent studies from our laboratory and others have indicated that these age-related cardiorenal diseases caused by oxidative stress are guided and controlled by a versatile network composed of diversified XBP1 pathways. In this review, we describe the mechanisms that link XBP1 and oxidative stress in a range of cardiorenal disorders, including mitochondrial instability, inflammation, and alterations in neurohumoral drive. Furthermore, we propose that differing degrees of XBP1 activation may cause beneficial or harmful effects in the cardiorenal system. Gaining a comprehensive understanding of how XBP1 exerts influence on the aging cardiorenal system by regulating oxidative stress will enhance our ability to provide new directions and strategies for cardiovascular and renal safety outcomes.
Collapse
Affiliation(s)
- Ji Zhang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 230022, China;
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Nianqiao Gong
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
128
|
曹 海, 张 玮, 李 明, 杨 燕, 李 玉. [Isodopharicin C inhibits NLRP3 inflammasome activation and alleviates septic shock in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1476-1484. [PMID: 37814861 PMCID: PMC10563096 DOI: 10.12122/j.issn.1673-4254.2023.09.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE To investigate the effect of Isodopharicin C (Iso C), a traditional Chinese herbal medicine extract, on NLRP3 inflammasome activation and lipopolysaccharide (LPS)-induced septic shock in mice. METHODS Murine bone marrow-derived macrophages (BMDM) and human monocytic THP-1 cells were stimulated with LPS before treatment with different NLRP3 inflammasome agonists to activate canonical NLRP3 inflammasomes. The non-canonical NLRP3 inflammasomes were activated by intracellular LPS transfection, and AIM2 inflammasomes were activated with poly A: T. The cleavage of caspase-1 induced by NLRP3 activation was measured using Western blotting. The levels of NLRP3-dependent and -independent pro-inflammatory cytokines in the cell culture supernatant were detected using ELISA, and the intracellular potassium ion concentration was measured using ICP-OES. In the animal experiment, C57BL/6J mouse models of septic shock (induced by intraperitoneal LPS injection) were treated with Iso C, and the levels of IL-1β, TNF-α and IL-6 in the serum and peritoneal lavage fluid were detected using ELISA. The survival time of the mice was observed within 48 h after LPS injection and a survival curve was plotted. RESULTS In BMDM cells, Iso C dose-dependently inhibited the activation of canonical NLRP3 inflammasomes and non-canonical NLRP3 inflammasomes (P<0.05) without obviously affecting the secretion levels of TNF-α and IL-6 (P>0.05), the activation of AIM2 inflammasomes (P>0.05), or K + efflux, the upstream signaling of NLRP3 activation (P>0.05). Iso C inhibited the activation of canonical NLRP3 inflammasomes in human THP-1 cells. In septic C57BL/6J mice, Iso C treatment significantly reduced IL-1β levels in the serum and peritoneal lavage fluid, and prolonged the survival time of the mice (P<0.05). CONCLUSION Iso C specifically inhibits NLRP3 inflammasome activation and alleviates septic shock in mice, and can serve as a potential small molecule compound for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- 海若 曹
- 蚌埠医学院肿瘤基础研究与临床检验诊断重点实验室, 安徽 蚌埠 233030Anhui Provincial Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, school of laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
- 蚌埠医学院第一附属医院 检验科, 安徽 蚌埠 233004Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院慢性疾病免疫学基础与临床安徽省重点实验室, 安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical College, Bengbu 233030, China
| | - 玮 张
- 蚌埠医学院第一附属医院 检验科, 安徽 蚌埠 233004Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院慢性疾病免疫学基础与临床安徽省重点实验室, 安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical College, Bengbu 233030, China
| | - 明远 李
- 蚌埠医学院第一附属医院 检验科, 安徽 蚌埠 233004Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 燕青 杨
- 蚌埠医学院第一附属医院 检验科, 安徽 蚌埠 233004Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- 蚌埠医学院慢性疾病免疫学基础与临床安徽省重点实验室, 安徽 蚌埠 233030Anhui Provincial Key Laboratory of Immunology in Chronic Disease, Bengbu Medical College, Bengbu 233030, China
| | - 玉云 李
- 蚌埠医学院肿瘤基础研究与临床检验诊断重点实验室, 安徽 蚌埠 233030Anhui Provincial Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, school of laboratory Medicine, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
129
|
Potere N, Garrad E, Kanthi Y, Di Nisio M, Kaplanski G, Bonaventura A, Connors JM, De Caterina R, Abbate A. NLRP3 inflammasome and interleukin-1 contributions to COVID-19-associated coagulopathy and immunothrombosis. Cardiovasc Res 2023; 119:2046-2060. [PMID: 37253117 PMCID: PMC10893977 DOI: 10.1093/cvr/cvad084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 06/01/2023] Open
Abstract
Immunothrombosis-immune-mediated activation of coagulation-is protective against pathogens, but excessive immunothrombosis can result in pathological thrombosis and multiorgan damage, as in severe coronavirus disease 2019 (COVID-19). The NACHT-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome produces major proinflammatory cytokines of the interleukin (IL)-1 family, IL-1β and IL-18, and induces pyroptotic cell death. Activation of the NLRP3 inflammasome pathway also promotes immunothrombotic programs including release of neutrophil extracellular traps and tissue factor by leukocytes, and prothrombotic responses by platelets and the vascular endothelium. NLRP3 inflammasome activation occurs in patients with COVID-19 pneumonia. In preclinical models, NLRP3 inflammasome pathway blockade restrains COVID-19-like hyperinflammation and pathology. Anakinra, recombinant human IL-1 receptor antagonist, showed safety and efficacy and is approved for the treatment of hypoxaemic COVID-19 patients with early signs of hyperinflammation. The non-selective NLRP3 inhibitor colchicine reduced hospitalization and death in a subgroup of COVID-19 outpatients but is not approved for the treatment of COVID-19. Additional COVID-19 trials testing NLRP3 inflammasome pathway blockers are inconclusive or ongoing. We herein outline the contribution of immunothrombosis to COVID-19-associated coagulopathy, and review preclinical and clinical evidence suggesting an engagement of the NLRP3 inflammasome pathway in the immunothrombotic pathogenesis of COVID-19. We also summarize current efforts to target the NLRP3 inflammasome pathway in COVID-19, and discuss challenges, unmet gaps, and the therapeutic potential that inflammasome-targeted strategies may provide for inflammation-driven thrombotic disorders including COVID-19.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University, Via Luigi Polacchi 11, Chieti 66100, Italy
