101
|
Niu M, Zhou F, Yang Y, Sun Y, Zhu T, Shen F. Abundance and composition of airborne archaea during springtime mixed dust and haze periods in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141641. [PMID: 32892037 DOI: 10.1016/j.scitotenv.2020.141641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 05/21/2023]
Abstract
Archaea have an important role in the elemental biogeochemical cycle and human health. However, characteristics of airborne archaea affected by anthropogenic and natural processes are unclear. In this study, we investigated the abundance, structures, influencing factors and assembly processes of the archaeal communities in the air samples collected from Beijing in springtime using quantitative polymerase chain reaction (qPCR), high-throughput sequencing technology and statistical analysis. The concentrations of airborne archaea ranged from 101 to 103 copies m-3 (455 ± 211 copies m-3), accounting for 0.67% of the total prokaryote (sum of archaea and bacteria). An increase in airborne archaea was seen when the air quality shifted from clean to slightly polluted conditions. Sandstorm dust imported a large number of archaea to the local atmosphere. Euryarchaeota, Thaumarchaeota and Crenarchaeota were the dominant phyla, revealing the primary role of soil in releasing archaea to the ambient environment. Dispersal-related neutral processes play an important role in shaping the structure of airborne archaeal assembly. Of all phyla, methanogenic Euryarchaeota were most abundant in the air parcels come from the south of Beijing. Air masses from the west of Beijing, which brought sandstorm to Beijing, carried large amounts of ammonia oxidizing archaea Nitrososphaera. The results demonstrate the importance of air mass sources and local weather conditions in shaping the local airborne archaea community.
Collapse
Affiliation(s)
- Mutong Niu
- School of Space and Environment, Beihang University, Beijing 102206, China.
| | - Feng Zhou
- School of Space and Environment, Beihang University, Beijing 102206, China.
| | - Yi Yang
- School of Space and Environment, Beihang University, Beijing 102206, China.
| | - Ye Sun
- School of Space and Environment, Beihang University, Beijing 102206, China.
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing 102206, China.
| | - Fangxia Shen
- School of Space and Environment, Beihang University, Beijing 102206, China.
| |
Collapse
|
102
|
Xie W, Li Y, Bai W, Hou J, Ma T, Zeng X, Zhang L, An T. The source and transport of bioaerosols in the air: A review. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2021; 15:44. [PMID: 33589868 PMCID: PMC7876263 DOI: 10.1007/s11783-020-1336-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 05/13/2023]
Abstract
Recent pandemic outbreak of the corona-virus disease 2019 (COVID-19) has raised widespread concerns about the importance of the bioaerosols. They are atmospheric aerosol particles of biological origins, mainly including bacteria, fungi, viruses, pollen, and cell debris. Bioaerosols can exert a substantial impact on ecosystems, climate change, air quality, and public health. Here, we review several relevant topics on bioaerosols, including sampling and detection techniques, characterization, effects on health and air quality, and control methods. However, very few studies have focused on the source apportionment and transport of bioaerosols. The knowledge of the sources and transport pathways of bioaerosols is essential for a comprehensive understanding of the role microorganisms play in the atmosphere and control the spread of epidemic diseases associated with them. Therefore, this review comprehensively summarizes the up to date progress on the source characteristics, source identification, and diffusion and transport process of bioaerosols. We intercompare three types of diffusion and transport models, with a special emphasis on a widely used mathematical model. This review also highlights the main factors affecting the source emission and transport process, such as biogeographic regions, land-use types, and environmental factors. Finally, this review outlines future perspectives on bioaerosols.
Collapse
Affiliation(s)
- Wenwen Xie
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Yanpeng Li
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region (Ministry of Education), Chang’an University, Xi’an, 710054 China
| | - Wenyan Bai
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Junli Hou
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Tianfeng Ma
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Xuelin Zeng
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
| | - Liyuan Zhang
- School of Water and Environment, Chang’an University, Xi’an, 710054 China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region (Ministry of Education), Chang’an University, Xi’an, 710054 China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environment Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006 China
| |
Collapse
|
103
|
Nair AT. Bioaerosols in the landfill environment: an overview of microbial diversity and potential health hazards. AEROBIOLOGIA 2021; 37:185-203. [PMID: 33558785 PMCID: PMC7860158 DOI: 10.1007/s10453-021-09693-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/19/2021] [Indexed: 05/05/2023]
Abstract
Landfilling is one of the indispensable parts of solid waste management in various countries. Solid waste disposed of in landfill sites provides nutrients for the proliferation of pathogenic microbes which are aerosolized into the atmosphere due to the local meteorology and various waste disposal activities. Bioaerosols released from landfill sites can create health issues for employees and adjoining public. The present study offers an overview of the microbial diversity reported in the air samples collected from various landfill sites worldwide. This paper also discusses other aspects, including effect of meteorological conditions on the bioaerosol concentrations, sampling techniques, bioaerosol exposure and potential health impacts. Analysis of literature concluded that landfill air is dominated by microbial dust or various pathogenic microbes like Enterobacteriaceae, Staphylococcus aureus, Clostridium perfringens, Acinetobacter calcoaceticus and Aspergillus fumigatus. The bioaerosols present in the landfill environment are of respirable sizes and can penetrate deep into lower respiratory systems and trigger respiratory symptoms and chronic pulmonary diseases. Most studies reported higher bioaerosol concentrations in spring and summer as higher temperature and relative humidity provide a favourable environment for survival and multiplication of microbes. Landfill workers involved in solid waste disposal activities are at the highest risk of exposure to these bioaerosols due to their proximity to solid waste and as they practise minimum personal safety and hygiene measures during working hours. Workers are recommended to use personal protective equipment and practise hygiene to reduce the impact of occupational exposure to bioaerosols.
Collapse
Affiliation(s)
- Abhilash T. Nair
- Department of Applied Sciences and Humanities, National Institute of Foundry and Forge Technology (NIFFT), Hatia, Ranchi, Jharkhand 834003 India
| |
Collapse
|
104
|
Haas D, Kriso A, Fritz T, Galler H, Habib J, Ilieva M, Kropsch M, Ofner-Kopeinig P, Stonitsch M, Strasser A, Zentner E, Reinthaler FF. Background Concentrations of Cultivable, Mesophilic Bacteria and Dust Particles in the Air in Urban, Rural and Mountain Regions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249572. [PMID: 33371355 PMCID: PMC7767401 DOI: 10.3390/ijerph17249572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
Particulate air components can be of anthropogenic or natural origin. It is assumed that in different geographical areas varying concentrations of mesophilic bacteria are present in the ambient air. The aim of this study was to determine the background concentrations of airborne culturable mesophilic bacteria and particulate matter in the ambient air. Furthermore, the association between their concentrations and some environmental factors was analysed. In the period from July to October 2019, concentrations of mesophilic bacteria and dust particles were measured in urban, rural and mountain areas using the single-stage air sampler and the particle counter. The concentrations of bacteria and dust particles in the air were counted as number of Colony Forming Units per cubic metre (CFU/m3) and particles per cubic metre (pa/m3). Staphylococcus sp. were identified. The median values of the cultivated mesophilic bacteria at 30 °C and 37 °C were 7.1 × 102 CFU/m3 and 2.3 × 101 CFU/m3 in mountain regions, 1.3 × 102 CFU/m3 and 6.9 × 101 CFU/m3 in rural regions and 2.1 × 102 CFU/m3 and 6.5 × 101 CFU/m3 in urban regions. The median of Staphylococcus sp. was 2.5 × 100 CFU/m3 in alpine areas and 7.5 × 100 CFU/m3 in urban and rural areas. Higher bacterial concentrations were measured in sunshine and in windy weather. A relationship was observed between the concentrations of airborne mesophilic bacteria and the coarse particles in all three areas. The present study determined values between 5.0 × 100 and 4.6 × 102 CFU/m3 as natural background concentrations of airborne mesophilic bacteria and 1.2 × 107 pa/m3 and 6.5 × 104 pa/m3 for fine and coarse particles, respectively. These results can be proposed as baseline for the assessment of the emission sources of mesophilic bacteria for summer and early autumn.
Collapse
Affiliation(s)
- Doris Haas
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (A.K.); (T.F.); (H.G.); (J.H.); (M.I.); (M.S.); (A.S.); (F.F.R.)
- Correspondence:
| | - Angela Kriso
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (A.K.); (T.F.); (H.G.); (J.H.); (M.I.); (M.S.); (A.S.); (F.F.R.)
| | - Theresa Fritz
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (A.K.); (T.F.); (H.G.); (J.H.); (M.I.); (M.S.); (A.S.); (F.F.R.)
| | - Herbert Galler
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (A.K.); (T.F.); (H.G.); (J.H.); (M.I.); (M.S.); (A.S.); (F.F.R.)
| | - Juliana Habib
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (A.K.); (T.F.); (H.G.); (J.H.); (M.I.); (M.S.); (A.S.); (F.F.R.)
| | - Mihaela Ilieva
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (A.K.); (T.F.); (H.G.); (J.H.); (M.I.); (M.S.); (A.S.); (F.F.R.)
| | - Michael Kropsch
- Agricultural Research and Education Center Raumberg Gumpenstein, 8952 Irdning, Austria; (M.K.); (E.Z.)
| | - Petra Ofner-Kopeinig
- Institute for Medical Informatics Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria;
| | - Martin Stonitsch
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (A.K.); (T.F.); (H.G.); (J.H.); (M.I.); (M.S.); (A.S.); (F.F.R.)
| | - Andreas Strasser
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (A.K.); (T.F.); (H.G.); (J.H.); (M.I.); (M.S.); (A.S.); (F.F.R.)
| | - Eduard Zentner
- Agricultural Research and Education Center Raumberg Gumpenstein, 8952 Irdning, Austria; (M.K.); (E.Z.)
| | - Franz F. Reinthaler
- D&R Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (A.K.); (T.F.); (H.G.); (J.H.); (M.I.); (M.S.); (A.S.); (F.F.R.)
| |
Collapse
|
105
|
Chai A, Yuan L, Li L, Shi Y, Xie X, Wang Q, Li B. Aerosol transmission of Pseudomonas amygdali pv. lachrymans in greenhouses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141433. [PMID: 32818894 DOI: 10.1016/j.scitotenv.2020.141433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Most previous studies on aerosols have focused on the role of aerosols in the transmission of human and animal pathogens; however, little is known about the role of aerosols in the transmission of plant bacterial disease. In this study, experimental evidence for the emission and transmission of Pseunomonas. amygdali pv. lachrymans (Pal) aerosol was provided, and the results supported that diseased cucumber plants served as the main source of Pal aerosol. Bacterial aerosols released by infected plants played a significant role in the epidemiology of cucumber angular leaf spot (ALS) disease. Aerosol chambers were constructed to study the characteristics of Pal aerosols released by artificially infested cucumber plants. The particle size of Pal aerosol was predominately distributed from 1.1 to 4.7 μm, accounting for 72.16% of the total amount of Pal aerosol. The infection threshold of aerosolized Pal to cause ALS disease was 84-179 CFU/m3. In addition, the transmission dynamics of Pal aerosols from donor cucumber plants to recipient cucumber plants were also confirmed in exposure chambers and greenhouses. The results from the present study verified the hypothesis that aerosol dissemination is a potential route for the epidemiology of plant bacterial disease, and these data will contribute to the development of new strategies for the effective alleviation and control of plant bacterial diseases.
Collapse
Affiliation(s)
- Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifang Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
106
|
Kilic M, Altunoglu MK, Akdogan GE, Akpınar S, Taskın E, Erkal AH. Airborne fungal spore relationships with meteorological parameters and skin prick test results in Elazig, Turkey. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1271-1280. [PMID: 33312641 PMCID: PMC7721787 DOI: 10.1007/s40201-020-00545-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/21/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND Since fungi spores have high concentrations in the atmosphere during most of the year, they have an important place in respiratory allergies. In this regard, the preparation of calendars showing fungi spore loads for residential areas has much importance in the treatment of the patients. The first aim of this study was to present the airborne fungal spore research results from Eastern Anatolia in Turkey. Then, the mold spores' relationships with the meteorological parameters and skin prick test results were also evaluated. The presence of fungal spores was investigated using a volumetric spore trap in 2018 year. METHODS In this study, fungal spores within the atmosphere of the Elazığ city of Turkey was measured through the volumetric method, using a Lanzoni VPPS 2000 device (VPPS 2000 Lanzoni, Bologna, Italy), in 2018 year. Annual data of temperature, humidity, precipitation and wind speed were used for comparing meteorological data with airborne fungal spore counts. In addition, 637 children who were admitted to a pediatric allergy clinic with allergic complaints were enrolled in the study. RESULTS A total of 145,099 spores/m3 and 20 fungal taxa belonging to the molds were recorded. Ustilago was the predominant genus (18.10%), followed by Oidium (18.01%), Drechslera (12.82%), and Fusarium (11.60%), which were the most common fungal spores found in Elazig's atmosphere. The total mold spores in the atmosphere reached the highest level, with 28,153 spores/m3, in July (mid-summer). Moreover, we found a positive correlation between the mold spores and the temperature, but negative correlations with the humidity and wind speed. In the skin prick tests in the children with allergic complaints, we detected sensitization to Alternaria alternata in 4.4%, Cladosporium herbarum in 3.0%, Penicillium notatum in 1.4%, and Aspergillus fumigatus in 1.1%. Additionally, there was no correlation between fungal spore concentration in the atmosphere with fungal spores sensitization in the skin prick test. CONCLUSIONS This study was the first aerofungal survey of the Eastern Anatolia region in Turkey; therefore, new information has been introduced in the field of aerobiology in Turkey.
