101
|
Lu Y, Zhang H, Wang H, Ma N, Sun T, Cui B. Humic acid mediated toxicity of faceted TiO 2 nanocrystals to Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126112. [PMID: 34492909 DOI: 10.1016/j.jhazmat.2021.126112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Nano-bio interface is of great importance in dictating the interaction between the nanomaterials and biological system and thus the toxicity to aquatic organisms. Herein, two specific faceted TiO2 nanocrystals, {101} and {001} facet, were exposed to Daphnia magna to explore facet-dependent toxicological responses in aquatic environment. Due to the different influences on oxidative stress process, the half-maximal effective concentration (EC50) value of {001} TiO2 (1.27 g L-1) to D. magna was less than that of {101} TiO2 (1.68 g L-1). Suwannee river humic acid (SRHA) could significantly reduce the oxidative stress responses of TiO2 nanocrystals and thus alleviate their toxicities to D. magna in aquatic environment. The protective effect of SRHA against TiO2 toxicity exhibited a facet-dependent manner. Compared to {101} TiO2, a more obvious detoxification effect was observed for {001} TiO2. The high SRHA concentration could endow both faceted TiO2 nanocrystals with a similar toxicity due to the formation of SRHA-corona on TiO2 surface. This facet-affected toxicity of nanomaterials in aquatic environment would provide us new insights in predicting the exposure risk of nanomaterials in nature waters.
Collapse
Affiliation(s)
- Yi Lu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Hua Wang
- School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Ning Ma
- Beijing Key Laboratory of Water Environmental and Ecological Technology for River Basins, Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
102
|
Sunscreens’ UV Filters Risk for Coastal Marine Environment Biodiversity: A Review. DIVERSITY 2021. [DOI: 10.3390/d13080374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Considering the rapid growth of tourism in recent years and the acknowledgement that exposure to solar UV radiation may cause skin cancer, sunscreens have been widely used by beachgoers in recent decades. UV filters contained in sunscreens, however, were recently identified as emerging pollutants in coastal waters since they accumulate in the marine environment with different adverse effects. In fact, exposure to these components was proven to be toxic to most invertebrate and vertebrate marine species. Some UV filters are linked to the production of significant amounts of reactive oxygen species (ROS), such as hydrogen peroxide, and the release of inorganic micronutrients that may alter the status of coastal habitats. Bioaccumulation and biomagnification have not yet been fully addressed. This review highlights recent progress in research and provides a comprehensive overview of the toxicological and ecotoxicological effects of the most used UV filters both on the abiotic and biotic compartments in different types of coastal areas, to gain a better understanding of the impacts on coastal biodiversity.
Collapse
|
103
|
Chiriac FL, Pirvu F, Paun I. Investigation of endocrine disruptor pollutants and their metabolites along the Romanian Black Sea Coast: Occurrence, distribution and risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103673. [PMID: 34029729 DOI: 10.1016/j.etap.2021.103673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
In recent years, the occurrence of organic UV-filters (UVFs) and bisphenol derivatives (BPs) in the marine environment has raised high concerns all over the world, due to the potentially adverse impacts on marine organism and, indirectly on human health. This paper reports, for the first time in Romania, the occurrence, distribution pattern and environmental risk assessment of UVFs, BPs and their metabolites in seawater, sediment and algae collected from the Romania Black Sea coastal region. BP-3 (2-hydroxy-4-methoxy-benzophenone) was the most abundant contaminant in seawater samples, with detection frequency of 100 %. Sediment samples were dominated by ES (Ethylhexyl salicylate), with concentration values up to 5823 ng/g d.w., while for algae, concentrations of several hundreds of ng/g d.w. were determined for BP-3, BS (Benzyl salicylate) and BPE (Bisphenol E). Environmental risk assessment revealed that some UVFs and BPs detected in seawater samples were hazardous to the marine organism of the Black Sea.
