101
|
García-Fernández A, Carattoli A. Plasmid double locus sequence typing for IncHI2 plasmids, a subtyping scheme for the characterization of IncHI2 plasmids carrying extended-spectrum beta-lactamase and quinolone resistance genes. J Antimicrob Chemother 2010; 65:1155-61. [PMID: 20356905 DOI: 10.1093/jac/dkq101] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES IncHI2 plasmids are frequently encountered in clinical enterobacterial strains associated with the dissemination of relevant antimicrobial resistance genes. These plasmids are usually >250 kb, and technical difficulties can impair plasmid DNA purification and comparison by restriction fragment length polymorphism. We analysed the available IncHI2 whole DNA plasmid sequences to devise a rapid typing scheme to categorize the members of this plasmid family into homogeneous groups. METHODS We compared the available full IncHI2 plasmid sequences, identifying conserved and variable regions within the backbone of this plasmid family, to devise an IncHI2 typing method based on sequence typing and multiplex PCRs. A collection of IncHI2 plasmids carrying extended-spectrum beta-lactamase and quinolone resistance genes, identified in strains from different sources (animals and humans) and geographical origins, was tested by these typing systems. RESULTS We devised a plasmid double locus sequence typing (pDLST) scheme and a multiplex PCR discriminating IncHI2 plasmid variants. These systems were tested on a collection of IncHI2 plasmids, demonstrating that the plasmids carrying blaCTX-M-2 and blaCTX-M-9 belonged to two major plasmid variants, which were highly conserved among different enterobacterial species disseminated in several European countries. CONCLUSIONS The ability to recognize and subcategorize plasmids by pDLST in homogeneous groups on the basis of their phylogenetic relatedness can be helpful to analyse their distribution in nature and to discover of their evolutionary origin.
Collapse
Affiliation(s)
- Aurora García-Fernández
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
102
|
Chen LF, Chopra T, Kaye KS. Pathogens Resistant to Antibacterial Agents. Infect Dis Clin North Am 2009; 23:817-45, vii. [DOI: 10.1016/j.idc.2009.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
103
|
Isolation and sequence analysis of a small cryptic plasmid pRK10 from a corrosion inhibitor degrading strain Serratia marcescens ACE2. Plasmid 2009; 62:183-90. [DOI: 10.1016/j.plasmid.2009.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 11/22/2022]
|
104
|
Garcillán-Barcia MP, Francia MV, de la Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 2009; 33:657-87. [PMID: 19396961 DOI: 10.1111/j.1574-6976.2009.00168.x] [Citation(s) in RCA: 392] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacterial conjugation is an efficient and sophisticated mechanism of DNA transfer among bacteria. While mobilizable plasmids only encode a minimal MOB machinery that allows them to be transported by other plasmids, conjugative plasmids encode a complete set of transfer genes (MOB1T4SS). The only essential ingredient of the MOB machinery is the relaxase, the protein that initiates and terminates conjugative DNA processing. In this review we compared the sequences and properties of the relaxase proteins contained in gene sequence databases. Proteins were arranged in families and phylogenetic trees constructed from the family alignments. This allowed the classification of conjugative transfer systems in six MOB families:MOB(F), MOB(H), MOB(Q), MOB(C), MOB(P) and MOB(V). The main characteristics of each family were reviewed. The phylogenetic relationships of the coupling proteins were also analysed and resulted in phylogenies congruent to those of the cognate relaxases. We propose that the sequences of plasmid relaxases can be used for plasmid classification. We hope our effort will provide researchers with a useful tool for further mining and analysing the plasmid universe both experimentally and in silico.
Collapse
Affiliation(s)
- María Pilar Garcillán-Barcia
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-IDICAN, Santander, Spain
| | | | | |
Collapse
|
105
|
Paauw A, Caspers MPM, Leverstein-van Hall MA, Schuren FHJ, Montijn RC, Verhoef J, Fluit AC. Identification of resistance and virulence factors in an epidemic Enterobacter hormaechei outbreak strain. MICROBIOLOGY-SGM 2009; 155:1478-1488. [PMID: 19372158 DOI: 10.1099/mic.0.024828-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial strains differ in their ability to cause hospital outbreaks. Using comparative genomic hybridization, Enterobacter cloacae complex isolates were studied to identify genetic markers specific for Enterobacter cloacae complex outbreak strains. No outbreak-specific genes were found that were common in all investigated outbreak strains. Therefore, the aim of our study was to identify specific genetic markers for an Enterobacter hormaechei outbreak strain (EHOS) that caused a nationwide outbreak in The Netherlands. Most EHOS isolates carried a large conjugative plasmid (pQC) containing genes encoding heavy-metal resistance, mobile elements, pili-associated proteins and exported proteins as well as multiple-resistance genes. Furthermore, the chromosomally encoded high-pathogenicity island (HPI) was highly associated with the EHOS strain. In addition, other DNA fragments were identified that were associated with virulence: three DNA fragments known to be located on a virulence plasmid (pLVPK), as well as phage- and plasmid-related sequences. Also, four DNA fragments encoding putative pili with the most homology to pili of Salmonella enterica were associated with the EHOS. Finally, four DNA fragments encoding putative outer-membrane proteins were negatively associated with the EHOS. In conclusion, resistance and putative virulence genes were identified in the EHOS that may have contributed to increased epidemicity. The high number of genes detected in the EHOS that were related to transferable elements reflects the genomic plasticity of the E. cloacae complex and may explain the emergence of the EHOS in the hospital environment.
Collapse
Affiliation(s)
- Armand Paauw
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | - Roy C Montijn
- TNO Department of Microbiology, Zeist, The Netherlands
| | - Jan Verhoef
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ad C Fluit
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
106
|
|
107
|
Inc A/C plasmids are prevalent in multidrug-resistant Salmonella enterica isolates. Appl Environ Microbiol 2009; 75:1908-15. [PMID: 19181840 DOI: 10.1128/aem.02228-08] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial plasmids are fragments of extrachromosomal double-stranded DNA that can contain a variety of genes that are beneficial to the host organism, like those responsible for antimicrobial resistance. The objective of this study was to characterize a collection of 437 Salmonella enterica isolates from different animal sources for their antimicrobial resistance phenotypes and plasmid replicon types and, in some cases, by pulsed-field gel electrophoresis (PFGE) in an effort to learn more about the distribution of multidrug resistance in relation to replicon types. A PCR-based replicon typing assay consisting of three multiplex PCRs was used to detect 18 of the 26 known plasmid types in the Enterobacteriaceae based on their incompatibility (Inc) replicon types. Linkage analysis was completed with antibiograms, replicon types, serovars, and Inc A/C. Inc A/C plasmids were prevalent in multidrug-resistant isolates with the notable exception of Salmonella enterica serovar Typhimurium. Cluster analysis based on PFGE of a subset of 216 isolates showed 155 unique types, suggesting a variable population, but distinct clusters of isolates with Inc A/C plasmids were apparent. Significant linkage of serovar was also seen with Inc replicon types B/O, I1, Frep, and HI1. The present study showed that the combination of Salmonella, the Inc A/C plasmids, and multiple-drug-resistant genes is very old. Our results suggest that some strains, notably serovar Typhimurium and closely related types, may have once carried the plasmid but that the resistance genes were transferred to the chromosome with the subsequent loss of the plasmid.