Collapse
Affiliation(s)
- Mehmet Kilic
- Department of Pediatrics, Division of Allergy and Immunology, University of Firat, Elazig, Turkey
- Cocuk Sagligi ve Hastalikları Anabilim Dalı, Fırat Universitesi Tip Fakultesi, 23119 Elazig, Turkey
| | | | - Gül Esma Akdogan
- Faculty of Arts and Sciences, Department of Biology, University of Kafkas, Kars, Turkey
| | - Salih Akpınar
- Faculty of Arts and Sciences, Department of Biology, University of Kafkas, Kars, Turkey
| | - Erdal Taskın
- Department of Pediatrics, Division of Neonatology, University of Firat, Elazig, Turkey
| | | |
Collapse
|
107
|
Talepour N, Hassanvand MS, Abbasi-Montazeri E, Latifi SM, Jaafarzadeh Haghighi Fard N. Spatio-temporal variations of airborne bacteria from the municipal wastewater treatment plant: a case study in Ahvaz, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:423-432. [PMID: 33312571 PMCID: PMC7721828 DOI: 10.1007/s40201-020-00470-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/30/2020] [Indexed: 05/09/2023]
Abstract
The study of bioaerosol dispersion in wastewater treatment plants (WWTPs) has received considerable attention. This study aimed to investigate the seasonal changes and spatial distributions of airborne bacteria around different parts of Ahvaz WWTP, the capital city of Khuzestan Province, Iran, over 4 months in the cold and warm seasons. Samples were collected from 2 and 10-m intervals of grit chamber (GCh), primary sludge dewatering basin (PSDB), aeration tank (AT), as well as 60-m upstream (US) and downstream (DS) of the WWTP. Further, bacteria in the indoor air of administrative building (AB) of WWTP were investigated. Bioaerosols were collected by passive sampling method. The total bacteria count was 105.3 ± 98.5 CFU/plate/h. The dominant bacteria stood 2 m away from the AT with an average 244.2 ± 73.1 CFU/plate/h in the warm season while they were the lowest with an average 43 ± 11.4 CFU/plate/h in the 10-m distance of the GCh in the cold season. According to the sequencing results, the dominant bacterial species included Bacillus pumilus (26.7%), Staphylococcus arlettae (23.2%), Kocuria turfanensis (13.6%) and Alicycliphilus (9.2%), respectively. There was a positive relationship between the release of bacteria, temperature and wind speed. However, there was a significant negative correlation between total bacteria concentration and humidity. There are accumulative perils to WWTP workers and neighbors exposed by persistent exposure to airborne bacteria. Therefore, AT should be paid more attention as a dominant source of airborne bacteria emissions, especially in the warm season.
Collapse
Affiliation(s)
- Nastaran Talepour
- Department of Environmental Health Engineering, Health Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Effat Abbasi-Montazeri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Latifi
- Department of Microbiology, School of Medicine & Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
108
|
Rodríguez A, Seseña S, Sánchez E, Rodríguez M, Palop ML, Rodríguez Martín-Doimeadios RDC, Rodríguez Fariñas N. Temporal variability measurements of PM 2.5 and its associated metals and microorganisms on a suburban atmosphere in the central Iberian Peninsula. ENVIRONMENTAL RESEARCH 2020; 191:110220. [PMID: 32946891 DOI: 10.1016/j.envres.2020.110220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
A novel and multidisciplinary observational analysis of atmospheric components in the Central Iberian Peninsula is presented here. PM2.5 concentrations and both populations of cultivable and non-cultivable microorganisms and concentrations of a wide range of trace elements associated have been simultaneously studied during multiple events along one year. The aim has been to characterize their potential relations and dependencies, and their seasonal, daily and hourly evolution. Tools that could explain the atmospheric mechanisms and sources from all these elements have been also evaluated. As it would be expected from a suburban environment, absolute levels obtained were not close to legislation limits. Anthropogenic and natural sources, such as heating home, soil resuspension, or Sahara dust intrusion; and atmospheric factors are responsible for higher PM2.5 and metals concentrations in months with both low and high temperatures. Daily and hourly evolution depends on University Campus activity, especially on traffic flow and resuspended dust due to human transit. No statistical significant differences on daily or seasonal scales between cultivable counts of fungi and bacteria were displayed. However, using the q-PCR technique, the bacterial population was lower in winter. Positive correlations between PM2.5 and relative humidity; and PM2.5 and cultivable microorganism have been established. It was also the case among 7 of the 11 trace elements, indicating then common natural or anthropogenic sources. In summary, this work illustrates the interest of a combined inspection of elements, interactions and dependencies when studying the unique and continuous atmospheric environment, which are typically analysed separately.
Collapse
Affiliation(s)
- Ana Rodríguez
- Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain
| | - Susana Seseña
- Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain.
| | - Enrique Sánchez
- Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain
| | - María Rodríguez
- Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain
| | - M Llanos Palop
- Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain
| | | | - Nuria Rodríguez Fariñas
- Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain
| |
Collapse
|
109
|
Ruiz-Gil T, Acuña JJ, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, Jorquera MA. Airborne bacterial communities of outdoor environments and their associated influencing factors. ENVIRONMENT INTERNATIONAL 2020; 145:106156. [PMID: 33039877 DOI: 10.1016/j.envint.2020.106156] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 05/16/2023]
Abstract
Microbial entities (such bacteria, fungi, archaea and viruses) within outdoor aerosols have been scarcely studied compared with indoor aerosols and nonbiological components, and only during the last few decades have their studies increased. Bacteria represent an important part of the microbial abundance and diversity in a wide variety of rural and urban outdoor bioaerosols. Currently, airborne bacterial communities are mainly sampled in two aerosol size fractions (2.5 and 10 µm) and characterized by culture-dependent (plate-counting) and culture-independent (DNA sequencing) approaches. Studies have revealed a large diversity of bacteria in bioaerosols, highlighting Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as ubiquitous phyla. Seasonal variations in and dispersion of bacterial communities have also been observed between geographical locations as has their correlation with specific atmospheric factors. Several investigations have also suggested the relevance of airborne bacteria in the public health and agriculture sectors as well as remediation and atmospheric processes. However, although factors influencing airborne bacterial communities and standardized procedures for their assessment have recently been proposed, the use of bacterial taxa as microbial indicators of specific bioaerosol sources and seasonality have not been broadly explored. Thus, in this review, we summarize and discuss recent advances in the study of airborne bacterial communities in outdoor environments and the possible factors influencing their abundance, diversity, and seasonal variation. Furthermore, airborne bacterial activity and bioprospecting in different fields (e.g., the textile industry, the food industry, medicine, and bioremediation) are discussed. We expect that this review will reveal the relevance and influencing factors of airborne bacteria in outdoor environments as well as stimulate new investigations on the atmospheric microbiome, particularly in areas where air quality is a public concern.
Collapse
Affiliation(s)
- Tay Ruiz-Gil
- Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan
| | - So Fujiyoshi
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Microbial Genomics and Ecology, Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Hiroshima, Japan; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan
| | - Daisuke Tanaka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Jun Noda
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Graduate School of Veterinary Science, Rakuno Gakuen University, Hokkaido, Japan
| | - Fumito Maruyama
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Microbial Genomics and Ecology, Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Hiroshima, Japan; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan.
| |
Collapse
|
110
|
Górny RL, Frączek K, Ropek DR. Size distribution of microbial aerosols in overground and subterranean treatment chambers at health resorts. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1437-1450. [PMID: 33312653 PMCID: PMC7721825 DOI: 10.1007/s40201-020-00559-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE to perform comparative analyzes of the size distributions of bacteria and fungi in the air of overground therapy chambers in Szczawnica sanatorium and subterranean inhalation chambers in Bochnia Salt Mine health resort taking into account influence of the season and presence of pathogenic species. METHODS bioaerosol samples were collected using 6-stage Andersen impactor. Bacterial and fungal aerosol concentrations and size distributions were calculated and isolated microorganisms were taxonomically identified based on their morphological, biochemical, and molecular features. Results: in both treatment rooms and atmospheric (outdoor) air, the acceptable microbial pollution levels were periodically exceeded. The size distribution analyzes revealed that in the case of bacteria - emission from the patients and in the case of fungi - transport with atmospheric (outdoor) air were the major processes responsible for microbiological contamination of indoor premises. The majority of microbial particulates were present in the air of studied premises as single bacterial vegetative cells, spores and fungal conidia or (most commonly) formed small microbial or microbial-dust aggregates. This phenomenon may have a significant effect on patients' actual exposure (especially on those treated for respiratory diseases) in terms of the dose of inhaled particles. CONCLUSIONS the microbiological quality of the air in sanatoriums and health resorts is a key factor for their therapeutic and prophylactic functions. When microbial pollution crossed the acceptable level, the measures that enable reducing undesirable contamination should be introduced, especially if large groups of patients undergo such therapy.
Collapse
Affiliation(s)
- Rafał L. Górny
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection–National Research Institute, Czerniakowska 16 Street, 00-701 Warsaw, Poland
| | - Krzysztof Frączek
- Department of Microbiology and Biomonitoring, University of Agriculture, Cracow, Poland
| | - Dariusz R. Ropek
- Department of Microbiology and Biomonitoring, University of Agriculture, Cracow, Poland
| |
Collapse
|
111
|
Otero Fernandez M, Thomas RJ, Oswin H, Haddrell AE, Reid JP. Transformative Approach To Investigate the Microphysical Factors Influencing Airborne Transmission of Pathogens. Appl Environ Microbiol 2020; 86:e01543-20. [PMID: 32978136 PMCID: PMC7657628 DOI: 10.1128/aem.01543-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/17/2020] [Indexed: 01/06/2023] Open
Abstract
Emerging outbreaks of airborne pathogenic infections worldwide, such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, have raised the need to understand parameters affecting the airborne survival of microbes in order to develop measures for effective infection control. We report a novel experimental strategy, TAMBAS (tandem approach for microphysical and biological assessment of airborne microorganism survival), to explore the synergistic interactions between the physicochemical and biological processes that impact airborne microbe survival in aerosol droplets. This innovative approach provides a unique and detailed understanding of the processes taking place from aerosol droplet generation through to equilibration and viability decay in the local environment, elucidating decay mechanisms not previously described. The impact of evaporation kinetics, solute hygroscopicity and concentration, particle morphology, and equilibrium particle size on airborne survival are reported, using Escherichia coli MRE162 as a benchmark system. For this system, we report that (i) particle crystallization does not directly impact microbe longevity, (ii) bacteria act as crystallization nuclei during droplet drying and equilibration, and (iii) the kinetics of size and compositional change appear to have a larger effect on microbe longevity than the equilibrium solute concentration.IMPORTANCE A transformative approach to identify the physicochemical processes that impact the biological decay rates of bacteria in aerosol droplets is described. It is shown that the evaporation process and changes in the phase and morphology of the aerosol particle during evaporation impact microorganism viability. The equilibrium droplet size was found to affect airborne bacterial viability. Furthermore, the presence of Escherichia coli MRE162 in a droplet does not affect aerosol growth/evaporation but influences the dynamic behavior of the aerosol by processing the culture medium prior to aerosolization, affecting the hygroscopicity of the culture medium; this highlights the importance of the inorganic and organic chemical composition within the aerosolized droplets that impact hygroscopicity. Bacteria also act as crystallization nuclei. The novel approach and data have implications for increased mechanistic understanding of aerosol survival and infectivity in bioaerosol studies spanning the medical, veterinary, farming, and agricultural fields, including the role of microorganisms in atmospheric processing and cloud formation.
