101
|
Martemyanov VI, Berezina NA, Mavrin AS, Sharov AN. Shifted mineral ions transport in the mollusk Unio pictorum exposed to environmental concentrations of diclofenac. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109107. [PMID: 34126253 DOI: 10.1016/j.cbpc.2021.109107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/15/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Previous studies showed that diclofenac (DCF), when released in the environment, can be toxic to aquatic animals (fish and mollusks), affecting gills, which are the main organ of ionic regulation. This study focuses on detecting the effects of relevant environmental concentrations of DCF (0.1-1 μg L-1) on the transport of main mineral cations, i.e. sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg), by widely distributed freshwater bivalve mollusks Unio pictorum. After 96-h exposure to river aerated water at 25 °C with DCF concentrations of 0 (control), 0.1 (treatment I), and 1 μg L-1 (treatment II), the mollusks were transferred to deionized water, and daily (for 7 days) concentrations of these cations in the medium have been measured. Animals exposed to 1 μg L-1 DCF maintained the ionic balance between the organism and the diluted medium at a significantly higher level of Na, K, and Mg ions in water compared to the control and animals exposed to 0.1 μg L-1 DCF. At 0.1 μg L-1 DCF, the greater loss concerning the control (p < 0.05) was found only for Na ion. There were no differences in the dynamics of Ca ions between control and both treatments. This study showed that detectable environmental concentrations of DCF in natural waters can influence the transport of main cations required by freshwater animals to maintain their ionic balance, and the observed effect (elevated ion loss) is ion-specific and also dose-dependent.
Collapse
Affiliation(s)
- Vladimir I Martemyanov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences (RAS), 152742 Borok, Yaroslavl Province, Russia
| | - Nadezhda A Berezina
- Zoological Institute, RAS, 199034 St. Petersburg, Universitetskaya embankment 1, Russia.
| | - Alexander S Mavrin
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences (RAS), 152742 Borok, Yaroslavl Province, Russia
| | - Andrey N Sharov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences (RAS), 152742 Borok, Yaroslavl Province, Russia
| |
Collapse
|
102
|
Nieto-Juárez JI, Torres-Palma RA, Botero-Coy AM, Hernández F. Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. ENVIRONMENT INTERNATIONAL 2021; 155:106674. [PMID: 34174591 DOI: 10.1016/j.envint.2021.106674] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
This is the first study dealing with removal of the pharmaceutical substances in municipal wastewater treatment plants (MWWTPs) from Peru and the impact of these compounds in surface waters receiving treated wastewater. To this aim, samples from MWWTP of Lima (Peruvian Coast), MWWTP of Cusco, Puno and Juliaca (Peruvian Highlands), as well surface water (confluence of Torococha and Coata rivers in Juliaca) were analyzed. A total of 38 target pharmaceuticals were included in this study and were determined by Liquid Chromatography coupled to tandem Mass Spectrometry (LC-MS/MS). Around 60% and 75% of the target pharmaceuticals could be quantified in surface water and MWWTPs, respectively. Acetaminophen was the drug found at the highest concentration, and it was present in all the treated wastewater samples reaching average values above 100 μg/L in the department of Puno. The gabapentin anti-epileptic drug (up to 11.85 μg/L in MWWTP Lima) and the antibiotics clarithromycin, trimethoprim, ciprofloxacin, sulfamethoxazole and azithromycin (1.86 to 4.47 μg/L in MWWTP Lima) were also found at moderate concentrations in the treated wastewater. In surface water, the highest concentration corresponded also to acetaminophen (28.70 μg/L) followed by sulfamethoxazole (4.36 μg/L). As regards the pharmaceuticals removal, data of this work showed that the MWWTP Cusco (aerobic biologic process by synthetic trickling filters as secondary treatment) was more efficient than the MWWTP Lima (a preliminary treatment that combines grilles, sand trap, degreaser-aerated and sieved of 1.0 mm). However, many pharmaceuticals (around 50% of the compounds investigated) presented concentrations in treated wastewater similar or even higher than in influent wastewater. The environmental ecological risk of pharmaceuticals was assessed based on calculated Risk Quotient (RQ) in the treated wastewater and surface water from the concentration data found in the samples. According to our data, three antibiotics (clarithromycin, ciprofloxacin, clindamycin) and the analgesic acetaminophen posed high environmental risk (RQ ≥ 1) on the aquatic environment. In the river, all antibiotics (except norfloxacin) as well as the analgesic-anti-inflammatory compounds acetaminophen, diclofenac posed a high environmental risk (RQ ≥ 1). Based on data reported in this work for the first time in water samples from Peru, it can be deduced that the treatment processes applied in important cities from Peru are not enough efficient to remove pharmaceuticals in wastewater. As a consequence, severe environmental risks associated to the presence of pharmaceuticals in treated wastewater and surface water are expected; so complementary treatment processes should be implemented in the MWWTPs for a more efficient elimination of these compounds.
Collapse
Affiliation(s)
- Jessica I Nieto-Juárez
- Research Group in Environmental Quality and Bioprocesses (GICAB), Faculty of Chemical Engineering and Textile, Universidad Nacional de Ingeniería UNI, Av. Túpac Amaru N° 210, Rímac, Lima, Peru.
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 N° 52-21 Medellín, Colombia
| | - A M Botero-Coy
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón, Spain
| | - Félix Hernández
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón, Spain
| |
Collapse
|
103
|
Madikizela LM, Ncube S. Occurrence and ecotoxicological risk assessment of non-steroidal anti-inflammatory drugs in South African aquatic environment: What is known and the missing information? CHEMOSPHERE 2021; 280:130688. [PMID: 33962297 DOI: 10.1016/j.chemosphere.2021.130688] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 05/14/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are medications used individually or as mixtures with other pharmaceuticals for the treatment of various illnesses. Their easy accessibility and high human consumption have resulted to their detection at high concentrations in South African water resources. In the present work, an extensive review of the occurrence and ecotoxicological risk assessment of NSAIDs in South African aquatic environment is provided. Reviewed literature suggested ibuprofen, naproxen, diclofenac, ketoprofen and fenoprofen as the most prominent NSAIDs in the South African aquatic environment. Among these NSAIDs, higher concentrations of ibuprofen are common in South African waters. As a result, this drug was found to pose high ecotoxicological risks towards the aquatic organisms with the highest risk quotients of 14.9 and 11.9 found for algae in surface water and wastewater, respectively. Like in other parts of the world, NSAIDs are not completely removed in wastewater treatment plants. Removal efficiencies below 0% due to higher concentrations of NSAIDs in wastewater effluents rather than influents were observed in certain instances. The detection of NSAIDs in sediments and aquatic plants could serve as the important starting step to investigate other means of NSAIDs removal from water. In conclusion, recommendations regarding future studies that could paint a clearer picture regarding the occurrence and ecotoxicological risks posed by NSAIDs in South African aquatic environment are provided.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Somandla Ncube
- Department of Chemistry, Sefako Makgatho Health Sciences University, P.O Box 60, Medunsa, 0204, South Africa
| |
Collapse
|
104
|
Pharmaceuticals Removal by Adsorption with Montmorillonite Nanoclay. Int J Mol Sci 2021; 22:ijms22189670. [PMID: 34575834 PMCID: PMC8468575 DOI: 10.3390/ijms22189670] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
The problem of purifying domestic and hospital wastewater from pharmaceutical compounds is becoming more and more urgent every year, because of the continuous accumulation of chemical pollutants in the environment and the limited availability of freshwater resources. Clay adsorbents have been repeatedly proposed as adsorbents for treatment purposes, but natural clays are hydrophilic and can be inefficient for catching hydrophobic pharmaceuticals. In this paper, a comparison of adsorption properties of pristine montmorillonite (MMT) and montmorillonite modified with stearyl trimethyl ammonium (hydrophobic MMT-STA) towards carbamazepine, ibuprofen, and paracetamol pharmaceuticals was performed. The efficiency of adsorption was investigated under varying solution pH, temperature, contact time, initial concentration of pharmaceuticals, and adsorbate/adsorbent mass ratio. MMT-STA was better than pristine MMT at removing all the pharmaceuticals studied. The adsorption capacity of hydrophobic montmorillonite to pharmaceuticals decreased in the following order: carbamazepine (97%) > ibuprofen (95%) > paracetamol (63-67%). Adsorption isotherms were best described by Freundlich model. Within the pharmaceutical concentration range of 10-50 µg/mL, the most optimal mass ratio of adsorbates to adsorbents was 1:300, pH 6, and a temperature of 25 °C. Thus, MMT-STA could be used as an efficient adsorbent for deconta×ating water of carbamazepine, ibuprofen, and paracetamol.
Collapse
|
105
|
Dianey GCS, Kaur H, Dosanjh HS, Narayanan J, Singh J, Yadav A, Kumar D, Luu SDN, Sharma A, Singh PP, Alberto HAC. Sunlight powered degradation of pentoxifylline Cs 0.5Li 0.5FeO 2 as a green reusable photocatalyst: Mechanism, kinetics and toxicity studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125762. [PMID: 33819643 DOI: 10.1016/j.jhazmat.2021.125762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
The degradation of Pentoxifylline (PXF) was achieved successfully by green energy in a built-in solar photocatalytic system using hybrid LiCs ferrites (Li0.5Cs0.5FeO2) as magnetically recoverable photocatalysts. Kinetics showed a first-order reaction rate with maximum PXF removal of 94.91% at mildly acidic pH; additionally, the ferromagnetic properties of catalyst allowed recovery and reuse multiple times, reducing costs and time in degradation processes. The degradation products were identified by HPLC-MS and allowed us to propose a thermodynamically feasible mechanism that was validated through DFT calculations. Additionally, toxicity studies have been performed in bacteria and yeast where high loadings of Cs showed to be harmful to Staphylococcus aureus (MIC≥ 4.0 mg/mL); Salmonella typhi (MIC≥ 8.0 mg/mL) and Candida albicans (MIC≥ 10.0 mg/mL). The presented setup shows effectiveness and robustness in a degradation process using alternative energy sources for the elimination of non-biodegradable pollutants.
Collapse
Affiliation(s)
| | - Harpeet Kaur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, India
| | - H S Dosanjh
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Jayanthi Narayanan
- Division of Nanotechnology, Universidad Politécnica del Valle de México, 54901 Tultitlán, Mexico
| | - Jashanpreet Singh
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, India.
| | - Alpa Yadav
- Department of Applied Chemistry, School of Vocational Studies & Applied Sciences, Gautam Budha University, Greater Noida, Uttar Pradesh 201308, India
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Son D N Luu
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Ajit Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, India
| | | | | |
Collapse
|
106
|
Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, Inayat A, Mahlia TMI, Ong HC, Chia WY, Show PL. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125912. [PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 05/25/2023]
Abstract
Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
Collapse
Affiliation(s)
- S F Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Samiha Nuzhat
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh; Water and Life Bangladesh, Dhaka, Bangladesh
| | | | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Md Alhaz Uddin
- Department of Civil Engineering, College of Engineering, Jouf University, Sakaka, Saudi Arabia
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Biomass & Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - T M I Mahlia
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Hwai Chyuan Ong
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
107
|
Im JK, Kim SH, Kim YS, Yu SJ. Spatio-Temporal Distribution and Influencing Factors of Human and Veterinary Pharmaceuticals in the Tributary Surface Waters of the Han River Watershed, South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157969. [PMID: 34360259 PMCID: PMC8345536 DOI: 10.3390/ijerph18157969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Human and veterinary pharmaceuticals are being increasingly used for disease treatment; hence, their distribution and factors influencing them in the aquatic environment need to be investigated. This study observed the effect of human and animal populations, usage, purchasing criteria (prescription vs. non-prescription), and land use to identify the spatio-temporal distribution of eight pharmaceuticals at twenty-four sites of the tributaries of the Han River watershed. In rural areas, the mean concentration (detection frequency) of non-prescription pharmaceuticals (NPPs) was higher (lower) compared to that of prescription pharmaceuticals (PPs); in urban areas, a reverse trend was observed. Pharmaceutical concentrations in urban and rural areas were mainly affected by wastewater treatment plants (WWTPs) and non-point sources, respectively; concentrations were higher downstream (4.9 times) than upstream of the WWTPs. The concentration distribution (according to the target) was as follows: human–veterinary > human > veterinary. Correlation between total concentration and total usage of the pharmaceuticals was high, except for NPPs. Most livestock and land use (except cropland) were significantly positively correlated with pharmaceutical concentrations. Concentrations were mainly higher (1.5 times) during cold seasons than during warm seasons. The results of this study can assist policymakers in managing pharmaceutical pollutants while prioritizing emerging pollutants.