| | - Evan Garrad
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- University of Missouri School of Medicine, Columbia, MO, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, ‘G. d’Annunzio’ University, Via Luigi Polacchi 11, Chieti 66100, Italy
| | - Gilles Kaplanski
- Aix-Marseille Université, INSERM, INRAE, Marseille, France
- Division of Internal Medicine and Clinical Immunology, Assistance Publique - Hôpitaux de Marseille, Hôpital Conception, Aix-Marseille Université, Marseille, France
| | - Aldo Bonaventura
- Department of Internal Medicine, Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Jean Marie Connors
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Raffaele De Caterina
- University Cardiology Division, Pisa University Hospital, Pisa, Italy
- Chair and Postgraduate School of Cardiology, University of Pisa, Pisa, Italy
- Fondazione Villa Serena per la Ricerca, Città Sant’Angelo, Pescara, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, 415 Lane Rd (MR5), PO Box 801394, Charlottesville, VA 22903, USA
| |
Collapse
|
130
|
Potere N, Abbate A, Kanthi Y, Carrier M, Toldo S, Porreca E, Di Nisio M. Inflammasome Signaling, Thromboinflammation, and Venous Thromboembolism. JACC Basic Transl Sci 2023; 8:1245-1261. [PMID: 37791298 PMCID: PMC10544095 DOI: 10.1016/j.jacbts.2023.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 10/05/2023]
Abstract
Venous thromboembolism (VTE) remains a major health burden despite anticoagulation advances, suggesting incomplete management of pathogenic mechanisms. The NLRP3 (NACHT-, LRR- and pyrin domain-containing protein 3) inflammasome, interleukin (IL)-1, and pyroptosis are emerging contributors to the inflammatory pathogenesis of VTE. Inflammasome pathway activation occurs in patients with VTE. In preclinical models, inflammasome signaling blockade reduces venous thrombogenesis and vascular injury, suggesting that this therapeutic approach may potentially maximize anticoagulation benefits, protecting from VTE occurrence, recurrence, and ensuing post-thrombotic syndrome. The nonselective NLRP3 inhibitor colchicine and the anti-IL-1β agent canakinumab reduce atherothrombosis without increasing bleeding. Rosuvastatin reduces primary venous thrombotic events at least in part through lipid-lowering independent mechanisms, paving the way to targeted anti-inflammatory strategies in VTE. This review outlines recent preclinical and clinical evidence supporting a role for inflammasome pathway activation in venous thrombosis, and discusses the, yet unexplored, therapeutic potential of modulating inflammasome signaling to prevent and manage VTE.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, “G. d'Annunzio” University, Chieti, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Yogendra Kanthi
- Vascular Thrombosis & Inflammation Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marc Carrier
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Ettore Porreca
- Department of Innovative Technologies in Medicine and Dentistry, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, “G. d'Annunzio” University, Chieti, Italy
| |
Collapse
|
131
|
Yarovinsky TO, Su M, Chen C, Xiang Y, Tang WH, Hwa J. Pyroptosis in cardiovascular diseases: Pumping gasdermin on the fire. Semin Immunol 2023; 69:101809. [PMID: 37478801 PMCID: PMC10528349 DOI: 10.1016/j.smim.2023.101809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Pyroptosis is a form of programmed cell death associated with activation of inflammasomes and inflammatory caspases, proteolytic cleavage of gasdermin proteins (forming pores in the plasma membrane), and selective release of proinflammatory mediators. Induction of pyroptosis results in amplification of inflammation, contributing to the pathogenesis of chronic cardiovascular diseases such as atherosclerosis and diabetic cardiomyopathy, and acute cardiovascular events, such as thrombosis and myocardial infarction. While engagement of pyroptosis during sepsis-induced cardiomyopathy and septic shock is expected and well documented, we are just beginning to understand pyroptosis involvement in the pathogenesis of cardiovascular diseases with less defined inflammatory components, such as atrial fibrillation. Due to the danger that pyroptosis represents to cells within the cardiovascular system and the whole organism, multiple levels of pyroptosis regulation have evolved. Those include regulation of inflammasome priming, post-translational modifications of gasdermins, and cellular mechanisms for pore removal. While pyroptosis in macrophages is well characterized as a dramatic pro-inflammatory process, pyroptosis in other cell types within the cardiovascular system displays variable pathways and consequences. Furthermore, different cells and organs engage in local and distant crosstalk and exchange of pyroptosis triggers (oxidized mitochondrial DNA), mediators (IL-1β, S100A8/A9) and antagonists (IL-9). Development of genetic tools, such as Gasdermin D knockout animals, and small molecule inhibitors of pyroptosis will not only help us fully understand the role of pyroptosis in cardiovascular diseases but may result in novel therapeutic approaches inhibiting inflammation and progression of chronic cardiovascular diseases to reduce morbidity and mortality from acute cardiovascular events.