Collapse
Affiliation(s)
| | - Richard J Thomas
- Defence Science Technology Laboratory (DSTL), Porton Down, Salisbury, United Kingdom
| | - Henry Oswin
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Allen E Haddrell
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Jonathan P Reid
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
112
|
Al Salameen F, Habibi N, Uddin S, Al Mataqi K, Kumar V, Al Doaij B, Al Amad S, Al Ali E, Shirshikhar F. Spatio-temporal variations in bacterial and fungal community associated with dust aerosol in Kuwait. PLoS One 2020; 15:e0241283. [PMID: 33151966 PMCID: PMC7644028 DOI: 10.1371/journal.pone.0241283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Kuwait is a country with a very high dust loading; in fact it bears the world's highest particulate matter concentration in the outdoor air. The airborne dust often has associated biological materials, including pathogenic microbes that pose a serious risk to the urban ecosystem and public health. This study has established the baseline taxonomic characterization of microbes associated with dust transported into Kuwait from different trajectories. A high volume air sampler with six-stage cascade impactor was deployed for sample collection at a remote as well as an urban site. Samples from three different seasons (autumn, spring and summer) were subjected to targeted amplicon sequencing. A set of ~ 50 and 60 bacterial and fungal genera, respectively, established the core air microbiome. The predominant bacterial genera (relative abundance ≥ 1%) were Brevundimonas (12.5%), Sphingobium (3.3%), Sphingopyxis (2.7%), Pseudomonas (2.5%), Sphingomonas (2.4%), Massilia (2.3%), Acidovorax (2.0%), Allorhizobium (1.8%), Halomonas (1.3%), and Mesorhizobium (1.1%), and the fungal taxa were Cryptococcus (12%) followed by Alternaria (9%), Aspergillus (7%), Candida (3%), Cladosporium (2.9%), Schizophyllum (1.6%), Fusarium (1.4%), Gleotinia (1.3%) and Penicillium (1.15%). Significant spatio-temporal variations were recorded in terms of relative abundances, α-diversities, and β-diversities of bacterial communities. The dissimilarities were less pronounced and instead the communities were fairly homogenous. Linear discrimant analysis revealed three fungal genera known to be significantly differentially abundant with respect to different size fractions of dust. Our results shed light on the spatio-temporal distribution of airborne microbes and their implications in general health.
Collapse
Affiliation(s)
- Fadila Al Salameen
- Biotechnology Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
- * E-mail: (FAS); (NH)
| | - Nazima Habibi
- Biotechnology Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
- * E-mail: (FAS); (NH)
| | - Saif Uddin
- Environment and Climate Change Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Khalil Al Mataqi
- Biotechnology Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Vinod Kumar
- Biotechnology Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Bashayer Al Doaij
- Biotechnology Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Sami Al Amad
- Biotechnology Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Ebtisam Al Ali
- Biotechnology Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Faiz Shirshikhar
- Environment and Climate Change Program, Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| |
Collapse
|
113
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Assessing the relationship between ground levels of ozone (O 3) and nitrogen dioxide (NO 2) with coronavirus (COVID-19) in Milan, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140005. [PMID: 32559534 PMCID: PMC7274116 DOI: 10.1016/j.scitotenv.2020.140005] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 04/14/2023]
Abstract
This paper investigates the correlation between the high level of coronavirus SARS-CoV-2 infection accelerated transmission and lethality, and surface air pollution in Milan metropolitan area, Lombardy region in Italy. For January-April 2020 period, time series of daily average inhalable gaseous pollutants ozone (O3) and nitrogen dioxide (NO2), together climate variables (air temperature, relative humidity, wind speed, precipitation rate, atmospheric pressure field and Planetary Boundary Layer) were analyzed. In spite of being considered primarily transmitted by indoor bioaerosols droplets and infected surfaces or direct human-to-human personal contacts, it seems that high levels of urban air pollution, and climate conditions have a significant impact on SARS-CoV-2 diffusion. Exhibited positive correlations of ambient ozone levels and negative correlations of NO2 with the increased rates of COVID-19 infections (Total number, Daily New positive and Total Deaths cases), can be attributed to airborne bioaerosols distribution. The results show positive correlation of daily averaged O3 with air temperature and inversely correlations with relative humidity and precipitation rates. Viral genome contains distinctive features, including a unique N-terminal fragment within the spike protein, which allows coronavirus attachment on ambient air pollutants. At this moment it is not clear if through airborne diffusion, in the presence of outdoor and indoor aerosols, this protein "spike" of the new COVID-19 is involved in the infectious agent transmission from a reservoir to a susceptible host during the highest nosocomial outbreak in some agglomerated industrialized urban areas like Milan is. Also, in spite of collected data for cold season (winter-early spring) period, when usually ozone levels have lower values than in summer, the findings of this study support possibility as O3 can acts as a COVID-19 virus incubator. Being a novel pandemic coronavirus version, it might be ongoing during summer conditions associated with higher air temperatures, low relative humidity and precipitation levels.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania
| |
Collapse
|
114
|
Wang Y, Xu C, Ren J, Zhao Y, Li Y, Wang L, Yao S. The long-term effects of meteorological parameters on pertussis infections in Chongqing, China, 2004-2018. Sci Rep 2020; 10:17235. [PMID: 33057239 PMCID: PMC7560825 DOI: 10.1038/s41598-020-74363-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
Evidence on the long-term influence of climatic variables on pertussis is limited. This study aims to explore the long-term quantitative relationship between weather variability and pertussis. Data on the monthly number of pertussis cases and weather parameters in Chongqing in the period of 2004-2018 were collected. Then, we used a negative binomial multivariable regression model and cointegration testing to examine the association of variations in monthly meteorological parameters and pertussis. Descriptive statistics exhibited that the pertussis incidence rose from 0.251 per 100,000 people in 2004 to 3.661 per 100,000 persons in 2018, and pertussis was a seasonal illness, peaked in spring and summer. The results from the regression model that allowed for the long-term trends, seasonality, autoregression, and delayed effects after correcting for overdispersion showed that a 1 hPa increment in the delayed one-month air pressure contributed to a 3.559% (95% CI 0.746-6.293%) reduction in the monthly number of pertussis cases; a 10 mm increment in the monthly aggregate precipitation, a 1 °C increment in the monthly average temperature, and a 1 m/s increment in the monthly average wind velocity resulted in 3.641% (95% CI 0.960-6.330%), 19.496% (95% CI 2.368-39.490%), and 3.812 (95% CI 1.243-11.690)-fold increases in the monthly number of pertussis cases, respectively. The roles of the mentioned weather parameters in the transmission of pertussis were also evidenced by a sensitivity analysis. The cointegration testing suggested a significant value among variables. Climatic factors, particularly monthly temperature, precipitation, air pressure, and wind velocity, play a role in the transmission of pertussis. This finding will be of great help in understanding the epidemic trends of pertussis in the future, and weather variability should be taken into account in the prevention and control of pertussis.
Collapse
Affiliation(s)
- Yongbin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Henan Province, Xinxiang, 453000, People's Republic of China.
| | - Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, People's Republic of China
| | - Jingchao Ren
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Henan Province, Xinxiang, 453000, People's Republic of China
| | - Yingzheng Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Henan Province, Xinxiang, 453000, People's Republic of China
| | - Yuchun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Henan Province, Xinxiang, 453000, People's Republic of China
| | - Lei Wang
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sanqiao Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Henan Province, Xinxiang, 453000, People's Republic of China
| |
Collapse
|
115
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139825. [PMID: 32512362 PMCID: PMC7265857 DOI: 10.1016/j.scitotenv.2020.139825] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 04/13/2023]
Abstract
The novel coronavirus disease (COVID-19) is a highly pathogenic, transmittable and invasive pneumococcal disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which emerged in December 2019 and January 2020 in Wuhan city, Hubei province, China and fast spread later on the middle of February 2020 in the Northern part of Italy and Europe. This study investigates the correlation between the degree of accelerated diffusion and lethality of COVID-19 and the surface air pollution in Milan metropolitan area, Lombardy region, Italy. Daily average concentrations of inhalable particulate matter (PM) in two size fractions PM2.5, PM10 and maxima PM10 ground level atmospheric pollutants together air quality and climate variables (daily average temperature, relative humidity, wind speed, atmospheric pressure field and Planetary Boundary Layer-PBL height) collected during 1 January-30 April 2020 were analyzed. In spite of being considered primarily transmitted by indoor bioaerosols droplets and infected surfaces, or direct human-to-human personal contacts, it seems that high levels of urban air pollution, weather and specific climate conditions have a significant impact on the increased rates of confirmed COVID-19 Total number, Daily New and Total Deaths cases, possible attributed not only to indoor but also to outdoor airborne bioaerosols distribution. Our analysis demonstrates the strong influence of daily averaged ground levels of particulate matter concentrations, positively associated with average surface air temperature and inversely related to air relative humidity on COVID-19 cases outbreak in Milan. Being a novel pandemic coronavirus (SARS-CoV-2) version, COVID-19 might be ongoing during summer conditions associated with higher temperatures and low humidity levels. Presently is not clear if this protein "spike" of the new coronavirus COVID-19 is involved through attachment mechanisms on indoor or outdoor airborne aerosols in the infectious agent transmission from a reservoir to a susceptible host in some agglomerated urban areas like Milan is.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania
| |
Collapse
|
116
|
Relationship between airborne pollen assemblages and major meteorological parameters in Zhanjiang, South China. PLoS One 2020; 15:e0240160. [PMID: 33027306 PMCID: PMC7540864 DOI: 10.1371/journal.pone.0240160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/21/2020] [Indexed: 11/19/2022] Open
Abstract
Pollen is an important component of bioaerosol and the distribution of pollen and its relationship with meteorological parameters can be analyzed to better prevent hay fever. Pollen assemblages can also provide basic data for analyzing the relationship between bioaerosol and PM. We collected 82 samples of airborne pollen using a TSP large flow pollen collector from June 1, 2015 to June 1, 2016, from central Zhanjiang city in South China. We also conducted a survey of the nearby vegetation at the same time, in order to characterize the major plant types and their flowering times. We then used data on daily temperature, relative humidity, precipitation, vapor pressure and wind speed from a meteorological station in the center of Zhanjiang City to assess the relationship between the distribution of airborne pollen and meteorological parameters. Our main findings and conclusions are as follows: (1) We identified 15 major pollen types, including Pinus, Castanopsis, Myrica, Euphorbiaceae, Compositae, Gramineae, Microlepia and Polypodiaceae. From the vegetation survey, we found that the pollen from these taxa represented more than 75% of local pollen, while the pollen of Podocarpus, Dacrydium and other regional pollen types represented less than 25%. (2) The pollen concentrations varied significantly in different seasons. The pollen concentrations were at a maximum in spring, consisting mainly of tree pollen; the pollen concentrations were at an intermediate level in autumn and winter, consisting mainly of herb pollen and fern spores; and the pollen concentrations in summer were the lowest, consisting mainly of fern spores. (3) Analysis of the relationship between airborne pollen concentrations and meteorological parameters showed that variations in the pollen concentrations were mainly affected by temperature and relative humidity. In addition, there were substantial differences in these relationships in different seasons. In spring, pollen concentrations were mainly affected by temperature; in summer, they were mainly affected by the direction of the maximum wind speed; in autumn, they were mainly affected by relative humidity and temperature; and in winter, they were mainly affected by relative humidity and wind speed. Temperature and relative humidity promote plant growth and flowering. Notably, the variable wind direction in summer and the increased wind speed in winter and spring are conductive to pollen transmission. (4) Of the 15 major pollen types, Moraceae, Artemisia and Gramineae are the main allergenic pollen types, with peaks in concentration during April-May, August-September, and October-December, respectively. (5) Atypical weather conditions have substantial effects on pollen dispersal. In South China, the pollen concentrations in the sunny day were usually significantly higher than that of the rainy day. The pollen concentrations increased in short rainy days, which usually came from the Herb and Fern pollen. The pollen concentrations decreased in continuous rainy days especially for the Tree and Shrub pollen. the pollen concentrations in the sunny days were usually significantly higher than that in the rainy days. The pollen concentrations increased in short and strong rainfall.
Collapse
|
117
|
Wildland fire as an atmospheric source of viable microbial aerosols and biological ice nucleating particles. ISME JOURNAL 2020; 15:461-472. [PMID: 33009511 DOI: 10.1038/s41396-020-00788-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 11/08/2022]
Abstract
The environmental sources of microbial aerosols and processes by which they are emitted into the atmosphere are not well characterized. In this study we analyzed microbial cells and biological ice nucleating particles (INPs) in smoke emitted from eight prescribed wildland fires in North Florida. When compared to air sampled prior to ignition, samples of the air-smoke mixtures contained fivefold higher concentrations of microbial cells (6.7 ± 1.3 × 104 cells m-3) and biological INPs (2.4 ± 0.91 × 103 INPs m-3 active at temperatures ≥ -15 °C), and these data significantly positively correlated with PM10. Various bacteria could be cultured from the smoke samples, and the nearest neighbors of many of the isolates are plant epi- and endophytes, suggesting vegetation was a source. Controlled laboratory combustion experiments indicated that smoke emitted from dead vegetation contained significantly higher numbers of cells, INPs, and culturable bacteria relative to the green shrubs tested. Microbial viability of smoke aerosols based on formazan production and epifluorescent microscopy revealed no significant difference in the viable fraction (~80%) when compared to samples of ambient air. From these data, we estimate each fire aerosolized an average of 7 ± 4 × 109 cells and 2 ± 1 × 108 biological INPs per m2 burned and conclude that emissions from wildland fire are sources of viable microbial aerosols to the atmosphere.