Collapse
Affiliation(s)
- Florentina Laura Chiriac
- National Research and Development Institute for Industrial Ecology - ECOIND, Drumul Podu Dambovitei 71-73, Sector 6, 060652, Bucharest, Romania.
| | - Florinela Pirvu
- National Research and Development Institute for Industrial Ecology - ECOIND, Drumul Podu Dambovitei 71-73, Sector 6, 060652, Bucharest, Romania
| | - Iuliana Paun
- National Research and Development Institute for Industrial Ecology - ECOIND, Drumul Podu Dambovitei 71-73, Sector 6, 060652, Bucharest, Romania.
| |
Collapse
|
104
|
Eco-Interactions of Engineered Nanomaterials in the Marine Environment: Towards an Eco-Design Framework. NANOMATERIALS 2021; 11:nano11081903. [PMID: 34443734 PMCID: PMC8398366 DOI: 10.3390/nano11081903] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
Marine nano-ecotoxicology has emerged with the purpose to assess the environmental risks associated with engineered nanomaterials (ENMs) among contaminants of emerging concerns entering the marine environment. ENMs’ massive production and integration in everyday life applications, associated with their peculiar physical chemical features, including high biological reactivity, have imposed a pressing need to shed light on risk for humans and the environment. Environmental safety assessment, known as ecosafety, has thus become mandatory with the perspective to develop a more holistic exposure scenario and understand biological effects. Here, we review the current knowledge on behavior and impact of ENMs which end up in the marine environment. A focus on titanium dioxide (n-TiO2) and silver nanoparticles (AgNPs), among metal-based ENMs massively used in commercial products, and polymeric NPs as polystyrene (PS), largely adopted as proxy for nanoplastics, is made. ENMs eco-interactions with chemical molecules including (bio)natural ones and anthropogenic pollutants, forming eco- and bio-coronas and link with their uptake and toxicity in marine organisms are discussed. An ecologically based design strategy (eco-design) is proposed to support the development of new ENMs, including those for environmental applications (e.g., nanoremediation), by balancing their effectiveness with no associated risk for marine organisms and humans.
Collapse
|
105
|
Azimzada A, Jreije I, Hadioui M, Shaw P, Farner JM, Wilkinson KJ. Quantification and Characterization of Ti-, Ce-, and Ag-Nanoparticles in Global Surface Waters and Precipitation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9836-9844. [PMID: 34181400 DOI: 10.1021/acs.est.1c00488] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanoparticle (NP) emissions to the environment are increasing as a result of anthropogenic activities, prompting concerns for ecosystems and human health. In order to evaluate the risk of NPs, it is necessary to know their concentrations in various environmental compartments on regional and global scales; however, these data have remained largely elusive due to the analytical difficulties of measuring NPs in complex natural matrices. Here, we measure NP concentrations and sizes for Ti-, Ce-, and Ag-containing NPs in numerous global surface waters and precipitation samples, and we provide insights into their compositions and origins (natural or anthropogenic). The results link NP occurrences and distributions to particle type, origin, and sampling location. Based on measurements from 46 sites across 13 countries, total Ti- and Ce-NP concentrations (regardless of origin) were often found to be within 104 to 107 NP mL-1, whereas Ag NPs exhibited sporadic occurrences with low concentrations generally up to 105 NP mL-1. This generally corresponded to mass concentrations of <1 ng L-1 for Ag-NPs, <100 ng L-1 for Ce-NPs, and <10 μg L-1 for Ti-NPs, given that measured sizes were often below 15 nm for Ce- and Ag-NPs and above 30 nm for Ti-NPs. In view of current toxicological data, the observed NP levels do not yet appear to exceed toxicity thresholds for the environment or human health; however, NPs of likely anthropogenic origins appear to be already substantial in certain areas, such as urban centers. This work lays the foundation for broader experimental NP surveys, which will be critical for reliable NP risk assessments and the regulation of nano-enabled products.
Collapse
Affiliation(s)
- Agil Azimzada
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - Ibrahim Jreije
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Madjid Hadioui
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Phil Shaw
- Nu Instruments, Wrexham LL13 9XS, U.K
| | - Jeffrey M Farner
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Kevin J Wilkinson
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
106
|
Li Z, Hu M, Song H, Lin D, Wang Y. Toxic effects of nano-TiO 2 in bivalves-A synthesis of meta-analysis and bibliometric analysis. J Environ Sci (China) 2021; 104:188-203. [PMID: 33985722 DOI: 10.1016/j.jes.2020.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Since the beginning of the 21st century, the increasing production and application of nano-TiO2 in consumer products have inevitably led to its release into aquatic systems and therefore caused the exposure of aquatic organisms, resulting in growing environmental concerns. However, the safety of nano-TiO2 in aquatic environments has not been systematically assessed, especially in coastal and estuary waters where a large number of filter-feeding animals live. Bivalves are considered around the world to be a unique target group for nanoparticle toxicity, and numerous studies have been conducted to test the toxic effects of nano-TiO2 on bivalves. The aim of this review was to systematically summarize and analyze published data concerning the toxicological effects of nano-TiO2 in bivalves. In particular, the toxicity of nano-TiO2 to the antioxidant system and cell physiology was subjected to meta-analysis to reveal the mechanism of the toxicological effects of nano-TiO2 and the factors affecting its toxicological effects. To reveal the cooperation, hot keywords and co-citations in this field, bibliometric analysis was conducted, and the results showed that the toxicological molecular mechanisms of nano-TiO2 and the combined effects of nano-TiO2 and other environmental factors are two major hot spots. Finally, some perspectives and insights were provided in this review for future research on nano-TiO2 toxicology in bivalves.