Collapse
Affiliation(s)
- Timur O Yarovinsky
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Meiling Su
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Chaofei Chen
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wai Ho Tang
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, the Hong Kong Special Administrative Region of China
| | - John Hwa
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
132
|
Baysak E, Yildirim C, Sayar N, Sayar MK, Halaris A, Aricioglu F. The Possible Role of NLRP3 Inflammasome in Depression and Myocardial Infarction Comorbidity. J Pers Med 2023; 13:1295. [PMID: 37763063 PMCID: PMC10533058 DOI: 10.3390/jpm13091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
It is well-established that cardiovascular disease and depression are highly comorbid. This study aimed to assess the possible role of the NOD-like receptor protein 3 (NLRP3) inflammasome pathway and the high-sensitivity C-reactive protein (hsCRP) in patients with incident myocardial infarction in the presence or absence of depression. Sixty-eight consecutive patients with incident ST-elevation myocardial infarction and twenty healthy subjects were included. The patients were assessed using the Structured Clinical Interview for DSM-5 Disorders-Clinician Version during their 1-4-day-long hospitalization and were divided into two groups: with and without comorbid depression. Blood samples for the determination of NLRP3, interleukin-18 (IL-18), interleukin-1β (IL-1β), and hsCRP levels were analyzed using ELISA. NLRP3, IL-1β, IL-18, and hsCRP levels were significantly higher in myocardial infarction patients compared to the healthy group (p = 0.02, p < 0.001, p < 0.001, and p < 0.001, respectively). No significant difference was found between the myocardial groups with and without depression. However, in the logistic regression analysis, the NLRP3 variable in myocardial infarction patients was found to have a significant contribution to the likelihood of depression (p = 0.015, OR = 1.72, and CI = 1.11-2.66). The likelihood of depression is associated with increasing NLRP3 levels in myocardial infarction patients. However, this potential role should be further explored in a larger sample.
Collapse
Affiliation(s)
- Erensu Baysak
- Department of Psychiatry, School of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Cagan Yildirim
- Department of Cardiology, School of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Nurten Sayar
- Department of Cardiology, School of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Mustafa Kemal Sayar
- Department of Psychiatry, School of Medicine, Marmara University, Istanbul 34854, Turkey
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Stritch School of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Feyza Aricioglu
- Department of Pharmacology, School of Dentistry and Institute of Health Sciences, Marmara University, Istanbul 34865, Turkey
| |
Collapse
|
133
|
French MA. The Immunopathogenesis of Immune Reconstitution Inflammatory Syndrome Has Become Clearer, but More Complex. J Infect Dis 2023; 228:106-110. [PMID: 37040572 DOI: 10.1093/infdis/jiad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023] Open
Affiliation(s)
- Martyn A French
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
- Immunology Division, PathWest Laboratory Medicine, Perth, Australia
| |
Collapse
|
134
|
Pagliaro P, Penna C. Inhibitors of NLRP3 Inflammasome in Ischemic Heart Disease: Focus on Functional and Redox Aspects. Antioxidants (Basel) 2023; 12:1396. [PMID: 37507935 PMCID: PMC10376505 DOI: 10.3390/antiox12071396] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is caused by several mechanisms, including the production of reactive oxygen species (ROS), altered cellular osmolarity, and inflammatory response. Calcium overload, altered oxygen levels, and mitochondrial ROS are also involved in these MIRI processes, resulting in the irreversible opening of the mitochondrial permeability transition pore (mPTP). These mechanisms and processes are associated with NLRP3 inflammasome priming and activation, which can also induce cell death by pyroptosis through the up-regulation of the caspase-1 pathway and IL-18 release. In addition, endothelial dysfunction, both in the presence and absence of MIRI, is also accompanied by altered oxygen levels, decreased nitric oxide production, and ROS overproduction, resulting in the expression of adhesion molecules and leukocyte infiltration in which the NLRP3 inflammasome plays a central role, thus contributing, through endothelial dysfunction, to the alteration of coronary flow, typical of ischemic heart disease. Given the intricate interrelationship between ROS and NLRP3, ROS inhibitors can reduce NLRP3 inflammasome activation, while NLRP3 inhibitors can reduce oxidative stress and inflammation. NLRP3 inhibitors have been intensively studied as anti-inflammatory agents in basic cardiovascular sciences. In this review, we analyze the interrelation between ROS and NLRP3 in ischemic heart disease and the effects of some NLRP3 inhibitors as possible therapeutic agents in this disease condition. All compounds considered in this review need larger studies to confirm their appropriate use in clinical scenarios as anti-ischemic drugs.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, Turin University, Orbassano, 10043 Turin, Italy
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, Turin University, Orbassano, 10043 Turin, Italy
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
135
|
Hu J, Xu J, Tan X, Li D, Yao D, Xu B, Lei Y. Dapagliflozin protects against dilated cardiomyopathy progression by targeting NLRP3 inflammasome activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1461-1470. [PMID: 36749400 PMCID: PMC10244283 DOI: 10.1007/s00210-023-02409-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023]
Abstract
Dilated cardiomyopathy (DCM) is the major cause of heart failure and has a poor prognosis. The accumulating evidence points to an essential role of the inflammatory component in the process of DCM. Inhibitors of sodium-glucose cotransporter 2 (SGLT2) are widely used to treat heart failure patients due to their cardiac benefits. However, their role in DCM remains unclear. We used the doxorubicin (Dox)-induced DCM model for our study. The SGLT2 inhibitor dapagliflozin (Dapa) improved cardiac function in mice treated with doxorubicin and attenuated the activation of the nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome pathway and the expression of inflammatory factors. In addition, dapagliflozin suppresses NLRP3 activation by decreasing p38-dependent toll-like receptor 4 (TLR4) expression. In our study, dagliflozin improves cardiac function in DCM by inhibiting the activity of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jiaxin Hu
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, No.158 Wuyang Avenue, Enshi, 445000, Hubei, China
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiamin Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xi Tan
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Zhongshan Road, Nanjing, 210008, China
| | - Dong Li
- Department of Medical Oncology, Enshi Tujia and Miao Autonomous Prefecture Central Hospital, Enshi, Hubei, China
| | - Dejiang Yao
- Surgical Division IIIThe Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Zhongshan Road, Nanjing, 210008, China.
| | - Yuhua Lei
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, No.158 Wuyang Avenue, Enshi, 445000, Hubei, China.