Collapse
|
108
|
Aldeguer Esquerdo A, Varo Galvañ PJ, Sentana Gadea I, Prats Rico D. Carbamazepine and Diclofenac Removal Double Treatment: Oxidation and Adsorption. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137163. [PMID: 34281100 PMCID: PMC8296929 DOI: 10.3390/ijerph18137163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
In the present research, the effect of two hybrid treatments, ozone followed by powdered activated carbon (PAC) or PAC followed by ozone (O3), was studied for the removal of two drugs present in water: diclofenac and carbamazepine. In the study, two initial concentrations of each of the contaminants, 0.7 mg L-1 and 1.8 mg L-1, were used. Different doses of PAC between 4-20 mg L-1 were studied as variables, as well as different doses of O3 between 0.056-0.280 mg L-1. The evolution of the concentration of each contaminant over time was evaluated. From the results obtained, it was concluded that the combined treatment with ozone followed by PAC reduces between 50% and 75% the time required to achieve 90% removal of diclofenac when compared with the time required when only activated carbon was used. In the case of carbamazepine, the time required was 97% less. For carbamazepine, to achieve reduction percentages of up to 90%, O3 treatment followed by PAC acted faster than PAC followed by O3. In the case of diclofenac, PAC treatment followed by O3 was faster to reach concentrations of up to 90%. However, to reach yields below 80%, O3 treatment followed by PAC was more efficient.
Collapse
|
109
|
Quadra GR, Li Z, Silva PSA, Barros N, Roland F, Sobek A. Temporal and Spatial Variability of Micropollutants in a Brazilian Urban River. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:142-154. [PMID: 33999217 DOI: 10.1007/s00244-021-00853-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
In Brazil, environmental occurrence of micropollutants, such as pharmaceuticals, is rarely studied, and these compounds are not part of national water quality guidelines. In this study, we evaluated the occurrence of micropollutants in the Paraibuna River, located in the southeast region of Brazil, which is the most populated region of the country. Surface water samples were taken every 3 months for 1.5 years at four different sites downstream the city of Juiz de Fora. A total of 28 compounds were analyzed on an UHPLC-Orbitrap-MS/MS using a direct injection method. Nine substances were found in at least one water sample, with concentrations ranging from 11 to 4471 ng L-1. The micropollutants found in the river were not detected at the reference site upstream of the city, except for caffeine, which was present at low concentrations in the reference site. Additionally, a nontarget screening of the river samples was applied, which resulted in the identification of 116 chemicals, most of which were pharmaceuticals. Concentrations of most of the micropollutants varied with season and correlated significantly with rainfall events, which caused dilution in the river. The highest observed concentrations were for pharmaceuticals used for treating chronic diseases, such as metformin, which is used to treat diabetes, and were among the most consumed in Juiz de Fora during the study period. Moderate ecotoxicological risks were found for metformin, oxazepam, triclosan, and tramadol. Considering the complex mixture of micropollutants in the environment, more knowledge is needed to elucidate their ecological risk in aquatic ecosystems.
Collapse
Affiliation(s)
- Gabrielle Rabelo Quadra
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil.
| | - Zhe Li
- Department of Environmental Science, Stockholm University, 106-91, Stockholm, Sweden
| | | | - Nathan Barros
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Fábio Roland
- Laboratório de Ecologia Aquática, Programa de Pós-Graduação em Biodiversidade e Conservação, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Anna Sobek
- Department of Environmental Science, Stockholm University, 106-91, Stockholm, Sweden
| |
Collapse
|
110
|
Hidayati NV, Syakti AD, Asia L, Lebarillier S, Khabouchi I, Widowati I, Sabdono A, Piram A, Doumenq P. Emerging contaminants detected in aquaculture sites in Java, Indonesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145057. [PMID: 33592457 DOI: 10.1016/j.scitotenv.2021.145057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals of emerging concern (acetaminophen (ACM), trimethoprim (TMP), oxytetracycline (OTC), and sulfamethoxazole (SMX)) were detected in water samples from aquaculture environments and nonaquaculture sites in four regions located on the northern coast of Central Java. ACM was the most prevalent pharmaceutical, with a mean concentration ranging from not detected (n.d.) to 5.5 ± 1.9 ngL-1 (Brebes). Among the target antibiotics (TMP, OTC, SMX), OTC was the most ubiquitous, with a mean concentration varying from n.d. to 8.0 ± 3.3 ngL-1. Correlation analysis demonstrated that there was a significant correlation between TMP and SMX concentrations. Based on ecological risk assessment evaluation, the use of OTC requires serious consideration, as it presented high health risks to algae, while ACM, TMP, and SMX posed an insignificant to moderate risk to algae, invertebrates, and fish. The findings obtained from this study highlight OTC as an emerging contaminant of prominent concern. More attention needs to be given to managing and planning for the sustainable management of shrimp farms, particularly in the northern part of Central Java.
Collapse
Affiliation(s)
- Nuning Vita Hidayati
- Aix Marseille Univ, CNRS, LCE, Marseille, France; Fisheries and Marine Science Faculty - Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia; Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia; Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia
| | - Agung Dhamar Syakti
- Center for Maritime Biosciences Studies - Institute for Sciences and Community Service, Jenderal Soedirman University, Kampus Karangwangkal, Jl. dr. Suparno, Purwokerto 53123, Indonesia; Marine Science and Fisheries Faculty - Raja Ali Haji Maritime University, Jl. Politeknik Senggarang-Tanjungpinang, Riau Islands Province 29100, Indonesia.
| | | | | | | | - Ita Widowati
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Jl. Prof. Soedharto, SH, Tembalang, Semarang 50275, Indonesia
| | - Anne Piram
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | | |
Collapse
|
111
|
Ramírez-Morales D, Masís-Mora M, Beita-Sandí W, Montiel-Mora JR, Fernández-Fernández E, Méndez-Rivera M, Arias-Mora V, Leiva-Salas A, Brenes-Alfaro L, Rodríguez-Rodríguez CE. Pharmaceuticals in farms and surrounding surface water bodies: Hazard and ecotoxicity in a swine production area in Costa Rica. CHEMOSPHERE 2021; 272:129574. [PMID: 33485042 DOI: 10.1016/j.chemosphere.2021.129574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The presence of pharmaceuticals in the environment is known to have multiple origins; livestock activities comprise one scarcely studied source, both globally and specially in Latin-America. This work aims to study the occurrence of pharmaceuticals in wastewater from swine farms and their surrounding surface waters, in a highland livestock production area of Costa Rica. The monitoring of 70 pharmaceutical active compounds resulted in the detection of 10 molecules in farm wastewater (influents and effluents of the on-farm treatment system), including compounds of animal and human use. A 57% of effluents showed high hazard (ΣHQ > 1), mainly due to the compounds risperidone, ketoprofen, ibuprofen and naproxen. Additionally, ecotoxicological tests with Daphnia magna and Microtox classified at least 21% of the effluents as very toxic (10 < TU ≤ 100); likewise, 86% of effluents exhibited germination index (GI) inhibition values over 90% for Lactuca sativa. Seven molecules were detected in surface water, six of them of human use (1,7-dimethylxanthine, caffeine, cephalexin, carbamazepine, gemfibrozil, ibuprofen) and one (acetaminophen) of dual (human and veterinary) use; nonetheless, most of the detections were found in sampling points closer to human settlements than animal farms. Considering the set of molecules and their distribution, the livestock influence on surface water seems minimal in comparison with the urban influence. Only 16% of surface water samples showed high risk, mainly due to ibuprofen, gemfibrozil and caffeine; similarly, 45% samples presented GI inhibition >20% (no toxicity was determined towards Daphnia magna or Microtox). These findings in surface water suggest an incipient environmental risk in the area.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Wilson Beita-Sandí
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Ericka Fernández-Fernández
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Víctor Arias-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Adrián Leiva-Salas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Laura Brenes-Alfaro
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| |
Collapse
|
112
|
Cardoso-Vera JD, Elizalde-Velázquez GA, Islas-Flores H, Mejía-García A, Ortega-Olvera JM, Gómez-Oliván LM. A review of antiepileptic drugs: Part 1 occurrence, fate in aquatic environments and removal during different treatment technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145487. [PMID: 33736324 DOI: 10.1016/j.scitotenv.2021.145487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Antiepileptic drugs (AEDs) are the main treatment for people with epilepsy. However, in recent years, more and more people are using them for other indications such as: migraine, chronic neuropathic pain, and mood disorders. Consequently, the prescriptions and consumption of these drugs are increasing worldwide. In WWTPs, AEDs can resist degradation processes, such as photodegradation, chemical degradation and/or biodegradation. Until now, only constructed wetlands and photocatalysis have shown good removal rates of AEDs from wastewater. However, their effectiveness depends on the specific conditions used during the treatment. Since the consumption of AEDs has increased in the last decade and their degradation in WWTPs is poor, these drugs have been largely introduced into the environment through the discharge of municipal and/or hospital effluents. Once in the environment, AEDs are distributed in the water phase, as suspended particles or in the sediments, suggesting that these drugs have a high potential for groundwater contamination. In this first part of the AEDs review is designed to fill out the current knowledge gap about the occurrence, fate and removal of these drugs in the aquatic environment. This is a review that emphasizes the characteristics of AEDs as emerging contaminants.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Alejandro Mejía-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - José Mario Ortega-Olvera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
113
|
Skocovska M, Ferencik M, Svoboda M, Zdenka S. Residues of selected sulfonamides, non-steroidal anti-inflammatory drugs and analgesics-antipyretics in surface water of the Elbe river basin (Czech Republic). VET MED-CZECH 2021; 66:208-218. [PMID: 40201857 PMCID: PMC11975358 DOI: 10.17221/180/2020-vetmed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/19/2021] [Indexed: 04/10/2025] Open
Abstract
The occurrence of human as well as veterinary drug residues in surface water is caused by their insufficient removal ability from wastewater. Drug residues disturb the natural balance of water ecosystem, have a negative effect on non-target organisms and pose a significant risk for human health. The main aim of this study was to determine the concentration of residues of eight drugs from the group of sulfonamides (sulfathiazole, sulfadiazine, sulfamethazine, sulfamethoxazole, sulfadimethoxine, sulfadoxine, sulfamerazine, sulfachlorpyridazine), four drugs from the non-steroidal anti-inflammatory drug group (ibuprofen, ketoprofen, naproxen, diclofenac) and one representative of the analgesics-antipyretics group [paracetamol (acetaminophen)] in the surface water of the Elbe river basin. A total of 65 samples of surface water from the Elbe river basin were taken during August 2018 when the weather was constant without any significant fluctuations. The analysis was performed by means of liquid chromatography with tandem mass spectrometry (LC-MS/MS). The results have shown the numerous occurrences of sulfamethoxazole, ibuprofen, naproxen, diclofenac and paracetamol (acetaminophen). A statistically significant negative correlation between the river flow rate in the monitored locations and the residue concentration was found for ibuprofen, naproxen, diclofenac and paracetamol (acetaminophen). The most significant findings of the monitored drug residues were mostly determined in samples from small streams below larger urban settlements with a hospital or other health facilities.