Collapse
|
118
|
Li X, Chen H, Yao M. Microbial emission levels and diversities from different land use types. ENVIRONMENT INTERNATIONAL 2020; 143:105988. [PMID: 32717647 DOI: 10.1016/j.envint.2020.105988] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 05/14/2023]
Abstract
Bioaerosol particles, originated from many different earth ground sources, have unique health impacts, including respiratory infections, allergic reactions, and toxic effects. Here, we applied a portable high-flow sampler HighBioTrap to collect and investigate bioaerosol emissions from 13 different land types (forest, wetland, lake, bare soil, cropland, wastewater treatment facility, street, livestock farm, smeltery and garden) that are heavily or less affected by humans. Plate cultivation, real-time quantitative PCR analysis (q-PCR) and high-throughput gene sequencing analysis were used to characterize bacterial and fungal levels as well as their community structures emitted from different land use types. Results showed that there were statistically significant differences in biological emission levels (up to 100-fold difference) and diversity among different land use types. Cropland, sewage plant street and smeltery heavily affected by human activities were found to exhibit higher bioaerosol emission levels, with Massilia genus detected as the dominant species. In contrast, some land types (lakes, forests, gardens, and wetland) less affected by humans were found to emit lower bioaerosol levels but with higher culturability, e.g., up to 16% for wetland. In addition, the microbiological structures of these land-use types usually had higher species richness and diversity, yet different dominant species. For some land types such as streets in Beijing, the microbial community appeared to be skewed with an over 80% relative abundance of a specific dominant species such as Massilia. Other detected dominant species also included Acinetobacter and Brevundimonas for street, and Sphingomonas for wetland. For fungal community, Naganishia, Alternaria, Penicillium, and Aureobasidium were detected to be most abundant. RDA analysis showed metals and ions could to some extent affect the microbial community structures. This work highlights that the human activities could substantially affect the airborne microbiota, which in turn could affect local human health and ecosystems. On the other hand, the results here provide important references for quantitatively estimating the microbial emissions from the earth into the atmosphere.
Collapse
Affiliation(s)
- Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
119
|
Kabelitz T, Ammon C, Funk R, Münch S, Biniasch O, Nübel U, Thiel N, Rösler U, Siller P, Amon B, Aarnink AJA, Amon T. Functional relationship of particulate matter (PM) emissions, animal species, and moisture content during manure application. ENVIRONMENT INTERNATIONAL 2020; 143:105577. [PMID: 32682052 DOI: 10.1016/j.envint.2020.105577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/20/2020] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
Livestock manure is recycled to agricultural land as organic fertilizer. Due to the extensive usage of antibiotics in conventional animal farming, antibiotic-resistant bacteria are highly prevalent in feces and manure. The spread of wind-driven particulate matter (PM) with potentially associated harmful bacteria through manure application may pose a threat to environmental and human health. We studied whether PM was aerosolized during the application of solid and dried livestock manure and the functional relationship between PM release, manure dry matter content (DM), treatment and animal species. In parallel, manure and resulting PM were investigated for the survival of pathogenic and antibiotic-resistant bacterial species. The results showed that from manure with a higher DM smaller particles were generated and more PM was emitted. A positive correlation between manure DM and PM aerosolization rate was observed. There was a species-dependent critical dryness level (poultry: 60% DM, pig: 80% DM) where manure began to release PM into the environment. The maximum PM emission potentials were 1 and 3 kg t-1 of applied poultry and pig manure, respectively. Dried manure and resulting PM contained strongly reduced amounts of investigated pathogenic and antibiotic-resistant microorganisms compared to fresh samples. An optimal manure DM regarding low PM emissions and reduced pathogen viability was defined from our results, which was 55-70% DM for poultry manure and 75-85% DM for pig manure. The novel findings of this study increase our detailed understanding and basic knowledge on manure PM emissions and enable optimization of manure management, aiming a manure DM that reduces PM emissions and pathogenic release into the environment.
Collapse
Affiliation(s)
- Tina Kabelitz
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany.
| | - Christian Ammon
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Roger Funk
- Leibniz Centre for Agricultural Landscape Research (ZALF), Working Group Landscape Pedology, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Steffen Münch
- Leibniz Centre for Agricultural Landscape Research (ZALF), Working Group Landscape Pedology, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Oliver Biniasch
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Microbial Genome Research, Inhoffenstraße 7B, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany; Braunschweig Integrated Center of Systems Biology (BRICS), Technical University, Rebenring 56, 38106 Braunschweig, Germany
| | - Nadine Thiel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Microbial Genome Research, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Uwe Rösler
- Freie Universität Berlin, Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Paul Siller
- Freie Universität Berlin, Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Barbara Amon
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany; University of Zielona Góra, Faculty of Civil Engineering, Architecture and Environmental Engineering, ul. Prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland
| | - André J A Aarnink
- Wageningen University and Research, Department Livestock and Environment, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Thomas Amon
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Department of Engineering for Livestock Management, Max-Eyth-Allee 100, 14469 Potsdam, Germany; Freie Universität Berlin, Institute for Animal Hygiene and Environmental Health, Department of Veterinary Medicine, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
120
|
Cariñanos P, Ruiz-Peñuela S, Valle AM, de la Guardia CD. Assessing pollination disservices of urban street-trees: The case of London-plane tree (Platanus x hispanica Mill. ex Münchh). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139722. [PMID: 32526570 DOI: 10.1016/j.scitotenv.2020.139722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Platanusx hispanica (London plane) is a tree species widely used in urban areas due to the diversity of ecosystem services it provides. However, its functions also have some negative effects or associated disservices, such as the emission of Biogenic Volatile Organic Compounds (BVOCs) and allergens. This work aims to analyze the effect that urban environmental conditions and air pollutants have on pollen emissions of plane tree. The study has been carried out in Granada, in the southeast of the Iberian Peninsula, a city with a Mediterranean climate and one of the most polluted in Spain. Granada is also one of the Mediterranean cities in which the increase in the percentage of the population affected by allergy to Platanus pollen in recent decades has been most significant. The 1992-2019 Platanus pollen data series has been considered to establish the main aerobiological parameters, trends and correlations with meteorological variables and particulate and gaseous atmospheric pollutants, both before and during the flowering period. The average Seasonal Pollen Integral (SPIn) of about 2700 pollen grains has shown a significant increase throughout the series. This increase in allergen emissions could be related to the increase in crown volume associated with tree growth, but also to other environmental factors. Precipitation and minimum temperatures of the winter prior to flowering were the parameters that have shown the most influence with SPIn, while O3 and NOx are the pollutants that have the most effect on the peak value. Due to the good adaptation that London plane has to changing climatic conditions in urban environments, its hegemonic presence as an element of Urban Green infrastructure must be reviewed so that the net balance of ecosystem services is not diminished by the disservices.
Collapse
Affiliation(s)
- Paloma Cariñanos
- Department of Botany, University of Granada, Spain; Andalusian Institute for Earth System Research, IISTA-CEAMA, University of Granada, Spain.
| | | | - Ana M Valle
- Pharmacy Service, Hospital Virgen de las Nieves, Granada, Spain
| | | |
Collapse
|
121
|
Coccia M. The effects of atmospheric stability with low wind speed and of air pollution on the accelerated transmission dynamics of COVID-19. ACTA ACUST UNITED AC 2020. [DOI: 10.1080/00207233.2020.1802937] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mario Coccia
- CNR National Research Council of Italy, Department of Social Sciences and Humanities-Research Institute on Sustainable Economic Growth, Collegio Carlo Alberto, Moncalieri (Torino), Italy
| |
Collapse
|
122
|
The Observation and Characterisation of Fluorescent Bioaerosols Using Real-Time UV-LIF Spectrometry in Hong Kong from June to November 2018. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hong Kong is an area of complex topography, with mixtures of urban and greenbelt spaces. Local bioaerosol concentrations are multifaceted, depending on seasonal variations of meteorological conditions and emission sources. This study is the first known attempt at both quantitatively measuring and identifying airborne bioaerosol contributions, by utilising multiple single particle ultraviolet light-induced fluorescence spectrometers. Based in the Hong Kong University of Science and Technology’s super-site, a WIBS-NEO and PLAIR Rapid-E were operated from June to November, 2018. The purpose of this long-term campaign was to observe the shift in wind patterns and meteorological conditions as the seasons changed, and to investigate how, or if, this impacted on the dispersion and concentrations of bioaerosols in the area. Bioaerosol concentrations based on the particle auto-fluorescence spectra remained low through the summer and autumn months, averaging 4.2 L−1 between June and October. Concentrations were greatest in October, peaking up to 23 L−1. We argued that these concentrations were dominated by dry-weather fungal spores, as evidenced by their spectral profile and relationship with meteorological variables. We discuss potential bioaerosol source regions based on wind-sector cluster analysis and believe that this study paints a picture of bioaerosol emissions in an important region of the world.
Collapse
|
123
|
Sarda-Estève R, Baisnée D, Guinot B, Mainelis G, Sodeau J, O’Connor D, Besancenot JP, Thibaudon M, Monteiro S, Petit JE, Gros V. Atmospheric Biodetection Part I: Study of Airborne Bacterial Concentrations from January 2018 to May 2020 at Saclay, France. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6292. [PMID: 32872373 PMCID: PMC7504533 DOI: 10.3390/ijerph17176292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022]
Abstract
Background: The monitoring of bioaerosol concentrations in the air is a relevant endeavor due to potential health risks associated with exposure to such particles and in the understanding of their role in climate. In this context, the atmospheric concentrations of bacteria were measured from January 2018 to May 2020 at Saclay, France. The aim of the study was to understand the seasonality, the daily variability, and to identify the geographical origin of airborne bacteria. Methods: 880 samples were collected daily on polycarbonate filters, extracted with purified water, and analyzed using the cultivable method and flow cytometry. A source receptor model was used to identify the origin of bacteria. Results: A tri-modal seasonality was identified with the highest concentrations early in spring and over the summer season with the lowest during the winter season. Extreme changes occurred daily due to rapid changes in meteorological conditions and shifts from clean air masses to polluted ones. Conclusion: Our work points toward bacterial concentrations originating from specific seasonal-geographical ecosystems. During pollution events, bacteria appear to rise from dense urban areas or are transported long distances from their sources. This key finding should drive future actions to better control the dispersion of potential pathogens in the air, like persistent microorganisms originating from contaminated areas.
