101
|
Role of TREM2 in Alzheimer's Disease: A Long Road Ahead. Mol Neurobiol 2021; 58:5239-5252. [PMID: 34275100 DOI: 10.1007/s12035-021-02477-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by an increasing deterioration of memory, which is concomitant with additional cognitive deficits. Neurofibrillary tangles and senile plaques are two pivotal proteins inside the brain that are considered essential to obstruct the normal cognitive function of the brain. Genetic variations in TREM2 gene disturb the neuroinflammatory action of microglia in reducing the progression of the disease.TREM2 is a transmembrane receptor present on the microglia, which has an important function in neuroinflammation. Genome-wide association studies identified variants of TREM2 gene and linked it with the risk of developing AD, by 2-4 folds. Numerous studies on mice models have revealed the relationship between mutations of TREM2 gene and its effect on amyloid burden and tau pathology in the brain that gets affected by AD. This review summarizes the role of TREM2 and its variants in the progression of AD and tries to delve deep into the role of soluble TREM2 as an effective biomarker and impending neuroprotection in AD. It also focuses on the strategies to develop therapeutic agents against TREM2 by employing its expression, function, and signalling pathways. The current challenges posed against prospective therapy for AD are also discussed.
Collapse
|
102
|
Armijo E, Edwards G, Flores A, Vera J, Shahnawaz M, Moda F, Gonzalez C, Sanhueza M, Soto C. Induced Pluripotent Stem Cell-Derived Neural Precursors Improve Memory, Synaptic and Pathological Abnormalities in a Mouse Model of Alzheimer's Disease. Cells 2021; 10:cells10071802. [PMID: 34359972 PMCID: PMC8303262 DOI: 10.3390/cells10071802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia in the elderly population. The disease is characterized by progressive memory loss, cerebral atrophy, extensive neuronal loss, synaptic alterations, brain inflammation, extracellular accumulation of amyloid-β (Aβ) plaques, and intracellular accumulation of hyper-phosphorylated tau (p-tau) protein. Many recent clinical trials have failed to show therapeutic benefit, likely because at the time in which patients exhibit clinical symptoms the brain is irreversibly damaged. In recent years, induced pluripotent stem cells (iPSCs) have been suggested as a promising cell therapy to recover brain functionality in neurodegenerative diseases such as AD. To evaluate the potential benefits of iPSCs on AD progression, we stereotaxically injected mouse iPSC-derived neural precursors (iPSC-NPCs) into the hippocampus of aged triple transgenic (3xTg-AD) mice harboring extensive pathological abnormalities typical of AD. Interestingly, iPSC-NPCs transplanted mice showed improved memory, synaptic plasticity, and reduced AD brain pathology, including a reduction of amyloid and tangles deposits. Our findings suggest that iPSC-NPCs might be a useful therapy that could produce benefit at the advanced clinical and pathological stages of AD.
Collapse
Affiliation(s)
- Enrique Armijo
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
- Facultad de Medicina, Universidad de los Andes, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago 7550000, Chile
| | - George Edwards
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
| | - Andrea Flores
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
| | - Jorge Vera
- Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800024, Chile; (J.V.); (M.S.)
| | - Mohammad Shahnawaz
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
| | - Fabio Moda
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, 20133 Milan, Italy
| | - Cesar Gonzalez
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
- Facultad de Medicina y Ciencias, Universidad San Sebastián, Puerto Montt 5480000, Chile
| | - Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, University of Chile, Santiago 7800024, Chile; (J.V.); (M.S.)
| | - Claudio Soto
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, Mc Govern Medical School, University of Texas, Houston, TX 77030, USA; (E.A.); (G.E.); (A.F.); (M.S.); (F.M.); (C.G.)
- Facultad de Medicina, Universidad de los Andes, Av. San Carlos de Apoquindo 2200, Las Condes, Santiago 7550000, Chile
- Correspondence:
| |
Collapse
|
103
|
Yeung JHY, Walby JL, Palpagama TH, Turner C, Waldvogel HJ, Faull RLM, Kwakowsky A. Glutamatergic receptor expression changes in the Alzheimer's disease hippocampus and entorhinal cortex. Brain Pathol 2021; 31:e13005. [PMID: 34269494 PMCID: PMC8549033 DOI: 10.1111/bpa.13005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's Disease (AD) is the leading form of dementia worldwide. Currently, the pathological mechanisms underlying AD are not well understood. Although the glutamatergic system is extensively implicated in its pathophysiology, there is a gap in knowledge regarding the expression of glutamate receptors in the AD brain. This study aimed to characterize the expression of specific glutamate receptor subunits in post‐mortem human brain tissue using immunohistochemistry and confocal microscopy. Free‐floating immunohistochemistry and confocal laser scanning microscopy were used to quantify the density of glutamate receptor subunits GluA2, GluN1, and GluN2A in specific cell layers of the hippocampal sub‐regions, subiculum, entorhinal cortex, and superior temporal gyrus. Quantification of GluA2 expression in human post‐mortem hippocampus revealed a significant increase in the stratum (str.) moleculare of the dentate gyrus (DG) in AD compared with control. Increased GluN1 receptor expression was found in the str. moleculare and hilus of the DG, str. oriens of the CA2 and CA3, str. pyramidale of the CA2, and str. radiatum of the CA1, CA2, and CA3 subregions and the entorhinal cortex. GluN2A expression was significantly increased in AD compared with control in the str. oriens, str. pyramidale, and str. radiatum of the CA1 subregion. These findings indicate that the expression of glutamatergic receptor subunits shows brain region‐specific changes in AD, suggesting possible pathological receptor functioning. These results provide evidence of specific glutamatergic receptor subunit changes in the AD hippocampus and entorhinal cortex, indicating the requirement for further research to elucidate the pathophysiological mechanisms it entails, and further highlight the potential of glutamatergic receptor subunits as therapeutic targets.
Collapse
Affiliation(s)
- Jason H Y Yeung
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joshua L Walby
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
104
|
Antonovaite N, Hulshof LA, Huffels CFM, Hol EM, Wadman WJ, Iannuzzi D. Mechanical alterations of the hippocampus in the APP/PS1 Alzheimer's disease mouse model. J Mech Behav Biomed Mater 2021; 122:104697. [PMID: 34271406 DOI: 10.1016/j.jmbbm.2021.104697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 01/22/2023]
Abstract
There is increasing evidence of altered tissue mechanics in neurodegeneration. However, due to difficulties in mechanical testing procedures and the complexity of the brain, there is still little consensus on the role of mechanics in the onset and progression of neurodegenerative diseases. In the case of Alzheimer's disease (AD), magnetic resonance elastography (MRE) studies have indicated viscoelastic differences in the brain tissue of AD patients and healthy controls. However, there is a lack of viscoelastic data from contact mechanical testing at higher spatial resolution. Therefore, we report viscoelastic maps of the hippocampus obtained by a dynamic indentation on brain slices from the APP/PS1 mouse model where individual brain regions are resolved. A comparison of viscoelastic parameters shows that regions in the hippocampus of the APP/PS1 mice are significantly stiffer than wild-type (WT) mice and have increased viscous dissipation. Furthermore, indentation mapping at the cellular scale directly on the plaques and their surroundings did not show local alterations in stiffness although overall mechanical heterogeneity of the tissue was high (SD∼40%).
Collapse
Affiliation(s)
- Nelda Antonovaite
- Department of Physics and Astronomy and LaserLaB, VU Amsterdam, The Netherlands.
| | - Lianne A Hulshof
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Wytse J Wadman
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Davide Iannuzzi
- Department of Physics and Astronomy and LaserLaB, VU Amsterdam, The Netherlands
| |
Collapse
|
105
|
Das R, Rauf A, Akhter S, Islam MN, Emran TB, Mitra S, Khan IN, Mubarak MS. Role of Withaferin A and Its Derivatives in the Management of Alzheimer's Disease: Recent Trends and Future Perspectives. Molecules 2021; 26:3696. [PMID: 34204308 PMCID: PMC8234716 DOI: 10.3390/molecules26123696] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Globally, Alzheimer's disease (AD) is one of the most prevalent age-related neurodegenerative disorders associated with cognitive decline and memory deficits due to beta-amyloid deposition (Aβ) and tau protein hyperphosphorylation. To date, approximately 47 million people worldwide have AD. This figure will rise to an estimated 75.6 million by 2030 and 135.5 million by 2050. According to the literature, the efficacy of conventional medications for AD is statistically substantial, but clinical relevance is restricted to disease slowing rather than reversal. Withaferin A (WA) is a steroidal lactone glycowithanolides, a secondary metabolite with comprehensive biological effects. Biosynthetically, it is derived from Withania somnifera (Ashwagandha) and Acnistus breviflorus (Gallinero) through the mevalonate and non-mevalonate pathways. Mounting evidence shows that WA possesses inhibitory activities against developing a pathological marker of Alzheimer's diseases. Several cellular and animal models' particulates to AD have been conducted to assess the underlying protective effect of WA. In AD, the neuroprotective potential of WA is mediated by reduction of beta-amyloid plaque aggregation, tau protein accumulation, regulation of heat shock proteins, and inhibition of oxidative and inflammatory constituents. Despite the various preclinical studies on WA's therapeutic potentiality, less is known regarding its definite efficacy in humans for AD. Accordingly, the present study focuses on the biosynthesis of WA, the epidemiology and pathophysiology of AD, and finally the therapeutic potential of WA for the treatment and prevention of AD, highlighting the research and augmentation of new therapeutic approaches. Further clinical trials are necessary for evaluating the safety profile and confirming WA's neuroprotective potency against AD.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (R.D.); (S.M.)
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Pakistan;
| | - Saima Akhter
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (R.D.); (S.M.)
| | - Ishaq N. Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | | |
Collapse
|
106
|
Pietrowski MJ, Gabr AA, Kozlov S, Blum D, Halle A, Carvalho K. Glial Purinergic Signaling in Neurodegeneration. Front Neurol 2021; 12:654850. [PMID: 34054698 PMCID: PMC8160300 DOI: 10.3389/fneur.2021.654850] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Purinergic signaling regulates neuronal and glial cell functions in the healthy CNS. In neurodegenerative diseases, purinergic signaling becomes dysregulated and can affect disease-associated phenotypes of glial cells. In this review, we discuss how cell-specific expression patterns of purinergic signaling components change in neurodegeneration and how dysregulated glial purinergic signaling and crosstalk may contribute to disease pathophysiology, thus bearing promising potential for the development of new therapeutical options for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marie J Pietrowski
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Amr Ahmed Gabr
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Stanislav Kozlov
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, Labex DISTALZ, Lille, France
| | - Annett Halle
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Kevin Carvalho
- University of Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, Labex DISTALZ, Lille, France
| |
Collapse
|
107
|
Dejakaisaya H, Kwan P, Jones NC. Astrocyte and glutamate involvement in the pathogenesis of epilepsy in Alzheimer's disease. Epilepsia 2021; 62:1485-1493. [PMID: 33971019 DOI: 10.1111/epi.16918] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) can increase the risk of epilepsy by up to 10-fold compared to healthy age-matched controls. However, the pathological mechanisms that underlie this increased risk are poorly understood. Because disruption in brain glutamate homeostasis has been implicated in both AD and epilepsy, this might play a mechanistic role in the pathogenesis of epilepsy in AD. Prior to the formation of amyloid beta (Aβ) plaques, the brain can undergo pathological changes as a result of increased production of amyloid precursor protein (APP) and Aβ oligomers. Impairments in the glutamate uptake ability of astrocytes due to astrogliosis are hypothesized to be an early event occurring before Aβ plaque formation. Astrogliosis may increase the susceptibility to epileptogenesis of the brain via accumulation of extracellular glutamate and resulting excitotoxicity. Here we hypothesize that Aβ oligomers and proinflammatory cytokines can cause astrogliosis and accumulation of extracellular glutamate, which then contribute to the pathogenesis of epilepsy in AD. In this review article, we consider the evidence supporting a potential role of dysfunction of the glutamate-glutamine cycle and the astrocyte in the pathogenesis of epilepsy in AD.