Collapse
Affiliation(s)
- Marie Skocovska
- Section of Large Animal Diseases, Large Animal Clinical Laboratory, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Martin Ferencik
- Elbe River Basin, State Enterprise, Hradec Králové, Czech Republic
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Martin Svoboda
- Section of Large Animals Diseases, Ruminant and Swine Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Svobodova Zdenka
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
114
|
Teixeira LCGM, das Chaves JR, Mendonça N, Sanson AL, Alves MCP, Afonso RJCF, Aquino SF. Occurrence and removal of drugs and endocrine disruptors in the Bolonha Water Treatment Plant in Belém/PA (Brazil). ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:246. [PMID: 33821337 DOI: 10.1007/s10661-021-09025-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the occurrence of drugs and endocrine disrupters in water supplies and in water for human consumption. Twelve sampling campaigns were carried out during the rainy and dry season at four sampling points in the Bolonha Complex, in the city of Belém, northern region of Brazil: Bolonha reservoir (catchment) and Water Treatment Plant (WTP) Bolonha (filtered water chamber, treated water tank, and washing water from the filters). The determination of the compounds was performed by solid phase extraction followed by gas and liquid chromatography coupled to mass spectrometry. The results confirmed the anthropic influence that the reservoir and WTP-Bolonha have been suffering, as consequence of the discharge of domestic sewage in natura. Among 25 microcontaminants analyzed, 12 were quantified in raw water and 10 in treated water. The antiallergic Loratadine (LRT) was the contaminant that occurred most frequently in all sample points, having been poorly removed (median 12%) in the conventional treatment used. Losartana (LST), 4-octylphenol (4-OP), and Bisphenol A (BPA) also occurred very frequently in raw water with concentrations ranging from 3.7 to 194 ng L-1. Although such contaminants occurred in treated water in concentrations varying from 4.0 to 135 ng L-1, the estimated margin of exposure ranged from 55 to 3333 times which indicates low risk of human exposure to such contaminants through ingestion of treated water.
Collapse
Affiliation(s)
- Luiza C G M Teixeira
- Postgraduate Program in Civil Engineering (PPGEC), Universidade Federal Do Pará (UFPA), Belém, PA, 66075-110, Brazil
| | - Juliane Ribeiro das Chaves
- Postgraduate Program in Civil Engineering (PPGEC), Universidade Federal Do Pará (UFPA), Belém, PA, 66075-110, Brazil
| | - Neyson Mendonça
- Postgraduate Program in Civil Engineering (PPGEC), Universidade Federal Do Pará (UFPA), Belém, PA, 66075-110, Brazil
| | - Ananda L Sanson
- Environmental Engineering Postgraduate Program (PROAMB), Universidade Federal de Ouro Preto (UFOP), Campus Morro Do Cruzeiro, Ouro Preto, MG, 35400-00, Brazil
| | - Mariana C P Alves
- Environmental Engineering Postgraduate Program (PROAMB), Universidade Federal de Ouro Preto (UFOP), Campus Morro Do Cruzeiro, Ouro Preto, MG, 35400-00, Brazil
| | - Robson J C F Afonso
- Environmental Engineering Postgraduate Program (PROAMB), Universidade Federal de Ouro Preto (UFOP), Campus Morro Do Cruzeiro, Ouro Preto, MG, 35400-00, Brazil
| | - Sérgio F Aquino
- Environmental Engineering Postgraduate Program (PROAMB), Universidade Federal de Ouro Preto (UFOP), Campus Morro Do Cruzeiro, Ouro Preto, MG, 35400-00, Brazil.
| |
Collapse
|
115
|
Mahé C, Jumarie C, Boily M. The countryside or the city: Which environment is better for the honeybee? ENVIRONMENTAL RESEARCH 2021; 195:110784. [PMID: 33497676 DOI: 10.1016/j.envres.2021.110784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
For a number of years, the decline of honeybee (Apis mellifera) in North America and Europe has been the subject of much debate. Among the many factors proposed by hundreds of studies to explain this phenomenon is the hypothesis that agricultural activities using pesticides contribute to the weakness of bee colonies. Moreover, while urban beekeeping is presently booming in several cities, we do not know if this environment is more beneficial for bees than the typical, rural area. In the summer of 2018, we sampled honeybees (foragers and larvae) in rural (Laurentians) and urban (city of Montreal) areas and compared them using the following biomarkers: carotenoids, retinoids, α-tocopherol, metallothionein-like proteins (MTLPs), lipid peroxidation, triglycerides, acetylcholinesterase activity (AChE) and proteins. Pesticides, pharmaceuticals and personal care products (PPCPs) and metals were also quantified in honeybees' tissues. Our result revealed that, globally, urban foragers had higher levels of insecticides and PPCPs and that metals were in greater concentrations in urban larvae. Compared to rural foragers, urban foragers had higher concentrations of MTLPs, triglycerides, protein and AChE activity. The multifactorial analysis confirmed that insecticides, some metals and PPCPs were the most influential components in the contaminant‒biomarker relationships for both foragers and larvae.
Collapse
Affiliation(s)
- C Mahé
- Groupe de Recherche en Toxicologie de L'environnement (TOXEN). Département des Sciences Biologiques, Université Du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, QC, Canada, H3C 3P8
| | - C Jumarie
- Groupe de Recherche en Toxicologie de L'environnement (TOXEN). Département des Sciences Biologiques, Université Du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, QC, Canada, H3C 3P8
| | - M Boily
- Groupe de Recherche en Toxicologie de L'environnement (TOXEN). Département des Sciences Biologiques, Université Du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, QC, Canada, H3C 3P8.
| |
Collapse
|
116
|
Roy N, Alex SA, Chandrasekaran N, Mukherjee A, Kannabiran K. A comprehensive update on antibiotics as an emerging water pollutant and their removal using nano-structured photocatalysts. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:104796. [DOI: 10.1016/j.jece.2020.104796] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
117
|
Singh V, Suthar S. Occurrence, seasonal variations, and ecological risk of pharmaceuticals and personal care products in River Ganges at two holy cities of India. CHEMOSPHERE 2021; 268:129331. [PMID: 33359991 DOI: 10.1016/j.chemosphere.2020.129331] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/16/2020] [Accepted: 12/13/2020] [Indexed: 05/18/2023]
Abstract
Occurrence of 15 different pharmaceuticals and personal care products (PPCPs) (ibuprofen, diclofenac, ketoprofen, acetaminophen, ciprofloxacin, erythromycin, amoxicillin, ofloxacin, tetracycline, metoprolol, triclosan, salicylic acid, N, N diethyl-meta-toluamide, caffeine and β-Estradiol) belongs to eight different classes in an urban stretch of River Ganges were detected for three seasons in two holy cities Rishikesh and Haridwar (India). The overall concentration of PPCPs in the River Ganges ranged between Below Detectable Limit (BDL) to 1104.84 ng/L, with higher concentrations at anthropogenically influenced lower reaches of the River Ganges at Haridwar. Acetaminophen, triclosan, N, N diethyl-meta-toluamide (DEET), tetracycline, and caffeine showed the highest detection frequency (>90-100%) in the river. PPCPs concentration, especially for NSAIDs (Ibuprofen, ketoprofen and acetaminophen), antibiotics (ciprofloxacin, tetracycline and ofloxacin) and metabolite (salicylic acid) was found to be higher in winter compared to summer in the Ganges, possibly due to the lower biodegradation efficiency related to lesser temperatures and inadequate sunlight. While metoprolol (beta-blockers), triclosan (antibacterial), DEET (insect repellent) and caffeine (human indicator) showed a higher load in summer, possibly due to their intense uses during this period. Results of risk quiescent (RQ) revealed higher ecological risk for algae while the moderate risk for river fish biota.
Collapse
Affiliation(s)
- Vineet Singh
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Surindra Suthar
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India.
| |
Collapse
|
118
|
de Souza RC, Godoy AA, Kummrow F, Dos Santos TL, Brandão CJ, Pinto E. Occurrence of caffeine, fluoxetine, bezafibrate and levothyroxine in surface freshwater of São Paulo State (Brazil) and risk assessment for aquatic life protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20751-20761. [PMID: 33410054 DOI: 10.1007/s11356-020-11799-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The prioritization of active pharmaceutical ingredients (APIs) for monitoring programmes and/or environmental risk assessment (ERA) purposes is based on several criteria, including environmental occurrence data. However, data on API occurrence in Brazilian surface freshwaters are still scarce. The Brazilian Unified Health System (SUS) provides several medicines free-of-charge, including medications that have bezafibrate, fluoxetine and levothyroxine as the API. Thus, our objective was to investigate the occurrence of bezafibrate, fluoxetine and levothyroxine in samples collected at sampling sites included in the surface freshwater monitoring program of the São Paulo State Environmental Agency (CETESB); caffeine was also included in the analysis because it is commonly used as an anthropogenic marker of aquatic environment contamination. Monitoring results showed that levothyroxine was not found in any of the analysed samples. Caffeine was ubiquitous in the analysed samples, thus indicating anthropic contamination in the studied water bodies. Caffeine and bezafibrate presented risk quotient (RQ) < 1 for all the sampling sites and periods evaluated in this study. For fluoxetine, RQs > 1 were found in all water samples in which this API was found, indicating a potential risk for freshwater pelagic biota. Thus, fluoxetine should be regulated in São Paulo State in order to protect the aquatic biota. Additional occurrence studies in other Brazilian states are still needed to evaluate if fluoxetine is a nationwide pollutant.