Collapse
Affiliation(s)
- Roland Sarda-Estève
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité mixte de recherche CEA-CNRS-UVSQ, 91190 Saint-Aubin, France; (D.B.); (J.-E.P.); (V.G.)
| | - Dominique Baisnée
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité mixte de recherche CEA-CNRS-UVSQ, 91190 Saint-Aubin, France; (D.B.); (J.-E.P.); (V.G.)
| | - Benjamin Guinot
- Laboratoire d’Aérologie, Université Toulouse III, CNRS, UPS, 31400 Toulouse, France;
- Réseau National de Surveillance Aérobiologique, 69690 Brussieu, France; (J.P.B.); (M.T.)
| | - Gediminas Mainelis
- Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8525, USA;
| | - John Sodeau
- Department of Chemistry and Environmental Research Institute, University College Cork, T12 YN60 Cork, Ireland;
| | - David O’Connor
- School of Chemical and Pharmaceutical Sciences, Technological University of Dublin, D06F793 Dublin 6, Ireland;
| | - Jean Pierre Besancenot
- Réseau National de Surveillance Aérobiologique, 69690 Brussieu, France; (J.P.B.); (M.T.)
| | - Michel Thibaudon
- Réseau National de Surveillance Aérobiologique, 69690 Brussieu, France; (J.P.B.); (M.T.)
| | - Sara Monteiro
- Themo Fisher Scientific, 18 avenue de Quebec, 91941 Villebon Courtaboeuf, France;
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité mixte de recherche CEA-CNRS-UVSQ, 91190 Saint-Aubin, France; (D.B.); (J.-E.P.); (V.G.)
| | - Valérie Gros
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, Unité mixte de recherche CEA-CNRS-UVSQ, 91190 Saint-Aubin, France; (D.B.); (J.-E.P.); (V.G.)
| |
Collapse
|
124
|
Coccia M. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138474. [PMID: 32498152 PMCID: PMC7169901 DOI: 10.1016/j.scitotenv.2020.138474] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 04/13/2023]
Abstract
This study has two goals. The first is to explain the geo-environmental determinants of the accelerated diffusion of COVID-19 that is generating a high level of deaths. The second is to suggest a strategy to cope with future epidemic threats similar to COVID-19 having an accelerated viral infectivity in society. Using data on sample of N = 55 Italian province capitals, and data of infected individuals at as of April 7th, 2020, results reveal that the accelerate and vast diffusion of COVID-19 in North Italy has a high association with air pollution of cities measured with days exceeding the limits set for PM10 (particulate matter 10 μm or less in diameter) or ozone. In particular, hinterland cities with average high number of days exceeding the limits set for PM10 (and also having a low wind speed) have a very high number of infected people on 7th April 2020 (arithmetic mean is about 2200 infected individuals, with average polluted days greater than 80 days per year), whereas coastal cities also having days exceeding the limits set for PM10 or ozone but with high wind speed have about 944.70 average infected individuals, with about 60 average polluted days per year; moreover, cities having more than 100 days of air pollution (exceeding the limits set for PM10), they have a very high average number of infected people (about 3350 infected individuals, 7th April 2020), whereas cities having less than 100 days of air pollution per year, they have a lower average number of infected people (about 1014 individuals). The findings here also suggest that to minimize the impact of future epidemics similar to COVID-19, the max number of days per year that Italian provincial capitals or similar industrialized cities can exceed the limits set for PM10 or for ozone, considering their meteorological conditions, is about 48 days. Moreover, results here reveal that the explanatory variable of air pollution in cities seems to be a more important predictor in the initial phase of diffusion of viral infectivity (on 17th March 2020, b1 = 1.27, p < 0.001) than interpersonal contacts (b2 = 0.31, p < 0.05). In the second phase of maturity of the transmission dynamics of COVID-19, air pollution reduces intensity (on 7th April 2020 with b'1 = 0.81, p < 0.001) also because of the indirect effect of lockdown, whereas regression coefficient of transmission based on interpersonal contacts has a stable level (b'2 = 0.31, p < 0.01). This result reveals that accelerated transmission dynamics of COVID-19 is due to mainly to the mechanism of "air pollution-to-human transmission" (airborne viral infectivity) rather than "human-to-human transmission". Overall, then, transmission dynamics of viral infectivity, such as COVID-19, is due to systemic causes: general factors that are the same for all regions (e.g., biological characteristics of virus, incubation period, etc.) and specific factors which are different for each region and/or city (e.g., complex interaction between air pollution, meteorological conditions and biological characteristics of viral infectivity) and health level of individuals (habits, immune system, age, sex, etc.). Lessons learned for COVID-19 in the case study here suggest that a proactive strategy to cope with future epidemics is also to apply especially an environmental and sustainable policy based on reduction of levels of air pollution mainly in hinterland and polluting cities- (having low wind speed, high percentage of moisture and number of fog days) -that seem to have an environment that foster a fast transmission dynamics of viral infectivity in society. Hence, in the presence of polluting industrialization in regions that can trigger the mechanism of air pollution-to-human transmission dynamics of viral infectivity, this study must conclude that a comprehensive strategy to prevent future epidemics similar to COVID-19 has to be also designed in environmental and socioeconomic terms, that is also based on sustainability science and environmental science, and not only in terms of biology, medicine, healthcare and health sector.
Collapse
Affiliation(s)
- Mario Coccia
- CNR - National Research Council of Italy, Research Institute on Sustainable Economic Growth, Collegio Carlo Alberto, Via Real Collegio, 30-10024 Moncalieri, Torino, Italy; Yale School of Medicine, 310 Cedar Street, Lauder Hall, New Haven, CT 06510, USA.
| |
Collapse
|
125
|
Núñez A, Moreno DA. The Differential Vertical Distribution of the Airborne Biological Particles Reveals an Atmospheric Reservoir of Microbial Pathogens and Aeroallergens. MICROBIAL ECOLOGY 2020; 80:322-333. [PMID: 32221644 DOI: 10.1007/s00248-020-01505-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
The most abundant biological particles present in the air are bacteria, fungal propagules and pollen grains. Many of them are proved allergens or even responsible for airborne infectious diseases, which supports the increase of studies in recent years on their composition, diversity, and factors involved in their variability. However, most studies in urban areas are conducted close to ground level and a factor such as height is rarely taken into account. Thus, the information about how the composition of biological particles changes with this variable is scarce. Here, we examined the differential distribution of bacteria, fungi, and plants at four altitudes (up to ∼ 250 m) in a metropolitan area using high-throughput DNA sequencing. Most taxa were present at all levels (common taxa). However, a transitional layer between 80 and 150 m seemed to affect the scattering of these bioaerosols. Taxa not present at all altitudes (non-common) showed an upward tendency of diversity for bacteria and plants with height, while the opposite trend was observed for fungi. Certain patterns were observed for fungi and specific plant genera, while bacterial taxa showed a more arbitrary distribution and no patterns were found. We detected a wide variety of aeroallergens and potential pathogens at all heights, which summed a substantial portion of the total abundance for fungi and plants. We also identified potential connections between the biological particles based on their abundances across the vertical section.
Collapse
Affiliation(s)
- Andrés Núñez
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), c/ José Gutiérrez Abascal 2, E-28006, Madrid, Spain
- Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, E-30100, Murcia, Spain
| | - Diego A Moreno
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), c/ José Gutiérrez Abascal 2, E-28006, Madrid, Spain.
- Facultad de Farmacia, Universidad de Castilla-La Mancha (FF-UCLM), Avda. Dr. José María Sánchez Ibáñez s/n, E-02008, Albacete, Spain.
| |
Collapse
|
126
|
Wei M, Li M, Xu C, Xu P, Liu H. Pollution characteristics of bioaerosols in PM 2.5 during the winter heating season in a coastal city of northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27750-27761. [PMID: 32399880 DOI: 10.1007/s11356-020-09070-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Frequent heavy air pollution occurred during the winter heating season of northern China. In this study, PM2.5 (particles with an aerodynamic diameter less than 2.5 μm) was collected from a coastal city of China during the winter heating season from January 1 to March 31, 2018, and the soluble ions, organic carbon (OC), elemental carbon (EC), bacterial, endotoxin, and fungal concentration in PM2.5 were analyzed. During the winter heating season, PM2.5 and bioaerosols increased on polluted days, and the secondary inorganic ions, including NO3-, NH4+, and SO42-, increased significantly. Meteorological factors, such as wind direction and wind speed, had major impacts on the distributions of PM2.5 and bioaerosols. Pollutant concentration was high when there was a westerly wind with the speed of 3-6 m/s from inland area. Using the air mass backward trajectories and principal component analysis, we elucidate the potential origins of bioaerosol in PM2.5. The backward trajectory suggested that air mass for polluted samples (PM2.5 > 75 μg/m3) commonly originated from continent (9.62%), whereas air masses for clean samples (PM2.5 < 35 μg/m3) were mainly from marine (56.73%). The interregional transport of pollutants from continental area contributed most to PM2.5. Principal component analysis of the water-soluble ions and bioaerosol indicated that air pollution of the coastal city was greatly affected by coal combustion, biomass burning, and regional transmission of high-intensity pollutants from continent. Among that, interregional transport, biomass burning, and dust from soil and plants were main sources of bioaerosol. Our findings provide important insights into the origins and characteristics of bioaerosol in PM2.5 during the winter heating season of the coastal city in northern China.
Collapse
Affiliation(s)
- Min Wei
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China.
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| | - Mingyan Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Caihong Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Pengju Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China.
- Center for Environmental Technology and Policy Research, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
127
|
Influence of Pollen on Solar Photovoltaic Energy: Literature Review and Experimental Testing with Pollen. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work attempts to shed some light on the impact of organic soiling due to pollen on solar photovoltaic (PV) power generation. Apart from introducing several soiling-related pollen features, the previous works reporting soiling by pollen have been reviewed. Local observations from late winter to early spring showed that a rooftop PV system experienced both uniform and non-uniform soiling issues, which were mainly caused by pollen from nearby cypress specimens. In addition, this work publishes preliminary results regarding an artificial soiling test performed with pollen. In this test, soda lime float glass coupons were artificially soiled with fresh cypress pollen. A linear relationship was found between the pollen mass density (ρA) and the glass averaged transmittance (TAVE) for values up to 9.1 g/m2. In comparison with other artificial soiling tests performed with different soiling agents, the transmittance loss caused by pollen cypress deposition was relatively high and spectrally selective.
Collapse
|
128
|
Hu Z, Liu H, Zhang H, Zhang X, Zhou M, Lou L, Zheng P, Xi C, Hu B. Temporal discrepancy of airborne total bacteria and pathogenic bacteria between day and night. ENVIRONMENTAL RESEARCH 2020; 186:109540. [PMID: 32339956 DOI: 10.1016/j.envres.2020.109540] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
As the most abundant microbes in the atmosphere, airborne bacteria are closely involved in affecting human health, regional climate and ecological balance. The mobility of airborne microorganisms makes it necessary to study the community dynamic in short cycle. Nevertheless, it remains obscure how the airborne bacteria especially the pathogenic bacteria vary on the small time scale of day and night. To investigate the nycterohemeral discrepancy of airborne total bacteria and pathogenic bacteria, PM2.5 samples were collected in Hangzhou between day and night. Microbial taxonomic information was obtained through 16S rRNA gene sequencing and "human pathogens database" screening. Further analyses based on Multiple Regression Matrices (MRM) approach and Concentration Weighted Trajectory (CWT) model were conducted to elucidate the effect of local environmental factors and long-range transport. The community composition of total bacteria tended to be similar in the daytime while pathogenic bacteria turned out to be homogeneous in the nighttime. To be vigilant, the diversity of airborne pathogenic bacteria echoed the frequency of anthropogenic activities with the pathogen inhalation rate roughly at 428 copies/h and 235 copies/h respectively in daytime and nighttime. The nycterohemeral discrepancy of total bacteria was principally driven by the filtering of environmental factors, i.e., CO and NO2, indicating that anthropogenic activities brought about the homogeneity. Airborne pathogenic bacteria coupled with the strong resistances of environmental filtering stood out from their non-pathogenic counterpart, which enabled the long-range transport. Indeed, the nycterohemeral discrepancy of pathogenic bacteria was shaped by the transport of air masses. This research filled the gaps in temporal variance of airborne microorganisms on the small time scale of day and night, providing crucial foundation for precisely predicting ecological and health effects of bioaerosols.
Collapse
Affiliation(s)
- Zhichao Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Huan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xu Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
129
|
Sauvé JF, Locke SJ, Josse PR, Stapleton EM, Metwali N, Altmaier RW, Andreotti G, Thorne PS, Hofmann JN, Beane Freeman LE, Friesen MC. Characterization of inhalable endotoxin, glucan, and dust exposures in Iowa farmers. Int J Hyg Environ Health 2020; 228:113525. [PMID: 32311660 PMCID: PMC8010939 DOI: 10.1016/j.ijheh.2020.113525] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The observed deficit of lung cancer in farmers has been partly attributed to exposure to organic dusts and endotoxins based largely on surrogate metrics. To move beyond these surrogates for etiological studies, we characterized task-based and time-weighted average (TWA) exposure to inhalable endotoxin, (1 → 3)-β-D-glucan, and dust in Iowa farmers. METHODS We collected 320 personal inhalable dust samples from 32 farmers during 69 sample days in 2015 and 2016. Samples were collected using Button aerosol samplers and analyzed for endotoxin using a kinetic chromogenic amebocyte lysate assay, and for (1 → 3)-β-D-glucan using a Limulus endpoint assay. We assessed relationships between bioaerosol concentrations and selected tasks and farm characteristics using linear mixed-effects models. RESULTS Bedding work, hog handling, and working in barn/confinement buildings, grain bins, and grain elevators were associated with higher endotoxin exposure. We found a monotonic trend between higher endotoxin concentrations and increasing number of animals. Bedding work, cleaning, and feed/grain storage work were associated with higher (1 → 3)-β-D-glucan concentrations. The median concentrations by task spanned one order of magnitude for inhalable dust and two orders of magnitude for endotoxin and (1 → 3)-β-D-glucan. Pearson correlations between endotoxin and glucan concentrations were 0.22 for TWA exposure and 0.56 for task samples. CONCLUSIONS This characterization of exposure factors that influence bioaerosol concentrations can support the development of refined bioaerosol exposure metrics for future etiologic analyses of cancer and other health outcomes in farmers.