Collapse
Affiliation(s)
- Hattapark Dejakaisaya
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Vic., Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
108
|
Fonar G, Polis B, Sams DS, Levi A, Malka A, Bal N, Maltsev A, Elliott E, Samson AO. Modified Snake α-Neurotoxin Averts β-Amyloid Binding to α7 Nicotinic Acetylcholine Receptor and Reverses Cognitive Deficits in Alzheimer's Disease Mice. Mol Neurobiol 2021; 58:2322-2341. [PMID: 33417228 PMCID: PMC8018932 DOI: 10.1007/s12035-020-02270-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/18/2020] [Indexed: 12/03/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of senile dementia and one of the greatest medical, social, and economic challenges. According to a dominant theory, amyloid-β (Aβ) peptide is a key AD pathogenic factor. Aβ-soluble species interfere with synaptic functions, aggregate gradually, form plaques, and trigger neurodegeneration. The AD-associated pathology affects numerous systems, though the substantial loss of cholinergic neurons and α7 nicotinic receptors (α7AChR) is critical for the gradual cognitive decline. Aβ binds to α7AChR under various experimental settings; nevertheless, the functional significance of this interaction is ambiguous. Whereas the capability of low Aβ concentrations to activate α7AChR is functionally beneficial, extensive brain exposure to high Aβ concentrations diminishes α7AChR activity, contributes to the cholinergic deficits that characterize AD. Aβ and snake α-neurotoxins competitively bind to α7AChR. Accordingly, we designed a chemically modified α-cobratoxin (mToxin) to inhibit the interaction between Aβ and α7AChR. Subsequently, we examined mToxin in a set of original in silico, in vitro, ex vivo experiments, and in a murine AD model. We report that mToxin reversibly inhibits α7AChR, though it attenuates Aβ-induced synaptic transmission abnormalities, and upregulates pathways supporting long-term potentiation and reducing apoptosis. Remarkably, mToxin demonstrates no toxicity in brain slices and mice. Moreover, its chronic intracerebroventricular administration improves memory in AD-model animals. Our results point to unique mToxin neuroprotective properties, which might be tailored for the treatment of AD. Our methodology bridges the gaps in understanding Aβ-α7AChR interaction and represents a promising direction for further investigations and clinical development.
Collapse
Affiliation(s)
- Gennadiy Fonar
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel.
| | - Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Dev Sharan Sams
- Laboratory of Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Almog Levi
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Assaf Malka
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Natalia Bal
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Maltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Evan Elliott
- Laboratory of Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| |
Collapse
|
109
|
Bai X, Wu J, Zhang M, Xu Y, Duan L, Yao K, Zhang J, Bo J, Zhao Y, Xu G, Zu H. DHCR24 Knock-Down Induced Tau Hyperphosphorylation at Thr181, Ser199, Thr231, Ser262, Ser396 Epitopes and Inhibition of Autophagy by Overactivation of GSK3β/mTOR Signaling. Front Aging Neurosci 2021; 13:513605. [PMID: 33967735 PMCID: PMC8098657 DOI: 10.3389/fnagi.2021.513605] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
Accumulating evidences supported that knock-down of DHCR24 is linked to the pathological risk factors of AD, suggesting a potential role of DHCR24 in AD pathogenesis. However, the molecular mechanism link between DHCR24 and tauopathy remains unknown. Here, in order to elucidate the relationship between DHCR24 and tauopathy, we will focus on the effect of DHCR24 on the tau hyperphosphorylation at some toxic sites. In present study, we found that DHCR24 knock-down significantly lead to the hyperphosphorylation of tau sites at Thr181, Ser199, Thr231, Ser262, Ser396. Moreover, DHCR24 knock-down also increase the accumulation of p62 protein, simultaneously decreased the ratio of LC3-II/LC3-I and the number of autophagosome compared to the control groups, suggesting the inhibition of autophagy activity. In contrast, DHCR24 knock-in obviously abolished the effect of DHCR24 knock-down on tau hyperphosphrylation and autophagy. In addition, to elucidate the association between DHCR24 and tauopathy, we further showed that the level of plasma membrane cholesterol, lipid raft-anchored protein caveolin-1, and concomitantly total I class PI3-K (p110α), phospho-Akt (Thr308 and Ser473) were significantly decreased, resulting in the disruption of lipid raft/caveola and inhibition of PI3-K/Akt signaling in silencing DHCR24 SH-SY5Y cells compared to control groups. At the same time, DHCR24 knock-down simultaneously decreased the level of phosphorylated GSK3β at Ser9 (inactive form) and increased the level of phosphorylated mTOR at Ser2448 (active form), leading to overactivation of GSK3β and mTOR signaling. On the contrary, DHCR24 knock-in largely increased the level of membrane cholesterol and caveolin-1, suggesting the enhancement of lipid raft/caveola. And synchronously DHCR24 knock-in also abolished the effect of DHCR24 knock-down on the inhibition of PI3-K/Akt signaling as well as the overactivation of GSK3β and mTOR signaling. Collectively, our data strongly supported DHCR24 knock-down lead to tau hyperphosphorylation and the inhibition of autophagy by a lipid raft-dependent PI3-K/Akt-mediated GSK3β and mTOR signaling. Taking together, our results firstly demonstrated that the decrease of plasma membrane cholesterol mediated by DHCR24 deficiency might contribute to the tauopathy in AD and other tauopathies.
Collapse
Affiliation(s)
- Xiaojing Bai
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Junfeng Wu
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Mengqi Zhang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yixuan Xu
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Lijie Duan
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Zhang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jimei Bo
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yongfei Zhao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- The Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
110
|
Lana D, Ugolini F, Nosi D, Wenk GL, Giovannini MG. The Emerging Role of the Interplay Among Astrocytes, Microglia, and Neurons in the Hippocampus in Health and Disease. Front Aging Neurosci 2021; 13:651973. [PMID: 33889084 PMCID: PMC8055856 DOI: 10.3389/fnagi.2021.651973] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
For over a century, neurons have been considered the basic functional units of the brain while glia only elements of support. Activation of glia has been long regarded detrimental for survival of neurons but more it appears that this is not the case in all circumstances. In this review, we report and discuss the recent literature on the alterations of astrocytes and microglia during inflammaging, the low-grade, slow, chronic inflammatory response that characterizes normal brain aging, and in acute inflammation. Becoming reactive, astrocytes and microglia undergo transcriptional, functional, and morphological changes that transform them into cells with different properties and functions, such as A1 and A2 astrocytes, and M1 and M2 microglia. This classification of microglia and astrocytes in two different, all-or-none states seems too simplistic, and does not correspond to the diverse variety of phenotypes so far found in the brain. Different interactions occur among the many cell populations of the central nervous system in health and disease conditions. Such interactions give rise to networks of morphological and functional reciprocal reliance and dependency. Alterations affecting one cell population reverberate to the others, favoring or dysregulating their activities. In the last part of this review, we present the modifications of the interplay between neurons and glia in rat models of brain aging and acute inflammation, focusing on the differences between CA1 and CA3 areas of the hippocampus, one of the brain regions most susceptible to different insults. With triple labeling fluorescent immunohistochemistry and confocal microscopy (TIC), it is possible to evaluate and compare quantitatively the morphological and functional alterations of the components of the neuron-astrocyte-microglia triad. In the contiguous and interconnected regions of rat hippocampus, CA1 and CA3 Stratum Radiatum, astrocytes and microglia show a different, finely regulated, and region-specific reactivity, demonstrating that glia responses vary in a significant manner from area to area. It will be of great interest to verify whether these differential reactivities of glia explain the diverse vulnerability of the hippocampal areas to aging or to different damaging insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli.
Collapse
Affiliation(s)
- Daniele Lana
- Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Section of Anatomopatology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gary L Wenk
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Maria Grazia Giovannini
- Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
111
|
Cicognola C, Janelidze S, Hertze J, Zetterberg H, Blennow K, Mattsson-Carlgren N, Hansson O. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. Alzheimers Res Ther 2021; 13:68. [PMID: 33773595 PMCID: PMC8005231 DOI: 10.1186/s13195-021-00804-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Plasma glial fibrillary acidic protein (GFAP) is a marker of astroglial activation and astrocytosis. We assessed the ability of plasma GFAP to detect Alzheimer's disease (AD) pathology in the form of AD-related amyloid-β (Aβ) pathology and conversion to AD dementia in a mild cognitive impairment (MCI) cohort. METHOD One hundred sixty MCI patients were followed for 4.7 years (average). AD pathology was defined using cerebrospinal fluid (CSF) Aβ42/40 and Aβ42/total tau (T-tau). Plasma GFAP was measured at baseline and follow-up using Simoa technology. RESULTS Baseline plasma GFAP could detect abnormal CSF Aβ42/40 and CSF Aβ42/T-tau with an AUC of 0.79 (95% CI 0.72-0.86) and 0.80 (95% CI 0.72-0.86), respectively. When also including APOE ε4 status as a predictor, the accuracy of the model to detect abnormal CSF Aβ42/40 status improved (AUC = 0.86, p = 0.02). Plasma GFAP predicted subsequent conversion to AD dementia with an AUC of 0.84 (95% CI 0.77-0.91), which was not significantly improved when adding APOE ε4 or age as predictors to the model. Longitudinal GFAP slopes for Aβ-positive and MCI who progressed to dementia (AD or other) were significantly steeper than those for Aβ-negative (p = 0.007) and stable MCI (p < 0.0001), respectively. CONCLUSION Plasma GFAP can detect AD pathology in patients with MCI and predict conversion to AD dementia.
Collapse
Affiliation(s)
- Claudia Cicognola
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Joakim Hertze
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
112
|
Amyloid-Beta Induces Different Expression Pattern of Tissue Transglutaminase and Its Isoforms on Olfactory Ensheathing Cells: Modulatory Effect of Indicaxanthin. Int J Mol Sci 2021; 22:ijms22073388. [PMID: 33806203 PMCID: PMC8037686 DOI: 10.3390/ijms22073388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 01/29/2023] Open
Abstract
Herein, we assessed the effect of full native peptide of amyloid-beta (Aβ) (1-42) and its fragments (25-35 and 35-25) on tissue transglutaminase (TG2) and its isoforms (TG2-Long and TG2-Short) expression levels on olfactory ensheathing cells (OECs). Vimentin and glial fibrillary acid protein (GFAP) were also studied. The effect of the pre-treatment with indicaxanthin from Opuntia ficus-indica fruit on TG2 expression levels and its isoforms, cell viability, total reactive oxygen species (ROS), superoxide anion (O2−), and apoptotic pathway activation was assessed. The levels of Nestin and cyclin D1 were also evaluated. Our findings highlight that OECs exposure to Aβ(1-42) and its fragments induced an increase in TG2 expression levels and a different expression pattern of its isoforms. Indicaxanthin pre-treatment reduced TG2 overexpression, modulating the expression of TG2 isoforms. It reduced total ROS and O2− production, GFAP and Vimentin levels, inhibiting apoptotic pathway activation. It also induced an increase in the Nestin and cyclin D1 expression levels. Our data demonstrated that indicaxanthin pre-treatment stimulated OECs self-renewal through the reparative activity played by TG2. They also suggest that Aβ might modify TG2 conformation in OECs and that indicaxanthin pre-treatment might modulate TG2 conformation, stimulating neural regeneration in Alzheimer’s disease.
Collapse
|
113
|
Rosa JM, Camargo A, Wolin IAV, Kaster MP, Rodrigues ALS. Physical exercise prevents amyloid β 1-40-induced disturbances in NLRP3 inflammasome pathway in the hippocampus of mice. Metab Brain Dis 2021; 36:351-359. [PMID: 33211258 DOI: 10.1007/s11011-020-00646-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Amyloid beta (Aβ), one of the main hallmarks of Alzheimer's Disease (AD), may stimulate pattern recognition receptors (PRR) such as the NLRP3 inflammasome, inducing a pro-inflammatory state in the brain that contributes to disease development. Physical exercise can have multiple beneficial effects on brain function, including anti-inflammatory and neuroprotective roles. The objective of this study was to investigate the prophylactic effect of moderate treadmill exercise for 4 weeks on inflammatory events related to NLRP3 signaling in the hippocampus of mice after intracerebroventricular Aβ1-40 administration. Our results show that Aβ1-40 administration (400 pmol/mouse, i.c.v.) significantly increased the immunocontent Iba-1 (a microglial reactivity marker), NLRP3, TXNIP, and caspase-1 in the hippocampus of mice. However, physical exercise prevented the hippocampal increase in Iba-1, TXNIP, and activation of the NLRP3 inflammasome pathway caused by Aβ1-40. Moreover, physical exercise per se reduced the TXNIP and caspase-1 immunocontent in the hippocampus. No alterations were observed on the immunocontent of GFAP, ASC, and IL-1β in the hippocampus after Aβ1-40 and/or physical exercise. These results reinforce the role of NLRP3 inflammasome pathway in AD and point to physical exercise as a possible non-pharmacological strategy to prevent inflammatory events triggered by Aβ1-40 in mice.