Collapse
Affiliation(s)
- Raquel Cardoso de Souza
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Aline Andrade Godoy
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Science and Technology Institute, Federal University of Alfenas (Unifal-MG), Rodovia José Aurélio Vilela, 11999, Poços de Caldas, MG, 37715-400, Brazil
| | - Fábio Kummrow
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), Rua São Nicolau, 210, Diadema, SP, 09972-270, Brazil.
| | - Thyago Leandro Dos Santos
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Carlos Jesus Brandão
- Environmental Company of State of São Paulo (CETESB), Av. Professor Frederico Hermann Júnior, 345, Alto de Pinheiros, São Paulo, SP, 05459-900, Brazil
| | - Ernani Pinto
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
119
|
Zhao H, Wang Y, Guo M, Liu Y, Yu H, Xing M. Environmentally relevant concentration of cypermethrin or/and sulfamethoxazole induce neurotoxicity of grass carp: Involvement of blood-brain barrier, oxidative stress and apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143054. [PMID: 33127128 DOI: 10.1016/j.scitotenv.2020.143054] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
In water environment, the interaction between environmental pollutants is very complex, among which pesticides and antibiotics are dominant. However, most studies only focus on individual toxic effects, rather combined. In this study, the sub-chronic exposure effect of cypermethrin (CMN, 0.65 μg/L), sulfamethoxazole (SMZ, 0.30 μg/L) and their mixture on grass crap (Ctenopharyngodon idellus) was investigated. The brain tight junction, oxidative stress and apoptosis-related indices were determined after 42 days of exposure. In terms of brain function, acetyl cholinesterase (AChE) activity was significantly inhibited by CMN, SMZ and their mixtures during exposure periods. Obvious histological damage from cellular and subcellular levels were also observed, which were further confirmed by a decrease in tight junction protein levels. Malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG) contents were significantly increased by individual compounds and mixtures, in which the content of glutathione (GSH) displayed the opposite trend. In mechanism, nuclear factor (erythrocyte derived 2) like 2(Nrf2) pathway was activated, which may trigger cellular protection to cope with CMN and SMZ exposure. However, apoptosis was also detected from the level of mRNA and histochemistry. In general, these two exogenous induced similar biological responses. The neurotoxicity of CMN was strengthened by SMZ with regard to these indices in most cases and vice versa. This study will reveal the potential co-ecological risks of pesticide and antibiotic in the aquatic organism, and provide basic data for their safety and risk assessment.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
120
|
Su D, Ben W, Strobel BW, Qiang Z. Impacts of wastewater treatment plant upgrades on the distribution and risks of pharmaceuticals in receiving rivers. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124331. [PMID: 33183833 DOI: 10.1016/j.jhazmat.2020.124331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Upgrades of wastewater treatment plant (WWTP) and full-scale application of additional advanced oxidation processes have been proven to be effective in reducing the nutrient emissions to the environment; however, the impacts of WWTP upgrades on the receiving waters with regard to the occurrence and ecological risks of pharmaceuticals are still unclear. In this study, 27 pharmaceuticals with diverse physicochemical properties were monitored in four rivers in Beijing, each of which was heavily impacted by a large-scale WWTP. Three-year sampling campaigns were conducted, covering the periods before and after the WWTP upgrades. The results show that the newly added combined treatment processes (e.g., biological filter, ultrafiltration, ozonation, and NaClO disinfection) reduced the total pharmaceutical concentrations in the effluents by 45-74%. The composition profiles reveal that the upgrades of two studied WWTPs resulted in a significant reduction of pharmaceutical concentrations in the receiving rivers, while little impacts were observed for the other rivers. The risk assessment shows that the acute toxic pressures in the studied rivers were generally low and the WWTP upgrades were conducive to reduce the risks for most of pharmaceuticals. However, erythromycin and ofloxacin still posed high risk, indicating the potential adverse effect of pharmaceuticals on aquatic environment.
Collapse
Affiliation(s)
- Du Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; Sino-Danish Center for Education and Research (SDC), Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
121
|
Rueda-Márquez JJ, Moreno-Andrés J, Rey A, Corada-Fernández C, Mikola A, Manzano MA, Levchuk I. Post-treatment of real municipal wastewater effluents by means of granular activated carbon (GAC) based catalytic processes: A focus on abatement of pharmaceutically active compounds. WATER RESEARCH 2021; 192:116833. [PMID: 33486287 DOI: 10.1016/j.watres.2021.116833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutically active compounds (PhACs) widely present in urban wastewater effluents pose a threat to ecosystems in the receiving aquatic environment. In this work, efficiency of granular activated carbon (GAC) - based catalytic processes, namely catalytic wet peroxide oxidation (CWPO), peroxymonosulfate oxidation (PMS/GAC) and peroxydisulfate oxidation (PDS/GAC) at ambient temperature and pressure were studied for removal of 22 PhACs (ng L-1 level) that were present in secondary effluents of real urban wastewater. Concentrations of PhACs were measured using Ultra Performance Liquid Chromatography - Triple Quadrupole Mass Spectrometry (UPLC-QqQ-MS/MS). Catalytic experiments were conducted in discontinuous mode using up-flow fixed bed reactors with granular activated carbon (GAC) as a catalyst. The catalyst was characterized by means of N2 adsorption-desorption isotherm, mercury intrusion porosimetry (MIP), elemental analysis, X-ray fluorescence spectroscopy (WDXRF), X-ray diffraction (XRD), thermal gravimetry and differential temperature analyses coupled mass spectrometry (TGA-DTA-MS). Results indicate that the highest efficiency in terms of TOC removal was achieved during CWPO performed at optimal operational conditions (stoichiometric dose of H2O2; TOC removal ~ 82%) followed by PMS/GAC (initial PMS concentration 100 mg L-1; TOC removal ~73.7%) and PDS/GAC (initial PDS concentration 100 mg L-1; TOC removal ~ 67.9%) after 5 min of contact time. Full consumption of oxidants was observed in all cases for CWPO and PDS/GAC at contact times of 2.5 min, while for PMS/GAC it was 1.5 min. In general, for 18 out of 22 target PhACs, very high removal efficiencies (> 92%) were achieved in all tested processes (including adsorption) performed at optimal operational conditions during 5 min of contact time. However, moderate (40 - 70%) and poor (< 40%) removal efficiencies were achieved for salicylic acid, ofloxacin, norfloxacin and ciprofloxacin, which can be possibly attributed to insufficient contact time. Despite high efficiency of all studied processes for PhACs elimination from urban wastewater effluent, CWPO seems to be more promising for continuous operation.
Collapse
Affiliation(s)
- Juan José Rueda-Márquez
- Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology, Sammonkatu 12, 50130 Mikkeli, Finland; Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Water and Wastewater Engineering Research Group, School of Engineering, Aalto University, PO Box 15200, FI-00076 Aalto, Finland; Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain.
| | - Javier Moreno-Andrés
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain
| | - Ana Rey
- Departamento de Ingeniería Química y Química Física, Instituto del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Av. Elvas s/n 06006 Badajoz, Spain
| | - Carmen Corada-Fernández
- Instituto Universitario de Investigación Marina (INMAR), Laboratorio de Servicios Periféricos (Cromatografía-Espectrometría de Masas), University of Cadiz, Spain
| | - Anna Mikola
- Water and Wastewater Engineering Research Group, School of Engineering, Aalto University, PO Box 15200, FI-00076 Aalto, Finland
| | - Manuel A Manzano
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences. INMAR-Marine Research Institute, CEIMAR- International Campus of Excellence of the Sea. University of Cadiz, Spain
| | - Irina Levchuk
- Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
122
|
Olasupo A, Suah FBM. Recent advances in the removal of pharmaceuticals and endocrine-disrupting compounds in the aquatic system: A case of polymer inclusion membranes. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124317. [PMID: 33307454 DOI: 10.1016/j.jhazmat.2020.124317] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 05/26/2023]
Abstract
The presence of pharmaceuticals and endocrine-disrupting compounds in aquatic systems is a matter of great concern. The occurrence, fate, and potential toxicity of these compounds have triggered the interest of the scientific community. As a result of their high solubility and low volatility, they are common in aquatic systems, and wastewater treatment plants (WWTP) are the main reservoir for these contaminants. Conventional WWTPs have demonstrated an inability to remove these contaminants completely; hence, different advanced treatment processes have been explored to compensate for the lapses of the conventional system. The outcome of this study revealed the significant improvements made using advanced treatment processes to diminish the number of contaminants; however, some contaminants have proven to be refractory. Thus, there is a need to modify various advanced treatment processes or employ additional treatment processes. Polymer inclusion membranes (PIMs) are a liquid membrane technology that is highly efficient at removing contaminants from water. They have been widely studied for the removal of heavy metals and nutrients from aquatic systems; however, only a few studies have investigated the use of PIMs to remove pharmaceutically active compounds from aquatic systems. This research aims to raise awareness on the application of PIMs as a promising water treatment technology which has a great potential for the remediation of pharmaceuticals and endocrine disruptors in the aquatic system, due to its versatility, ease/low cost of preparation and high contaminant selectivity.
Collapse
Affiliation(s)
- Ayo Olasupo
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Faiz Bukhari Mohd Suah
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| |
Collapse
|
123
|
Kiszkiel-Taudul I. Determination of antihistaminic pharmaceuticals in surface water samples by SPE-LC-MS/MS method. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
124
|
Barreales-Suárez S, Azoulay S, Bello-López MÁ, Fernández-Torres R. Uptake study in Juncus sp. and Salicornia europaea of six pharmaceuticals by liquid chromatography quadrupole time-of-flight mass spectrometry. CHEMOSPHERE 2021; 266:128995. [PMID: 33288285 DOI: 10.1016/j.chemosphere.2020.128995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
In this work, eight plants of Juncus sp. and ten of Salicornia europaea were used for an uptake assay of pharmaceuticals (flumequine, cirpofloxacin, enrofloxacin, carbamazepine, diclofenac and ibuprofen) by irrigation at three concentration levels: 10 ng mL-1 (low level); 700 ng mL-1 (medium level) and 10 μg mL-1 (high level). Two plants irrigated with pharmaceutical-free water were set up as controls. For each level, two plants were watered every day with 50 mL (Juncus sp.) and every two days with 20 mL (Salicornia europaea) of aqueous solutions containing all the analytes at the described concentrations. Plants irrigated at 10 μg mL-1 were significantly the most affected, whereas the rest of the plants remained, in general, largely displayed no apparent physiological effects throughout the 30 days (Juncus sp.) and 21 days (Salicornia europaea) assays. Leaves and stems were cut every seven days and roots were collected at the end of the assay. The samples were lyophilized, submitted to a microwave assisted extraction using 5 mL of acetonitrile:water mixture (1:1, v/v) and they were analyzed (in triplicate) in a liquid chromatography-quadrupole time of flight mass spectrometry instrument. Most of the analytes were quantified in many of the samples corresponding to the three exposure levels with the highest concentrations obtained at high exposure levels. Ibuprofen was not detected in any sample and enrofloxacin, ciprofloxacin and diclofenac were not detected in the samples from Salicornia europaea.