Collapse
Affiliation(s)
- Jean-François Sauvé
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Sarah J Locke
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Pabitra R Josse
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Emma M Stapleton
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Nervana Metwali
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Ralph W Altmaier
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Melissa C Friesen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
130
|
Wei M, Liu H, Chen J, Xu C, Li J, Xu P, Sun Z. Effects of aerosol pollution on PM 2.5-associated bacteria in typical inland and coastal cities of northern China during the winter heating season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114188. [PMID: 32126435 DOI: 10.1016/j.envpol.2020.114188] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 05/14/2023]
Abstract
Frequent heavy aerosol pollution occurs during the winter heating season in northern China. Here, we characterized the airborne bacterial community structure and concentration, during typical pollution episodes that occurred during the winter heating season of 2017-2018 in Jinan and Weihai. During this heating season, five and four heavy pollution episodes were observed in Jinan and Weihai, respectively. Compared with December and January, pollution episodes in March were significantly affected by sand dust events. Higher Bacillales were identified in the March samples from Jinan, indicating that sand dust influences bacterial communities. During similar pollution episodes, air pollution in the coastal city of Weihai was lower than the inland city of Jinan. The predominant bacteria included Staphylococcus, Cyanobacteria, Lactobacillus, Deinococcus, Enbydrobacter, Ralstonia, Bacillus, Comamonas, and Sphingomonas. These predominant bacteria are mainly from Proteobacteria, Firmicutes, Cyanobacteria, Actinobacteria, and Bacteroidetes phyla. Bacterial concentration showed significant variation with increased airborne pollutants. The highest concentration appeared during moderate pollution (up to 106 cells/m3), whereas bacterial concentration decreased during heavy and severe pollution (105 cells/m3), which may be related to toxic effects of high pollutant concentrations during heavy or severe pollution. Community structure variation indicated that Cyanobacterial genera were dominant in clean or slight pollution. With increased PM2.5, Staphylococcus increased and became the most abundant bacteria in moderate pollution (up to 40%). During heavy or severe pollution, bacteria that are adaptable to harsh or extreme environments predominate, such as Deinococcus and Bacillus. In the assessment of health risks from air pollution, the bioaerosols risks must consider. Additionally, although most microbial genera are similar between the two cities, there are important differences associated with pollution level. During air pollution regulation in different regions with varied geographical and climatic conditions, bioaerosol pollution difference is an unignored factor.
Collapse
Affiliation(s)
- Min Wei
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China; Center for Environmental Technology and Policy Research, Shandong Normal University, Jinan, 250014, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Caihong Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Pengju Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Ziwen Sun
- Center for Environmental Technology and Policy Research, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
131
|
Yarahmadi M, Hashemi SJ, Sepahvand A, Shahsavani A, Dai Ghazvini R, Rezaie S, Ansari S, Hadei M, Shoar MG, Bakhshi H, Kamarei B, Ahmadikia K. Evaluation of phenotypes and genotypes of airborne Fungi during middle eastern dust storms. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:11-20. [PMID: 32399217 PMCID: PMC7203330 DOI: 10.1007/s40201-019-00428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/10/2019] [Indexed: 06/11/2023]
Abstract
Microbial species such as bacteria and fungi can be transported by dust storms over long distances, and may change the mycobiota in downwind. This study aimed to evaluate phenotypes and genotypes of airborne fungi during the Middle Eastern dust (MED) events and normal days in Khorramabad, Iran. The samples were collected regularly every six days at three locations during April 2018-March 2019, with additional samplings during MED days. For phenotypic analyses, the Petri dishes were incubated at 25 °C for 72-120 h. Molecular identification of fungi was carried out using polymerase chain reaction (PCR). The average (±SD) of total fungal concentration was 460.9 (±493.2) CFU/m3. The fungi with the highest average concentrations included Cladosporium cladosporioides, Penicillium brevicompactum, and Cladosporium iridis, respectively. The average concentration of fungi during dust days (967.65 CFU/m3) was 3.6 times higher than those in normal days (267.10 CFU/m3). During normal and dust days, 61 and 45 species were detected, respectively. Aspergillus and Cladosporium spp. were relatively more dominant during normal and dust days, respectively. Eight fungal species were only observed during MED days, including Talaromyces albobiverticillius that was detected for the first time in Iran. Despite air temperature, relative humidity and wind speed were associated to the fungal concentrations. Dust events lead to the changes in the air pollutants composition and mycobiota, identification of new fungi, and elevated fungal concentrations that may extremely affect the public health.
Collapse
Affiliation(s)
- Mohammad Yarahmadi
- Department of Medical Parasitology and Mycology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jamal Hashemi
- Department of Medical Parasitology and Mycology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Sepahvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roshanak Dai Ghazvini
- Department of Medical Parasitology and Mycology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sassan Rezaie
- Department of Medical Parasitology and Mycology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saham Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Gerami Shoar
- Department of Medical Parasitology and Mycology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Heidar Bakhshi
- Department of Medical Parasitology and Mycology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Kamarei
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kazem Ahmadikia
- Department of Medical Parasitology and Mycology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
132
|
Trout-Haney JV, Heindel RC, Virginia RA. Picocyanobacterial cells in near-surface air above terrestrial and freshwater substrates in Greenland and Antarctica. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:296-305. [PMID: 32134187 DOI: 10.1111/1758-2229.12832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Bioaerosols are an important component of the total atmospheric aerosol load, with implications for human health, climate feedbacks and the distribution and dispersal of microbial taxa. Bioaerosols are sourced from marine, freshwater and terrestrial surfaces, with different mechanisms potentially responsible for releasing biological particles from these substrates. Little is known about the production of freshwater and terrestrial bioaerosols in polar regions. We used portable collection devices to test for the presence of picocyanobacterial aerosols above freshwater and soil substrates in the southwestern Greenland tundra and the McMurdo Dry Valleys of Antarctica. We show that picocyanobacterial cells are present in the near-surface air at concentrations ranging from 2,431 to 28,355 cells m-3 of air, with no significant differences among substrates or between polar regions. Our concentrations are lower than those measured using the same methods in temperate ecosystems. We suggest that aerosolization is an important process linking terrestrial and aquatic ecosystems in these polar environments, and that future work is needed to explore aerosolization mechanisms and taxon-specific aerosolization rates. Our study is a first step toward understanding the production of bioaerosols in extreme environments dominated by microbial life.
Collapse
Affiliation(s)
- Jessica V Trout-Haney
- Department of Biological Sciences, Life Sciences Center, Dartmouth College, Hanover, NH, 03755
| | - Ruth C Heindel
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO
| | - Ross A Virginia
- Environmental Studies Program and Institute of Arctic Studies, Dartmouth College, Hanover, NH, 03755
| |
Collapse
|
133
|
Wu D, Zhang Y, Tian Y, Li A, Li Y, Xiong J, Gao R. On-site investigation of the concentration and size distribution characteristics of airborne fungi in a university library. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114138. [PMID: 32113104 DOI: 10.1016/j.envpol.2020.114138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
It is important to investigate fungal air quality in libraries because they represent a complex indoor environment. The aim of the study was to quantitatively investigate airborne fungal contamination levels based on field measurements in autumn and winter in four selected library rooms (compact stack, lending room, reading room, study room) in a university library building, as well as the effects of several factors on the culturability of airborne fungi. Airborne fungal levels varied by room, with the highest fungal levels in the reading room (634 ± 275 CFU/m3) and the lowest in the lending room (486 ± 177 CFU/m3). Airborne fungal concentrations were significantly different with seasonal variation (p < 0.05) for all rooms except for the reading room. The size distribution analysis showed that the most airborne fungi were 1.1-3.2 μm in size; based on the schematic diagram of the human respiratory system, more than 80% of airborne fungi could be deposited in the lower respiratory tract (0.65-4.7 μm). Indoor/outdoor airborne fungal concentration ratios were below 1.0 for all four rooms during autumn and winter, showing that outdoor fungi are the main source of indoor fungi. Pearson correlations showed that the fungal concentration was significantly positively correlated with both temperature (r = 0.531, p < 0.05) and relative humidity (r = 0.555, p < 0.05). Indoor temperature, indoor relative humidity and number of open windows significantly positively affected airborne fungal concentration in a multiple linear regression model (p < 0.05). This paper provides fundamental data on fungal contamination that can help experts in indoor air quality to develop guidelines for airborne fungi in libraries and create a safe environment for library patrons and staff.
Collapse
Affiliation(s)
- Dingmeng Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, PR China; School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, PR China
| | - Ying Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, PR China
| | - Yu Tian
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, PR China
| | - Angui Li
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, PR China.
| | - Yang Li
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, PR China
| | - Jing Xiong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, PR China
| | - Ran Gao
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, PR China
| |
Collapse
|
134
|
Seasonal concentration distribution of PM1.0 and PM2.5 and a risk assessment of bound trace metals in Harbin, China: Effect of the species distribution of heavy metals and heat supply. Sci Rep 2020; 10:8160. [PMID: 32424213 PMCID: PMC7235082 DOI: 10.1038/s41598-020-65187-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/27/2020] [Indexed: 11/09/2022] Open
Abstract
To clarify the potential carcinogenic/noncarcinogenic risk posed by particulate matter (PM) in Harbin, a city in China with the typical heat supply, the concentrations of PM1.0 and PM2.5 were analyzed from Nov. 2014 to Nov. 2015, and the compositions of heavy metals and water-soluble ions (WSIs) were determined. The continuous heat supply from October to April led to serious air pollution in Harbin, thus leading to a significant increase in particle numbers (especially for PM1.0). Specifically, coal combustion under heat supply conditions led to significant emissions of PM1.0 and PM2.5, especially heavy metals and secondary atmospheric pollutants, including SO42-, NO3-, and NH4+. Natural occurrences such as dust storms in April and May, as well as straw combustion in October, also contributed to the increase in WSIs and heavy metals. The exposure risk assessment results demonstrated that Zn was the main contributor to the average daily dose through ingestion and inhalation, ADDIng and ADDinh, respectively, among the 8 heavy metals, accounting for 51.7-52.5% of the ADDIng values and 52.5% of the ADDinh values. The contribution of Zn was followed by those of Pb, Cr, Cu and Mn, while those of Ni, Cd, and Co were quite low (<2.2%).
Collapse
|
135
|
The role of meteorological factors on mumps incidence among children in Guangzhou, Southern China. PLoS One 2020; 15:e0232273. [PMID: 32348370 PMCID: PMC7190132 DOI: 10.1371/journal.pone.0232273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/10/2020] [Indexed: 01/19/2023] Open
Abstract
Mumps, a common childhood disease, has a high incidence in Guangzhou city, China. It has been proven that mumps is influenced by seasonality. However, the role of meteorological factors among children is yet to be fully ascertained. This study explored the association between meteorological factors and the incidence of mumps among children in Guangzhou. Distributed lag nonlinear models were used to evaluate the correlation between meteorological factors and the incidence of mumps among children from 2014–2018. The nonlinear lag effects of some meteorological factors were detected. Mean temperature, atmospheric pressure, and relative humidity were positively correlated with mumps incidence, contrary to that of wind speed. Extreme effects of temperature, wind speed, atmospheric pressure, and relative humidity on the incidence of mumps among children in Guangzhou were evaluated in a subgroup analysis according to gender and age. Our preliminary results offered fundamental information to better understand the epidemic trends of mumps among children to develop an early warning system, and strengthen the intervention and prevention of mumps.
Collapse
|
136
|
Waters SM, Purdue SK, Armstrong R, Detrés Y. Metagenomic investigation of African dust events in the Caribbean. FEMS Microbiol Lett 2020; 367:5809963. [PMID: 32189002 DOI: 10.1093/femsle/fnaa051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/17/2020] [Indexed: 11/14/2022] Open
Abstract
African dust from the Sahara and Sahel regions of Northern Africa is blown intercontinental distances and is the highest portion of atmospheric dust generated each year. During the Northern Hemisphere summer months (boreal summer), these dust events travel into the Caribbean and southern United States. While viability assays, microscopy and bacterial amplicon analyses have shown that dust-associated microbes may be diverse, the specific microbial taxa that are transported intercontinental distances with these dust events remain poorly characterized. To provide new insights into these issues, five metagenomes of Saharan dust events occurring in the Caribbean, collected in the summer months of 2002 and 2008, were analyzed. The data revealed that similar microbial composition existed between three out of the five of the distinct dust events and that fungi were a prominent feature of the metagenomes compared to other environmental samples. These results have implications for better understanding of microbial transport through the atmosphere and may implicate that the dust-associated microbial load transiting the Atlantic with Saharan dust is similar from year to year.