Collapse
Affiliation(s)
- Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ingrid A V Wolin
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Manuella P Kaster
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, Santa Catarina, Brazil.
| |
Collapse
|
114
|
Sarkar S, Biswas SC. Astrocyte subtype-specific approach to Alzheimer's disease treatment. Neurochem Int 2021; 145:104956. [PMID: 33503465 DOI: 10.1016/j.neuint.2021.104956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes respond to any pathological condition in the central nervous system (CNS) including Alzheimer's disease (AD), and this response is called astrocyte reactivity. Astrocyte reaction to a CNS insult is a highly heterogeneous phenomenon in which the astrocytes undergo a set of morphological, molecular and functional changes with a characteristic secretome profile. Such astrocytes are termed as 'reactive astrocytes'. Controversies regarding the reactive astrocytes abound. Recently, a continuum of reactive astrocyte profiles with distinct transcriptional states has been identified. Among them, disease-associated astrocytes (DAA) were uniquely present in AD mice and expressed a signature set of genes implicated in complement cascade, endocytosis and aging. Earlier, two stimulus-specific reactive astrocyte subtypes with their unique transcriptomic signatures were identified using mouse models of neuroinflammation and ischemia and termed as A1 astrocytes (detrimental) and A2 astrocytes (beneficial) respectively. Interestingly, although most of the A1 signature genes were also detected in DAA, as opposed to A2 astrocyte signatures, some of the A1 specific genes were expressed in other astrocyte subtypes, indicating that these nomenclature-based signatures are not very specific. In this review, we elaborate the disparate functions and cytokine profiles of reactive astrocyte subtypes in AD and tried to distinguish them by designating neurotoxic astrocytes as A1-like and neuroprotective ones as A2-like without directly referring to the A1/A2 original nomenclature. We have also focused on the dual nature from a functional perspective of some cytokines depending on AD-stage, highlighting a number of them as major candidates in AD therapy. Therefore, we suggest that promoting subtype-specific beneficial roles, inhibiting subtype-specific detrimental roles or targeting subtype-specific cytokines constitute a novel therapeutic approach to AD treatment.
Collapse
Affiliation(s)
- Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India.
| |
Collapse
|
115
|
Fracassi A, Marcatti M, Zolochevska O, Tabor N, Woltjer R, Moreno S, Taglialatela G. Oxidative Damage and Antioxidant Response in Frontal Cortex of Demented and Nondemented Individuals with Alzheimer's Neuropathology. J Neurosci 2021; 41:538-554. [PMID: 33239403 PMCID: PMC7821866 DOI: 10.1523/jneurosci.0295-20.2020] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration in the cerebral cortex, histopathologically hallmarked by amyloid β (Aβ) extracellular plaques and intracellular neurofibrillary tangles, constituted by hyperphosphorylated tau protein. Correlation between these pathologic features and dementia has been challenged by the emergence of "nondemented with Alzheimer's neuropathology" (NDAN) individuals, cognitively intact despite displaying pathologic features of AD. The existence of these subjects suggests that some unknown mechanisms are triggered to resist Aβ-mediated detrimental events. Aβ accumulation affects mitochondrial redox balance, increasing oxidative stress status, which in turn is proposed as a primary culprit in AD pathogenesis. To clarify the relationship linking Aβ, oxidative stress, and cognitive impairment, we performed a comparative study on AD, NDAN, and aged-matched human postmortem frontal cortices of either sex. We quantitatively analyzed immunofluorescence distribution of oxidative damage markers, and of SOD2 (superoxide dismutase 2), PGC1α [peroxisome proliferator-activated receptor (PPAR) γ-coactivator 1α], PPARα, and catalase as key factors in antioxidant response, as well as the expression of miRNA-485, as a PGC1α upstream regulator. Our results confirm dramatic redox imbalance, associated with impaired antioxidant defenses in AD brain. By contrast, NDAN individuals display low oxidative damage, which is associated with high levels of scavenging systems, possibly resulting from a lack of PGC1α miRNA-485-related inhibition. Comparative analyses in neurons and astrocytes further highlighted cell-specific mechanisms to counteract redox imbalance. Overall, our data emphasize the importance of transcriptional and post-transcriptional regulation of antioxidant response in AD. This suggests that an efficient PGC1α-dependent "safety mechanism" may prevent Aβ-mediated oxidative stress, supporting neuroprotective therapies aimed at ameliorating defects in antioxidant response pathways in AD patients.
Collapse
Affiliation(s)
- Anna Fracassi
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch (UTMB), Galveston, Texas 77550
| | - Michela Marcatti
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch (UTMB), Galveston, Texas 77550
| | - Olga Zolochevska
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch (UTMB), Galveston, Texas 77550
| | - Natalie Tabor
- Neuroscience Summer Undergraduate Program, University of Texas Medical Branch, Galveston, Texas 77555
| | - Randall Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, 00146 Rome, Italy
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch (UTMB), Galveston, Texas 77550
| |
Collapse
|
116
|
Tajbakhsh A, Read M, Barreto GE, Ávila-Rodriguez M, Gheibi-Hayat SM, Sahebkar A. Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer's disease: Pathological mechanisms and therapeutic outlooks. Eur J Pharmacol 2021; 895:173873. [PMID: 33460611 DOI: 10.1016/j.ejphar.2021.173873] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Neuronal survival and axonal renewal following central nervous system damage and in neurodegenerative illnesses, such as Alzheimer's disease (AD), can be enhanced by fast clearance of neuronal apoptotic debris, as well as the removal of amyloid beta (Aβ) by phagocytic cells through the process of efferocytosis. This process quickly inhibits the release of proinflammatory and antigenic autoimmune constituents, enhancing the formation of a microenvironment vital for neuronal survival and axonal regeneration. Therefore, the detrimental features associated with microglial phagocytosis uncoupling, such as the accumulation of apoptotic cells, inflammation and phagoptosis, could exacerbate the pathology in brain disease. Some mechanisms of efferocytosis could be targeted by several promising agents, such as curcumin, URMC-099 and Y-P30, which have emerged as potential treatments for AD. This review aims to investigate and update the current research regarding the signaling molecules and pathways involved in efferocytosis and how these could be targeted as a potential therapy in AD.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Department of Modern Sciences & Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn Read
- Department of Pharmacology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Seyed Mohammad Gheibi-Hayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
117
|
Garcez ML, Tan VX, Heng B, Guillemin GJ. Sodium Butyrate and Indole-3-propionic Acid Prevent the Increase of Cytokines and Kynurenine Levels in LPS-induced Human Primary Astrocytes. Int J Tryptophan Res 2021; 13:1178646920978404. [PMID: 33447046 PMCID: PMC7780186 DOI: 10.1177/1178646920978404] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
The crosstalk between central nervous system (CNS) and gut microbiota plays key roles in neuroinflammation and chronic immune activation that are common features of all neurodegenerative diseases. Imbalance in the microbiota can lead to an increase in the intestinal permeability allowing toxins to diffuse and reach the CNS, as well as impairing the production of neuroprotective metabolites such as sodium butyrate (SB) and indole-3-propionic acid (IPA). The aim of the present study was to evaluate the effect of SB and IPA on LPS-induced production of cytokines and tryptophan metabolites in human astrocytes. Primary cultures of human astrocytes were pre-incubated with SB or IPA for 1 hour before treatment with LPS. Cell viability was not affected at 24, 48 or 72 hours after pre-treatment with SB, IPA or LPS treatment. SB was able to significantly prevent the increase of GM-CSF, MCP-1, IL-6 IL-12, and IL-13 triggered by LPS. SB and IPA also prevented inflammation indicated by the increase in kynurenine and kynurenine/tryptophan ratio induced by LPS treatment. IPA pre-treatment prevented the LPS-induced increase in MCP-1, IL-12, IL-13, and TNF-α levels 24 hours after pre-treatment, but had no effect on tryptophan metabolites. The present study showed for the first time that bacterial metabolites SB and IPA have potential anti-inflammatory effect on primary human astrocytes with potential therapeutic benefit in neurodegenerative disease characterized by the presence of chronic low-grade inflammation.
Collapse
Affiliation(s)
- Michelle L Garcez
- Neurochemistry Laboratory, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.,Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vanessa X Tan
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin Heng
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neurodegenerative diseases Research Group, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,PANDIS.org, Little Collins St, Melbourne VIC, Australia
| |
Collapse
|
118
|
Zeng L, Zhang D, Liu Q, Zhang J, Mu K, Gao X, Zhang K, Li H, Wang Q, Zheng Y, Mao S. Alpha-asarone Improves Cognitive Function of APP/PS1 Mice and Reducing Aβ 42, P-tau and Neuroinflammation, and Promoting Neuron Survival in the Hippocampus. Neuroscience 2021; 458:141-152. [PMID: 33412244 DOI: 10.1016/j.neuroscience.2020.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease most often characterized by memory impairment and cognitive decline. Alpha-asarone has been reported to have the potential to treat AD. Our previous studies have found that alpha-asarone improves aged rats' cognitive function by alleviating neuronal excitotoxicity via type A gamma-aminobutyric acid (GABA) receptors. GABA level's change, neuroinflammation, and dysfunctional autophagy are found to be associated with AD. However, the effect of alpha-asarone on cognitive function of APP/PS1 transgenic mice and its underlying mechanism in terms of aggregation of amyloid-β42 (Aβ42) and phosphorylated tau (p-tau), glutamic acid decarboxylase (GAD) level, neuroinflammation, and autophagy are unclear. Accordingly, we attempted to explore whether alpha-asarone improves AD mice's cognitive function and alleviates pathological symptoms by regulating GAD level, inhibiting neuroinflammation, or restore autophagy. We found that alpha-asarone enhanced spatial learning memory and decreased Aβ42 and p-tau levels without influencing the GAD level in APP/PS1 transgenic mice. Also, it decreased the GFAP expression and reduced pro-inflammatory cytokines levels, thus alleviating neuroinflammation. Furthermore, alpha-asarone decreased the excess number of autophagosomes and promoted hippocampal neurons' survival. In conclusion, the results confirmed the therapeutic effect of alpha-asarone on AD-related astrogliosis, dysfunctional autophagy, and neuronal damage, which indicates its great potential to treat AD.