Collapse
Affiliation(s)
- Sofía Barreales-Suárez
- Departamento Química Analítica, Facultad Química, Universidad Sevilla, C/Prof. García González, S/n, 41012, Sevilla, Spain; Université Côte D'Azur, CNRS, Institut de Chimie de Nice, 28 Avenue Valrose, 06108, Nice, CEDEX 2, France
| | - Stéphane Azoulay
- Université Côte D'Azur, CNRS, Institut de Chimie de Nice, 28 Avenue Valrose, 06108, Nice, CEDEX 2, France
| | - Miguel Ángel Bello-López
- Departamento Química Analítica, Facultad Química, Universidad Sevilla, C/Prof. García González, S/n, 41012, Sevilla, Spain
| | - Rut Fernández-Torres
- Departamento Química Analítica, Facultad Química, Universidad Sevilla, C/Prof. García González, S/n, 41012, Sevilla, Spain.
| |
Collapse
|
125
|
Checa-Artos M, Sosa del Castillo D, Vanegas ME, Ruiz-Barzola O, Barcos-Arias M. Remoción de cinco productos farmacéuticos catalogados como contaminantes emergentes en medio acuoso utilizando la especie vetiver (Chrysopogon zizanioides). BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los productos farmacéuticos constituyen un grupo único de contaminantes emergentes de gran interés, debido a que se ha determinado su presencia frecuente en aguas superficiales, subterráneas y agua potable. Debido al metabolismo y la absorción incompletos en el organismo humano, una cantidad significativa de estos fármacos se excretan y liberan al ambiente a través de las aguas residuales. Por lo que el objetivo de este trabajo fue evaluar el potencial de la especie vetiver (Chrysopogon zizanioides) para eliminar del medio acuoso cinco productos farmacéuticos comúnmente recetados y de venta libre como ciprofloxacina, ibuprofeno, sulfametaxazol, diclofenaco y acetaminofén. La especie fue aclimatada en invernado, donde se llevó a cabo los experimentos en condiciones controladas de temperatura y a un pH de 6,5. Las muestras fueron analizadas utilizando espectrofotometría UV-Vis para leer en forma directa las absorbancias de cada producto farmacéutico. Para el análisis estadístico de los datos se empleó la metodología de superficies de respuesta con el fin de encontrar los modelos que ayuden a determinar tiempos y concentraciones óptimas donde se maximiza la absorción de cada fármaco, así como la obtención de las pendientes de crecimiento para determinar hacia donde se deberá buscar el óptimo. Se utilizó el software estadístico R versión 3.6.0 y RStudio versión 1.1.453.
Los resultados obtenidos indican que C. zizanioides removió de manera más eficiente ciprofloxacina (98,3%) a una concentración de 3mg/L en un tiempo de 149h, seguido por ibuprofeno y diclofenaco con un máximo de remoción de 73,33% y sulfametaxazol con 66,53%, obteniéndose el menor porcentaje de remoción para acetaminofén de 38,49% a las 192h, donde se realizó toma de muestras cada 48 horas de las soluciones de cada fármaco a diferentes concentraciones (3 mg/L, 6 mg/L, 9 mg/L, 12 mg/L).
En este trabajo de investigación se demostró la capacidad removedora de Chrysopogon zizanioides de los cinco fármacos estudiados en medio acuoso en condiciones controladas, vislumbrando un gran potencial en el ámbito de la biotecnología ambiental para el tratamiento terciario de aguas residuales.
Collapse
Affiliation(s)
- Miriam Checa-Artos
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Daynet Sosa del Castillo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - María Eulalia Vanegas
- Centro de Estudios Ambientales, Departamento de Química Aplicada y Sistemas de Producción, Facultad de Ciencias Químicas, Universidad de Cuenca, Av 12 de Abril y Agustín Cueva, Cuenca, Ecuador
| | - Omar Ruiz-Barzola
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Milton Barcos-Arias
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
126
|
Checa Artos M, Sosa del Castillo D, Ruiz Barzola O, Barcos-Arias M. Presencia de productos farmacéuticos en el agua y su impacto en el ambiente. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los productos farmacéuticos (PFs) constituyen un grupo importante de los contaminantes emergentes (CE), debido a su potencial para inducir efectos fisiológicos adversos a bajas concentraciones en humanos y animales. Muchos estudios alrededor del mundo han reportado la presencia de un sin número de estos compuestos en diferentes medios acuáticos, lo que genera preocupación por los posibles efectos negativos que se producen en el agua, en la salud humana y la vida silvestre. En este contexto, este artículo tiene por objetivo presentar una revisión de los aspectos más relevantes sobre la presencia de PFs en el agua en un ámbito global desde el año 2010 hasta el 2019. El mayor número de estudios reportan presencia de contaminantes emergentes incluyendo fármacos de diferentes tipos en aguas superficiales, aguas subterráneas, aguas residuales y agua potable. Las principales fuentes de ingreso de fármacos en los sistemas acuáticos provienen de las aguas residuales que recogen aguas domésticas, efluentes hospitalarios y efluentes de fábricas sin tratamiento o inadecuadamente tratadas antes de ser liberadas a ríos y mares. La presencia de PFs en el ambiente acuático preocupa por su persistencia, la bioacumulación, la toxicidad y la generación de resistencia a antibióticos de muchos microorganismos, entre otras consecuencias aún no estudiadas en el ambiente.
Collapse
Affiliation(s)
- Miriam Checa Artos
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Daynet Sosa del Castillo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Omar Ruiz Barzola
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - Milton Barcos-Arias
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
127
|
Sadutto D, Andreu V, Ilo T, Akkanen J, Picó Y. Pharmaceuticals and personal care products in a Mediterranean coastal wetland: Impact of anthropogenic and spatial factors and environmental risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116353. [PMID: 33385890 DOI: 10.1016/j.envpol.2020.116353] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 05/08/2023]
Abstract
The present study focused on the occurrence, distribution and risk assessment of 32 pharmaceuticals and personal care products (PPCPs) in water and sediment, as well as the surrounding soil of the irrigation channels and lake of a Mediterranean coastal wetland, the Albufera Natural Park (Valencia, Spain). Moreover, the influent and effluent of ten wastewater treatment plants (WWTPs) that treat wastewater from Valencia and the surrounding areas were also studied. BPA, caffeine, diclofenac, ethyl paraben, methyl paraben, metformin, tramadol and salicylic acid were the predominant PPCPs detected in the channels and the lake, and are in good agreement with those detected in the effluent. Furthermore, 22 PPCPs were detected in >47% of the sediment samples. Of them, BPA, ethyl paraben, furosemide, ibuprofen and salicylic acid were at higher concentrations. In contrast, only seven PPCPs were detected in >44% of the soil samples. Spatial variation showed that the concentration of many PPCPs was higher in the northern area of the park, whereas the ibuprofen concentrations were higher in the south. Differences were also observed according to the type of water used for irrigation and the land uses of the area. A risk assessment based on the hazardous quotient (HQ) indicated that caffeine is a compound of concern, and tramadol at the highest concentration showed a moderate risk for the organisms assessed. Considering the mixture of the PPCPs found at each sampling point, the green algae are at risk, particularly in those points located near the city of Valencia (the most important nearby human settlement). These results indicate the need for further studies.
Collapse
Affiliation(s)
- Daniele Sadutto
- Environmental and Food Safety Research Group of the University of Valencia (SAMA-UV), Research Center on Desertification (CIDE), CSIC-UV-GV, Moncada-Naquera Road Km 4.5, 46113, Moncada, Valencia, Spain.
| | - Vicente Andreu
- Environmental and Food Safety Research Group of the University of Valencia (SAMA-UV), Research Center on Desertification (CIDE), CSIC-UV-GV, Moncada-Naquera Road Km 4.5, 46113, Moncada, Valencia, Spain
| | - Timo Ilo
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80100, Joensuu, Finland
| | - Jarkko Akkanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80100, Joensuu, Finland
| | - Yolanda Picó
- Environmental and Food Safety Research Group of the University of Valencia (SAMA-UV), Research Center on Desertification (CIDE), CSIC-UV-GV, Moncada-Naquera Road Km 4.5, 46113, Moncada, Valencia, Spain
| |
Collapse
|
128
|
Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. WATER 2021. [DOI: 10.3390/w13020181] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging pollutants (EPs) are chemicals known to cause major impacts on the terrestrial, aquatic life and human health as a result of their chronic and acute toxicity. Although lots of studies on EPs behavior in the aquatic environment are currently available in literature, an urgent requirement exists to complete toxicological studies and develop and implement efficient and ecological methods for their removal. This paper raises some relevant problems related to water environment pollution with EPs, the risks they can generate for aquatic life and humans and opportunities to reduce the effects of pollution by EPs removal. Categories of emerging chemicals of concern in the environment, their sources, fate and impacts, with some examples are discussed. Organic UV filters are shortly presented as a relative new EPs category, with a focus on the need to develop extensive experimental studies on their environmental occurrence, fate and removal. Furthermore, sources for the aquatic environment resulting from discharging EPs directly into rivers from wastewater treatment plants are examined. The incidence of environmental and human health risks related to EPs is also considered. The removal of EPs from the environment as a solution to risk mitigation is addressed, with emphasis on several non-conventional processes involving biological removal of EPs. The paper provides a critical look at the current challenges posed by the presence of emerging pollutants in the aquatic environment, with critical comments and recommendations for further research to reduce the impact of EPs on water and human health and improve the performance of developed methods for their removal.
Collapse
|
129
|
Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. EMERGING CONTAMINANTS VOL. 1 2021. [DOI: 10.1007/978-3-030-69079-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
130
|
Li F, Chen L, Bao Y, Zheng Y, Huang B, Mu Q, Feng C, Wen D. Identification of the priority antibiotics based on their detection frequency, concentration, and ecological risk in urbanized coastal water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141275. [PMID: 32777509 DOI: 10.1016/j.scitotenv.2020.141275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics have raised significant concern as emerging pollutants for their increasing consumption, persistent input, and potential threat to ecological environment. Due to low concentrations and various types in coastal water, simultaneous quantification of all kinds of antibiotics is time-consuming and costly. In order to make antibiotic regular monitoring in coastal water possible, identifying the priority antibiotics in the environment is essential. Here, a method for screening the priority antibiotics in coastal water was proposed, considering individual antibiotic concentration, the positive correlation between individual and total antibiotic concentration, the detection frequency, and obvious ecological risk. Taking coastal water of the East China Sea as an example, on a list of 77 target antibiotics, 7 (SMX, TMP, SCP, SMP, CNX, ATM, and ETM) and 4 (SMX, SCP, SMP, and CNX) antibiotics were selected to be the priority antibiotics in 2017 and 2018, respectively. Furthermore, the 4 priority antibiotics in 2018 were all involved in the 7 priority antibiotics in 2017. The sum of the priority antibiotic concentrations accounted for 0.8% and 23.2% of total antibiotic concentrations, and the sum of their RQ accounted for 69.2% and 66.8% of total RQ values in 2017 and 2018, respectively. Among the above 7 priority antibiotics, ATM is mainly used in human clinical, SMX, SCP, and SMP are mainly consumed in veterinary medicine, TMP, CNX, and ETM are commonly used for humans and animals. The proposed method might provide an important reference for the monitoring and management of antibiotic pollution in coastal water.