Collapse
|
108
|
Miyakoshi M, Nishida H, Shintani M, Yamane H, Nojiri H. High-resolution mapping of plasmid transcriptomes in different host bacteria. BMC Genomics 2009; 10:12. [PMID: 19134166 PMCID: PMC2642839 DOI: 10.1186/1471-2164-10-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 01/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmids are extrachromosomal elements that replicate autonomously, and many can be transmitted between bacterial cells through conjugation. Although the transcription pattern of genes on a plasmid can be altered by a change in host background, the expression range of plasmid genes that will result in phenotypic variation has not been quantitatively investigated. RESULTS Using a microarray with evenly tiled probes at a density of 9 bp, we mapped and quantified the transcripts of the carbazole catabolic plasmid pCAR1 in its original host Pseudomonas resinovorans CA10 and the transconjugant P. putida KT2440(pCAR1) during growth on either carbazole or succinate as the sole carbon source. We identified the operons in pCAR1, which consisted of nearly identical transcription units despite the difference in host background during growth on the same carbon source. In accordance with previous studies, the catabolic operons for carbazole degradation were upregulated during growth on carbazole in both hosts. However, our tiling array results also showed that several operons flanking the transfer gene cluster were transcribed at significantly higher levels in the transconjugant than in the original host. The number of transcripts and the positions of the transcription start sites agreed with our quantitative RT-PCR and primer extension results. CONCLUSION Our tiling array results indicate that the levels of transcription for the operons on a plasmid can vary by host background. High-resolution mapping using an unbiased tiling array is a valuable tool for the simultaneous identification and quantification of prokaryotic transcriptomes including polycistronic operons and non-coding RNAs.
Collapse
|
109
|
Abstract
The horizontal transfer of genes encoded on mobile genetic elements (MGEs) such as plasmids and phage and their associated hitchhiking elements (transposons, integrons, integrative and conjugative elements, and insertion sequences) rapidly accelerate genome diversification of microorganisms, thereby affecting their physiology, metabolism, pathogenicity,and ecological character. The analyses of completed prokaryotic genomes reveal that horizontal gene transfer (HGT) continues to be an important factor contributing to the innovation of microbial genomes. Indeed, microbial genomes are remarkably dynamic and a considerable amount of genetic information is inserted or deleted by HGT mechanisms. Thus, HGT and the vast pool of MGEs provide microbial communities with an unparalleled means by which to respond rapidly to changing environmental conditions and exploit new ecological niches. Metals and radionuclide contamination in soils, the subsurface, and aquifers poses a serious challenge to microbial growth and survival because these contaminants cannot be transformed or biodegraded into non-toxic forms as often occurs with organic xenobiotic contaminants. In this chapter we present cases in which HGT has been demonstrated to contribute to the dissemination of genes that provide adaptation to contaminant stress (i.e., toxic heavy metals and radionuclides). In addition, we present directions for future studies that could provide even greater insights into the contributions of HGT to adaptation for survival in mixed waste sites.
Collapse
|
110
|
Abstract
Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid-free cells. Finally, various molecular adaptations of plasmids to better match the genetic background of their bacterial host cell will be described.
Collapse
|
111
|
Brilli M, Mengoni A, Fondi M, Bazzicalupo M, Liò P, Fani R. Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network. BMC Bioinformatics 2008; 9:551. [PMID: 19099604 PMCID: PMC2640388 DOI: 10.1186/1471-2105-9-551] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 12/21/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phylogenetic methods are well-established bioinformatic tools for sequence analysis, allowing to describe the non-independencies of sequences because of their common ancestor. However, the evolutionary profiles of bacterial genes are often complicated by hidden paralogy and extensive and/or (multiple) horizontal gene transfer (HGT) events which make bifurcating trees often inappropriate. In this context, plasmid sequences are paradigms of network-like relationships characterizing the evolution of prokaryotes. Actually, they can be transferred among different organisms allowing the dissemination of novel functions, thus playing a pivotal role in prokaryotic evolution. However, the study of their evolutionary dynamics is complicated by the absence of universally shared genes, a prerequisite for phylogenetic analyses. RESULTS To overcome such limitations we developed a bioinformatic package, named Blast2Network (B2N), allowing the automatic phylogenetic profiling and the visualization of homology relationships in a large number of plasmid sequences. The software was applied to the study of 47 completely sequenced plasmids coming from Escherichia, Salmonella and Shigella spps. CONCLUSION The tools implemented by B2N allow to describe and visualize in a new way some of the evolutionary features of plasmid molecules of Enterobacteriaceae; in particular it helped to shed some light on the complex history of Escherichia, Salmonella and Shigella plasmids and to focus on possible roles of unannotated proteins.The proposed methodology is general enough to be used for comparative genomic analyses of bacteria.
Collapse
Affiliation(s)
- Matteo Brilli
- Department of Evolutionary Biology, University of Florence, via Romana 17, I-50125 Florence, Italy.
| | | | | | | | | | | |
Collapse
|
112
|
Abstract
The DNA sequences of two IncHI2 plasmids, pEC-IMP and pEC-IMPQ, from metallo-beta-lactamase-producing Enterobacter cloacae clinical isolates were determined. The two conjugative plasmids are almost identical, but pEC-IMPQ carries an additional segment containing an orf513 (ISCR1), a truncated 3' conserved sequence, and a qnrB2. Comparative analyses provide support for the proposed ISCR1-mediated gene mobilization.