| |
Collapse
|
136
|
Esposito P, Verzola D, Saio M, Picciotto D, Frascio M, Laudon A, Zanetti V, Brunori G, Garibotto G, Viazzi F. The Contribution of Muscle Innate Immunity to Uremic Cachexia. Nutrients 2023; 15:2832. [PMID: 37447158 PMCID: PMC10343562 DOI: 10.3390/nu15132832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Protein energy wasting (PEW) is a common complication both in chronic kidney disease (CKD) and end-stage kidney disease (ESKD). Of note, PEW is one of the stronger predictors of morbidity and mortality in this patient population. The pathogenesis of PEW involves several mechanisms, including anorexia, insulin resistance, acidosis and low-grade inflammation. In addition, "sterile" muscle inflammation contributes to PEW at an advanced CKD stage. Both immune and resident muscle cells can activate innate immunity; thus, they have critical roles in triggering "sterile" tissue inflammation. Toll-like receptor 4 (TLR4) can detect endogenous danger-associated molecular patterns generated or retained in blood in uremia and induce a sterile muscle inflammatory response via NF-κB in myocytes. In addition, TLR4, though the activation of the NLRP3 inflammasome, links the sensing of metabolic uremic stress in muscle to the activation of pro-inflammatory cascades, which lead to the production of IL-1β and IL-18. Finally, uremia-induced accelerated cell senescence is associated with a secretory phenotype that favors fibrosis in muscle. Targeting these innate immune pathways could lead to novel therapies for CKD-related PEW.
Collapse
Affiliation(s)
- Pasquale Esposito
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (P.E.); (M.S.); (D.P.); (V.Z.); (F.V.)
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy;
| | - Daniela Verzola
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy;
| | - Michela Saio
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (P.E.); (M.S.); (D.P.); (V.Z.); (F.V.)
| | - Daniela Picciotto
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (P.E.); (M.S.); (D.P.); (V.Z.); (F.V.)
| | - Marco Frascio
- Division of Surgery, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Surgical Sciences and Integrated Diagnostics, University of Genova, 16132 Genova, Italy
| | - Alessandro Laudon
- Division of Nephrology, Ospedale Santa Chiara, 38122 Trento, Italy; (A.L.); (G.B.)
| | - Valentina Zanetti
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (P.E.); (M.S.); (D.P.); (V.Z.); (F.V.)
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy;
| | - Giuliano Brunori
- Division of Nephrology, Ospedale Santa Chiara, 38122 Trento, Italy; (A.L.); (G.B.)
| | - Giacomo Garibotto
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy;
| | - Francesca Viazzi
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (P.E.); (M.S.); (D.P.); (V.Z.); (F.V.)
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy;
| |
Collapse
|
137
|
Gastaldi S, Rocca C, Gianquinto E, Granieri MC, Boscaro V, Blua F, Rolando B, Marini E, Gallicchio M, De Bartolo A, Romeo N, Mazza R, Fedele F, Pagliaro P, Penna C, Spyrakis F, Bertinaria M, Angelone T. Discovery of a novel 1,3,4-oxadiazol-2-one-based NLRP3 inhibitor as a pharmacological agent to mitigate cardiac and metabolic complications in an experimental model of diet-induced metaflammation. Eur J Med Chem 2023; 257:115542. [PMID: 37290185 DOI: 10.1016/j.ejmech.2023.115542] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Inspired by the recent advancements in understanding the binding mode of sulfonylurea-based NLRP3 inhibitors to the NLRP3 sensor protein, we developed new NLRP3 inhibitors by replacing the central sulfonylurea moiety with different heterocycles. Computational studies evidenced that some of the designed compounds were able to maintain important interaction within the NACHT domain of the target protein similarly to the most active sulfonylurea-based NLRP3 inhibitors. Among the studied compounds, the 1,3,4-oxadiazol-2-one derivative 5 (INF200) showed the most promising results being able to prevent NLRP3-dependent pyroptosis triggered by LPS/ATP and LPS/MSU by 66.3 ± 6.6% and 61.6 ± 11.5% and to reduce IL-1β release (35.5 ± 8.8% μM) at 10 μM in human macrophages. The selected compound INF200 (20 mg/kg/day) was then tested in an in vivo rat model of high-fat diet (HFD)-induced metaflammation to evaluate its beneficial cardiometabolic effects. INF200 significantly counteracted HFD-dependent "anthropometric" changes, improved glucose and lipid profiles, and attenuated systemic inflammation and biomarkers of cardiac dysfunction (particularly BNP). Hemodynamic evaluation on Langendorff model indicate that INF200 limited myocardial damage-dependent ischemia/reperfusion injury (IRI) by improving post-ischemic systolic recovery and attenuating cardiac contracture, infarct size, and LDH release, thus reversing the exacerbation of obesity-associated damage. Mechanistically, in post-ischemic hearts, IFN200 reduced IRI-dependent NLRP3 activation, inflammation, and oxidative stress. These results highlight the potential of the novel NLRP3 inhibitor, INF200, and its ability to reverse the unfavorable cardio-metabolic dysfunction associated with obesity.
Collapse
Affiliation(s)
- Simone Gastaldi
- Department of Drug Science and Technology, University of Turin, 10125, Turin, Italy
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E.S. (DiBEST), University of Calabria, 87036, Rende, Italy
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, 10125, Turin, Italy
| | - Maria Concetta Granieri
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E.S. (DiBEST), University of Calabria, 87036, Rende, Italy
| | - Valentina Boscaro
- Department of Drug Science and Technology, University of Turin, 10125, Turin, Italy
| | - Federica Blua
- Department of Drug Science and Technology, University of Turin, 10125, Turin, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Turin, 10125, Turin, Italy
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, 10125, Turin, Italy
| | | | - Anna De Bartolo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E.S. (DiBEST), University of Calabria, 87036, Rende, Italy
| | - Naomi Romeo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E.S. (DiBEST), University of Calabria, 87036, Rende, Italy
| | - Rosa Mazza
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E.S. (DiBEST), University of Calabria, 87036, Rende, Italy
| | - Francesco Fedele
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy; National Institute for Cardiovascular Research (INRC), Bologna, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; National Institute for Cardiovascular Research (INRC), Bologna, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125, Turin, Italy.
| | - Massimo Bertinaria
- Department of Drug Science and Technology, University of Turin, 10125, Turin, Italy.