Collapse
Affiliation(s)
- Lili Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Keman Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hui Li
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongxiang Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
119
|
Zhang Q, Song Q, Gu X, Zheng M, Wang A, Jiang G, Huang M, Chen H, Qiu Y, Bo B, Tong S, Shao R, Li B, Wang G, Wang H, Hu Y, Chen H, Gao X. Multifunctional Nanostructure RAP-RL Rescues Alzheimer's Cognitive Deficits through Remodeling the Neurovascular Unit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001918. [PMID: 33511002 PMCID: PMC7816710 DOI: 10.1002/advs.202001918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/02/2020] [Indexed: 05/21/2023]
Abstract
Cerebrovascular dysfunction characterized by the neurovascular unit (NVU) impairment contributes to the pathogenesis of Alzheimer's disease (AD). In this study, a cerebrovascular-targeting multifunctional lipoprotein-biomimetic nanostructure (RAP-RL) constituted with an antagonist peptide (RAP) of receptor for advanced glycation end-products (RAGE), monosialotetrahexosyl ganglioside, and apolipoprotein E3 is developed to recover the functional NVU and normalize the cerebral vasculature. RAP-RL accumulates along the cerebral microvasculature through the specific binding of RAP to RAGE, which is overexpressed on cerebral endothelial cells in AD. It effectively accelerates the clearance of perivascular Aβ, normalizes the morphology and functions of cerebrovasculature, and restores the structural integrity and functions of NVU. RAP-RL markedly rescues the spatial learning and memory in APP/PS1 mice. Collectively, this study demonstrates the potential of the multifunctional nanostructure RAP-RL as a disease-modifying modality for AD treatment and provides the proof of concept that remodeling the functional NVU may represent a promising therapeutic approach toward effective intervention of AD.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Qingxiang Song
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Xiao Gu
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Mengna Zheng
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Antian Wang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Gan Jiang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Meng Huang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Huan Chen
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Yu Qiu
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Bin Bo
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Shanbao Tong
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Rong Shao
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Binyin Li
- Department of Neurology & Neuroscience InstituteRuijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine197 Rui Jin Er RoadShanghai200025China
| | - Gang Wang
- Department of Neurology & Neuroscience InstituteRuijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine197 Rui Jin Er RoadShanghai200025China
| | - Hao Wang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Yongbo Hu
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
- Institute of Interdisciplinary Integrative Biomedical ResearchShuguang HospitalShanghai University of Traditional Chinese Medicine1200 Cailun RoadShanghai201210China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Universities Collaborative Innovation Center for Translational MedicineShanghai Jiao Tong University School of Medicine280 South Chongqing RoadShanghai200025China
| |
Collapse
|
120
|
Toricelli M, Pereira AAR, Souza Abrao G, Malerba HN, Maia J, Buck HS, Viel TA. Mechanisms of neuroplasticity and brain degeneration: strategies for protection during the aging process. Neural Regen Res 2021; 16:58-67. [PMID: 32788448 PMCID: PMC7818866 DOI: 10.4103/1673-5374.286952] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aging is a dynamic and progressive process that begins at conception and continues until death. This process leads to a decrease in homeostasis and morphological, biochemical and psychological changes, increasing the individual’s vulnerability to various diseases. The growth in the number of aging populations has increased the prevalence of chronic degenerative diseases, impairment of the central nervous system and dementias, such as Alzheimer’s disease, whose main risk factor is age, leading to an increase of the number of individuals who need daily support for life activities. Some theories about aging suggest it is caused by an increase of cellular senescence and reactive oxygen species, which leads to inflammation, oxidation, cell membrane damage and consequently neuronal death. Also, mitochondrial mutations, which are generated throughout the aging process, can lead to changes in energy production, deficiencies in electron transport and apoptosis induction that can result in decreased function. Additionally, increasing cellular senescence and the release of proinflammatory cytokines can cause irreversible damage to neuronal cells. Recent reports point to the importance of changing lifestyle by increasing physical exercise, improving nutrition and environmental enrichment to activate neuroprotective defense mechanisms. Therefore, this review aims to address the latest information about the different mechanisms related to neuroplasticity and neuronal death and to provide strategies that can improve neuroprotection and decrease the neurodegeneration caused by aging and environmental stressors.
Collapse
Affiliation(s)
- Mariana Toricelli
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Arthur Antonio Ruiz Pereira
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Guilherme Souza Abrao
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Helena Nascimento Malerba
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Julia Maia
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Hudson Sousa Buck
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Tania Araujo Viel
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
121
|
Sanchez-Mico MV, Jimenez S, Gomez-Arboledas A, Muñoz-Castro C, Romero-Molina C, Navarro V, Sanchez-Mejias E, Nuñez-Diaz C, Sanchez-Varo R, Galea E, Davila JC, Vizuete M, Gutierrez A, Vitorica J. Amyloid-β impairs the phagocytosis of dystrophic synapses by astrocytes in Alzheimer's disease. Glia 2020; 69:997-1011. [PMID: 33283891 DOI: 10.1002/glia.23943] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022]
Abstract
Reactive astrocytes and dystrophic neurites, most aberrant presynaptic elements, are found surrounding amyloid-β plaques in Alzheimer's disease (AD). We have previously shown that reactive astrocytes enwrap, phagocytose, and degrade dystrophic synapses in the hippocampus of APP mice and AD patients, but affecting less than 7% of dystrophic neurites, suggesting reduced phagocytic capacity of astrocytes in AD. Here, we aimed to gain insight into the underlying mechanisms by analyzing the capacity of primary astrocyte cultures to phagocytose and degrade isolated synapses (synaptoneurosomes, SNs) from APP (containing dystrophic synapses and amyloid-β peptides), Tau (containing AT8- and AT100-positive phosphorylated Tau) and WT (controls) mice. We found highly reduced phagocytic and degradative capacity of SNs-APP, but not AT8/AT100-positive SNs-Tau, as compared with SNs-WT. The reduced astrocyte phagocytic capacity was verified in hippocampus from 12-month-old APP mice, since only 1.60 ± 3.81% of peri-plaque astrocytes presented phagocytic structures. This low phagocytic capacity did not depend on microglia-mediated astrocyte reactivity, because removal of microglia from the primary astrocyte cultures abrogated the expression of microglia-dependent genes in astrocytes, but did not affect the phagocytic impairment induced by oligomeric amyloid-β alone. Taken together, our data suggest that amyloid-β, but not hyperphosphorylated Tau, directly impairs the capacity of astrocytes to clear the pathological accumulation of oligomeric amyloid-β, as well as of peri-plaque dystrophic synapses containing amyloid-β, perhaps by reducing the expression of phagocytosis receptors such as Mertk and Megf10, thus increasing neuronal damage in AD. Therefore, the potentiation or recovery of astrocytic phagocytosis may be a novel therapeutic avenue in AD.
Collapse
Affiliation(s)
- Maria V Sanchez-Mico
- Dpto. Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Sebastian Jimenez
- Dpto. Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angela Gomez-Arboledas
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | - Clara Muñoz-Castro
- Dpto. Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carmen Romero-Molina
- Dpto. Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Victoria Navarro
- Dpto. Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elisabeth Sanchez-Mejias
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | - Cristina Nuñez-Diaz
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | - Raquel Sanchez-Varo
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - José C Davila
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | - Marisa Vizuete
- Dpto. Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Gutierrez
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | - Javier Vitorica
- Dpto. Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
122
|
Mampay M, Velasco-Estevez M, Rolle SO, Chaney AM, Boutin H, Dev KK, Moeendarbary E, Sheridan GK. Spatiotemporal immunolocalisation of REST in the brain of healthy ageing and Alzheimer's disease rats. FEBS Open Bio 2020; 11:146-163. [PMID: 33185010 PMCID: PMC7780110 DOI: 10.1002/2211-5463.13036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
In the brain, REST (Repressor Element‐1 Silencing Transcription factor) is a key regulator of neuron cell‐specific gene expression. Nuclear translocation of neuronal REST has been shown to be neuroprotective in a healthy ageing context. In contrast, inability to upregulate nuclear REST is thought to leave ageing neurons vulnerable to neurodegenerative stimuli, such as Alzheimer’s disease (AD) pathology. Hippocampal and cortical neurons are known to be particularly susceptible to AD‐associated neurodegeneration. However, REST expression has not been extensively characterised in the healthy ageing brain. Here, we examined the spatiotemporal immunolocalisation of REST in the brains of healthy ageing wild‐type Fischer‐344 and transgenic Alzheimer’s disease rats (TgF344‐AD). Nuclear expression of REST increased from 6 months to 18 months of age in the hippocampus, frontal cortex and subiculum of wild‐type rats, but not in TgF344‐AD rats. No changes in REST were measured in more posterior cortical regions or in the thalamus. Interestingly, levels of the presynaptic marker synaptophysin, a known gene target of REST, were lower in CA1 hippocampal neurons of 18‐month TgF344‐AD rats compared to 18‐month wild‐types, suggesting that elevated nuclear REST may protect against synapse loss in the CA1 of 18‐month wild‐type rats. High REST expression in ageing wild‐type rats did not, however, protect against axonal loss nor against astroglial reactivity in the hippocampus. Taken together, our data confirm that changes in nuclear REST expression are context‐, age‐ and brain region‐specific. Moreover, key brain structures involved in learning and memory display elevated REST expression in healthy ageing wild‐type rats but not TgF344‐AD rats.
Collapse
Affiliation(s)
- Myrthe Mampay
- School of Pharmacy and Biomolecular Sciences, University of Brighton, UK
| | - María Velasco-Estevez
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Ireland
| | - Sara O Rolle
- The Sainsbury Welcome Centre for Neural Circuits and Behaviour, University College London, UK
| | - Aisling M Chaney
- Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, UK
| | - Hervé Boutin
- Wolfson Molecular Imaging Centre, University of Manchester, UK.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK
| | - Kumlesh K Dev
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Ireland
| | | | - Graham K Sheridan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, UK
| |
Collapse
|
123
|
Lin L, Petralia RS, Lake R, Wang YX, Hoffman DA. A novel structure associated with aging is augmented in the DPP6-KO mouse brain. Acta Neuropathol Commun 2020; 8:197. [PMID: 33225987 PMCID: PMC7682109 DOI: 10.1186/s40478-020-01065-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 01/05/2023] Open
Abstract
In addition to its role as an auxiliary subunit of A-type voltage-gated K+ channels, we have previously reported that the single transmembrane protein Dipeptidyl Peptidase Like 6 (DPP6) impacts neuronal and synaptic development. DPP6-KO mice are impaired in hippocampal-dependent learning and memory and exhibit smaller brain size. Using immunofluorescence and electron microscopy, we report here a novel structure in hippocampal area CA1 that was significantly more prevalent in aging DPP6-KO mice compared to WT mice of the same age and that these structures were observed earlier in development in DPP6-KO mice. These novel structures appeared as clusters of large puncta that colocalized NeuN, synaptophysin, and chromogranin A. They also partially labeled for MAP2, and with synapsin-1 and VGluT1 labeling on their periphery. Electron microscopy revealed that these structures are abnormal, enlarged presynaptic swellings filled with mainly fibrous material with occasional peripheral, presynaptic active zones forming synapses. Immunofluorescence imaging then showed that a number of markers for aging and especially Alzheimer’s disease were found as higher levels in these novel structures in aging DPP6-KO mice compared to WT. Together these results indicate that aging DPP6-KO mice have increased numbers of novel, abnormal presynaptic structures associated with several markers of Alzheimer’s disease.
Collapse
|
124
|
Locus Coeruleus Modulates Neuroinflammation in Parkinsonism and Dementia. Int J Mol Sci 2020; 21:ijms21228630. [PMID: 33207731 PMCID: PMC7697920 DOI: 10.3390/ijms21228630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Locus Coeruleus (LC) is the main noradrenergic nucleus of the central nervous system, and its neurons widely innervate the whole brain. LC is severely degenerated both in Alzheimer’s disease (AD) and in Parkinson’s disease (PD), years before the onset of clinical symptoms, through mechanisms that differ among the two disorders. Several experimental studies have shown that noradrenaline modulates neuroinflammation, mainly by acting on microglia/astrocytes function. In the present review, after a brief introduction on the anatomy and physiology of LC, we provide an overview of experimental data supporting a pathogenetic role of LC degeneration in AD and PD. Then, we describe in detail experimental data, obtained in vitro and in vivo in animal models, which support a potential role of neuroinflammation in such a link, and the specific molecules (i.e., released cytokines, glial receptors, including pattern recognition receptors and others) whose expression is altered by LC degeneration and might play a key role in AD/PD pathogenesis. New imaging and biochemical tools have recently been developed in humans to estimate in vivo the integrity of LC, the degree of neuroinflammation, and pathology AD/PD biomarkers; it is auspicable that these will allow in the near future to test the existence of a link between LC-neuroinflammation and neurodegeneration directly in patients.