Collapse
Affiliation(s)
- Feifei Li
- School of Environment, Tsinghua University, China; School of Water Resources and Environment, China University of Geosciences Beijing, China
| | - Lyujun Chen
- School of Environment, Tsinghua University, China; Zhejiang Provincial Key Laboratory of Water Science and Technology, China
| | - Yingyu Bao
- College of Environmental Sciences and Engineering, Peking University, China
| | - Yuhan Zheng
- School of Water Resources and Environment, China University of Geosciences Beijing, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, China
| | - Qinglin Mu
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, China
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences Beijing, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, China.
| |
Collapse
|
131
|
Roveri V, Guimarães LL, Toma W, Correia AT. Occurrence and ecological risk assessment of pharmaceuticals and cocaine in a beach area of Guarujá, São Paulo State, Brazil, under the influence of urban surface runoff. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45063-45075. [PMID: 32779066 DOI: 10.1007/s11356-020-10316-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of pharmaceuticals and illicit drugs in water resources is widely documented in Europe, North America and Asia. However, in South America, these studies are still incipient. The objective of this study was to screen and identify the presence of pharmaceuticals of various therapeutic classes, including illicit drugs such as cocaine and its metabolite benzoylecgonine, in urban drainage channels that flow into the bathing waters of Guarujá city, State of São Paulo, Brazil. Moreover, the ecological potential risks to the aquatic biota were also assessed. The water samples were collected from four beaches of Guarujá in two different points: in the urban drainage channels and in the nearby coast line. A total of 16 compounds were detected using liquid chromatography coupled with tandem mass spectrometry: carbamazepine (0.1-8.0 ng/L), caffeine (33.5-6550.0 ng/L), cocaine (0.2-30.3 ng/L), benzoylecgonine (0.9-278.0 ng/L), citalopram (0.2-0.4 ng/L), acetaminophen (18.3-391.0 ng/L), diclofenac (0.9-79.8 ng/L), orphenadrine (0.2-1.5 ng/L), atenolol (0.1-140.0 ng/L), propranolol (limit of detection: LOD-0.9 ng/L), enalapril (2.2-3.8 ng/L), losartan (3.6-548.0 ng/L), valsartan (19.8-798.0 ng/L), rosuvastatin (2.5-38.5 ng/L), chlortalidone (0.1-0.4 ng/L) and clopidogrel (0.1-0.2 ng/L). The hereby data also showed that five of these compounds, namely caffeine, acetaminophen, diclofenac, losartan and valsartan, could raise moderate to severe risks to aquatic organisms (algae, crustaceans and fishes). This study is the first report of the occurrence of several pharmaceuticals and illicit drugs in urban drainage channels that flow to the bathing waters in South America, and it is the first quantification of rosuvastatin, chlortalidone and clopidogrel in environmental marine waters of Latin America.
Collapse
Affiliation(s)
- Vinicius Roveri
- Faculdade de Ciência e Tecnologia da Universidade Fernando Pessoa (FCT-UFP), Praça 9 de Abril 349, 4249-004, Porto, Portugal
- Universidade Metropolitana de Santos (UNIMES), Avenida Conselheiro Nébias, 536 - Encruzilhada, Santos, São Paulo, 11045-002, Brasil
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Luciana Lopes Guimarães
- Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brasil
| | - Walber Toma
- Universidade Santa Cecília (UNISANTA), Rua Cesário Mota 8, F83A, Santos, São Paulo, 11045-040, Brasil
| | - Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal.
| |
Collapse
|
132
|
Ramírez-Morales D, Masís-Mora M, Montiel-Mora JR, Cambronero-Heinrichs JC, Briceño-Guevara S, Rojas-Sánchez CE, Méndez-Rivera M, Arias-Mora V, Tormo-Budowski R, Brenes-Alfaro L, Rodríguez-Rodríguez CE. Occurrence of pharmaceuticals, hazard assessment and ecotoxicological evaluation of wastewater treatment plants in Costa Rica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141200. [PMID: 32771760 DOI: 10.1016/j.scitotenv.2020.141200] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The continuous release of pharmaceuticals from WWTP effluents to freshwater is a matter of concern, due to their potential effects on non-target organisms. The occurrence of pharmaceuticals in WWTPs and their associated hazard have been scarcely studied in Latin American countries. This study aimed at monitoring for the first time the occurrence of 70 pharmaceutical active compounds (PhACs) in WWTPs across Costa Rica; the application of the hazard quotient (HQ) approach coupled to ecotoxicological determinations permitted to identify the hazard posed by specific pharmaceuticals and toxicity of the effluents, respectively. Thirty-three PhACs were found, with 1,7-dimethylxanthine, caffeine, acetaminophen, ibuprofen, naproxen, ketoprofen and gemfibrozil being the most frequently detected (influents/effluents). HQ for specific pharmaceuticals revealed 24 compounds with high/medium hazard in influents, while the amount only decreased to 21 in effluents. The top HQ values were obtained for risperidone, lovastatin, diphenhydramine and fluoxetine (influent/effluent samples), plus caffeine (influent) and trimethoprim (effluent). Likewise, the estimation of overall hazard in WWTP samples (sum of individual HQ, ∑HQ) demonstrated that every influent and 96% of the effluents presented high hazard towards aquatic organisms. Ecotoxicological analysis (Daphnia magna, Lactuca sativa and Microtox test) revealed that 16.7% of the effluents presented toxicity towards all benchmark organisms; the phytotoxicity was particularly frequent, as inhibition values ≥20% in the germination index for L. sativa were obtained for all the effluents. The ∑HQ approach estimated the highest hazard in urban wastewater, while the ecotoxicological results showed the highest toxicity in hospital and landfill wastewater. Likewise, ecotoxicological results and ∑HQ values showed a rather poor correlation; instead, better correlations were obtained between ecotoxicological parameters and HQ values for some individual pharmaceuticals such as cephalexin and diphenhydramine. Findings from this study provide novel information on the occurrence of pharmaceuticals and the performance of WWTPs in the tropical region of Central America.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica; Facultad de Microbiología, Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Susana Briceño-Guevara
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | | | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Víctor Arias-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Rebeca Tormo-Budowski
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Laura Brenes-Alfaro
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
133
|
Valdez-Carrillo M, Abrell L, Ramírez-Hernández J, Reyes-López JA, Carreón-Diazconti C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44863-44891. [PMID: 32986197 DOI: 10.1007/s11356-020-10842-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Pharmaceutical active compounds (PhACs) are environmentally ubiquitous around the world, and the countries of Latin America (LATAM) are not the exception; however there is still little knowledge of the magnitude and conditions of their occurrence in LATAM and of the environmental consequences of their presence. The present work reviews 79 documents published from 2007 to 2019 on the occurrence, concentrations, and sources of PhACs and hormones in surface water (SW), wastewater (WW), and treated wastewater (TWW) in LATAM and on the circumstances of their release to the environment. Research efforts are reported in only ten countries and confirm the presence of 159 PhACs, mainly analgesics and anti-inflammatories, although extraordinarily high concentrations of carbamazepine (830 μg/L) and ethinylestradiol (6.8 μg/L) were found in Ecuador and Brazil, respectively. The analysis of maximum concentrations and the ecotoxicological risk assessment corroborate that (1) these values exceed the environmental concentrations found in other parts of the world, (2) the environmental risk posed by these concentrations is remarkably high, and (3) there is no statistically significant difference between the maximum concentrations found in WW and those found in TWW. The main source of PhACs in LATAM's aquatic environment is WW; hence, these countries should direct substantial efforts to develop efficient and cost-effective treatment technologies and plan and apply WW management strategies and regulations. This analysis presents the current states of occurrence, concentrations, and sources of PhACs in the aquatic environment of LATAM and outlines the magnitude of the environmental problem in that part of the world.
Collapse
Affiliation(s)
- Melissa Valdez-Carrillo
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Leif Abrell
- Arizona Laboratory for Emerging Contaminants, Departments of Soil, Water & Environmental Science and Chemistry & Biochemistry, University of Arizona, 1040 E. 4th St., Room 606/611, Tucson, AZ, 85721, USA
| | - Jorge Ramírez-Hernández
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Jaime A Reyes-López
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Concepción Carreón-Diazconti
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico.
| |
Collapse
|
134
|
Omotola EO, Olatunji OS. Quantification of selected pharmaceutical compounds in water using liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS). Heliyon 2020; 6:e05787. [PMID: 33426324 PMCID: PMC7779709 DOI: 10.1016/j.heliyon.2020.e05787] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 01/19/2023] Open
Abstract
The detection and quantitation of pharmaceutical compounds (PCs) in different environmental matrices is still a challenge, due to their extremely low (ng-μg) concentrations and the lack of rapid and sensitive analytical techniques. A number of techniques, such as enzyme-linked immunosorbent assay (ELISA), chromatography, electrophoresis, and electrochemical methods have been explored. These methods are limited by their poor sensitivity. In this study, a hyphenated liquid chromatography-mass spectrometric (LC-MS) method was developed, validated, and tested for the detection and quantification of seven active pharmaceutical compounds, with solid-phase extraction for analytes recovery and separation of interference from the aqueous matrix. The sensitivity achieved for the method allowed for LODs (μg/L) of 0.0439, 0.0684, 0.1219, 0.0710, 0.1129, 0.0447, 0.0837 and LOQs (μg/L) of 0.1462, 0.2281, 0.4065, 0.2367, 0.3763, 0.1492, 0.2792, for lamivudine, acetaminophen, vancomycin, ciprofloxacin, sulfamethoxazole, diclofenac, and ivermectin, respectively, within a linear range of 0.01-0.1 μg/mL. Other ICH validation parameters are also discussed. The different PCs were positive in 61 % of the tested surface waters, with diclofenac present only in two of the sampling points. The concentrations at which they occurred were variable and ranged between ND and 398.98 μg/L.
Collapse
Affiliation(s)
- Elizabeth Oyinkansola Omotola
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- Department of Chemistry, Tai Solarin University of Education, Ijebu Ode, Ogun State, Nigeria
| | | |
Collapse
|
135
|
Sadutto D, Picó Y. Sample Preparation to Determine Pharmaceutical and Personal Care Products in an All-Water Matrix: Solid Phase Extraction. Molecules 2020; 25:E5204. [PMID: 33182304 PMCID: PMC7664861 DOI: 10.3390/molecules25215204] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Pharmaceuticals and personal care products (PPCPs) are abundantly used by people, and some of them are excreted unaltered or as metabolites through urine, with the sewage being the most important source to their release to the environment. These compounds are in almost all types of water (wastewater, surface water, groundwater, etc.) at concentrations ranging from ng/L to µg/L. The isolation and concentration of the PPCPs from water achieves the appropriate sensitivity. This step is mostly based on solid-phase extraction (SPE) but also includes other approaches (dispersive liquid-liquid microextraction (DLLME), buckypaper, SPE using multicartridges, etc.). In this review article, we aim to discuss the procedures employed to extract PPCPs from any type of water sample prior to their determination via an instrumental analytical technique. Furthermore, we put forward not only the merits of the different methods available but also a number of inconsistencies, divergences, weaknesses and disadvantages of the procedures found in literature, as well as the systems proposed to overcome them and to improve the methodology. Environmental applications of the developed techniques are also discussed. The pressing need for new analytical innovations, emerging trends and future prospects was also considered.
Collapse
Affiliation(s)
- Daniele Sadutto
- Food and Environmental Safety Research Group, Desertification Research Centre—CIDE (CSIC-UV-GV), University of Valencia (SAMA-UV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group, Desertification Research Centre—CIDE (CSIC-UV-GV), University of Valencia (SAMA-UV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Spain
| |
Collapse
|
136
|
Ng KT, Rapp-Wright H, Egli M, Hartmann A, Steele JC, Sosa-Hernández JE, Melchor-Martínez EM, Jacobs M, White B, Regan F, Parra-Saldivar R, Couchman L, Halden RU, Barron LP. High-throughput multi-residue quantification of contaminants of emerging concern in wastewaters enabled using direct injection liquid chromatography-tandem mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122933. [PMID: 32768824 PMCID: PMC7456777 DOI: 10.1016/j.jhazmat.2020.122933] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/23/2020] [Accepted: 05/10/2020] [Indexed: 05/30/2023]
Abstract
A rapid quantitative method for 135 contaminants of emerging concern (CECs) in untreated wastewater enabled with direct injection liquid chromatography-tandem mass spectrometry is presented. All compounds were analysed within 5 min on a short biphenyl cartridge using only 10 μL of filtered sample per injection. Up to 76 compounds were monitored simultaneously during the gradient (including mostly two transitions per compound and stable isotope-labelled analogues) while yielding >10 data points per peak. Evaluation of seven solid phase extraction sorbents showed no advantage for wastewater matrix removal. Excellent linearity, range, accuracy and precision was achieved for most compounds. Matrix effects were <11 % and detection limits were <30 ng L-1 on average. Application to untreated wastewater samples from three wastewater treatment works in the UK, USA and Mexico, enabled quantification of 56 compounds. Banned and EU 'watch-list' substances are critically discussed, including pesticides, macrolide antibiotics, diclofenac, illicit drugs as well as multiple pharmaceuticals and biocides. This high-throughput method sets a new standard for the speedy and confident determination of over a hundred CECs in wastewater at the part-per-trillion level, as demonstrated by performing over 260 injections per day.