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, E. and E.S. (DiBEST), University of Calabria, 87036, Rende, Italy; National Institute for Cardiovascular Research (INRC), Bologna, Italy
| |
Collapse
|
138
|
Gao L, Sun X, Pan M, Zhang W, Zhu D, Lu Z, Wang K, Dong Y, Guan Y. Ischemic Preconditioning Provides Neuroprotection by Inhibiting NLRP3 Inflammasome Activation and Cell Pyroptosis. Brain Sci 2023; 13:897. [PMID: 37371374 DOI: 10.3390/brainsci13060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/21/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Increasing evidence has demonstrated that ischemic preconditioning (IPC) increases cerebral tolerance to subsequent prolonged ischemic insults. However, the exact mechanisms underlying the process have not been fully explored. In the current study, we aim to investigate whether NLRP3 inflammasome and cell pyroptosis are involved in the neuroprotective mechanism of IPC after ischemic stroke. In vitro, IPC was set up by exposing BV-2 cells to 10 min of oxygen-glucose deprivation (OGD). In vivo, IPC was performed by a transient cerebral ischemia of 10 min occlusion of the middle cerebral artery (MCA) in mice. We found that the NLRP3 inflammasome was activated and cell pyroptosis was induced at 6 h and 24 h post-stroke in an ischemic brain. IPC treatment increased cell viability under OGD state, reduced the infarct size, and attenuated the neurological deficits of mice. However, the effects NLRP3 inflammasome activation and pyroptosis after stroke were attenuated by IPC, which decreased the expression of NLRP3, ASC, cleaved caspase 1, and GSDMD-N and reduced the production of IL-1β and IL-18. In addition, confocal immunofluorescence staining of Annexin V-mCherry and SYTOX green was inhibited by IPC. These findings suggest a more enhanced link between IPC and inflammatory signature and cell death, highlighting that the NLRP3 inflammasome may act as a promising target for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Li Gao
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xin Sun
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Meibo Pan
- Department Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenrui Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Desheng Zhu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhongjiao Lu
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Kan Wang
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yinfeng Dong
- Department Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
139
|
Alshoubaki YK, Lu YZ, Legrand JMD, Karami R, Fossat M, Salimova E, Julier Z, Martino MM. A superior extracellular matrix binding motif to enhance the regenerative activity and safety of therapeutic proteins. NPJ Regen Med 2023; 8:25. [PMID: 37217533 DOI: 10.1038/s41536-023-00297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Among therapeutic proteins, cytokines and growth factors have great potential for regenerative medicine applications. However, these molecules have encountered limited clinical success due to low effectiveness and major safety concerns, highlighting the need to develop better approaches that increase efficacy and safety. Promising approaches leverage how the extracellular matrix (ECM) controls the activity of these molecules during tissue healing. Using a protein motif screening strategy, we discovered that amphiregulin possesses an exceptionally strong binding motif for ECM components. We used this motif to confer the pro-regenerative therapeutics platelet-derived growth factor-BB (PDGF-BB) and interleukin-1 receptor antagonist (IL-1Ra) a very high affinity to the ECM. In mouse models, the approach considerably extended tissue retention of the engineered therapeutics and reduced leakage in the circulation. Prolonged retention and minimal systemic diffusion of engineered PDGF-BB abolished the tumour growth-promoting adverse effect that was observed with wild-type PDGF-BB. Moreover, engineered PDGF-BB was substantially more effective at promoting diabetic wound healing and regeneration after volumetric muscle loss, compared to wild-type PDGF-BB. Finally, while local or systemic delivery of wild-type IL-1Ra showed minor effects, intramyocardial delivery of engineered IL-1Ra enhanced cardiac repair after myocardial infarction by limiting cardiomyocyte death and fibrosis. This engineering strategy highlights the key importance of exploiting interactions between ECM and therapeutic proteins for developing effective and safer regenerative therapies.
Collapse
Affiliation(s)
- Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Julien M D Legrand
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Rezvan Karami
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Mathilde Fossat
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Ziad Julier
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia.
- Victorian Heart Institute, Monash University, Clayton, VIC, 3800, Australia.
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
140
|
Wang Q, Zuurbier CJ, Huhn R, Torregroza C, Hollmann MW, Preckel B, van den Brom CE, Weber NC. Pharmacological Cardioprotection against Ischemia Reperfusion Injury-The Search for a Clinical Effective Therapy. Cells 2023; 12:1432. [PMID: 37408266 DOI: 10.3390/cells12101432] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Pharmacological conditioning aims to protect the heart from myocardial ischemia-reperfusion injury (IRI). Despite extensive research in this area, today, a significant gap remains between experimental findings and clinical practice. This review provides an update on recent developments in pharmacological conditioning in the experimental setting and summarizes the clinical evidence of these cardioprotective strategies in the perioperative setting. We start describing the crucial cellular processes during ischemia and reperfusion that drive acute IRI through changes in critical compounds (∆GATP, Na+, Ca2+, pH, glycogen, succinate, glucose-6-phosphate, mitoHKII, acylcarnitines, BH4, and NAD+). These compounds all precipitate common end-effector mechanisms of IRI, such as reactive oxygen species (ROS) generation, Ca2+ overload, and mitochondrial permeability transition pore opening (mPTP). We further discuss novel promising interventions targeting these processes, with emphasis on cardiomyocytes and the endothelium. The limited translatability from basic research to clinical practice is likely due to the lack of comorbidities, comedications, and peri-operative treatments in preclinical animal models, employing only monotherapy/monointervention, and the use of no-flow (always in preclinical models) versus low-flow ischemia (often in humans). Future research should focus on improved matching between preclinical models and clinical reality, and on aligning multitarget therapy with optimized dosing and timing towards the human condition.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Ragnar Huhn
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Carolin Torregroza
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Markus W Hollmann
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
141
|
Chang YC, Liou JT, Peng YM, Chen GJ, Lin CY, Yang CA. Association of Long Noncoding RNA Expression Signatures with Stress-Induced Myocardial Perfusion Defects. Biomolecules 2023; 13:biom13050849. [PMID: 37238718 DOI: 10.3390/biom13050849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Stress-induced myocardial perfusion defects found in dipyridamole-thallium-201 single-photon emission computed tomography imaging may indicate vascular perfusion abnormalities and risk of obstructive or nonobstructive coronary heart disease. Besides nuclear imaging and subsequent coronary angiography (CAG), no blood test can indicate whether dysregulated homeostasis is associated with stress-induced myocardial perfusion defects. This study investigated the expression signature of long noncoding RNAs (lncRNAs) and genes involved in vascular inflammation and stress response in the blood of patients with stress-induced myocardial perfusion abnormalities (n = 27). The results revealed an expression signature consisting of the upregulation of RMRP (p < 0.01) and downregulations of THRIL (p < 0.01) and HIF1A (p < 0.01) among patients with a positive thallium stress test and no significant coronary artery stenosis within 6 months after baseline treatment. We developed a scoring system based on the expression signatures of RMRP, MIAT, NTT, MALAT1, HSPA1A, and NLRP3 to predict the need for further CAG among patients with moderate-to-significant stress-induced myocardial perfusion defects (area under the receiver operating characteristic curve = 0.963). Therefore, we identified a dysregulated expression profile of lncRNA-based genes in the blood that could be valuable for the early detection of vascular homeostasis imbalance and personalized therapy.