Collapse
|
125
|
Parolini C. Marine n-3 polyunsaturated fatty acids: Efficacy on inflammatory-based disorders. Life Sci 2020; 263:118591. [PMID: 33069735 DOI: 10.1016/j.lfs.2020.118591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Inflammation is a physiological response to injury, stimulating tissue repair and regeneration. However, the presence of peculiar individual conditions can negatively perturb the resolution phase eventually leading to a state of low-grade systemic chronic inflammation, characterized by tissue and organ damages and increased susceptibility to non-communicable disease. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are able to influence many aspects of this process. Experiments performed in various animal models of obesity, Alzheimer's disease and multiple sclerosis have demonstrated that n-3 PUFAs can modulate the basic mechanisms as well as the disease progression. This review describes the available data from experimental studies to the clinical trials.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
126
|
Doustar J, Rentsendorj A, Torbati T, Regis GC, Fuchs D, Sheyn J, Mirzaei N, Graham SL, Shah PK, Mastali M, Van Eyk JE, Black KL, Gupta VK, Mirzaei M, Koronyo Y, Koronyo‐Hamaoui M. Parallels between retinal and brain pathology and response to immunotherapy in old, late-stage Alzheimer's disease mouse models. Aging Cell 2020; 19:e13246. [PMID: 33090673 PMCID: PMC7681044 DOI: 10.1111/acel.13246] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/14/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022] Open
Abstract
Despite growing evidence for the characteristic signs of Alzheimer's disease (AD) in the neurosensory retina, our understanding of retina-brain relationships, especially at advanced disease stages and in response to therapy, is lacking. In transgenic models of AD (APPSWE/PS1∆E9; ADtg mice), glatiramer acetate (GA) immunomodulation alleviates disease progression in pre- and early-symptomatic disease stages. Here, we explored the link between retinal and cerebral AD-related biomarkers, including response to GA immunization, in cohorts of old, late-stage ADtg mice. This aged model is considered more clinically relevant to the age-dependent disease. Levels of synaptotoxic amyloid β-protein (Aβ)1-42, angiopathic Aβ1-40, non-amyloidogenic Aβ1-38, and Aβ42/Aβ40 ratios tightly correlated between paired retinas derived from oculus sinister (OS) and oculus dexter (OD) eyes, and between left and right posterior brain hemispheres. We identified lateralization of Aβ burden, with one-side dominance within paired retinal and brain tissues. Importantly, OS and OD retinal Aβ levels correlated with their cerebral counterparts, with stronger contralateral correlations and following GA immunization. Moreover, immunomodulation in old ADtg mice brought about reductions in cerebral vascular and parenchymal Aβ deposits, especially of large, dense-core plaques, and alleviation of microgliosis and astrocytosis. Immunization further enhanced cerebral recruitment of peripheral myeloid cells and synaptic preservation. Mass spectrometry analysis identified new parallels in retino-cerebral AD-related pathology and response to GA immunization, including restoration of homeostatic glutamine synthetase expression. Overall, our results illustrate the viability of immunomodulation-guided CNS repair in old AD model mice, while shedding light onto similar retino-cerebral responses to intervention, providing incentives to explore retinal AD biomarkers.
Collapse
Affiliation(s)
- Jonah Doustar
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Altan Rentsendorj
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Tania Torbati
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
- College of Osteopathic Medicine of the PacificWestern University of Health SciencesPomonaCAUSA
| | - Giovanna C. Regis
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Dieu‐Trang Fuchs
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Julia Sheyn
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Nazanin Mirzaei
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Stuart L. Graham
- Department of Clinical MedicineMacquarie UniversitySydneyNSWAustralia
- Save Sight InstituteSydney UniversitySydneyNSWAustralia
| | - Prediman K. Shah
- Oppenheimer Atherosclerosis Research CenterCedars‐Sinai Heart InstituteLos AngelesCAUSA
| | - Mitra Mastali
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
- Cedars‐Sinai Medical CenterSmidt Heart InstituteLos AngelesCAUSA
| | - Jennifer E. Van Eyk
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
- Barbara Streisand Women’s Heart CenterCedars‐Sinai Medical CenterLos AngelesCAUSA
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Keith L. Black
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Vivek K. Gupta
- Department of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
| | - Mehdi Mirzaei
- Department of Clinical MedicineMacquarie UniversitySydneyNSWAustralia
- Department of Molecular SciencesMacquarie UniversitySydneyNSWAustralia
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNSWAustralia
| | - Yosef Koronyo
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
| | - Maya Koronyo‐Hamaoui
- Department of NeurosurgeryCedars‐Sinai Medical CenterMaxine Dunitz Neurosurgical Research InstituteLos AngelesCAUSA
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
| |
Collapse
|
127
|
Rzepka Z, Rok J, Kowalska J, Banach K, Hermanowicz JM, Beberok A, Sieklucka B, Gryko D, Wrześniok D. Astrogliosis in an Experimental Model of Hypovitaminosis B12: A Cellular Basis of Neurological Disorders due to Cobalamin Deficiency. Cells 2020; 9:cells9102261. [PMID: 33050187 PMCID: PMC7600008 DOI: 10.3390/cells9102261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Cobalamin deficiency affects human physiology with sequelae ranging from mild fatigue to severe neuropsychiatric abnormalities. The cellular and molecular aspects of the nervous system disorders associated with hypovitaminosis B12 remain largely unknown. Growing evidence indicates that astrogliosis is an underlying component of a wide range of neuropathologies. Previously, we developed an in vitro model of cobalamin deficiency in normal human astrocytes (NHA) by culturing the cells with c-lactam of hydroxycobalamin (c-lactam OH-Cbl). We revealed a non-apoptotic activation of caspases (3/7, 8, 9) in cobalamin-deficient NHA, which may suggest astrogliosis. The aim of the current study was to experimentally verify this hypothesis. We indicated an increase in the cellular expression of two astrogliosis markers: glial fibrillary acidic protein and vimentin in cobalamin-deficient NHA using Western blot analysis and immunocytochemistry with confocal laser scanning microscopy. In the next step of the study, we revealed c-lactam OH-Cbl as a potential non-toxic vitamin B12 antagonist in an in vivo model using zebrafish embryos. We believe that the presented results will contribute to a better understanding of the cellular mechanism underlying neurologic pathology due to cobalamin deficiency and will serve as a foundation for further studies.
Collapse
Affiliation(s)
- Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (J.R.); (J.K.); (K.B.); (A.B.)
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (J.R.); (J.K.); (K.B.); (A.B.)
| | - Justyna Kowalska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (J.R.); (J.K.); (K.B.); (A.B.)
| | - Klaudia Banach
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (J.R.); (J.K.); (K.B.); (A.B.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (B.S.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (J.R.); (J.K.); (K.B.); (A.B.)
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (B.S.)
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Science, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (Z.R.); (J.R.); (J.K.); (K.B.); (A.B.)
- Correspondence: ; Tel.: +48-3-2364-1050
| |
Collapse
|
128
|
Trujillo-Estrada L, Gomez-Arboledas A, Forner S, Martini AC, Gutierrez A, Baglietto-Vargas D, LaFerla FM. Astrocytes: From the Physiology to the Disease. Curr Alzheimer Res 2020; 16:675-698. [PMID: 31470787 DOI: 10.2174/1567205016666190830110152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/12/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
Abstract
Astrocytes are key cells for adequate brain formation and regulation of cerebral blood flow as well as for the maintenance of neuronal metabolism, neurotransmitter synthesis and exocytosis, and synaptic transmission. Many of these functions are intrinsically related to neurodegeneration, allowing refocusing on the role of astrocytes in physiological and neurodegenerative states. Indeed, emerging evidence in the field indicates that abnormalities in the astrocytic function are involved in the pathogenesis of multiple neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In the present review, we highlight the physiological role of astrocytes in the CNS, including their communication with other cells in the brain. Furthermore, we discuss exciting findings and novel experimental approaches that elucidate the role of astrocytes in multiple neurological disorders.
Collapse
Affiliation(s)
- Laura Trujillo-Estrada
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States
| | - Angela Gomez-Arboledas
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Stefânia Forner
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States
| | - Alessandra Cadete Martini
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States
| | - Antonia Gutierrez
- Department of Cell Biology, Genetic and Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain.,Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - David Baglietto-Vargas
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States.,Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, CA 92697-4545, United States.,Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States
| |
Collapse
|
129
|
Edwards SR, Khan N, Coulson EJ, Smith MT. Comparative studies of glial fibrillary acidic protein and brain-derived neurotrophic factor expression in two transgenic mouse models of Alzheimer's disease. Clin Exp Pharmacol Physiol 2020; 47:1740-1750. [PMID: 32542833 DOI: 10.1111/1440-1681.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/12/2020] [Accepted: 06/08/2020] [Indexed: 11/28/2022]
Abstract
In Alzheimer's disease (AD) glial fibrillary acidic protein (GFAP) is expressed by reactive astrocytes surrounding β-amyloid (Aβ) plaques, whereas brain-derived neurotrophic factor (BDNF) levels are typically reduced. We compared the expression of GFAP, BDNF, and its precursor proBDNF in the dorsal hippocampus of two transgenic AD mouse models. APPSwe YAC mice expressing the APPSwe transgene on a yeast artificial chromosome (YAC) were assessed at age 4 and 21 months, and APPSwe/PS1dE9 mice co-expressing mutant amyloid precursor protein (APPSwe) and presenilin-1 (PS1dE9) were assessed at age 4 and 9 months. Significantly increased (1.4-fold) GFAP expression was observed in APPSwe YAC c.f. wild-type (Wt) mice aged 21 months, when Aβ deposition was first evident in these mice. In APPSwe/PS1dE9 mice aged 4 and 9 months, GFAP expression was significantly increased (1.6- and 3.1-fold, respectively) c.f. Wt mice, and was associated with robust Aβ deposition at 9 months. BDNF expression was significantly lower in 4- and 21-month old APPSwe YAC mice (0.8- and 0.6-fold, respectively) c.f. age-matched Wt mice, whereas proBDNF expression was significantly higher (10-fold) in the APPSwe YAC c.f. Wt mice aged 21 months. In APPSwe/PS1dE9 mice aged 4 months, BDNF expression was significantly lower (0.4-fold) c.f. age-matched Wt mice and was equivalent to that in 9-month old mice of both genotypes; proBDNF expression mirrored that of BDNF in this strain. These findings support a role for reactive astrocytes and neuroinflammation, rather than BDNF, in the spatial memory deficits previously reported for APPSwe YAC and APPSwe/PS1dE9 mice.
Collapse
Affiliation(s)
- Stephen R Edwards
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Nemat Khan
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Coulson
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Clem Jones Centre for Aging Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
130
|
Reid MJ, Beltran-Lobo P, Johnson L, Perez-Nievas BG, Noble W. Astrocytes in Tauopathies. Front Neurol 2020; 11:572850. [PMID: 33071951 PMCID: PMC7542303 DOI: 10.3389/fneur.2020.572850] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by the progressive accumulation across the brain of hyperphosphorylated aggregates of the microtubule-associated protein tau that vary in isoform composition, structural conformation and localization. Tau aggregates are most commonly deposited within neurons but can show differential association with astrocytes, depending on the disease. Astrocytes, the most abundant neural cells in the brain, play a major role in synapse and neuronal function, and are a key component of the glymphatic system and blood brain barrier. However, their contribution to tauopathy progression is not fully understood. Here we present a brief overview of the association of tau with astrocytes in tauopathies. We discuss findings that support a role for astrocytes in the uptake and spread of pathological tau, and we describe how alterations to astrocyte phenotype in tauopathies may cause functional alterations that impedes their ability to support neurons and/or cause neurotoxicity. The research reviewed here further highlights the importance of considering non-neuronal cells in neurodegeneration and suggests that astrocyte-directed targets that may have utility for therapeutic intervention in tauopathies.
Collapse
Affiliation(s)
- Matthew J Reid
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Louisa Johnson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Beatriz Gomez Perez-Nievas
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
131
|
Park SH, Lee JY, Jhee KH, Yang SA. Amyloid-ß peptides inhibit the expression of AQP4 and glutamate transporter EAAC1 in insulin-treated C6 glioma cells. Toxicol Rep 2020; 7:1083-1089. [PMID: 32953460 PMCID: PMC7484518 DOI: 10.1016/j.toxrep.2020.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 01/30/2023] Open
Abstract
Astrocytic aquaporin 4 (AQP4) facilitates glutamate clearance via regulation of the glutamate transporter function, involved in the modulation of brain plasticity and cognitive function to prevent neurodegenerative disorders such as Alzheimer's disease (AD). In in vitro studies, the C6 rat glioma cell line is a widely applied aging model system to investigate changes in glial cells associated with aging or AD. However, the neurotoxicity mechanism whether AQP4 mediate glutamate uptake in Aβ-stimulated C6 cell remain uncertain. In this study, we examined the effects of Aβ on the expression of AQP4, Glu transporters, Glu uptake, and cell viability in insulin-treated C6 cells. Our results showed that the expression of AQP4 mRNA and protein was significantly enhanced by insulin in older cultures (passage 45), and the expression was inhibited by Aβ at 10 μM. In addition, the cell viability and glutamate uptake in Aβ-treated C6 cells were decreased in dose-dependent manners. GFAP showed similar changes in gene and protein expression patterns as AQP4, but no significant alterations were seen in GLAST expression. In C6 cells, the glutamate transport was found to be EAAC1, not GLT-1. EAAC1 expression was decreased by the treatment of Aβ. Taken together, our findings suggest that C6 cells may have astrocytic characteristics, and the astrocytic cytotoxicity induced by Aβ was mediated by reduction of glutamate uptake through AQP4/EAAC1 pathway in C6 cells. This indicates that C6 glioma cells could be used to study the roles of AQP4 on astrocyte function in AD.