Collapse
|
113
|
Parks AR, Peters JE. Tn7 elements: engendering diversity from chromosomes to episomes. Plasmid 2008; 61:1-14. [PMID: 18951916 DOI: 10.1016/j.plasmid.2008.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 09/24/2008] [Accepted: 09/29/2008] [Indexed: 11/18/2022]
Abstract
The bacterial transposon Tn7 maintains two distinct lifestyles, one in horizontally transferred DNA and the other in bacterial chromosomes. Access to these two DNA pools is mediated by two separate target selection pathways. The proteins involved in these pathways have evolved to specifically activate transposition into their cognate target-sites using entirely different recognition mechanisms, but the same core transposition machinery. In this review we discuss how the molecular mechanisms of Tn7-like elements contribute to their diversification and how they affect the evolution of their host genomes. The analysis of over 50 Tn7-like elements provides insight into the evolution of Tn7 and Tn7 relatives. In addition to the genes required for transposition, Tn7-like elements transport a wide variety of genes that contribute to the success of diverse organisms. We propose that by decisively moving between mobile and stationary DNA pools, Tn7-like elements accumulate a broad range of genetic material, providing a selective advantage for diverse host bacteria.
Collapse
Affiliation(s)
- Adam R Parks
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
114
|
KHM-1, a novel plasmid-mediated metallo-beta-lactamase from a Citrobacter freundii clinical isolate. Antimicrob Agents Chemother 2008; 52:4194-7. [PMID: 18765691 DOI: 10.1128/aac.01337-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel gene, bla(KHM-1), encoding a metallo-beta-lactamase, KHM-1, was cloned from a clinical isolate of Citrobacter freundii resistant to most beta-lactam antibiotics. Escherichia coli expressing bla(KHM-1) was resistant to all broad-spectrum beta-lactams except for monobactams and showed reduced susceptibility to carbapenems. Recombinant KHM-1 exhibited EDTA-inhibitable hydrolytic activity against most beta-lactams, with an overall preference for cephalosporins.
Collapse
|
115
|
Behavior of the IncP-7 carbazole-degradative plasmid pCAR1 in artificial environmental samples. Appl Microbiol Biotechnol 2008; 80:485-97. [PMID: 18592232 DOI: 10.1007/s00253-008-1564-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
Abstract
In artificial environmental samples, the behavior of the IncP-7 conjugative plasmid pCAR1, which is involved in the catabolism of carbazole, was monitored. Sterile soil and water samples supplemented with carbazole were prepared. After inoculation with Pseudomonas putida harboring pCAR1, seven species of the genus Pseudomonas, and three other bacterial species, were monitored for carbazole degradation, bacterial survival, and conjugative transfer of pCAR1. In artificial soils, more than 90% of the carbazole was degraded in samples with high water content, suggesting that the water content is a key factor in carbazole degradation in artificial soils. In three of the artificial environmental water samples, more than 95% of the carbazole was degraded. Transconjugants were detected in some artificial water samples, but not in the artificial soil samples, suggesting that pCAR1 is preferably transferred in aqueous environments. Composition analysis of the artificial water samples and examination of conjugative transfer indicated that the presence of the divalent cations Ca(2+) and Mg(2+) promoted the plasmid transfer. The presence of carbazole also increases in incidence of transconjugants, probably by enhancing their growth. In contrast, humic acids in the liquid layer of artificial soil samples appeared to prevent conjugative transfer.
Collapse
|
116
|
Complete Sequence of p07-406, a 24,179-base-pair plasmid harboring the blaVIM-7 metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother 2008; 52:3099-105. [PMID: 18591274 DOI: 10.1128/aac.01093-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An outbreak involving a Pseudomonas aeruginosa strain that was resistant to all tested antimicrobials except polymyxin B occurred in a hospital in Houston, TX. Previous studies on this strain showed that it possesses a novel mobile metallo-beta-lactamase (MBL) gene, designated bla(VIM-7), located on a plasmid (p07-406). Here, we report the complete sequence, annotation, and functional characterization of this plasmid. p07-406 is 24,179 bp in length, and 29 open reading frames were identified related to known or putatively recognized proteins. Analysis of this plasmid showed it to be comprised of four distinct regions: (i) a region of 5,200 bp having a Tn501-like mercuric resistance (mer) transposon upstream of the replication region; (ii) a Tn3-like transposon carrying a truncated integron with a bla(VIM-7) gene and an insertion sequence inserted at the other end of this transposon; (iii) a region of four genes, upstream of the Tn3-like transposon, possessing very high similarity to plasmid pXcB from Xanthomonas campestris pv. citri commonly associated with plants; (iv) a backbone sequence similar to the backbone structure of the IncP group plasmid Rms149, pB10, and R751. This is the first plasmid to be sequenced carrying an MBL gene and highlights the amelioration of DNA segments from disparate origins, most noticeably from plant pathogens.
Collapse
|
117
|
Entry exclusion in the IncHI1 plasmid R27 is mediated by EexA and EexB. Plasmid 2008; 59:86-101. [DOI: 10.1016/j.plasmid.2007.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 10/04/2007] [Accepted: 11/27/2007] [Indexed: 11/18/2022]
|
118
|
Different pathways to acquiring resistance genes illustrated by the recent evolution of IncW plasmids. Antimicrob Agents Chemother 2008; 52:1472-80. [PMID: 18268088 PMCID: PMC2292564 DOI: 10.1128/aac.00982-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA sequence analysis of five IncW plasmids (R388, pSa, R7K, pIE321, and pIE522) demonstrated that they share a considerable portion of their genomes and allowed us to define the IncW backbone. Among these plasmids, the backbone is stable and seems to have diverged recently, since the overall identity among its members is higher than 95%. The only gene in which significant variation was observed was trwA; the changes in the coding sequence correlated with parallel changes in the corresponding TrwA binding sites at oriT, suggesting a functional connection between both sets of changes. The present IncW plasmid diversity is shaped by the acquisition of antibiotic resistance genes as a consequence of the pressure exerted by antibiotic usage. Sequence comparisons pinpointed the insertion events that differentiated the five plasmids analyzed. Of greatest interest is that a single acquisition of a class I integron platform, into which different gene cassettes were later incorporated, gave rise to plasmids R388, pIE522, and pSa, while plasmids R7K and pIE321 do not contain the integron platform and arose in the antibiotic world because of the insertion of several antibiotic resistance transposons.