Collapse
Affiliation(s)
- Samantha Marie Waters
- Universities Space Research Association, Space Biosciences Division, Ames Research Center, Moffett Field, CA 94035, USA
| | - S K Purdue
- Atmospheric Science, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - R Armstrong
- NOAA Center for Atmospheric Sciences (NCAS), Department of Marine Sciences, University of Puerto Rico-Mayaguez, Puerto Rico 00682, USA
| | - Y Detrés
- NOAA Center for Atmospheric Sciences (NCAS), Department of Marine Sciences, University of Puerto Rico-Mayaguez, Puerto Rico 00682, USA
| |
Collapse
|
137
|
Fungal bio-aerosol in multiple micro-environments from eastern India: source, distribution, and health hazards. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
138
|
Community Structure and Influencing Factors of Airborne Microbial Aerosols over Three Chinese Cities with Contrasting Social-Economic Levels. ATMOSPHERE 2020. [DOI: 10.3390/atmos11040317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As an important part of atmospheric aerosol, airborne bacteria have major impacts on human health. However, variations of airborne community structure due to human-induced activities and their possible impact on human health have not been well understood. In this study, we sampled atmospheric microbial aerosols in three Chinese cities (Shanghai, Xiamen, and Zhangzhou) with contrasting social-economic levels and analyzed the bacterial composition using high-throughput sequencing methods. A high similarity of the predominant phyla was observed in three cities but the relative abundances were quite different. At the genus level, the most dominant genus in Shanghai and Xiamen was Deinococcus while the most dominant genus in Zhangzhou was Clostridium. The different characteristics of airborne bacterial in the three cities above may be ascribed to the environmental variables affected by human over-activities such as the vehicle exhausts and coal-burning emissions in Shanghai, the tourist aggregation and construction works in Xiamen, the extensive uses of chemical fertilizers, and agricultural activities in Zhangzhou. The variation of the bacterial community and the pathogenic bacteria detected in three cities would have a potential threat to human health.
Collapse
|
139
|
Abstract
Fungi move between habitats by dispersing small spores through the atmosphere. We ask what causes some species to release spores at a specific time every day versus irregularly. We find that timing of spore release dictates how long spores remain in the atmosphere before returning to the ground: Spores released at night are likely to travel for hours while spores released during the day may linger for days. Drivers are stronger in lower, warmer latitudes. Because spores in the open atmosphere are likely to die from prolonged exposure to light and air, the timing of spore release will impact survival. We have discovered a constraint likely to shape observed patterns of spore liberation. Fungi disperse spores to move across landscapes and spore liberation takes different patterns. Many species release spores intermittently; others release spores at specific times of day. Despite intriguing evidence of periodicity, why (and if) the timing of spore release would matter to a fungus remains an open question. Here we use state-of-the-art numerical simulations of atmospheric transport and meteorological data to follow the trajectory of many spores in the atmosphere at different times of day, seasons, and locations across North America. While individual spores follow unpredictable trajectories due to turbulence, in the aggregate patterns emerge: Statistically, spores released during the day fly for several days, whereas spores released at night return to ground within a few hours. Differences are caused by intense turbulence during the day and weak turbulence at night. The pattern is widespread but its reliability varies; for example, day/night patterns are stronger in southern regions. Results provide testable hypotheses explaining both intermittent and regular patterns of spore release as strategies to maximize spore survival in the air. Species with short-lived spores reproducing where there is strong turbulence during the day, for example in Mexico, maximize survival by releasing spores at night. Where cycles are weak, for example in Canada during fall, there is no benefit to releasing spores at the same time every day. Our data challenge the perception of fungal dispersal as risky, wasteful, and beyond control of individuals; our data suggest the timing of spore liberation may be finely tuned to maximize fitness during atmospheric transport.
Collapse
|
140
|
Madhwal S, Prabhu V, Sundriyal S, Shridhar V. Ambient bioaerosol distribution and associated health risks at a high traffic density junction at Dehradun city, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:196. [PMID: 32086610 PMCID: PMC7087893 DOI: 10.1007/s10661-020-8158-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 02/11/2020] [Indexed: 05/05/2023]
Abstract
Traffic junctions are one of the crowded places where commuters are at high risk of developing respiratory infections, due to their greater exposure to airborne and human transmitted microbial pathogens. An airborne bioaerosol assessment study was carried out at a high traffic density junction focusing on their concentration, contribution in respirable particulate matter (PM), and factors influencing the distribution and microbial diversity. Andersen six-stage viable cascade impactor and a wide-range aerosol spectrometer were used for microbial and particulate matter measurements, respectively. Statistical analysis was conducted to evaluate the relationship between bioaerosol concentration, vehicular count, PM concentration, and meteorological parameters. The mean bacteria concentration (1962.95 ± 651.85 CFU/m3) was significantly different than fungi (1118.95 ± 428.34 CFU/m3) (p < 0.05). The temporal distribution showed maximum concentration for bacteria and fungi during monsoon and postmonsoon seasons, respectively. In terms of bioaerosol loading, a considerable fraction of fungi (3.25%) and bacteria (5.65%) contributed to the total airborne PM. Most abundant bioaerosols were Aspergillus (27.58%), Penicillium (23%), and Cladosporium (14.05%) (fungi), and Micrococcus (25.73%), Staphylococcus (17.98%), and Bacillus (13.8%) (bacteria). Traffic-induced roadside soil resuspension and microbial aerosolizations from the human body were identified as the chief sources of bioaerosol emissions. The risk of lower respiratory tract infections caused by anthroponotic (human transmitted) transfer of bacterial pathogens is very high. The results of the study can be used to trace sources of microbial mediated communicable diseases, and to recommend appropriate safety measures to avoid pathogenic bioaerosol exposure.
Collapse
Affiliation(s)
- Sandeep Madhwal
- Environmental Pollution Assessment Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, 248001, India
| | - Vignesh Prabhu
- Environmental Pollution Assessment Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, 248001, India
| | - Sangeeta Sundriyal
- Environmental Pollution Assessment Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, 248001, India
| | - Vijay Shridhar
- Environmental Pollution Assessment Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
141
|
Mbareche H, Veillette M, Bilodeau G, Duchaine C. Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols. PeerJ 2020; 8:e8523. [PMID: 32110484 PMCID: PMC7032056 DOI: 10.7717/peerj.8523] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/07/2020] [Indexed: 12/23/2022] Open
Abstract
This paper presents the performance of two eukaryotic genomic ribosomal regions, ITS1 and ITS2, in describing fungal diversity in aerosol samples using amplicon-based High-Throughput Sequencing (HTS). Composting sites, biomethanization facilities, and dairy farms, all affected by the presence of fungi, were visited to collect air samples. The amplicon-based HTS approach is a target enrichment method that relies on the amplification of a specific target using particular primers before sequencing. Thus, the results are highly dependent on the quality of amplification. For this reason, the authors of this paper used a shotgun metagenomic approach to compare its outcome with the amplicon-based method. Indeed, shotgun metagenomic does not rely on any amplification prior to sequencing, because all genes are sequenced without a specific target. In addition, culture methods were added to the analyses in biomethanization and dairy farms samples to validate their contribution to fungal diversity of aerosols. The results obtained are unequivocal towards ITS1 outperformance to ITS2 in terms of richness, and taxonomic coverage. The differential abundance analysis did demonstrate that some taxa were exclusively detected only by ITS2, and vice-versa for ITS1. However, the shotgun metagenomic approach showed a taxonomic profile more resembling to ITS1 than ITS2. Based on these results, neither of the barcodes evaluated is perfect in terms of distinguishing all species. Using both barcodes offers a broader view of the fungal aerosol population. However, with the actual knowledge, the authors strongly recommend using ITS1 as a universal fungal barcode for quick general analyses of diversity and when limited financial resources are available, primarily due its ability to capture taxonomic profiles similar to those obtained using the shotgun metagenomic. The culture comparison with amplicon-based sequencing showed the complementarity of both approaches in describing the most abundant taxa.
Collapse
Affiliation(s)
- Hamza Mbareche
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Canada
| | - Marc Veillette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Guillaume Bilodeau
- Canadian Food Inspection Agency, Pathogen Identification Research Lab, Ottawa, Canada
| | - Caroline Duchaine
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, Canada
| |
Collapse
|
142
|
Qiu G, Yue Y, Tang J, Zhao YB, Wang J. Total Bioaerosol Detection by a Succinimidyl-Ester-Functionalized Plasmonic Biosensor To Reveal Different Characteristics at Three Locations in Switzerland. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1353-1362. [PMID: 31909609 DOI: 10.1021/acs.est.9b05184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bioaerosols consisting of biologically originated airborne particles such as microbes, metabolites, toxins, and fragments of microorganisms are present ubiquitously in our living environment. The international interests in bioaerosols have rapidly increased because of their many potential health effects. Thus, accurate and fast detection of total bioaerosols in different environments has become an important task for safeguarding against biological threats and broadening the pool of bioaerosol knowledge. To quickly evaluate the total bioaerosol concentration, we developed a localized surface plasmon resonance biosensor based on succinimidyl-ester-functionalized gold nanoislands (SEF-AuNIs) for quantitative bioaerosol detection. The detection limit of our proposed SEF-AuNI sensors for model bacteria Escherichia coli and Bacillus subtilis can go to 0.5119 and 1.69 cells/mL, respectively. To demonstrate the capability of this bioaerosol sensing technique, we tested aerosol samples collected from Bern (urban station), Basel (suburban station), and Rigi mountain (rural and high altitude station) in Switzerland and further investigated the correlation with endotoxin and PM10. The results substantiated that our SEF-AuNI sensors could be a reliable candidate for total bioaerosol detection and air quality assessment.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute of Environmental Engineering , ETH Zürich , Zürich 8093 , Switzerland
- Laboratory for Advanced Analytical Technologies , Empa, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf 8600 , Switzerland
| | - Yang Yue
- Institute of Environmental Engineering , ETH Zürich , Zürich 8093 , Switzerland
- Laboratory for Advanced Analytical Technologies , Empa, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf 8600 , Switzerland
| | - Jiukai Tang
- Institute of Environmental Engineering , ETH Zürich , Zürich 8093 , Switzerland
- Laboratory for Advanced Analytical Technologies , Empa, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf 8600 , Switzerland
| | - Yi-Bo Zhao
- Institute of Environmental Engineering , ETH Zürich , Zürich 8093 , Switzerland
- Laboratory for Advanced Analytical Technologies , Empa, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf 8600 , Switzerland
| | - Jing Wang
- Institute of Environmental Engineering , ETH Zürich , Zürich 8093 , Switzerland
- Laboratory for Advanced Analytical Technologies , Empa, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf 8600 , Switzerland
| |
Collapse
|
143
|
Walz E, Middleton J, Sampedro F, VanderWaal K, Malladi S, Goldsmith T. Modeling the Transmission of Foot and Mouth Disease to Inform Transportation of Infected Carcasses to a Disposal Site During an Outbreak Event. Front Vet Sci 2020; 6:501. [PMID: 31993448 PMCID: PMC6971117 DOI: 10.3389/fvets.2019.00501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022] Open
Abstract
In the event of a Food and Mouth Disease (FMD) outbreak in the United States, an infected livestock premises is likely to result in a high number of carcasses (swine and/or cattle) as a result of depopulation. If relocating infected carcasses to an off-site disposal site is allowed, the virus may have increased opportunity to spread to uninfected premises and result in exposure of susceptible livestock. A stochastic within-herd disease spread model was used to predict the time to detect the disease by observation of clinical signs within the herd, and the number of animals in different disease stages over time. Expert opinion was elicited to estimate depopulation parameters in various scenarios. Disease detection was assumed when 5% of the population showed clinical signs by direct observation. Time to detection (5 and 95th percentile values) was estimated for all swine farm sizes (500-10,000 head) ranged from 102 to 282 h, from 42 to 216 h for all dairy cattle premises sizes (100-2,000 head) and from 66 to 240 h for all beef cattle premises sizes (5,000-50,000 head). Total time from infection to beginning depopulation (including disease detection and confirmation) for the first FMD infected case was estimated between 8.5-14.3 days for swine, 6-12.8 days for dairy or beef cattle premises. Total time estimated for subsequent FMD cases was between 6.8-12.3 days for swine, 4.3-10.8 days for dairy and 4.5-10.5 days for beef cattle premises. On an average sized operation, a sizable proportion of animals in the herd (34-56% of swine, 48-60% of dairy cattle, and 47-60% of beef cattle for the first case and 49-60% of swine, 55-60% of dairy cattle, 56-59% of beef cattle for subsequent cases) would be viremic at the time of beginning depopulation. A very small fraction of body fluids from the carcasses (i.e., 1 mL) would contain virus that greatly exceeds the minimum infectious dose by oral (4-7x) or inhalation (7-13x) route for pigs and cattle.