Collapse
Affiliation(s)
- Keng Tiong Ng
- Dept. Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Helena Rapp-Wright
- Dept. Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom; DCU Water Institute and School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Melanie Egli
- Dept. Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom
| | - Alicia Hartmann
- Dept. Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom; Hochschule Fresenius, Limburger Straße 2, Idstein, Hessen, Germany
| | - Joshua C Steele
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA; AquaVitas, LLC, 9260 E. Raintree Dr., Ste 140, Scottsdale, AZ 85260, USA
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Matthew Jacobs
- DCU Water Institute and School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Blánaid White
- DCU Water Institute and School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Fiona Regan
- DCU Water Institute and School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon 64849, Mexico
| | - Lewis Couchman
- Analytical Services International, St George's University of London, London, United Kingdom
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA; OneWaterOneHealth, Arizona State University Foundation, 1001 S. McAllister Avenue, Tempe, AZ 85287-8101, USA; AquaVitas, LLC, 9260 E. Raintree Dr., Ste 140, Scottsdale, AZ 85260, USA
| | - Leon P Barron
- Dept. Analytical, Environmental & Forensic Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, United Kingdom; Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
137
|
Yi M, Sheng Q, Sui Q, Lu H. β-blockers in the environment: Distribution, transformation, and ecotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115269. [PMID: 32836046 DOI: 10.1016/j.envpol.2020.115269] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/30/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
β-blockers are a class of medications widely used to treat cardiovascular disorders, including abnormal heart rhythms, high blood pressure, and angina pectoris. The prevalence of β-blockers has generated a widespread concern on their potential chronic toxicity on aquatic organisms, highlighting the necessity of comprehensive studies on their environmental distribution, fate, and toxicity. This review summarizes the up-to-date knowledge on the source, global distribution, analytical methods, transformation, and toxicity of β-blockers. Twelve β-blockers have been detected in various environmental matrices, displaying significant temporal and spatial variations. β-blockers can be reduced by 0-99% at wastewater treatment plants, where secondary processes contribute to the majority of removal. Advanced oxidation processes, e.g., photocatalysis and combined UV/persulfate can transform β-blockers more rapidly and completely than conventional wastewater treatment processes, but the transformation products could be more toxic than the parent compounds. Propranolol, especially its (S)-enantiomer, exhibits the highest toxicity among all β-blockers. Future research towards improved detection methods, more efficient and cost-effective removal techniques, and more accurate toxicity assessment is needed to prioritize β-blockers for environmental monitoring and control worldwide.
Collapse
Affiliation(s)
- Ming Yi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Sheng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
138
|
Fonseca E, Hernández F, Ibáñez M, Rico A, Pitarch E, Bijlsma L. Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain. ENVIRONMENT INTERNATIONAL 2020; 144:106004. [PMID: 32745782 DOI: 10.1016/j.envint.2020.106004] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals are biologically active molecules that may exert toxic effects to a wide range of aquatic organisms. They are considered contaminants of emerging concern due to their common presence in wastewaters and in the receiving surface waters, and the lack of specific regulations to monitor their environmental occurrence and risks. In this work, the environmental exposure and risks of pharmaceuticals have been studied in the Mijares River, Eastern Mediterranean coast (Spain). A total of 57 surface water samples from 19 sampling points were collected in three monitoring campaigns between June 2018 and February 2019. A list of 40 compounds was investigated using a quantitative target UHPLC-MS/MS method. In order to complement the data obtained, a wide-scope screening of pharmaceuticals and metabolites was also performed by UHPLC-HRMS. The ecological risks posed by the pharmaceutical mixtures were evaluated using species sensitivity distributions built with chronic toxicity data for aquatic organisms. In this study, up to 69 pharmaceuticals and 9 metabolites were identified, out of which 35 compounds were assessed using the quantitative method. The highest concentrations in water corresponded to acetaminophen, gabapentin, venlafaxine, valsartan, ciprofloxacin and diclofenac. The compounds that were found to exert the highest toxic pressure on the aquatic ecosystems were principally analgesic/anti-inflammatory drugs and antibiotics. These were: phenazone > azithromycin > diclofenac, and to a lower extent norfloxacin > ciprofloxacin > clarithromycin. The monitored pharmaceutical mixtures are expected to exert severe ecological risks in areas downstream of WWTP discharges, with the percentage of aquatic species affected ranging between 65% and 82% in 3 out of the 19 evaluated sites. In addition, five antibiotics were found to exceed antibiotic resistance thresholds, thus potentially contributing to resistance gene enrichment in environmental bacteria. This work illustrates the wide use and impact of pharmaceuticals in the area under study, and the vulnerability of surface waters if only conventional wastewater treatments are applied. Several compounds included in this study should be incorporated in future water monitoring programs to help in the development of future regulations, due to their potential risk to the aquatic environment.
Collapse
Affiliation(s)
- Eddie Fonseca
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, E-12071, Castellón, Spain; Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, P.O. 2060, San José, Costa Rica
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, E-12071, Castellón, Spain
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, E-12071, Castellón, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Elena Pitarch
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, E-12071, Castellón, Spain.
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, E-12071, Castellón, Spain.
| |
Collapse
|
139
|
Świacka K, Michnowska A, Maculewicz J, Caban M, Smolarz K. Toxic effects of NSAIDs in non-target species: A review from the perspective of the aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:115891. [PMID: 33497943 DOI: 10.1016/j.envpol.2020.115891] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 05/14/2023]
Abstract
The presence of pharmaceuticals in the aquatic environment, both in marine and freshwater reservoirs, is a major concern of global environmental protection. Among the drugs that are most commonly used, NSAIDs tend to dominate. Currently, being aware of the problem caused by drug contamination, it is extremely important to evaluate the scale and the full spectrum of its consequences, from short-term to long-term effects. The influence on non-target aquatic animals can take place at many levels, and the effects can be seen both in behaviour and physiology, but also in genetic alterations or reproduction disorders, affecting the development of entire populations. This review summarises all the advances made to estimate the impact of NSAIDs on aquatic animals. Multicellular animals from all trophic levels, inhabiting both inland waters, seas and oceans, have been considered. Particular attention has been paid to chronic studies, conducted at low, environmentally-relevant concentrations, to estimate the real effects of the present pollution. The number of such studies has indeed increased in recent years, allowing for a better insight into the possible consequences of pharmaceutical pollution. It should be stressed, however, that our knowledge is still limited to a few model species, while there are many groups of organisms completely unexplored regarding the effects of drugs. Therefore, the main aim of this paper was to summarise the current state of knowledge on the toxicity of NSAIDs in aquatic animals, also identifying important gaps and major issues requiring further analysis.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Alicja Michnowska
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
140
|
Molecularly imprinted polymer-based electrochemical sensors for environmental analysis. Biosens Bioelectron 2020; 172:112719. [PMID: 33166805 DOI: 10.1016/j.bios.2020.112719] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
The ever-increasing presence of contaminants in environmental waters is an alarming issue, not only because of their harmful effects in the environment but also because of their risk to human health. Pharmaceuticals and pesticides, among other compounds of daily use, such as personal care products or plasticisers, are being released into water bodies. This release mainly occurs through wastewater since the treatments applied in many wastewater treatment plants are not able to completely remove these substances. Therefore, the analysis of these contaminants is essential but this is difficult due to the great variety of contaminating substances. Facing this analytical challenge, electrochemical sensing based on molecularly imprinted polymers (MIPs) has become an interesting field for environmental monitoring. Benefiting from their superior chemical and physical stability, low-cost production, high selectivity and rapid response, MIPs combined with miniaturized electrochemical transducers offer the possibility to detect target analytes in-situ. In most reports, the construction of these sensors include nanomaterials to improve their analytical characteristics, especially their sensitivity. Moreover, these sensors have been successfully applied in real water samples without the need of laborious pre-treatment steps. This review provides a general overview of electrochemical MIP-based sensors that have been reported for the detection of pharmaceuticals, pesticides, heavy metals and other contaminants in water samples in the past decade. Special attention is given to the construction of the sensors, including different functional monomers, sensing platforms and materials employed to achieve the best sensitivity. Additionally, several parameters, such as the limit of detection, the linear concentration range and the type of water samples that were analysed are compiled.
Collapse
|
141
|
Rodrigues ET, Nascimento SF, Moreno MJ, Oliveira PJ, Pardal MA. Rat cardiomyocyte H9c2(2-1)-based sulforhodamine B assay as a promising in vitro method to assess the biological component of effluent toxicity. J Environ Sci (China) 2020; 96:163-170. [PMID: 32819690 DOI: 10.1016/j.jes.2020.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
The treatment of wastewaters is crucial to maintain the ecological status of receiving waters, and thereby guarantee the protection of aquatic life and human health. Wastewater quality evaluation is conventionally based on physicochemical parameters, but increasing attention has been paid to integrate physicochemical and biological data. Nevertheless, the regulatory use of fish in biological testing methods has been subject to various ethical and cost concerns, and in vitro cell-based assays have thus become an important topic of interest. Hence, the present study intends: (a) to evaluate the efficiency of two different sample pre-concentration techniques (lyophilisation and solid phase extraction) to assess the toxicity of municipal effluents on rat cardiomyoblast H9c2(2-1) cells, and (b) maximizing the use of the effluent sample collected, to estimate the environmental condition of the receiving environment. The gathered results demonstrate that the H9c2(2-1) sulforhodamine B-based assay is an appropriate in vitro method to assess biological effluent toxicity, and the best results were attained by lyophilising the sample as pre-treatment. Due to its response, the H9c2(2-1) cell line might be a possible alternative in vitro model for fish lethal testing to assess the toxicity of municipal effluents. The physicochemical status of the sample suggests a high potential for eutrophication, and iron exceeded the permissible level for wastewater discharge, possibly due to the addition of ferric chloride for wastewater treatment. In general, the levels of carbamazepine and sulfamethoxazole are higher than those reported for other countries, and both surpassed the aquatic protective values for long-term exposure.