Collapse
|
119
|
Complete DNA sequence and analysis of the transferable multiple-drug resistance plasmids (R Plasmids) from Photobacterium damselae subsp. piscicida isolates collected in Japan and the United States. Antimicrob Agents Chemother 2007; 52:606-11. [PMID: 18070959 DOI: 10.1128/aac.01216-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photobacterium damselae subsp. piscicida is a bacterial fish pathogen that causes a disease known as pasteurellosis. Two transferable multiple-drug resistance (R) plasmids, pP99-018 (carrying resistance to kanamycin, chloramphenicol, tetracycline, and sulfonamide) and pP91278 (carrying resistance to tetracycline, trimethoprim, and sulfonamide), isolated from P. damselae subsp. piscicida strains from Japan (P99-018) and the United States (P91278), respectively, were completely sequenced and analyzed, along with the multiple-drug resistance regions of three other R plasmids also from P. damselae subsp. piscicida strains from Japan. The sequence structures of pP99-018 (150,057 bp) and pP91278 (131,520 bp) were highly conserved, with differences due to variation in the drug resistance and conjugative transfer regions. These plasmids, shown to be closely related to the IncJ element R391 (a conjugative, self-transmitting, integrating element, or constin), were divided into the conjugative transfer, replication, partition, and multiple-drug resistance regions. Each of the five multiple-drug resistance regions sequenced exhibited unique drug resistance marker composition and arrangement.
Collapse
|
120
|
García Fernández A, Cloeckaert A, Bertini A, Praud K, Doublet B, Weill FX, Carattoli A. Comparative analysis of IncHI2 plasmids carrying blaCTX-M-2 or blaCTX-M-9 from Escherichia coli and Salmonella enterica strains isolated from poultry and humans. Antimicrob Agents Chemother 2007; 51:4177-80. [PMID: 17698627 PMCID: PMC2151457 DOI: 10.1128/aac.00603-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica bla(CTX-M-2) and bla(CTX-M-9) plasmid backbones from isolates from Belgium and France were analyzed. The bla(CTX-M-2-)plasmids from both human and poultry isolates were related to the IncHI2 pAPEC-O1-R plasmid, previously identified in the United States in avian Escherichia coli strains; the bla(CTX-M-9) plasmids were closely related to the IncHI2 R478 plasmid.
Collapse
Affiliation(s)
- Aurora García Fernández
- Department of Infectious, Parasitic, Immune-Mediated diseases, Instituto superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
121
|
|
122
|
Chen YT, Lauderdale TL, Liao TL, Shiau YR, Shu HY, Wu KM, Yan JJ, Su IJ, Tsai SF. Sequencing and comparative genomic analysis of pK29, a 269-kilobase conjugative plasmid encoding CMY-8 and CTX-M-3 beta-lactamases in Klebsiella pneumoniae. Antimicrob Agents Chemother 2007; 51:3004-7. [PMID: 17526756 PMCID: PMC1932545 DOI: 10.1128/aac.00167-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 269-kilobase conjugative plasmid, pK29, from a Klebsiella pneumoniae strain was sequenced. The plasmid harbors multiple antimicrobial resistance genes, including those encoding CMY-8 AmpC-type and CTX-M-3 extended-spectrum beta-lactamases in the common backbone of IncHI2 plasmids. Mechanisms for dissemination of the resistance genes are highlighted in comparative genomic analyses.
Collapse
Affiliation(s)
- Ying-Tsong Chen
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Rensing C, Franke S. Copper Homeostasis in Escherichia coli and Other Enterobacteriaceae. EcoSal Plus 2007; 2. [PMID: 26443582 DOI: 10.1128/ecosalplus.5.4.4.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Indexed: 06/05/2023]
Abstract
An interesting model for studying environmental influences shaping microbial evolution is provided by a multitude of copper resistance and copper homeostasis determinants in enteric bacteria. This review describes these determinants and tries to relate their presence to the habitat of the respective organism, as a current hypothesis predicts that the environment should determine an organism's genetic makeup. In Escherichia coli there are four regulons that are induced in the presence of copper. Two, the CueR and the CusR regulons, are described in detail. A central component regulating intracellular copper levels, present in all free-living enteric bacteria whose genomes have so far been sequenced, is a Cu(I)translocating P-type ATPase. The P-type ATPase superfamily is a ubiquitous group of proteins involved in the transport of charged substrates across biological membranes. Whereas some components involved in copper homeostasis can be found in both anaerobes and aerobes, multi-copper oxidases (MCOs) implicated in copper tolerance in E. coli, such as CueO and the plasmid-based PcoA, can be found only in aerobic organisms. Several features indicate that CueO, PcoA, and other related MCOs are specifically adapted to combat copper-mediated oxidative damage. In addition to these well-characterized resistance operons, there are numerous other genes that appear to be involved in copper binding and trafficking that have not been studied in great detail. SilE and its homologue PcoE, for example, are thought to effect the periplasmic binding and sequestration of silver and copper, respectively.
Collapse
|
124
|
Holt KE, Thomson NR, Wain J, Phan MD, Nair S, Hasan R, Bhutta ZA, Quail MA, Norbertczak H, Walker D, Dougan G, Parkhill J. Multidrug-resistant Salmonella enterica serovar paratyphi A harbors IncHI1 plasmids similar to those found in serovar typhi. J Bacteriol 2007; 189:4257-64. [PMID: 17384186 PMCID: PMC1913411 DOI: 10.1128/jb.00232-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovars Typhi and Paratyphi A cause systemic infections in humans which are referred to as enteric fever. Multidrug-resistant (MDR) serovar Typhi isolates emerged in the 1980s, and in recent years MDR serovar Paratyphi A infections have become established as a significant problem across Asia. MDR in serovar Typhi is almost invariably associated with IncHI1 plasmids, but the genetic basis of MDR in serovar Paratyphi A has remained predominantly undefined. The DNA sequence of an IncHI1 plasmid, pAKU_1, encoding MDR in a serovar Paratyphi A strain has been determined. Significantly, this plasmid shares a common IncHI1-associated DNA backbone with the serovar Typhi plasmid pHCM1 and an S. enterica serovar Typhimurium plasmid pR27. Plasmids pAKU_1 and pHCM1 share 14 antibiotic resistance genes encoded within similar mobile elements, which appear to form a 24-kb composite transposon that has transferred as a single unit into different positions into their IncHI1 backbones. Thus, these plasmids have acquired similar antibiotic resistance genes independently via the horizontal transfer of mobile DNA elements. Furthermore, two IncHI1 plasmids from a Vietnamese isolate of serovar Typhi were found to contain features of the backbone sequence of pAKU_1 rather than pHCM1, with the composite transposon inserted in the same location as in the pAKU_1 sequence. Our data show that these serovar Typhi and Paratyphi A IncHI1 plasmids share highly conserved core DNA and have acquired similar mobile elements encoding antibiotic resistance genes in past decades.