Collapse
Affiliation(s)
- Emily Walz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jamie Middleton
- Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Fernando Sampedro
- Environmental Health Sciences Division, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Sasidhar Malladi
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Timothy Goldsmith
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
144
|
Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol 2020; 17:247-260. [PMID: 30760902 DOI: 10.1038/s41579-019-0158-9] [Citation(s) in RCA: 826] [Impact Index Per Article: 165.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biofilms are a form of collective life with emergent properties that confer many advantages on their inhabitants, and they represent a much higher level of organization than single cells do. However, to date, no global analysis on biofilm abundance exists. We offer a critical discussion of the definition of biofilms and compile current estimates of global cell numbers in major microbial habitats, mindful of the associated uncertainty. Most bacteria and archaea on Earth (1.2 × 1030 cells) exist in the 'big five' habitats: deep oceanic subsurface (4 × 1029), upper oceanic sediment (5 × 1028), deep continental subsurface (3 × 1029), soil (3 × 1029) and oceans (1 × 1029). The remaining habitats, including groundwater, the atmosphere, the ocean surface microlayer, humans, animals and the phyllosphere, account for fewer cells by orders of magnitude. Biofilms dominate in all habitats on the surface of the Earth, except in the oceans, accounting for ~80% of bacterial and archaeal cells. In the deep subsurface, however, they cannot always be distinguished from single sessile cells; we estimate that 20-80% of cells in the subsurface exist as biofilms. Hence, overall, 40-80% of cells on Earth reside in biofilms. We conclude that biofilms drive all biogeochemical processes and represent the main way of active bacterial and archaeal life.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore, Singapore. .,Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
145
|
Ojeda J, Baeza P, Goddard M, Fernanda Cavieres M. Sulfur or Pollen? Chemical, Biological, and Toxicological Basis for the Correct Risk Communication of Urban Yellow Dust Deposition. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 250:69-84. [PMID: 32940760 DOI: 10.1007/398_2020_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Urban yellow dust deposition is a common phenomenon in many parts of the world, which is sometimes called "sulfur shower," "sulfur rain," or "pollen storm." Most people, especially those living in the vicinity of industrial facilities, wrongly perceive the yellow dust as sulfur when in fact it is pollen. The misunderstanding increases risk perception as people believe the "yellow powder" is a serious threat to their health. Based on simple observations, it is virtually impossible to differentiate sulfur from pollen, so risk communication should consider the chemical, biological, and toxicological aspects of these agents. In this review, we clarify that industrial emissions of sulfur are under the form of sulfides, oxides, and other volatile compounds which are gaseous and noncolored, and we explain that it is chemically impossible for gaseous sulfur to become solid yellow sulfur under normal environmental conditions. We also describe pollen and its release from trees, shrubs, and herbs a process influenced by atmospheric conditions. We suggest take-home messages that risk communicators may use when explaining the phenomenon to their communities.
Collapse
Affiliation(s)
- Juan Ojeda
- Escuela de Nutrición, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Baeza
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcela Goddard
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - M Fernanda Cavieres
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
146
|
Litalien A, Zeeb B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134235. [PMID: 31783465 DOI: 10.1016/j.scitotenv.2019.134235] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 05/27/2023]
Abstract
At low concentrations salts are relatively benign, but anthropogenic activities can drive concentrations to levels that impact soil quality, microbial, plant, and animal life. Soil and freshwater salinization are growing issues worldwide that are difficult to manage with conventional treatments. In this review, salt tolerant plants known as halophytes are evaluated for their potential to phytoremediate salinized soils and prevent leaching of salts into surface and ground water. While most plants are sensitive to high concentrations of salt in their growth media, halophytic plants have developed mechanisms to tolerate and thrive in these environments. Some plants exclude salts at the roots, others sequester salts in their central vacuole, while others secrete salts through specialized salt glands on their leaf surfaces. The extraction of salts from soil by both plants that sequester or secrete salts are reviewed as well as implementation strategies that could drive economic feasibility. Further, phytoremediation of salinized soils is considered in the context of a changing climate.
Collapse
Affiliation(s)
- Amélie Litalien
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Canada.
| | - Barbara Zeeb
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Canada
| |
Collapse
|
147
|
Ouyang W, Gao B, Cheng H, Zhang L, Wang Y, Lin C, Chen J. Airborne bacterial communities and antibiotic resistance gene dynamics in PM 2.5 during rainfall. ENVIRONMENT INTERNATIONAL 2020; 134:105318. [PMID: 31726367 DOI: 10.1016/j.envint.2019.105318] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
The biotoxicity and public health effects of airborne bacteria and antibiotic resistance genes (ARGs) in fine particulate matter (PM2.5) are being increasingly recognized. The characteristics of bacterial community composition and ARGs in PM2.5 under different rainfall conditions were studied based on the on-site synchronous measurements in downtown Beijing. Marked differences were evident in the bacterial community characteristics of PM2.5 before, during, and after rain events (p < 0.05). The rain intensities affected the bacterial community abundance in PM2.5 and heavy rain had greater washing effects. The Proteobacteria (phylum level), α-Proteobacteria (class level), Pseudomonadales (order level), Pseudomonadaceae (family level), and Cyanobacteria (genus level) were the dominant bacterial taxa associated with PM2.5 in Beijing during rain events. However, the bacteria at each level that displayed the biggest percentage variance was not the dominant type under different rain intensities. The ermB, tetW, and mphE genes were the primary ARGs, with abundances of 18 to 30 copies/m3, which was a relatively smaller value than other observations. Real-time monitoring of the meteorological condition of rain events and physicochemical properties of PM2.5 were used to identify the main factors during rainfall. The bacterial community was sensitive to the ionic and metal element components of PM2.5 during rainfall. The abundance of ARGs was closely correlated with some groups of the bacterial community, which were also close to the initial value before the rain. Statistical analysis demonstrated that temperature, relative humidity, and duration of rain were the primary meteorological factors for the biological characteristics. The ionic species, rather than metal elements, in PM2.5 were the sensitive factors for the bacteria community and ARGs, which varied at the phylum, class, order, family, and genus levels. The observations provide insights for the biological risk assessment in an urban rainfall water and the potential health impact on citizens.
Collapse
Affiliation(s)
- Wei Ouyang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China.
| | - Bing Gao
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Hongguang Cheng
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Lei Zhang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Yidi Wang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Jing Chen
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China; Center of Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
148
|
Bruni E, Simonetti G, Bovone B, Casagrande C, Castellani F, Riccardi C, Pomata D, Di Filippo P, Federici E, Buiarelli F, Uccelletti D. Evaluation of Bioaerosol Bacterial Components of a Wastewater Treatment Plant Through an Integrate Approach and In Vivo Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010273. [PMID: 31906026 PMCID: PMC6981557 DOI: 10.3390/ijerph17010273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 01/05/2023]
Abstract
Wastewater carries different pathogenic and non-pathogenic microorganisms that can be dispersed in the surrounding environment. Workers who frequent sewage treatment plants can therefore be exposed to aerosols that contain a high concentration of potentially dangerous biological agents, or they can come into direct contact with contaminated material. This can lead to allergies, infections and occupational health-associated diseases. A characterization of biological risk assessment of bioaerosol exposure is necessary. The aim of this study was to evaluate the application of an interdisciplinary method that combines chemical and biological approaches for the analysis of a bioaerosol derived from a wastewater treatment plant (WWTP) situated in Italy. Sampled filters were analyzed by HPLC-MS/MS spectroscopy that searched for different chemical biomarkers of airborne microorganisms. The analytical quantification was compared to the biological cultural method that revealed an underrated microbial concentration. Furthermore, next generation sequencing analysis was used also to identify the uncultivable species that were not detected by the culture dependent-method. Moreover, the simple animal model Caenorhabditis elegans was used to evaluate the pathogenicity of two isolates—Acinetobacter iwoffii and Micrococcus luteus—that showed multidrug-resistance. This work represents a starting point for the development of a multidisciplinary approach for the validation of bioaerosol exposure on WWTP workplaces.
Collapse
Affiliation(s)
- Erika Bruni
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.B.); (B.B.)
| | - Giulia Simonetti
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (F.C.); (C.R.); (D.P.); (P.D.F.); (F.B.)
| | - Beatrice Bovone
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.B.); (B.B.)
| | - Chiara Casagrande
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (C.C.); (E.F.)
| | - Federica Castellani
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (F.C.); (C.R.); (D.P.); (P.D.F.); (F.B.)
| | - Carmela Riccardi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (F.C.); (C.R.); (D.P.); (P.D.F.); (F.B.)
- Inail DIT, 00143 Rome, Italy
| | - Donatella Pomata
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (F.C.); (C.R.); (D.P.); (P.D.F.); (F.B.)
- Inail DIT, 00143 Rome, Italy
| | - Patrizia Di Filippo
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (F.C.); (C.R.); (D.P.); (P.D.F.); (F.B.)
- Inail DIT, 00143 Rome, Italy
| | - Ermanno Federici
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (C.C.); (E.F.)
| | - Francesca Buiarelli
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy; (G.S.); (F.C.); (C.R.); (D.P.); (P.D.F.); (F.B.)
| | - Daniela Uccelletti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (E.B.); (B.B.)
- Correspondence:
| |
Collapse
|
149
|
Gao S, Zhao Y, Yu J, Wang X, Zheng D, Cai Y, Liu H, Wang Z. Comparison between class I NDV and class II NDV in aerosol transmission under experimental condition. Poult Sci 2019; 98:5040-5044. [PMID: 31064012 DOI: 10.3382/ps/pez233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/30/2019] [Indexed: 11/20/2022] Open
Abstract
Recent epidemiological surveys have shown that class I Newcastle disease virus (NDV) is widely distributed in China. However, little is currently known about its transmission. Therefore, in this study, we compared the transmission of class I and class II NDV. Specific-pathogen-free chickens were divided into a class I NDV inoculation group and an aerosol-exposed infection group and kept in 2 separate isolators (A and B, respectively) that were connected with an airtight plastic pipe. After inoculation, air samples were collected regularly with an All-Glass Impinger-30 (Liaoyang, China), and the airborne virus contents were analyzed using the plaque count method. In addition, oral and cloacal swabs were collected regularly to detect virus shedding using quantitative reverse transcription PCR. Similar trials were conducted simultaneously with class II NDV in isolators C and D. We consistently detected class I NDV aerosols in both isolators A and B up to 40 D post-inoculation (dpi). The aerosol concentration reached a maximum of 13.81 × 103 plague-forming units per cubic meter of air at 18 dpi and was significantly higher than that of class II NDV at 21 and 24 dpi. We also detected class I virus shedding from 2 to 40 dpi in the inoculated chickens and from 7 to 40 D post-aerosol-exposed infection in the aerosol-exposed chickens. This phenomenon may explain why class I NDV has been the primary epidemic strain of NDV in recent years.
Collapse
Affiliation(s)
- Shengbin Gao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Taian City 271018, Shandong Province, China
| | - Yunling Zhao
- China Animal Health and Epidemiology Center, Qingdao 266032, Shandong Province, China
| | - Jiarong Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Taian City 271018, Shandong Province, China
| | - Xiaoyu Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Taian City 271018, Shandong Province, China
| | - Dongxia Zheng
- China Animal Health and Epidemiology Center, Qingdao 266032, Shandong Province, China
| | - Yumei Cai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agriculture University, Taian City 271018, Shandong Province, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao 266032, Shandong Province, China
| | - Zhiliang Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, Shandong Province, China
| |
Collapse
|
150
|
Influence of a Municipal Solid Waste Landfill on the Surrounding Environment: Landfill Vegetation as a Potential Risk of Allergenic Pollen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16245064. [PMID: 31842278 PMCID: PMC6950732 DOI: 10.3390/ijerph16245064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 01/23/2023]
Abstract
When the landfill use comes to end, important subsequent steps include aftercare, safety assurance, and ecological regeneration. Landfill revegetation is cost-effective and eco-friendly approach in the management of landfill areas, which serves the purpose of stabilization and provides a pleasant landscape. There are various vegetation types that can be planted, yet grass species are often used for low-cost reasons. Plants can be important sources of air pollution, particularly by grass pollen. The main goal of our study was to identify plant species that produce allergenic pollen. Long-term vegetation monitoring took place on three sites in the growing seasons of years 2008–2018. Studied objects were landfills located in the Czech Republic. The vegetation was assessed using a floristic survey of identified plant species. Plant species that produced allergens were recorded. During the monitoring, 298 plant species were determined. Plant species with allergenic pollen have a considerable share in the landfill vegetation. Thus, landfills are potential sources of various kinds of allergenic pollen. Moreover, our results indicated that there are three periods of pollen production: early spring, late spring, and early summer; late summer; and autumn. The second period is typical for the production of highly allergenic pollen by grasses. Most detected plant species with allergenic pollen are common for all monitored sites, which demonstrates that the vegetation of landfills is a significant source of allergenic pollen.
Collapse
|