Collapse
Affiliation(s)
- Yu-Chieh Chang
- Division of Nuclear Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Jun-Ting Liou
- Division of Cardiology, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Yu-Min Peng
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Guan-Jun Chen
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Chien-Yu Lin
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
| | - Chin-An Yang
- Integrated Precision Health and Immunodiagnostic Center, Department of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City 302, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan
| |
Collapse
|
142
|
Ren M, Chen J, Xu H, Li W, Wang T, Chi Z, Lin Y, Zhang A, Chen G, Wang X, Sun X, Liang G, Wang J, Luo W. Ergolide covalently binds NLRP3 and inhibits NLRP3 inflammasome-mediated pyroptosis. Int Immunopharmacol 2023; 120:110292. [PMID: 37182452 DOI: 10.1016/j.intimp.2023.110292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis plays a key role in various acute and chronic inflammatory diseases. Targeted inhibition of NLRP3-mediated pyroptosis may be a potential therapeutic strategy for various inflammatory diseases. Ergolide (ERG) is a sesquiterpene lactone natural product derived from the traditional Chinese medicinal herb, Inula britannica. ERG has been shown to have anti-inflammatory and anti-cancer activities, but the target is remains unknown. HYPOTHESIS/PURPOSE This study performed an in-depth investigation of the anti-inflammatory mechanism of ERG in NLRP3-mediated pyroptosis and NLPR3 inflammasome related sepsis and acute lung injury model. METHODS ELISA and Western blot were used to determine the IL-1β and P20 levels. Co-immunoprecipitation assays were used to detect the interaction between proteins. Drug affinity response target stability (DARTS) assays were used to explore the potential target of ERG. C57BL/6J mice were intraperitoneally injected with E. coli DH5α (2 × 109 CFU/mouse) to establish a sepsis model. Acute lung injury was induced by intratracheal administrationof lipopolysaccharide in wild-type mice and NLRP3 knockout mice with or without ERG treatment. RESULTS We showed that ERG is an efficient inhibitor of NLRP3-mediated pyroptosis in the first and second signals of NLRP3 inflammasome activation. Furthermore, we demonstrated that ERG irreversibly bound to the NACHT domain of NLRP3 to prevent the assembly and activation of the NLRP3 inflammasome. ERG remarkably improved the survival rate of wild-type septic mice. In lipopolysaccharide-induced acute lung injury model, ERG alleviated acute lung injury of wild-type mice but not NLRP3 knockout mice. CONCLUSION Our results revealed that the anti-pyroptosis effect of ERG are dependent on NLRP3 and NLRP3 NACHT domain is ERG's direct target. Therefore, ERG can serve as a precursor drug for the development of novel NLRP3 inhibitors to treat NLRP3 inflammasome mediated inflammatory diseases.
Collapse
Affiliation(s)
- Miao Ren
- The Department of Anesthesiology and Operation Room, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haowen Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weifeng Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tingting Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317099, China
| | - Zhanghuan Chi
- Wenzhou Third Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yi Lin
- Wenzhou Third Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Anqi Zhang
- The Department of Anesthesiology and Operation Room, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoyu Sun
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Junlu Wang
- The Department of Anesthesiology and Operation Room, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Wu Luo
- Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
143
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
144
|
Tu WC, Zhao YX, Yang CL, Zhang XJ, Li XL, Sakah KJ, Zhang RH, Xiao WL, Liu MF. Abietane diterpenoids from Orthosiphon wulfenioides with NLRP3 inflammasome inhibitory activity. Bioorg Chem 2023; 136:106534. [PMID: 37068364 DOI: 10.1016/j.bioorg.2023.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Wulfenioidones A - K (1-11) were abietane diterpenoids with highly oxidized 6/6/6 aromatic tricyclic skeleton isolated from the whole plant of Orthosiphon wulfenioides, and their planar structures and absolute configurations were elucidated by spectroscopic data interpretation, electronic circular dichroism calculation as well as X-ray crystallography analysis. Bioactivity screening indicated that compounds 1-4, 6 and 8 exhibited lactate dehydrogenase (LDH) inhibition effect with IC50 values ranging from 0.23 to 3.43 μM by preventing the mononuclear macrophage cell pyroptosis induced by double signal stimulation of LPS and nigericin. Western Blot analyses of Caspase-1 and IL-1β down-regulation exhibited that compound 1 could selectively inhibit NLRP3 inflammasome, and the cell morphological observation further supported that compound 1 prevented macrophage cell pyroptosis.