Collapse
Affiliation(s)
- Kathryn E Holt
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Over the millennia, microorganisms have evolved evasion strategies to overcome a myriad of chemical and environmental challenges, including antimicrobial drugs. Even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Moreover, the potential problem of the widespread distribution of antibiotic resistant bacteria was recognized by scientists and healthcare specialists from the initial use of these drugs. Why is resistance inevitable and where does it come from? Understanding the molecular diversity that underlies resistance will inform our use of these drugs and guide efforts to develop new efficacious antibiotics.
Collapse
Affiliation(s)
- Gerard D Wright
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1200 Main Street West Hamilton, Ontario, L8N 3Z5, Canada.
| |
Collapse
|
126
|
Thompson SA, Maani EV, Lindell AH, King CJ, McArthur JV. Novel tetracycline resistance determinant isolated from an environmental strain of Serratia marcescens. Appl Environ Microbiol 2007; 73:2199-206. [PMID: 17308196 PMCID: PMC1855637 DOI: 10.1128/aem.02511-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistances to tetracycline and mercury were identified in an environmental strain of Serratia marcescens isolated from a stream highly contaminated with heavy metals. As a step toward addressing the mechanisms of coselection of heavy metal and antibiotic resistances, the tetracycline resistance determinant was cloned in Escherichia coli. Within the cloned 13-kb segment, the tetracycline resistance locus was localized by deletion analysis and transposon mutagenesis. DNA sequence analysis of an 8.0-kb region revealed a novel gene [tetA(41)] that was predicted to encode a tetracycline efflux pump. Phylogenetic analysis showed that the TetA(41) protein was most closely related to the Tet(39) efflux protein of Acinetobacter spp. yet had less than 80% amino acid identity with known tetracycline efflux pumps. Adjacent to the tetA(41) gene was a divergently transcribed gene [tetR(41)] predicted to encode a tetracycline-responsive repressor protein. The tetA(41)-tetR(41) intergenic region contained putative operators for TetR(41) binding. The tetA(41) and tetR(41) promoters were analyzed using lacZ fusions, which showed that the expression of both the tetA(41) and tetR(41) genes exhibited TetR(41)-dependent regulation by subinhibitory concentrations of tetracycline. The apparent lack of plasmids in this S. marcescens strain, as well as the presence of metabolic genes adjacent to the tetracycline resistance locus, suggested that the genes were located on the S. marcescens chromosome and may have been acquired by transduction. The cloned Tet 41 determinant did not confer mercury resistance to E. coli, confirming that Tet 41 is a tetracycline-specific efflux pump rather than a multidrug transporter.
Collapse
Affiliation(s)
- Stuart A Thompson
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-2100, USA.
| | | | | | | | | |
Collapse
|
127
|
Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, Nolan LK. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol 2007; 73:1976-83. [PMID: 17277222 PMCID: PMC1828809 DOI: 10.1128/aem.02171-06] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the critical role of plasmids in horizontal gene transfer, few studies have characterized plasmid relatedness among different bacterial populations. Recently, a multiplex PCR replicon typing protocol was developed for classification of plasmids occurring in members of the Enterobacteriaceae. Here, a simplified version of this replicon typing procedure which requires only three multiplex panels to identify 18 plasmid replicons is described. This method was used to screen 1,015 Escherichia coli isolates of avian, human, and poultry meat origin for plasmid replicon types. Additionally, the isolates were assessed for their content of several colicin-associated genes. Overall, a high degree of plasmid variability was observed, with 221 different profiles occurring among the 1,015 isolates examined. IncFIB plasmids were the most common type identified, regardless of the source type of E. coli. IncFIB plasmids occurred significantly more often in avian pathogenic E. coli (APEC) and retail poultry E. coli (RPEC) than in uropathogenic E. coli (UPEC) and avian and human fecal commensal E. coli isolates (AFEC and HFEC, respectively). APEC and RPEC were also significantly more likely than UPEC, HFEC, and AFEC to possess the colicin-associated genes cvaC, cbi, and/or cma in conjunction with one or more plasmid replicons. The results suggest that E. coli isolates contaminating retail poultry are notably similar to APEC with regard to plasmid profiles, with both generally containing multiple plasmid replicon types in conjunction with colicin-related genes. In contrast, UPEC and human and avian commensal E. coli isolates generally lack the plasmid replicons and colicin-related genes seen in APEC and RPEC, suggesting limited dissemination of such plasmids among these bacterial populations.
Collapse
Affiliation(s)
- Timothy J Johnson
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, 1802 Elwood Drive, VMRI #2, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
128
|
Gunton JE, Gilmour MW, Baptista KP, Lawley TD, Taylor DE. Interaction between the co-inherited TraG coupling protein and the TraJ membrane-associated protein of the H-plasmid conjugative DNA transfer system resembles chromosomal DNA translocases. Microbiology (Reading) 2007; 153:428-441. [PMID: 17259614 DOI: 10.1099/mic.0.2006/001297-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial conjugation is a DNA transfer event that requires three plasmid-encoded multi-protein complexes: the membrane-spanning mating pair formation (Mpf) complex, the cytoplasmic nucleoprotein relaxosome complex, and a homo-multimeric coupling protein that links the Mpf and relaxosome at the cytoplasmic membrane. Bacterial two-hybrid (BTH) technology and immunoprecipitation were used to demonstrate an interaction between the IncH plasmid-encoded transfer protein TraJ and the coupling protein TraG. TraJ is essential for conjugative transfer but is not required for the formation of the conjugative pilus, and is therefore not regarded as an Mpf component. Fractionation studies indicated that TraJ shared a similar cellular domain to that of TraG at the cellular membrane. Protein blast analyses have previously identified TraJ homologues encoded in a multitude of plasmid and chromosomal genomes that were also found to encode an adjacent TraG homologue, thus indicating co-inheritance. BTH analysis of these TraJ and cognate TraG homologues demonstrated conservation of the TraJ-TraG interaction. Additional occurrences of the traJ-traG module were also detected in genomic sequence data throughout the Proteobacteria, and phylogenetic comparison of these IncH-like TraG proteins with the coupling proteins encoded by other conjugative transfer systems (including IncP, IncW and IncF) that lack TraJ homologues indicated that the H-like coupling proteins were distinct. Accordingly, the IncP, IncW and IncF coupling proteins were unable to interact with TraJ, but were able to interact with IncH plasmid-encoded TrhB, an Mpf component known to complex with its cognate coupling protein TraG. The divergence of the IncH-type coupling proteins may partly be due to the requirement of TraJ interaction, and notably, TraG and TraJ cumulatively represent the domain architecture of the known translocase family FtsK/SpoIIIE. It is proposed that TraJ is a functional part of the IncH-type coupling protein complex required for translocation of DNA through the cytoplasmic membrane.