Collapse
Affiliation(s)
- Se-Ho Park
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.,Institute of Natural Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Jae-Yeul Lee
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.,Institute of Natural Science, Keimyung University, Daegu 42601, Republic of Korea
| | - Kwang-Hwan Jhee
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Seun-Ah Yang
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
132
|
Shang D, Hong Y, Xie W, Tu Z, Xu J. Interleukin-1β Drives Cellular Senescence of Rat Astrocytes Induced by Oligomerized Amyloid β Peptide and Oxidative Stress. Front Neurol 2020; 11:929. [PMID: 33013631 PMCID: PMC7493674 DOI: 10.3389/fneur.2020.00929] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/17/2020] [Indexed: 01/10/2023] Open
Abstract
Background: Alzheimer's disease (AD) is the leading cause of dementia. With no reliable treatment that delays or reverses the progress of AD, effective medical drugs, and interventions for AD treatment are in urgent need. Clinical success for patients thus relies on gaining a clearer understanding of AD pathogenesis to feed the development of novel and potent therapy strategies. It is well-established that inflammatory processes are involved in the pathology of AD, and recent studies implicated senescence of glial cells as an important player in the progression of AD. Methods: We did a preliminary screen in rat astrocytes for the five most abundant inflammatory factors in neuroinflammation, namely IL-1β, IL-6, IL-8, TGF-β1, and TNF-α, and found that IL-1β could efficiently induce cellular senescence. After that, SA-β-gal staining, immunofluorescence, ELISA, qRT-PCR, and immunoblotting were used to explore the underlying mechanism through which IL-1β mediates cellular senescence of rat astrocytes. Results: IL-1β-induced cellular senescence of rat astrocytes was accompanied by increased total and phosphorylated tau. Further experiments showed that both oligomerized amyloid β (Aβ) and H2O2 treatment can induce cellular senescence in rat astrocytes and increase the production and secretion of IL-1β from these cells. Subsequent mechanistic study revealed that activation of NLRP3 mediates Aβ and H2O2-induced maturation and secretion of IL-1β. Conclusion: Our results suggest that IL-1β mediates senescence in rat astrocytes induced by several common adverse stimuli in AD, implicating IL-1β and NLRP3 as valuable diagnostic biomarkers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Dongsheng Shang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yin Hong
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wangwang Xie
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
133
|
Shen G, Hu S, Zhao Z, Zhang L, Ma Q. Antenatal Hypoxia Accelerates the Onset of Alzheimer's Disease Pathology in 5xFAD Mouse Model. Front Aging Neurosci 2020; 12:251. [PMID: 32973487 PMCID: PMC7472639 DOI: 10.3389/fnagi.2020.00251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder associated with cognitive impairment and later dementia among the elderly. Mounting evidence shows that adverse maternal environments during the fetal development increase the risk of diseases later in life including neurological disorders, and suggests an early origin in the development of AD-related dementia (ADRD) in utero. In the present study, we investigated the impact of antenatal hypoxia and fetal stress on the initiation of AD-related pathology in offspring of 5xFAD mice. We showed that fetal hypoxia significantly reduced brain and body weight in the fetal and the early postnatal period, which recovered in young adult mice. Using spontaneous Y-maze, novel object recognition (NOR), and open field (OF) tasks, we found that antenatal hypoxia exacerbated cognitive decline in offspring of 5xFAD compared with normoxia control. Of interest, fetal hypoxia did not alter intraneuronal soluble amyloid-β (Aβ) oligomer accumulation in the cortex and hippocampus in 5xFAD mouse offspring, indicating that antenatal hypoxia increased the vulnerability of the brain to synaptotoxic Aβ in the disease onset later in life. Consistent with the early occurrence of cognitive decline, we found synapse loss but not neuronal death in the cerebral cortex in 5xFAD but not wild-type (WT) offspring exposed to antenatal hypoxia. Furthermore, we also demonstrated that antenatal hypoxia significantly increased microglial number and activation, and reactive astrogliosis in the cerebral cortex in WT offspring. Moreover, antenatal hypoxia resulted in an exacerbated increase of microgliosis and astrogliosis in the early stage of AD in 5xFAD offspring. Together, our study reveals a causative link between fetal stress and the accelerated onset of AD-related pathology, and provides mechanistic insights into the developmental origin of aging-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Shirley Hu
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Zhen Zhao
- Department of Physiology and Neuroscience, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lubo Zhang
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Qingyi Ma
- Department of Basic Sciences, The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
134
|
Ciminelli BM, Menduti G, Benussi L, Ghidoni R, Binetti G, Squitti R, Rongioletti M, Nica S, Novelletto A, Rossi L, Malaspina P. Polymorphic Genetic Markers of the GABA Catabolism Pathway in Alzheimer's Disease. J Alzheimers Dis 2020; 77:301-311. [PMID: 32804142 DOI: 10.3233/jad-200429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The compilation of a list of genetic modifiers in Alzheimer's disease (AD) is an open research field. The GABAergic system is affected in several neurological disorders but its role in AD is largely understudied. OBJECTIVE/METHODS As an explorative study, we considered variants in genes of GABA catabolism (ABAT, ALDH5A1, AKR7A2), and APOE in 300 Italian patients and 299 controls. We introduce a recent multivariate method to take into account the individual APOE genotype, thus controlling for the effect of the discrepant allele distributions in cases versus controls. We add a genotype-phenotype analysis based on age at onset and the Mini-Mental State Evaluation score. RESULTS On the background of strongly divergent APOE allele distributions in AD versus controls, two genotypic interactions that represented a subtle but significant peculiarity of the AD cohort emerged. The first is between ABAT and APOE, and the second between some ALDH5A1 genotypes and APOE. Decreased SSADH activity is predicted in AD carriers of APOEɛ4, representing an additional suggestion for increased oxidative damage. CONCLUSION We identified a difference between AD and controls, not in a shift of the allele frequencies at genes of the GABA catabolism pathway, but rather in gene interactions peculiar of the AD cohort. The emerging view is that of a multifactorial contribution to the disease, with a main risk factor (APOE), and additional contributions by the variants here considered. We consider genes of the GABA degradation pathway good candidates as modifiers of AD, contributing to energy impairment in AD brain.
Collapse
Affiliation(s)
| | | | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Sabrina Nica
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Italy
| | | |
Collapse
|
135
|
Neshan M, Campbell A, Malakouti SK, Zareii M, Ahangari G. Gene expression of serotonergic markers in peripheral blood mononuclear cells of patients with late-onset Alzheimer's disease. Heliyon 2020; 6:e04716. [PMID: 32904297 PMCID: PMC7452509 DOI: 10.1016/j.heliyon.2020.e04716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/06/2020] [Accepted: 08/11/2020] [Indexed: 01/14/2023] Open
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is primarily involved in the regulation of learning and memory. Pathological changes in metabolism or functional imbalance of 5-HT has been associated with Alzheimer's disease (AD). The hypothesis tested is that in peripheral blood, markers of the serotonergic pathway can be used as a diagnostic tool for AD. The current study measured the relative expression of 5-HT receptors (5-HTR2A and 5-HTR3A) as well as the 5-HT catalytic enzyme, Monoamine oxidase A (MAO-A) mRNA in Peripheral Blood Mononuclear Cells (PBMCs) of patients with late-onset Alzheimer's disease (LOAD) and age-matched controls. 5-HTR2A, 5-HTR3A, and MAO-A mRNA expressions were examined in PBMCs of 30 patients with LOAD and 30 control individuals. Real-time quantitative PCR was used to measure mRNA expression. The dementia status of patients in this study was assessed using a Mini-Mental State Examination (MMSE). Mean data of relative mRNA expression of 5-HTR2A, 5-HTR3A and MAO-A were significantly lower in PBMCs of patients with LOAD compared with controls. Based on the down-regulation of serotonergic markers in PBMCs, our findings may be another claim to the systemic nature of LOAD. The role of peripheral serotonergic downregulation, in the pathogenesis of AD, needs to be further studied. Given the extremely convenient access to PBMCs, these molecular events may represent more complete dimensions of AD neuropathophysiology or possibly lead to a new direction in studies focused on blood-based markers.
Collapse
Affiliation(s)
- Masoud Neshan
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, California, USA
| | - Seyed Kazem Malakouti
- Mental Health Research Center, Tehran Institute of Psychiatry–School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Zareii
- Mental Health Research Center, Tehran Institute of Psychiatry–School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ahangari
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
136
|
Abo-Youssef AM, Khallaf WA, Khattab MM, Messiha BA. The anti-Alzheimer effect of telmisartan in a hyperglycemic ovariectomized rat model; role of central angiotensin and estrogen receptors. Food Chem Toxicol 2020; 142:111441. [DOI: 10.1016/j.fct.2020.111441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/19/2022]
|
137
|
Liccardo D, Marzano F, Carraturo F, Guida M, Femminella GD, Bencivenga L, Agrimi J, Addonizio A, Melino I, Valletta A, Rengo C, Ferrara N, Rengo G, Cannavo A. Potential Bidirectional Relationship Between Periodontitis and Alzheimer's Disease. Front Physiol 2020; 11:683. [PMID: 32719612 PMCID: PMC7348667 DOI: 10.3389/fphys.2020.00683] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia in the elderly population, representing a global public health priority. Despite a large improvement in understanding the pathogenesis of AD, the etiology of this disorder remains still unclear, and no current treatment is able to prevent, slow, or stop its progression. Thus, there is a keen interest in the identification and modification of the risk factors and novel molecular mechanisms associated with the development and progression of AD. In this context, it is worth noting that several findings support the existence of a direct link between neuronal and non-neuronal inflammation/infection and AD progression. Importantly, recent studies are now supporting the existence of a direct relationship between periodontitis, a chronic inflammatory oral disease, and AD. The mechanisms underlying the association remain to be fully elucidated, however, it is generally accepted, although not confirmed, that oral pathogens can penetrate the bloodstream, inducing a low-grade systemic inflammation that negatively affects brain function. Indeed, a recent report demonstrated that oral pathogens and their toxic proteins infect the brain of AD patients. For instance, when AD progresses from the early to the more advanced stages, patients could no longer be able to adequately adhere to proper oral hygiene practices, thus leading to oral dysbiosis that, in turn, fuels infection, such as periodontitis. Therefore, in this review, we will provide an update on the emerging (preclinical and clinical) evidence that supports the relationship existing between periodontitis and AD. More in detail, we will discuss data attesting that periodontitis and AD share common risk factors and a similar hyper-inflammatory phenotype.
Collapse
Affiliation(s)
- Daniela Liccardo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Federica Marzano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Marco Guida
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Leonardo Bencivenga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Jacopo Agrimi
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Armida Addonizio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Imma Melino
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Carlo Rengo
- Department of Prosthodontics and Dental Materials, School of Dental Medicine, University of Siena, Siena, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Istituti Clinici Scientifici ICS Maugeri - S.p.A.-Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Scientifico di Telese Terme, Telese, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Istituti Clinici Scientifici ICS Maugeri - S.p.A.-Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Scientifico di Telese Terme, Telese, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
138
|
Beggiato S, Cassano T, Ferraro L, Tomasini MC. Astrocytic palmitoylethanolamide pre-exposure exerts neuroprotective effects in astrocyte-neuron co-cultures from a triple transgenic mouse model of Alzheimer's disease. Life Sci 2020; 257:118037. [PMID: 32622942 DOI: 10.1016/j.lfs.2020.118037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
Palmitoylethanolamide (PEA) is an endogenous lipid mediator that, also by blunting astrocyte activation, demonstrated beneficial properties in several in vitro and in vivo models of Alzheimer's disease (AD). In the present study, we used astrocyte-neuron co-cultures from 3xTg-AD mouse (i.e. an animal model of AD) cerebral cortex to further investigate on the role of astrocytes in PEA-induced neuroprotection. To this aim, we evaluated the number of viable cells, apoptotic nuclei, microtubule-associated protein-2 (MAP2) positive cells and morphological parameters in cortical neurons co-cultured with cortical astrocytes pre-exposed, or not, to Aβ42 (0.5 μM; 24 h) or PEA (0.1 μM; 24 h). Pre-exposure of astrocytes to Aβ42 failed to affect the viability, the number of neuronal apoptotic nuclei, MAP2 positive cell number, neuritic aggregations/100 μm, dendritic branches per neuron, the neuron body area, the length of the longest dendrite and number of neurites/neuron in 3xTg-AD mouse astrocyte-neuron co-cultures. Compared to neurons from wild-type (non-Tg) mouse co-cultures, 3xTg-AD mouse neurons co-cultured with astrocytes from this mutant mice displayed higher number of apoptotic nuclei, lower MAP2 immunoreactivity and several morphological changes. These signs of neuronal suffering were significantly counteracted when the 3xTg-AD mouse cortical neurons were co-cultured with 3xTg-AD mouse astrocytes pre-exposed to PEA. The present data suggest that in astrocyte-neuron co-cultures from 3xTg-AD mice, astrocytes contribute to neuronal damage and PEA, by possibly counteracting reactive astrogliosis, improved neuronal survival. These findings further support the role of PEA as a possible new therapeutic opportunity in AD treatment.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari, 36-44121 Ferrara, Italy; Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, viale Pinto, 1-71122 Foggia, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari, 36-44121 Ferrara, Italy; Department of Clinical and Experimental Medicine, University of Foggia, viale Pinto, 1-71122 Foggia, Italy; IRET Foundation, Via Tolara di Sopra 41 - 40064 Ozzano dell'Emilia, Bologna, Italy; Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Via Fossato di Mortara 70, 44121 Ferrara, Italy.