Collapse
Affiliation(s)
- Elsa T Rodrigues
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| | - Susana F Nascimento
- University of Coimbra, Coimbra Chemistry Center, Department of Chemistry, Coimbra 3004-535, Portugal
| | - Maria João Moreno
- University of Coimbra, Coimbra Chemistry Center, Department of Chemistry, Coimbra 3004-535, Portugal
| | - Paulo J Oliveira
- Centre for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede 3060-197, Portugal
| | - Miguel A Pardal
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| |
Collapse
|
142
|
Chaves MDJS, Barbosa SC, Malinowski MDM, Volpato D, Castro ÍB, Franco TCRDS, Primel EG. Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139374. [PMID: 32460076 DOI: 10.1016/j.scitotenv.2020.139374] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 05/06/2023]
Abstract
Despite the fact that the occurrence of emerging contaminants in the environment has become frequent in recent decades, the seasonal dynamics of contaminants in different environmental compartments are little studied in protected areas influenced by effluent discharges. In this study, the seasonal and spatial occurrence of 33 pharmaceuticals and personal care products (PPCPs) was investigated in surface waters and sediments from Anil and Bacanga rivers (northeast of Brazil). The studied area is located within a Wetland of International Importance by Ramsar Convention (Amazon Estuary and its Mangroves). Sample preparation was carried out using solid-phase extraction and QuEChERS, for water and sediment samples, respectively and all determinations were performed by liquid chromatography tandem mass spectrometry. Eleven PPCPs were detected in water samples and 14 in sediments. In aqueous samples, caffeine was the most occurring compound reaching 13,798 ng L-1. In addition, high levels of acetaminophen, ibuprofen, sulfamethoxazole, carbamazepine and diclofenac were also observed. In the sediment samples, triclocarban, benzophenone-3, ketoconazole and methylparaben were also detected. The spatial and temporal distribution of the assessed molecules indicates urbanization and anthropic activities as relevant sources of PPCPs in the region. Moreover, the levels of acetaminophen, caffeine, diclofenac, ibuprofen, benzophenone-3, triclosan and triclocarban measured within the Ramsar site pose a high risk to aquatic and terrestrial organisms. These findings indicate potential threats to the allegedly protected biodiversity and, therefore, urgent actions are needed to effectively protect this unique and vulnerable area.
Collapse
Affiliation(s)
- Marisa de Jesus Silva Chaves
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Sergiane Caldas Barbosa
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Maiara de Melo Malinowski
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Duane Volpato
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil
| | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, Brazil
| | - Teresa Cristina Rodrigues Dos Santos Franco
- Departamento de Tecnologia Química, Laboratório de Química Analítica e Ecotoxicologia, Universidade Federal do Maranhão, Av dos Portugueses, 1966, Bacanga, São Luís, MA 65080805, Brazil
| | - Ednei Gilberto Primel
- Post-Graduate Program in Technological and Environmental Chemistry, Escola de Química e Alimentos, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Universidade Federal do Rio Grande, Av Itália, km 8, Rio Grande, RS 96201-900, Brazil.
| |
Collapse
|
143
|
Li Z, Li M, Zhang Z, Li P, Zang Y, Liu X. Antibiotics in aquatic environments of China: A review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110668. [PMID: 32438219 DOI: 10.1016/j.ecoenv.2020.110668] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/24/2020] [Accepted: 04/19/2020] [Indexed: 05/22/2023]
Abstract
Antibiotics have adverse effects on human health and aquatic ecosystems in water environment, which is the main pool. In this study, antibiotics in the aquatic environment of China, containing both surface water and groundwater, were first systematically reviewed. That is essential for surface water and groundwater guideline and industry management. 128 articles were reviewed, containing 116 papers on surface water and 12 papers on groundwater. 94 antibiotics were detected at least once in the aquatic environment of China and most of the studies were in the eastern areas of China. The median concentrations of most antibiotics were below than 100 ng/L in the surface water and 10 ng/L in the groundwater. The concentrations of most antibiotics in China were similar or a little higher than in other countries. According to risk assessment, three antibiotics (enrofloxacin, ofloxacin and erythromycin) and three regions (Haihe River, Wangyang River and Taihu Lake) should be given more concerns. Strengthened policy and management are needed in these regions. In the future, more studies on groundwater and a priority list of antibiotics in the aquatic environment was needed.
Collapse
Affiliation(s)
- Zhen Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Peng Li
- Beijing Institute of Hydrogeology and Engineering Geology, Beijing, 100195, China
| | - Yongge Zang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
144
|
Screening of ionic liquids for the extraction of biologically active compounds using emulsion liquid membrane: COSMO-RS prediction and experiments. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113122] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
145
|
Hernández-Pérez A, Noonin C, Söderhäll K, Söderhäll I. Environmental concentrations of sulfamethoxazole increase crayfish Pacifastacus leniusculus susceptibility to White Spot Syndrome Virus. FISH & SHELLFISH IMMUNOLOGY 2020; 102:177-184. [PMID: 32311459 DOI: 10.1016/j.fsi.2020.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/07/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics used for humans and livestock are emerging as pollutants in aquatic environments. However, little is known about their effect on aquatic organisms, especially in crustaceans. In the present study, the freshwater crayfish Pacifastacus leniusculus was exposed during 21 days to environmental concentrations of sulfamethoxazole (SMX) (100 ng/L and 1 μg/L). Subsequently, the crayfish susceptibility to infection was evaluated by using White Spot Syndrome Virus (WSSV) challenge, a well-known crustacean pathogen. The median survival time of the infected crayfish exposed to 100 ng/L SMX was one day, whereas the control and the group exposed to 1 μg/L SMX survived for two and three days, respectively. In order to elucidate the effect of SMX upon the crayfish immune response, new sets of crayfish were exposed to the same SMX treatments to evaluate mRNA levels of immune-related genes which are expressed and present in hemocytes and intestine, and to perform total and differential hemocyte counts. These results show a significant down-regulation of the antimicrobial peptide (AMP) Crustin 3 in hemocytes from the 100 ng/L SMX group, as well as a significant up-regulation of the AMP Crustin 1 in intestines from the 1 μg/L SMX group. Semigranular and total hemocyte cell number were observed to be significantly lower after exposure to 100 ng/L SMX in comparison with the control group. The present study demonstrates that environmentally relevant SMX concentrations in the water at 100 ng/L led to an increased WSSV susceptibility, that may have been caused by a reduction of circulating hemocytes. Nevertheless, SMX concentrations of 1 μg/L could marginally and for a few days have an immunostimulatory effect.
Collapse
Affiliation(s)
- Ariadne Hernández-Pérez
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Chadanat Noonin
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Kenneth Söderhäll
- SciLife Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden
| | - Irene Söderhäll
- SciLife Laboratory, Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, 752 36, Uppsala, Sweden.
| |
Collapse
|
146
|
Nie W, Li Y, Chen L, Zhao Z, Zuo X, Wang D, Zhao L, Feng X. Interaction between multi-walled carbon nanotubes and propranolol. Sci Rep 2020; 10:10259. [PMID: 32581369 PMCID: PMC7314780 DOI: 10.1038/s41598-020-66933-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Carbon nanotubes could accumulate in organism and have a negative impact on the structure and function of the ecosystem when they were discharged into environment. Furthermore, it will affect the migration and fate of pollutants in the water body. The study is mainly to explore the adsorption behavior and mechanism of beta-blocker on multi-walled carbon nanotubes (MWCNTs). Propranolol (PRO) was selected as the representative of beta-blocker. The effects of different environmental factors such as pH, ionic strength and humic acid (HA) on the adsorption process were investigated. The adsorption results were characterized by Zeta potential. At the same time, the effects of different types of drugs on the adsorption process were explored and the possible adsorption mechanisms were analyzed. The experimental results showed that the adsorption behavior was significantly different under different pH conditions. π-π EDA interaction, hydrophobic interaction and hydrogen bonding were speculated to be the main adsorption mechanisms for PRO adsorption on MWCNTs.
Collapse
Affiliation(s)
- Wenjie Nie
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China. .,Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, 710054, China.
| | - Yani Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.,Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an, 710054, China
| | - Leyuan Chen
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Zhicheng Zhao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xin Zuo
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Dongdong Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Lei Zhao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xinyue Feng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
147
|
Khadir A, Negarestani M, Motamedi M. Optimization of an electrocoagulation unit for purification of ibuprofen from drinking water: Effect of conditions and linear/non-linear isotherm study. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1770795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ali Khadir
- Young Researcher and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Negarestani
- Department of Civil and Environmental Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mahsa Motamedi
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
148
|
Zhang T, Yang Y, Gao J, Li X, Yu H, Wang N, Du P, Yu R, Li H, Fan X, Zhou Z. Synergistic degradation of chloramphenicol by ultrasound-enhanced nanoscale zero-valent iron/persulfate treatment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116575] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
149
|
Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. WATER 2020. [DOI: 10.3390/w12061551] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Presence of pharmaceutically active compounds (PACs) as emerging contaminants in water is a major concern. Recent reports have confirmed the presence of PACs in natural and wastewater systems, which have caused several problems indicating the urgent need for their removal. The current review evaluates the role of chemically modified biosorbents in the removal of PACs in water. Reported biosorbents include plant and animal solid waste, microorganisms and bio-composite. Bio-composites exhibited better prospects when compared with other biosorbents. Types of chemical treatment reported include acid, alkaline, solvent extraction, metal salt impregnation and surface grafting, with alkaline treatment exhibiting better results when compared with other treatments. The biosorption processes mostly obeyed the pseudo-second-order model and the Langmuir isotherm model in a process described mainly by ionic interaction. Desorption and regeneration capacity are very important in selecting an appropriate biosorbent for the biosorption process. Depending on the type of biosorbent, the cost of water treatment per million liters of water was estimated as US $10–US $200, which presents biosorption as a cheap process compared to other known water treatment processes. However, there is a need to conduct large-scale studies on the biosorption process for removing PACs in water.
Collapse
|
150
|
Su D, Ben W, Strobel BW, Qiang Z. Occurrence, source estimation and risk assessment of pharmaceuticals in the Chaobai River characterized by adjacent land use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:134525. [PMID: 31822417 DOI: 10.1016/j.scitotenv.2019.134525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 05/27/2023]
Abstract
This study investigated the occurrence of 27 pharmaceuticals with diverse physicochemical properties in a year-long monitoring campaign in the Chaobai River, China. The correlation between the distribution of pharmaceuticals in the river and the adjacent sources was elucidated. The results indicate that the agriculture area was the most polluted area with a median summed pharmaceutical concentration of 225.3 ng L-1, followed by the urban area and the mountain area with the corresponding values of 136.9 and 29.9 ng L-1, respectively. In terms of individual compounds, 22 out of 27 compounds were detected with concentrations ranging from <1 to 1972 ng L-1. Caffeine, carbamazepine, azithromycin, bezafibrate, metoprolol, sulfadiazine, sulfamethoxazole, clarithromycin, erythromycin, roxithromycin, and trimethoprim were pharmaceuticals with relatively high levels, with median concentrations ranging from 3.3 to 25.6 ng L-1 and detection frequencies ranging from 40% to 97%. Higher concentrations were mainly observed during cold seasons, with mean concentrations 1 to 52 times as high as those during warm seasons. Spatial analysis reveals that the pharmaceutical concentrations in different areas were impacted by different sources. A wastewater treatment plant was an important source in the urban area, while the agriculture area was impacted by various treated and untreated wastewater sources. The species sensitivity distribution model and risk quotient (RQ) method were combined in the ecological risk assessment. The results indicate that the multi-substance potentially affected fraction (msPAF) values of the sampling sites were below 0.04%, whereas nearly half of RQ values were higher than 1. Caffeine was proposed as a priority compound due to its high contribution rate (i.e., 79%) to the cumulative msPAF value, which implies that increased control and management of untreated wastewater sources along the Chaobai River is necessary.
Collapse
Affiliation(s)
- Du Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; Sino-Danish Center for Education and Research (SDC), Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; Sino-Danish Center for Education and Research (SDC), Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|