Collapse
Affiliation(s)
- James E Gunton
- Department of Medical Microbiology and Immunology, 1-63 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Matthew W Gilmour
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada
| | - Kelly P Baptista
- Department of Medical Microbiology and Immunology, 1-63 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Trevor D Lawley
- Department of Medical Microbiology, Stanford University, CA 94305, USA
| | - Diane E Taylor
- Department of Medical Microbiology and Immunology, 1-63 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
129
|
Novais A, Cantón R, Valverde A, Machado E, Galán JC, Peixe L, Carattoli A, Baquero F, Coque TM. Dissemination and persistence of blaCTX-M-9 are linked to class 1 integrons containing CR1 associated with defective transposon derivatives from Tn402 located in early antibiotic resistance plasmids of IncHI2, IncP1-alpha, and IncFI groups. Antimicrob Agents Chemother 2006; 50:2741-50. [PMID: 16870767 PMCID: PMC1538643 DOI: 10.1128/aac.00274-06] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study analyzes the diversity of In60, a class 1 integron bearing CR1 and containing bla(CTX-M-9), and its association with Tn402, Tn21, and classical conjugative plasmids among 45 CTX-M-9-producing clinical strains (41 Escherichia coli strains, 2 Klebsiella pneumoniae strains, 1 Salmonella enterica strain, and 1 Enterobacter cloacae strain). Forty-five patients in a Spanish tertiary care hospital were studied (1996 to 2003). The diversity of In60 and association of In60 with Tn402 or mercury resistance transposons were investigated by overlapping PCR assays and/or hybridization. Plasmid characterization included comparison of restriction fragment length polymorphism patterns and determination of incompatibility group by PCR-based replicon typing, sequencing, and hybridization. CTX-M-9 plasmids belonged to IncHI2 (n = 26), IncP-1alpha (n = 10), IncFI (n = 4), and IncI (n = 1) groups. Genetic platforms containing bla(CTX-M-9) were classified in six types in relation to the In60 backbone and in eight subtypes in relation to Tn402 derivatives. They were associated with Tn21 sequences when located in IncP-1alpha or IncHI2 plasmids. Our study identified bla(CTX-M-9) in a high diversity of CR1-bearing class 1 integrons linked to different Tn402 derivatives, often to Tn21, highlighting the role of recombination events in the evolution of antibiotic resistance plasmids. The presence of bla(CTX-M-9) on broad-host-range IncP-1alpha plasmids might contribute to its dissemination to hosts that were not members of the family Enterobacteriaceae.
Collapse
Affiliation(s)
- Angela Novais
- Hospital Universitario Ramón y Cajal, IMSALUD, Madrid 28034, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Cantón R, Coque TM. The CTX-M β-lactamase pandemic. Curr Opin Microbiol 2006; 9:466-75. [PMID: 16942899 DOI: 10.1016/j.mib.2006.08.011] [Citation(s) in RCA: 836] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
In the past decade CTX-M enzymes have become the most prevalent extended-spectrum beta-lactamases, both in nosocomial and in community settings. The insertion sequences (ISs) ISEcp1 and ISCR1 (formerly common region 1 [CR1] or orf513) appear to enable the mobilization of chromosomal beta-lactamase Kluyvera species genes, which display high homology with blaCTX-Ms. These ISs are preferentially linked to specific genes: ISEcp1 to most blaCTX-Ms, and ISCR1 to blaCTX-M-2 or blaCTX-M-9. The blaCTX-M genes embedded in class 1 integrons bearing ISCR1 are associated with different Tn402-derivatives, and often with mercury Tn21-like transposons. The blaCTX-M genes linked to ISEcp1 are often located in multidrug resistance regions containing different transposons and ISs. These structures have been located in narrow and broad host-range plasmids belonging to the same incompatibility groups as those of early antibiotic resistance plasmids. These plasmids frequently carry aminoglycoside, tetracycline, sulfonamide or fluoroquinolone resistance genes [qnr and/or aac(6')-Ib-cr], which would have facilitated the dissemination of blaCTX-M genes because of co-selection processes. In Escherichia coli, they are frequently carried in well-adapted phylogenetic groups with particular virulence-factor genotypes. Also, dissemination has been associated with different clones (CTX-M-9 or CTX-M-14 producers) or epidemic clones associated with specific enzymes such as CTX-M-15. All these events might have contributed to the current pandemic CTX-M beta-lactamase scenario.
Collapse
Affiliation(s)
- Rafael Cantón
- Servicio de Microbiología, Hospital Ramón y Cajal, 28034-Madrid, Spain
| | | |
Collapse
|
131
|
Walsh TR. Combinatorial genetic evolution of multiresistance. Curr Opin Microbiol 2006; 9:476-82. [PMID: 16942901 DOI: 10.1016/j.mib.2006.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Accepted: 08/16/2006] [Indexed: 11/20/2022]
Abstract
The explosion in genetic information, whilst extending our knowledge, might not necessary increase our conceptual understanding on the complexities of bacterial genetics, or why some antibiotic resistant genotypes such as blaCTX-M-15 and blaVIM-2 appear to dominate. However, the information we have thus far suggests that clinical isolates have 'hijacked' plasmids, primarily built of backbone-DNA originating from environmental bacteria. Additionally, the combinatorial presence of other elements such as transposons, integrons, insertion sequence (IS) elements and the 'new' ISCR (IS common region) elements have also contributed to the increase in antibiotic resistance - an antibiotic resistant cluster composing four or five genes has become commonplace. In some instances, the presence of antibiotics themselves, such as fluoroquinolones, can mediate a bacterial SOS cell response, subsequently amplifying and/or augmenting the transfer of large genetic entities therefore, potentially promoting long-term detrimental effects.
Collapse
Affiliation(s)
- Timothy R Walsh
- Department of Molecular and Cellular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
132
|
Johnson TJ, Wannemeuhler YM, Scaccianoce JA, Johnson SJ, Nolan LK. Complete DNA sequence, comparative genomics, and prevalence of an IncHI2 plasmid occurring among extraintestinal pathogenic Escherichia coli isolates. Antimicrob Agents Chemother 2006; 50:3929-33. [PMID: 16940062 PMCID: PMC1635206 DOI: 10.1128/aac.00569-06] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have sequenced a large plasmid that occurs among avian pathogenic Escherichia coli isolates. This plasmid, pAPEC-O1-R, is a 241,387-bp IncHI2 plasmid which is cotransmissible via bacterial conjugation with a ColBM virulence plasmid, encodes resistance to eight antimicrobial agents, and appears to occur at low rates among extraintestinal E. coli isolates.