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari, 36-44121 Ferrara, Italy
| |
Collapse
|
139
|
Byman E, Schultz N, Blom AM, Wennström M. A Potential Role for α-Amylase in Amyloid-β-Induced Astrocytic Glycogenolysis and Activation. J Alzheimers Dis 2020; 68:205-217. [PMID: 30775997 DOI: 10.3233/jad-180997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Astrocytes produce and store the energy reserve glycogen. However, abnormal large glycogen units accumulate if the production or degradation of glycogen is disturbed, a finding often seen in patients with Alzheimer's disease (AD). We have shown increased activity of glycogen degrading α-amylase in AD patients and α-amylase positive glial cells adjacent to AD characteristic amyloid-β (Aβ) plaques. OBJECTIVES Investigate the role of α-amylase in astrocytic glycogenolysis in presence of Aβ. METHODS Presence of α-amylase and large glycogen units in postmortem entorhinal cortex from AD patients and non-demented controls were analyzed by immunohistological stainings. Impact of different Aβ42 aggregation forms on enzymatic activity (α-amylase, pyruvate kinase, and lactate dehydrogenase), lactate secretion, and accumulation of large glycogen units in cultured astrocytes were analyzed by activity assays, ELISA, and immunocytochemistry, respectively. RESULTS AD patients showed increased number of α-amylase positive glial cells. The glial cells co-expressed the astrocytic marker glial fibrillary acidic protein, displayed hypertrophic features, and increased amount of large glycogen units. We further found increased load of large glycogen units, α-amylase immunoreactivity and α-amylase activity in cultured astrocytes stimulated with fibril Aβ42, with increased pyruvate kinase activity, but unaltered lactate release as downstream events. The fibril Aβ42-induced α-amylase activity was attenuated by β-adrenergic receptor antagonist propranolol. DISCUSSION We hypothesize that astrocytes respond to fibril Aβ42 in Aβ plaques by increasing their α-amylase production to either liberate energy or regulate functions needed in reactive processes. These findings indicate α-amylase as an important actor involved in AD associated neuroinflammation.
Collapse
Affiliation(s)
- Elin Byman
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | - Nina Schultz
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| | | | - Anna M Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Malin Wennström
- Department of Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Malmö, Sweden
| |
Collapse
|
140
|
Looking for a Treatment for the Early Stage of Alzheimer's Disease: Preclinical Evidence with Co-Ultramicronized Palmitoylethanolamide and Luteolin. Int J Mol Sci 2020; 21:ijms21113802. [PMID: 32471239 PMCID: PMC7312730 DOI: 10.3390/ijms21113802] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND At the earliest stage of Alzheimer's disease (AD), although patients are still asymptomatic, cerebral alterations have already been triggered. In addition to beta amyloid (Aβ) accumulation, both glial alterations and neuroinflammation have been documented at this stage. Starting treatment at this prodromal AD stage could be a valuable therapeutic strategy. AD requires long-term care; therefore, only compounds with a high safety profile can be used, such as the new formulation containing palmitoylethanolamide and luteolin (co-ultra PEALut) already approved for human use. Therefore, we investigated it in an in vivo pharmacological study that focused on the prodromal stage of AD. METHODS We tested the anti-inflammatory and neuroprotective effects of co-ultra PEALut (5 mg/Kg) administered for 14 days in rats that received once, 5 µg Aβ(1-42) into the hippocampus. RESULTS Glial activation and elevated levels of proinflammatory mediators were observed in Aβ-infused rats. Early administration of co-ultra PEALut prevented the Aβ-induced astrogliosis and microgliosis, the upregulation in gene expression of pro-inflammatory cytokines and enzymes, as well as the reduction of mRNA levels BDNF and GDNF. Our findings also highlight an important neuroprotective effect of co-ultra PEALut treatment, which promoted neuronal survival. CONCLUSIONS Our results reveal the presence of cellular and molecular modifications in the prodromal stage of AD. Moreover, the data presented here demonstrate the ability of co-ultra PEALut to normalize such Aβ-induced alterations, suggesting it as a valuable therapeutic strategy.
Collapse
|
141
|
Ferrer I, Andrés-Benito P, Zelaya MV, Aguirre MEE, Carmona M, Ausín K, Lachén-Montes M, Fernández-Irigoyen J, Santamaría E, del Rio JA. Familial globular glial tauopathy linked to MAPT mutations: molecular neuropathology and seeding capacity of a prototypical mixed neuronal and glial tauopathy. Acta Neuropathol 2020; 139:735-771. [PMID: 31907603 PMCID: PMC7096369 DOI: 10.1007/s00401-019-02122-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Globular glial tauopathy (GGT) is a progressive neurodegenerative disease involving the grey matter and white matter (WM) and characterized by neuronal deposition of hyper-phosphorylated, abnormally conformed, truncated, oligomeric 4Rtau in neurons and in glial cells forming typical globular astrocyte and oligodendrocyte inclusions (GAIs and GOIs, respectively) and coiled bodies. Present studies centre on four genetic GGT cases from two unrelated families bearing the P301T mutation in MAPT and one case of sporadic GGT (sGGT) and one case of GGT linked to MAPT K317M mutation, for comparative purposes. Clinical and neuropathological manifestations and biochemical profiles of phospho-tau are subjected to individual variations in patients carrying the same mutation, even in carriers of the same family, independently of the age of onset, gender, and duration of the disease. Immunohistochemistry, western blotting, transcriptomic, proteomics and phosphoproteomics, and intra-cerebral inoculation of brain homogenates to wild-type (WT) mice were the methods employed. In GGT cases linked to MAPT P301T mutation, astrocyte markers GFAP, ALDH1L1, YKL40 mRNA and protein, GJA1 mRNA, and AQ4 protein are significantly increased; glutamate transporter GLT1 (EAAT2) and glucose transporter (SLC2A1) decreased; mitochondrial pyruvate carrier 1 (MPC1) increased, and mitochondrial uncoupling protein 5 (UCP5) almost absent in GAIs in frontal cortex (FC). Expression of oligodendrocyte markers OLIG1 and OLIG2mRNA, and myelin-related genes MBP, PLP1, CNP, MAG, MAL, MOG, and MOBP are significantly decreased in WM; CNPase, PLP1, and MBP antibodies reveal reduction and disruption of myelinated fibres; and SMI31 antibodies mark axonal damage in the WM. Altered expression of AQ4, GLUC-t, and GLT-1 is also observed in sGGT and in GGT linked to MAPT K317M mutation. These alterations point to primary astrogliopathy and oligodendrogliopathy in GGT. In addition, GGT linked to MAPT P301T mutation proteotypes unveil a proteostatic imbalance due to widespread (phospho)proteomic dearrangement in the FC and WM, triggering a disruption of neuron projection morphogenesis and synaptic transmission. Identification of hyper-phosphorylation of variegated proteins calls into question the concept of phospho-tau-only alteration in the pathogenesis of GGT. Finally, unilateral inoculation of sarkosyl-insoluble fractions of GGT homogenates from GGT linked to MAPT P301T, sGGT, and GGT linked to MAPT K317M mutation in the hippocampus, corpus callosum, or caudate/putamen in wild-type mice produces seeding, and time- and region-dependent spreading of phosphorylated, non-oligomeric, and non-truncated 4Rtau and 3Rtau, without GAIs and GOIs but only of coiled bodies. These experiments prove that host tau strains are important in the modulation of cellular vulnerability and phenotypes of phospho-tau aggregates.
Collapse
|
142
|
Abbink MR, Kotah JM, Hoeijmakers L, Mak A, Yvon-Durocher G, van der Gaag B, Lucassen PJ, Korosi A. Characterization of astrocytes throughout life in wildtype and APP/PS1 mice after early-life stress exposure. J Neuroinflammation 2020; 17:91. [PMID: 32197653 PMCID: PMC7083036 DOI: 10.1186/s12974-020-01762-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Early-life stress (ES) is an emerging risk factor for later life development of Alzheimer’s disease (AD). We have previously shown that ES modulates amyloid-beta pathology and the microglial response to it in the APPswe/PS1dE9 mouse model. Because astrocytes are key players in the pathogenesis of AD, we studied here if and how ES affects astrocytes in wildtype (WT) and APP/PS1 mice and how these relate to the previously reported amyloid pathology and microglial profile. Methods We induced ES by limiting nesting and bedding material from postnatal days (P) 2–9. We studied in WT mice (at P9, P30, and 6 months) and in APP/PS1 mice (at 4 and 10 months) (i) GFAP coverage, cell density, and complexity in hippocampus (HPC) and entorhinal cortex (EC); (ii) hippocampal gene expression of astrocyte markers; and (iii) the relationship between astrocyte, microglia, and amyloid markers. Results In WT mice, ES increased GFAP coverage in HPC subregions at P9 and decreased it at 10 months. APP/PS1 mice at 10 months exhibited both individual cell as well as clustered GFAP signals. APP/PS1 mice when compared to WT exhibited reduced total GFAP coverage in HPC, which is increased in the EC, while coverage of the clustered GFAP signal in the HPC was increased and accompanied by increased expression of several astrocytic genes. While measured astrocytic parameters in APP/PS1 mice appear not be further modulated by ES, analyzing these in the context of ES-induced alterations to amyloid pathology and microglial shows alterations at both 4 and 10 months of age. Conclusions Our data suggest that ES leads to alterations to the astrocytic response to amyloid-β pathology.
Collapse
Affiliation(s)
- Maralinde R Abbink
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Janssen M Kotah
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lianne Hoeijmakers
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aline Mak
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Genevieve Yvon-Durocher
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bram van der Gaag
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
143
|
Bharani KL, Ledreux A, Gilmore A, Carroll SL, Granholm AC. Serum pro-BDNF levels correlate with phospho-tau staining in Alzheimer's disease. Neurobiol Aging 2020; 87:49-59. [PMID: 31882186 DOI: 10.1016/j.neurobiolaging.2019.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/02/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
Disruption of brain-derived neurotrophic factor (BDNF) biosynthesis and/or signaling has been implicated in the pathogenesis of Alzheimer's disease (AD). We used postmortem brain and fluid samples from 20 patients with variable severity of AD and 11 controls to investigate whether BDNF levels in serum and brain tissue correlated with hippocampal pathology. Total BDNF, precursor BDNF (pro-BDNF), and mature BDNF were measured in cerebrospinal fluid, serum, and 3 postmortem brain regions. Histological markers for AD pathology, the BDNF cognate receptor (TrkB), and glia were measured in the hippocampus (HIP). Lower pro-BDNF levels were observed in the entorhinal and frontal cortices in AD cases compared with controls. AD cases also exhibited significantly lower staining densities of the cognate BDNF receptor TrkB in the HIP compared with controls, and TrkB staining was inversely correlated with both Amylo-Glo and pTau staining in the same region, suggesting a relationship between the density of the cognate BDNF receptor and accumulation of AD pathology. In addition, higher serum pro-BDNF levels correlated with lower HIP pro-BDNF levels and higher pTau staining in the HIP. Total BDNF levels in cortical regions were also negatively correlated with Amylo-Glo staining in the HIP suggesting that reduced BDNF cortical levels might influence hippocampal amyloid accumulation. These results strongly suggest that altered BDNF and TrkB receptors are involved in AD pathology and therefore warrant investigations into therapies involving the BDNF pathway.