Collapse
Affiliation(s)
- Wen-Chao Tu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Ying-Xin Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Chang-Lin Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Kaunda-Joseph Sakah
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Rui-Han Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Mei-Feng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
145
|
Gomez SE, Parizo J, Ermakov S, Larson J, Wallace R, Assimes T, Hlatky M, Stefanick M, Perez MV. Evaluation of the association between circulating IL-1β and other inflammatory cytokines and incident atrial fibrillation in a cohort of postmenopausal women. Am Heart J 2023; 258:157-167. [PMID: 36646198 PMCID: PMC10023332 DOI: 10.1016/j.ahj.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND Inflammatory cytokines play a role in atrial fibrillation (AF). Interleukin (IL)-1β, which is targeted in the treatment of ischemic heart disease, has not been well-studied in relation to AF. METHODS Postmenopausal women from the Women's Health Initiative were included. Cox proportional hazards regression models were used to evaluate the association between log-transformed baseline cytokine levels and future AF incidence. Models were adjusted for body mass index, age, race, education, hypertension, diabetes, hyperlipidemia, current smoking, and history of coronary heart disease, congestive heart failure, or peripheral artery disease. RESULTS Of 16,729 women, 3,943 developed AF over an average of 8.5 years. Racial and ethnic groups included White (77.4%), Black/African-American (16.1%), Asian (2.7%), American Indian/Alaska Native (1.0%), and Hispanic (5.5%). Baseline IL-1β log continuous levels were not significantly associated with incident AF (HR 0.86 per 1 log [pg/mL] increase, P= .24), similar to those of other inflammatory cytokines, IL-7, IL-8, IL-10, IGF-1, and TNF-α. There were significant associations between C-reactive protein (CRP) and IL-6 with incident AF. CONCLUSIONS In this large cohort of postmenopausal women, there was no significant association between IL-1β and incident AF, although downstream effectors, CRP and IL-6, were associated with incident AF.
Collapse
Affiliation(s)
- Sofia E Gomez
- Department of Medicine, Stanford, University School of Medicine, Stanford, CA
| | - Justin Parizo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford, University School of Medicine, Stanford, CA
| | - Simon Ermakov
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA
| | | | - Robert Wallace
- College of Public Health, University of Iowa, Iowa City, IA
| | - Themistocles Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford, University School of Medicine, Stanford, CA
| | - Mark Hlatky
- Division of Cardiovascular Medicine, Department of Medicine, Stanford, University School of Medicine, Stanford, CA; Department of Health Research and Policy, Stanford University, Stanford, CA
| | - Marcia Stefanick
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA
| | - Marco V Perez
- Division of Cardiovascular Medicine, Department of Medicine, Stanford, University School of Medicine, Stanford, CA.
| |
Collapse
|
146
|
Ahmed SHH, Gonda T, Agbadua OG, Girst G, Berkecz R, Kúsz N, Tsai MC, Wu CC, Balogh GT, Hunyadi A. Preparation and Evaluation of 6-Gingerol Derivatives as Novel Antioxidants and Antiplatelet Agents. Antioxidants (Basel) 2023; 12:antiox12030744. [PMID: 36978992 PMCID: PMC10045534 DOI: 10.3390/antiox12030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Ginger (Zingiber officinale) is widely used as a spice and a traditional medicine. Many bioactivities have been reported for its extracts and the isolated compounds, including cardiovascular protective effects. Different pathways were suggested to contribute to these effects, like the inhibition of platelet aggregation. In this study, we synthesised fourteen 6-gingerol derivatives, including eight new compounds, and studied their antiplatelet, COX-1 inhibitor, and antioxidant activities. In silico docking of selected compounds to h-COX-1 enzyme revealed favourable interactions. The investigated 6-gingerol derivatives were also characterised by in silico and experimental physicochemical and blood-brain barrier-related parameters for lead and preclinical candidate selection. 6-Shogaol (2) was identified as the best overall antiplatelet lead, along with compounds 3 and 11 and the new compound 17, which require formulation to optimize their water solubility. Compound 5 was identified as the most potent antioxidant that is also promising for use in the central nervous system (CNS).
Collapse
Affiliation(s)
- Sara H H Ahmed
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Tímea Gonda
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Orinamhe G Agbadua
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Girst
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Hungary
| | - Norbert Kúsz
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Meng-Chun Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - György T Balogh
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Hungary
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
147
|
González-Cofrade L, P Green J, Cuadrado I, Amesty Á, Oramas-Royo S, David Brough, Estévez-Braun A, Hortelano S, de Las Heras B. Phenolic and quinone methide nor-triterpenes as selective NLRP3 inflammasome inhibitors. Bioorg Chem 2023; 132:106362. [PMID: 36657273 DOI: 10.1016/j.bioorg.2023.106362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Dysregulated inflammasome activity, particularly of the NLRP3 inflammasome, is associated with the development of several inflammatory diseases. The study of molecules directly targeting NLRP3 is an emerging field in the discovery of new therapeutic compounds for the treatment of inflammatory disorders. Friedelane triterpenes are biologically active phytochemicals having a wide range of activities including anti-inflammatory effects. In this work, we evaluated the potential anti-inflammatory activity of phenolic and quinonemethide nor-triterpenes (1-11) isolated from Maytenus retusa and some semisynthetic derivatives (12-16) through inhibition of the NLRP3 inflammasome in macrophages. Among them, we found that triterpenes 6 and 14 were the most potent, showing markedly reduced caspase-1 activity, IL-1β secretion (IC50 = 1.15 µM and 0.19 µM, respectively), and pyroptosis (IC50 = 2.21 µM and 0.13 µM, respectively). Further characterization confirmed their selective inhibition of NLRP3 inflammasome in both canonical and non-canonical activation pathways with no effects on AIM2 or NLRC4 inflammasome activation.