Collapse
Affiliation(s)
- Timothy J Johnson
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, 1802 Elwood Drive, VMRI 2, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
133
|
Monchy S, Benotmane MA, Wattiez R, van Aelst S, Auquier V, Borremans B, Mergeay M, Taghavi S, van der Lelie D, Vallaeys T. Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. MICROBIOLOGY-SGM 2006; 152:1765-1776. [PMID: 16735739 DOI: 10.1099/mic.0.28593-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The four replicons of Cupriavidus metallidurans CH34 (the genome sequence was provided by the US Department of Energy-University of California Joint Genome Institute) contain two gene clusters putatively encoding periplasmic resistance to copper, with an arrangement of genes resembling that of the copSRABCD locus on the 2.1 Mb megaplasmid (MPL) of Ralstonia solanacearum, a closely related plant pathogen. One of the copSRABCD clusters was located on the 2.6 Mb MPL, while the second was found on the pMOL30 (234 kb) plasmid as part of a larger group of genes involved in copper resistance, spanning 17 857 bp in total. In this region, 19 ORFs (copVTMKNSRABCDIJGFLQHE) were identified based on the sequencing of a fragment cloned in an IncW vector, on the preliminary annotation by the Joint Genome Institute, and by using transcriptomic and proteomic data. When introduced into plasmid-cured derivatives of C. metallidurans CH34, the cop locus was able to restore the wild-type MIC, albeit with a biphasic survival curve, with respect to applied Cu(II) concentration. Quantitative-PCR data showed that the 19 ORFs were induced from 2- to 1159-fold when cells were challenged with elevated Cu(II) concentrations. Microarray data showed that the genes that were most induced after a Cu(II) challenge of 0.1 mM belonged to the pMOL30 cop cluster. Megaplasmidic cop genes were also induced, but at a much lower level, with the exception of the highly expressed MPL copD. Proteomic data allowed direct observation on two-dimensional gel electrophoresis, and via mass spectrometry, of pMOL30 CopK, CopR, CopS, CopA, CopB and CopC proteins. Individual cop gene expression depended on both the Cu(II) concentration and the exposure time, suggesting a sequential scheme in the resistance process, involving genes such as copK and copT in an initial phase, while other genes, such as copH, seem to be involved in a late response phase. A concentration of 0.4 mM Cu(II) was the highest to induce maximal expression of most cop genes.
Collapse
Affiliation(s)
- Sébastien Monchy
- Service de Confirmation des Macromolécules Biologiques et de Bioinformatique, Université Libre de Bruxelles, Belgium
- Laboratories for Microbiology and Radiobiology, SCK.CEN, Boeretang 200, B-2400 Mol, Belgium
| | - Mohammed A Benotmane
- Laboratories for Microbiology and Radiobiology, SCK.CEN, Boeretang 200, B-2400 Mol, Belgium
| | - Ruddy Wattiez
- Département de Protéomique et de Biochimie des Protéines, University of Mons-Hainaut, B-7000 Mons, Belgium
| | - Sébastien van Aelst
- Laboratoire de Microbiologie de l'Université Libre de Bruxelles, campus CERIA, 1 av. E. Gryzon, 1070 Brussels, Belgium
- Laboratories for Microbiology and Radiobiology, SCK.CEN, Boeretang 200, B-2400 Mol, Belgium
| | - Vanessa Auquier
- Centre de Biologie Structurale et de Bioinformatique: Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles, Belgium
| | | | - Max Mergeay
- Laboratories for Microbiology and Radiobiology, SCK.CEN, Boeretang 200, B-2400 Mol, Belgium
| | - Safiyh Taghavi
- Brookhaven National Laboratory, Biology Department, Upton, NY 11973-5000, USA
- Environmental Technology, Vito, B-2400 Mol, Belgium
| | | | - Tatiana Vallaeys
- INRA, Département de Microbiologie, F-78850 Thiverval Grignon, France
- Laboratories for Microbiology and Radiobiology, SCK.CEN, Boeretang 200, B-2400 Mol, Belgium
| |
Collapse
|
134
|
Shintani M, Habe H, Tsuda M, Omori T, Yamane H, Nojiri H. Recipient range of IncP-7 conjugative plasmid pCAR2 from Pseudomonas putida HS01 is broader than from other Pseudomonas strains. Biotechnol Lett 2006; 27:1847-53. [PMID: 16328978 DOI: 10.1007/s10529-005-3892-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 09/19/2005] [Indexed: 12/01/2022]
Abstract
The carbazole-degradative plasmid pCAR2 was isolated from Pseudomonas putida and had a genetic structure similar to that of pCAR1, the IncP-7 archetype plasmid. Mating analyses of pCAR2 with various recipient strains showed that it could transfer from HS01 to Pseudomonas recipients: P. chlororaphis, P. fluorescens, P. putida, P. resinovorans and P. stutzeri. The range of recipients changed when different hosts were used as a donor of pCAR2. The range of the plasmid from strain HS01 was broader than that using P. resinovorans CA10dm4 or P. putida KT2440. When pCAR1 or pCAR2 was transferred from the same cell background, the range and frequency of conjugation were now similar. Quantitative RT-PCR analyses indicated that tra/trh genes on both plasmids were similarly transcribed in each donor strain suggesting that the conjugative machinery of both plasmids may function similarly, and that other host factors are affecting the recipient range and frequency of conjugation.
Collapse
Affiliation(s)
- Masaki Shintani
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, 113-8657, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
135
|
Will WR, Frost LS. Characterization of the opposing roles of H-NS and TraJ in transcriptional regulation of the F-plasmid tra operon. J Bacteriol 2006; 188:507-14. [PMID: 16385041 PMCID: PMC1347297 DOI: 10.1128/jb.188.2.507-514.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The transfer (tra) operon of the conjugative F plasmid of Escherichia coli is a polycistronic 33-kb operon which encodes most of the proteins necessary for F-plasmid transfer. Here, we report that transcription from PY, the tra operon promoter, is repressed by the host nucleoid-associated protein, H-NS. Electrophoretic mobility shift assays indicate that H-NS binds preferentially to the tra promoter region, while Northern blot and transcriptional fusion analyses indicate that transcription of traY, the first gene in the tra operon, is derepressed in an hns mutant throughout growth. The plasmid-encoded regulatory protein TraJ is essential for transcription of the tra operon in wild-type Escherichia coli; however, TraJ is not necessary for plasmid transfer or traY operon transcription in an hns mutant. This indicates that H-NS represses transcription from PY directly and not indirectly via its effects on TraJ levels. These results suggest that TraJ functions to disrupt H-NS silencing at PY, allowing transcription of the tra operon.