Collapse
Affiliation(s)
- Krishna L Bharani
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ann-Charlotte Granholm
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA.
| |
Collapse
|
144
|
Kim C, Livne-Bar I, Gronert K, Sivak JM. Fair-Weather Friends: Evidence of Lipoxin Dysregulation in Neurodegeneration. Mol Nutr Food Res 2020; 64:e1801076. [PMID: 31797529 DOI: 10.1002/mnfr.201801076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Lipoxins (LXs) are autacoids, specialized proresolving lipid mediators (SPMs) acting locally in a paracrine or autocrine fashion. They belong to a complex superfamily of dietary small polyunsaturated fatty acid (PUFA)-metabolites, which direct potent cellular responses to resolve inflammation and restore tissue homeostasis. Together, these SPM activities have been intensely studied in systemic inflammation and acute injury or infection, but less is known about LX signaling and activities in the central nervous system. LXs are derived from arachidonic acid, an omega-6 PUFA. In addition to well-established roles in systemic inflammation resolution, they have increasingly become implicated in regulating neuroinflammatory and neurodegenerative processes. In particular, chronic inflammation plays a central role in Alzheimer's disease (AD) etiology, and dysregulated LX production and activities have been reported in a variety of AD rodent models and clinical tissue samples, yet with complex and sometimes conflicting results. In addition, reduced LX production following retinal injury has been reported recently by the authors, and an intriguing direct neuronal activity promoting survival and homeostasis in retinal and cortical neurons is demonstrated. Here, the authors review and clarify this growing literature and suggest new research directions to further elaborate the role of lipoxins in neurodegeneration.
Collapse
Affiliation(s)
- Changmo Kim
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Izhar Livne-Bar
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| | - Karsten Gronert
- School of Optometry, Vision Science Program, University of California Berkeley, Berkeley, CA, 94720
- Infectious Disease and Immunity, University of California Berkeley, Berkeley, CA, 94720
| | - Jeremy M Sivak
- Department of Laboratory Medicine and Pathobiology, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto School of Medicine, Toronto, ON, M5S 1A8, Canada
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
| |
Collapse
|
145
|
Cipollari E, Szapary HJ, Picataggi A, Billheimer JT, Lyssenko CA, Ying GS, Shaw LM, Kling MA, Kaddurah-Daouk R, Rader DJ, Pratico D, Lyssenko NN. Correlates and Predictors of Cerebrospinal Fluid Cholesterol Efflux Capacity from Neural Cells, a Family of Biomarkers for Cholesterol Epidemiology in Alzheimer's Disease. J Alzheimers Dis 2020; 74:563-578. [PMID: 32065798 PMCID: PMC7333913 DOI: 10.3233/jad-191246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Basic research has implicated intracellular cholesterol in neurons, microglia, and astrocytes in the pathogenesis of Alzheimer's disease (AD), but there is presently no assay to access intracellular cholesterol in neural cells in living people in the context of AD. OBJECTIVE To devise and characterize an assay that can access intracellular cholesterol and cholesterol efflux in neural cells in living subjects. METHODS We modified the protocol for high-density lipoprotein cholesterol efflux capacity (CEC) from macrophages, a biomarker that accesses cholesterol in macrophages in atherosclerosis. To measure cerebrospinal fluid (CSF) CECs from neurons, microglia, and astrocytes, CSF was exposed to, correspondingly, neuronal, microglial, and astrocytic cholesterol source cells. Human neuroblastoma SH-SY5Y, mouse microglial N9, and human astroglial A172 cells were used as the cholesterol source cells. CSF samples were screened for contamination with blood. CSF CECs were measured in a small cohort of 22 individuals. RESULTS CSF CECs from neurons, microglia, and astrocytes were moderately to moderately strongly correlated with CSF concentrations of cholesterol, apolipoprotein A-I, apolipoprotein E, and clusterin (Pearson's r = 0.53-0.86), were in poor agreement with one another regarding CEC of the CSF samples (Lin's concordance coefficient rc = 0.71-0.76), and were best predicted by models consisting of, correspondingly, CSF phospholipid (R2 = 0.87, p < 0.0001), CSF apolipoprotein A-I and clusterin (R2 = 0.90, p < 0.0001), and CSF clusterin (R2 = 0.62, p = 0.0005). CONCLUSION Characteristics of the CSF CEC metrics suggest a potential for independent association with AD and provision of fresh insight into the role of cholesterol in AD pathogenesis.
Collapse
Affiliation(s)
- Eleonora Cipollari
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah J. Szapary
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Antonino Picataggi
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey T. Billheimer
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine A. Lyssenko
- Office of Institutional Research & Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - Gui-Shuang Ying
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mitchel A. Kling
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Behavioral Health Services, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Daniel J. Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Domenico Pratico
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Nicholas N. Lyssenko
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
146
|
Early restoration of parvalbumin interneuron activity prevents memory loss and network hyperexcitability in a mouse model of Alzheimer's disease. Mol Psychiatry 2020; 25:3380-3398. [PMID: 31431685 PMCID: PMC7714697 DOI: 10.1038/s41380-019-0483-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 05/09/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Neuronal network dysfunction is increasingly recognized as an early symptom in Alzheimer's disease (AD) and may provide new entry points for diagnosis and intervention. Here, we show that amyloid-beta-induced hyperexcitability of hippocampal inhibitory parvalbumin (PV) interneurons importantly contributes to neuronal network dysfunction and memory impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We demonstrate that hippocampal PV interneurons become hyperexcitable at ~16 weeks of age, when no changes are observed yet in the intrinsic properties of pyramidal cells. This hyperexcitable state of PV interneurons coincides with increased inhibitory transmission onto hippocampal pyramidal neurons and deficits in spatial learning and memory. We show that treatment aimed at preventing PV interneurons from becoming hyperexcitable is sufficient to restore PV interneuron properties to wild-type levels, reduce inhibitory input onto pyramidal cells, and rescue memory deficits in APP/PS1 mice. Importantly, we demonstrate that early intervention aimed at restoring PV interneuron activity has long-term beneficial effects on memory and hippocampal network activity, and reduces amyloid plaque deposition, a hallmark of AD pathology. Taken together, these findings suggest that early treatment of PV interneuron hyperactivity might be clinically relevant in preventing memory decline and delaying AD progression.
Collapse
|
147
|
Yokoi F, Jiang F, Dexter K, Salvato B, Li Y. Improved survival and overt "dystonic" symptoms in a torsinA hypofunction mouse model. Behav Brain Res 2019; 381:112451. [PMID: 31891745 DOI: 10.1016/j.bbr.2019.112451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022]
Abstract
DYT1 dystonia is an inherited movement disorder without obvious neurodegeneration. Multiple mutant mouse models exhibit motor deficits without overt "dystonic" symptoms and neurodegeneration. However, some mouse models do. Among the later models, the N-CKO mouse model, which has a heterozygous Tor1a/Dyt1 knockout (KO) in one allele and Nestin-cre-mediated conditional KO in the other, exhibits a severe lack of weight gain, neurodegeneration, overt "dystonic" symptoms, such as overt leg extension, weak walking, twisted hindpaw and stiff hindlimb, and complete infantile lethality. However, it is not clear if the overt dystonic symptoms were caused by the neurodegeneration in the dying N-CKO mice. Here, the effects of improved maternal care and nutrition during early life on the symptoms in N-CKO mice were analyzed by culling the litter and providing wet food to examine whether the overt dystonic symptoms and severe lack of weight gain are caused by malnutrition-related neurodegeneration. Although the N-CKO mice in this study replicated the severe lack of weight gain and overt "dystonic" symptoms during the lactation period regardless of culling at postnatal day zero or later, there was no significant difference in the brain astrocytes and apoptosis between the N-CKO and control mice. Moreover, more than half of the N-CKO mice with culling survived past the lactation period. The surviving adult N-CKO mice did not display overt "dystonic" symptoms, and in addition they still exhibited small body weight. The results suggest that the overt "dystonic" symptoms in the N-CKO mice were independent of prominent neurodegeneration, which negates the role of neurodegeneration in the pathogenesis of DYT1 dystonia.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fangfang Jiang
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA; Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Kelly Dexter
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bryan Salvato
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Department of Neurology and Norman Fixel Institute of Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
148
|
Katsouri L, Birch AM, Renziehausen AWJ, Zach C, Aman Y, Steeds H, Bonsu A, Palmer EOC, Mirzaei N, Ries M, Sastre M. Ablation of reactive astrocytes exacerbates disease pathology in a model of Alzheimer's disease. Glia 2019; 68:1017-1030. [PMID: 31799735 PMCID: PMC7383629 DOI: 10.1002/glia.23759] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
The role of astrocytes in the progression of Alzheimer's disease (AD) remains poorly understood. We assessed the consequences of ablating astrocytic proliferation in 9 months old double transgenic APP23/GFAP-TK mice. Treatment of these mice with the antiviral agent ganciclovir conditionally ablates proliferating reactive astrocytes. The loss of proliferating astrocytes resulted in significantly increased levels of monomeric amyloid-β (Aβ) in brain homogenates, associated with reduced enzymatic degradation and clearance mechanisms. In addition, our data revealed exacerbated memory deficits in mice lacking proliferating astrocytes concomitant with decreased levels of synaptic markers and higher expression of pro-inflammatory cytokines. Our data suggest that loss of reactive astrocytes in AD aggravates amyloid pathology and memory loss, possibly via disruption of amyloid clearance and enhanced neuroinflammation.
Collapse
Affiliation(s)
- Loukia Katsouri
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Amy M Birch
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | | | - Carolin Zach
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Yahyah Aman
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Hannah Steeds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Angela Bonsu
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Emily O C Palmer
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Nazanin Mirzaei
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Miriam Ries
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
149
|
Wang JL, Xu CJ. Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother 2019; 122:109691. [PMID: 31786465 DOI: 10.1016/j.biopha.2019.109691] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes can serve multiple functions in maintaining cellular homeostasis of the central nervous system (CNS), and normal functions for autophagy in astrocytes is considered to have very vital roles in the pathogenesis of aging and neurodegenerative diseases. Autophagy is a major intracellular lysosomal (or its yeast analog, vacuolar) clearance pathways involved in the degradation and recycling of long-lived proteins, oxidatively damaged proteins and dysfunctional organelles by lysosomes. Current evidence has shown that autophagy might influence inflammation, oxidative stress, aging and function of astrocytes. Although the interrelation between autophagy and inflammation, oxidative stress, aging or neurological disorders have been addressed in detail, the influence of astrocytes mediated-autophagy in aging and neurodegenerative disorders has yet to be fully reviewed. In this review, we will summarize the most up-to-date findings and highlight the role of autophagy in astrocytes and link autophagy of astrocytes to aging and neurodegenerative diseases. Due to the prominent roles of astrocytic autophagy in age-related neurodegenerative diseases, we believe that we can provide new suggestions for the treatment of these disorders.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Chao-Jin Xu
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Cha Shan University Town, No.1 Central North Road, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
150
|
Lin X, Chen Y, Zhang P, Chen G, Zhou Y, Yu X. The potential mechanism of postoperative cognitive dysfunction in older people. Exp Gerontol 2019; 130:110791. [PMID: 31765741 DOI: 10.1016/j.exger.2019.110791] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/18/2019] [Accepted: 11/21/2019] [Indexed: 02/08/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common disorder following surgery, which seriously threatens the quality of patients' life, especially the older people. Accumulating attention has been paid to POCD worldwide in pace with the popularization of anesthesia/surgery. The development of medical humanities and rehabilitation medicine sets higher demands on accurate diagnosis and safe treatment system of POCD. Although the research on POCD is in full swing, underlying pathogenesis is still inconclusive due to these conflicting results and controversial evidence. Generally, POCD is closely related to neuropsychiatric diseases such as dementia, depression and Alzheimer's disease in molecular pathways. Researchers have come up with various hypotheses to reveal the mechanisms of POCD, including neuroinflammation, oxidative stress, autophagy disorder, impaired synaptic function, lacking neurotrophic support, etc. Recent work focused on molecular mechanism of POCD in older people has been thoroughly reviewed and summed up here, concerning the changes of peripheral circulation, pathological pathways of central nervous system (CNS), the microbiota-gut-brain axis and the related brain regions. Accordingly, this article provides a better perspective to understand the development situation of POCD in older people, which is conductive to uncover the pathological mechanism and exploit reasonable treatment strategy of POCD.
Collapse
Affiliation(s)
- Xianyi Lin
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Xin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| |
Collapse
|