Collapse
Affiliation(s)
- Laura González-Cofrade
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jack P Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Irene Cuadrado
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ángel Amesty
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Sandra Oramas-Royo
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Ana Estévez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| | - Sonsoles Hortelano
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de, Enfermedades Raras (IIER), Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain.
| | - Beatriz de Las Heras
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
148
|
Dobrev D, Heijman J, Hiram R, Li N, Nattel S. Inflammatory signalling in atrial cardiomyocytes: a novel unifying principle in atrial fibrillation pathophysiology. Nat Rev Cardiol 2023; 20:145-167. [PMID: 36109633 PMCID: PMC9477170 DOI: 10.1038/s41569-022-00759-w] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 02/08/2023]
Abstract
Inflammation has been implicated in atrial fibrillation (AF), a very common and clinically significant cardiac rhythm disturbance, but its precise role remains poorly understood. Work performed over the past 5 years suggests that atrial cardiomyocytes have inflammatory signalling machinery - in particular, components of the NLRP3 (NACHT-, LRR- and pyrin domain-containing 3) inflammasome - that is activated in animal models and patients with AF. Furthermore, work in animal models suggests that NLRP3 inflammasome activation in atrial cardiomyocytes might be a sufficient and necessary condition for AF occurrence. In this Review, we evaluate the evidence for the role and pathophysiological significance of cardiomyocyte NLRP3 signalling in AF. We first summarize the evidence for a role of inflammation in AF and review the biochemical properties of the NLRP3 inflammasome, as defined primarily in studies of classic inflammation. We then briefly consider the broader evidence for a role of inflammatory signalling in heart disease, particularly conditions that predispose individuals to develop AF. We provide a detailed discussion of the available information about atrial cardiomyocyte NLRP3 inflammasome signalling in AF and related conditions and evaluate the possibility that similar signalling might be important in non-myocyte cardiac cells. We then review the evidence on the role of active resolution of inflammation and its potential importance in suppressing AF-related inflammatory signalling. Finally, we consider the therapeutic potential and broader implications of this new knowledge and highlight crucial questions to be addressed in future research.
Collapse
Affiliation(s)
- Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Roddy Hiram
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Na Li
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany.
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada.
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
149
|
Li X, Kerindongo RP, Preckel B, Kalina JO, Hollmann MW, Zuurbier CJ, Weber NC. Canagliflozin inhibits inflammasome activation in diabetic endothelial cells - Revealing a novel calcium-dependent anti-inflammatory effect of canagliflozin on human diabetic endothelial cells. Biomed Pharmacother 2023; 159:114228. [PMID: 36623448 DOI: 10.1016/j.biopha.2023.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Canagliflozin (CANA) shows anti-inflammatory and anti-oxidative effects on endothelial cells (ECs). In diabetes mellitus (DM), excessive reactive oxygen species (ROS) generation, increased intracellular calcium (Ca2+) and enhanced extracellular signal regulated kinase (ERK) 1/2 phosphorylation are crucial precursors for inflammasome activation. We hypothesized that: (1) CANA prevents the TNF-α triggered ROS generation in ECs from diabetic donors and in turn suppresses the inflammasome activation; and (2) the anti-inflammatory effect of CANA is mediated via intracellular Ca2+ and ERK1/2. METHODS Human coronary artery endothelial cells from donors with DM (D-HCAECs) were pre-incubated with either CANA or vehicle for 2 h before exposure to 50 ng/ml TNF-α for 2-48 h. NAC was applied to scavenge ROS, BAPTA-AM to chelate intracellular Ca2+, and PD 98059 to inhibit the activation of ERK1/2. Live cell imaging was performed at 6 h to measure ROS and intracellular Ca2+. At 48 h, ELISA and infra-red western blot were applied to detect IL-1β, NLRP3, pro-caspase-1 and ASC. RESULTS 10 µM CANA significantly reduced TNF-α related ROS generation, IL-1β production and NLRP3 expression (P all <0.05), but NAC did not alter the inflammasome activation (P > 0.05). CANA and BAPTA both prevented intracellular Ca2+ increase in cells exposed to TNF-α (P both <0.05). Moreover, BAPTA and PD 98059 significantly reduced the TNF-α triggered IL-1β production as well as NLRP3 and pro-caspase-1 expression (P all <0.05). CONCLUSION CANA suppresses inflammasome activation by inhibition of (1) intracellular Ca2+ and (2) ERK1/2 phosphorylation, but not by ROS reduction.
Collapse
Affiliation(s)
- Xiaoling Li
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| | - Raphaela P Kerindongo
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| | - Benedikt Preckel
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| | - Jan-Ole Kalina
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| | - Markus W Hollmann
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| | - Coert J Zuurbier
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| | - Nina C Weber
- Amsterdam, University Medical Centers, location AMC, Department of Anesthesiology - L.E.I.C.A, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
150
|
Wang Q, Peng D, Huang B, Men L, Jiang T, Huo S, Wang M, Guo J, Lv J, Lin L. Notopterol Ameliorates Hyperuricemia-Induced Cardiac Dysfunction in Mice. Pharmaceuticals (Basel) 2023; 16:ph16030361. [PMID: 36986461 PMCID: PMC10052463 DOI: 10.3390/ph16030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023] Open
Abstract
Notopterol is a naturally occurring furanocoumarin compound found in the root of Notopterygium incisum. Hyperuricemia involves the activation of chronic inflammation and leads to cardiac damage. Whether notopterol has cardioprotective potential in hyperuricemia mice remains elusive. The hyperuricemic mouse model was constructed by administration of potassium oxonate and adenine every other day for six weeks. Notopterol (20 mg/kg) and allopurinol (10 mg/kg) were given daily as treatment, respectively. The results showed that hyperuricemia dampened heart function and reduced exercise capacity. Notopterol treatment improved exercise capacity and alleviated cardiac dysfunction in hyperuricemic mice. P2X7R and pyroptosis signals were activated both in hyperuricemic mice and in uric acid-stimulated H9c2 cells. Additionally, it was verified that inhibition of P2X7R alleviated pyroptosis and inflammatory signals in uric acid-treated H9c2 cells. Notopterol administration significantly suppressed expression levels of pyroptosis associated proteins and P2X7R in vivo and in vitro. P2X7R overexpression abolished the inhibition effect of notopterol on pyroptosis. Collectively, our findings suggested that P2X7R played a critical role in uric acid-induced NLRP3 inflammatory signals. Notopterol inhibited pyroptosis via inhibiting the P2X7R/NLRP3 signaling pathway under uric acid stimulation. Notopterol might represent a potential therapeutic strategy against pyroptosis and improve cardiac function in hyperuricemic mice.
Collapse
Affiliation(s)
- Qian Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingyu Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lintong Men
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tao Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: or
| |
Collapse
|