Collapse
Affiliation(s)
- William R Will
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|
136
|
Johnson TJ, Siek KE, Johnson SJ, Nolan LK. DNA sequence and comparative genomics of pAPEC-O2-R, an avian pathogenic Escherichia coli transmissible R plasmid. Antimicrob Agents Chemother 2006; 49:4681-8. [PMID: 16251312 PMCID: PMC1280136 DOI: 10.1128/aac.49.11.4681-4688.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, a 101-kb IncF plasmid from an avian pathogenic Escherichia coli (APEC) strain (APEC O2) was sequenced and analyzed, providing the first completed APEC plasmid sequence. This plasmid, pAPEC-O2-R, has functional transfer and antimicrobial resistance-encoding regions. The resistance-encoding region encodes resistance to eight groups of antimicrobial agents, including silver and other heavy metals, quaternary ammonium compounds, tetracycline, sulfonamides, aminoglycosides, trimethoprim, and beta-lactam antimicrobial agents. This region of the plasmid is unique among previously described IncF plasmids in that it possesses a class 1 integron that harbors three gene cassettes and a heavy metal resistance operon. This region spans 33 kb and is flanked by the RepFII plasmid replicon and an assortment of plasmid maintenance genes. pAPEC-O2-R also contains a 32-kb transfer region that is nearly identical to that found in the E. coli F plasmid, rendering it transferable by conjugation to plasmid-less strains of bacteria, including an APEC strain, a fecal E. coli strain from an apparently healthy bird, a Salmonella enterica serovar Typhimurium strain, and a uropathogenic E. coli strain from humans. Differences in the G+C contents of individual open reading frames suggest that various regions of pAPEC-O2-R had dissimilar origins. The presence of pAPEC-O2-R-like plasmids that encode resistance to multiple antimicrobial agents and that are readily transmissible from APEC to other bacteria suggests the possibility that such plasmids may serve as a reservoir of resistance genes for other bacteria of animal and human health significance.
Collapse
Affiliation(s)
- Timothy J Johnson
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 1802 Elwood Drive, VMRI #2, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
137
|
Elton TC, Holland SJ, Frost LS, Hazes B. F-like type IV secretion systems encode proteins with thioredoxin folds that are putative DsbC homologues. J Bacteriol 2006; 187:8267-77. [PMID: 16321931 PMCID: PMC1316991 DOI: 10.1128/jb.187.24.8267-8277.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
F and R27 are conjugative plasmids of enteric bacteria belonging to the IncF and IncHI1 plasmid incompatibility groups, respectively. Based on sequence analysis, two genes of the F transfer region, traF and trbB, and three genes of the R27 transfer region, trhF, dsbC, and htdT, are predicted to encode periplasmic proteins containing a C-terminal thioredoxin fold. The C-X-X-C active-site motif of thioredoxins is present in all of these proteins except TraF(F). Escherichia coli carrying a dsbA mutation, which is deficient in disulfide bond formation, cannot synthesize pili and exhibits hypersensitivity to dithiothreitol (DTT) as monitored by mating ability. Overproduction of the E. coli disulfide bond isomerase DsbC, TrbB(F), DsbC(R27), or HtdT(R27), but not TraF(F) or TrhF(R27), reverses this hypersensitivity to DTT. Site-directed mutagenesis established that the C-X-X-C motif was necessary for this activity. Secretion into the periplasm of the C-terminal regions of TrbB(F) and DsbC(R27), containing putative thioredoxin folds, but not TrhF(R27), partially complemented the host dsbA mutation. A trbB(F) deletion mutant showed a 10-fold-lower mating efficiency in an E. coli dsbC null strain but had no phenotype in wild-type E. coli, suggesting redundancy in function between TrbB(F) and E. coli DsbC. Our results indicate that TrbB(F), DsbC(R27), and HtdT(R27) are putative disulfide bond isomerases for their respective transfer systems. TraF(F) is essential for conjugation but appears to have a function other than disulfide bond chemistry.
Collapse
Affiliation(s)
- Trevor C Elton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | | | |
Collapse
|
138
|
Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005; 63:219-28. [PMID: 15935499 DOI: 10.1016/j.mimet.2005.03.018] [Citation(s) in RCA: 1978] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/15/2005] [Accepted: 03/17/2005] [Indexed: 11/21/2022]
Abstract
The epidemiological importance of tracing plasmids conferring drug resistance prompted us to develop a PCR method based on replicons (inc/rep PCR) of the major plasmid incompatibility groups among Enterobacteriaceae. Eighteen pairs of primers were designed to perform 5 multiplex- and 3 simplex-PCRs, recognizing FIA, FIB, FIC, HI1, HI2, I1-Igamma, L/M, N, P, W, T, A/C, K, B/O, X, Y, F, and FIIA. The specificity of the method was tested on a collection of 61 reference plasmids and on 20 Salmonella enterica strains of different serotypes isolated in Italy. Results indicated that the inc/rep PCR method demonstrates high specificity and sensitivity in detecting replicons on reference plasmids and also revealed the presence of recurrent and common plasmids in epidemiologically unrelated Salmonella isolates of different serotypes. These results suggest that the method is potentially applicable to a large number of strains to trace the diffusion of specific multi-drug resistance plasmids in different environments.
Collapse
Affiliation(s)
- Alessandra Carattoli
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
139
|
Dennis JJ. The evolution of IncP catabolic plasmids. Curr Opin Biotechnol 2005; 16:291-8. [PMID: 15961030 DOI: 10.1016/j.copbio.2005.04.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 03/18/2005] [Accepted: 04/07/2005] [Indexed: 11/20/2022]
Abstract
The recent adoption of whole plasmid genome sequencing as a routine analytical technique has provided the basis for cataloging the historical events through which plasmids are assembled from the available families of modular plasmid components. Horizontal gene transfer mediated by plasmids plays an important role in the adaptation of bacteria to the presence of specific metabolizable compounds, including man-made chemicals, in the surrounding environment. Bacterial plasmid genome sequence comparisons indicate that plasmids have complex genetic histories resulting from transposition, homologous recombination, and illegitimate recombinational events. Evidence from IncP plasmid genome sequences indicates that cryptic plasmid backbones acquire diverse catabolic pathways through gene capture and horizontal gene transfer.
Collapse
Affiliation(s)
- Jonathan J Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| |
Collapse
|
140
|
Abstract
Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada.
| |
Collapse
|