Collapse
Affiliation(s)
- Zhuoqing Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hanting Song
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
107
|
Mitchelmore CL, Burns EE, Conway A, Heyes A, Davies IA. A Critical Review of Organic Ultraviolet Filter Exposure, Hazard, and Risk to Corals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:967-988. [PMID: 33528837 PMCID: PMC8048829 DOI: 10.1002/etc.4948] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 11/24/2020] [Indexed: 05/12/2023]
Abstract
There has been a rapid increase in public, political, and scientific interest regarding the impact of organic ultraviolet (UV) filters to coral reefs. Such filters are found in sunscreens and other consumer products and enter the aquatic environment via direct (i.e., recreational activities, effluents) or indirect (i.e., land runoff) pathways. This review summarizes the current state of the science regarding the concentration of organic UV filters in seawater and sediment near coral reef ecosystems and in coral tissues, toxicological data from early and adult life stages of coral species, and preliminary environmental risk characterizations. Up to 14 different organic UV filters in seawater near coral reefs have been reported across 12 studies, with the majority of concentrations in the nanograms per liter range. Nine papers report toxicological findings from no response to a variety of biological effects occurring in the micrograms per liter to milligrams per liter range, in part given the wide variations in experimental design and coral species and/or life stage used. This review presents key findings; scientific data gaps; flaws in assumptions, practice, and inference; and a number of recommendations for future studies to assess the environmental risk of organic UV filters to coral reef ecosystems. Environ Toxicol Chem 2021;40:967-988. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Carys L. Mitchelmore
- University of Maryland Center for Environmental ScienceChesapeake Biological Laboratory, SolomonsMarylandUSA
| | | | - Annaleise Conway
- University of Maryland Center for Environmental ScienceChesapeake Biological Laboratory, SolomonsMarylandUSA
| | - Andrew Heyes
- University of Maryland Center for Environmental ScienceChesapeake Biological Laboratory, SolomonsMarylandUSA
| | | |
Collapse
|
108
|
Finding Nano: Challenges Involved in Monitoring the Presence and Fate of Engineered Titanium Dioxide Nanoparticles in Aquatic Environments. WATER 2021. [DOI: 10.3390/w13050734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In recent years, titanium dioxide (TiO2) has increasingly been used as an inorganic ultraviolet (UV) filter for sun protection. However, nano-TiO2 may also pose risks to the health of humans and the environment. Thus, to adequately assess its potential adverse effects, a comprehensive understanding of the behaviour and fate of TiO2 in different environments is crucial. Advances in analytical and modelling methods continue to improve researchers’ ability to quantify and determine the state of nano-TiO2 in various environments. However, due to the complexity of environmental and nanoparticle factors and their interplay, this remains a challenging and poorly resolved feat. This paper aims to provide a focused summary of key particle and environmental characteristics that influence the behaviour and fate of sunscreen-derived TiO2 in swimming pool water and natural aquatic environments and to review the current state-of-the-art of single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) approaches to detect and characterise TiO2 nanoparticles in aqueous media. Furthermore, it critically analyses the capability of existing fate and transport models to predict environmental TiO2 levels. Four particle and environmental key factors that govern the fate and behaviour of TiO2 in aqueous environments are identified. A comparison of SP-ICP-MS studies reveals that it remains challenging to detect and characterise engineered TiO2 nanoparticles in various matrices and highlights the need for the development of new SP-ICP-MS pre-treatment and analysis approaches. This review shows that modelling studies are an essential addition to experimental studies, but they still lack in spatial and temporal resolution and mostly exclude surface transformation processes. Finally, this study identifies the use of Bayesian Network-based models as an underexplored but promising modelling tool to overcome data uncertainties and incorporates interconnected variables.
Collapse
|
109
|
Zheng Y, Nowack B. Size-Specific, Dynamic, Probabilistic Material Flow Analysis of Titanium Dioxide Releases into the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2392-2402. [PMID: 33541069 DOI: 10.1021/acs.est.0c07446] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most of the existing exposure models for engineered nanomaterials (ENMs) do not consider particle size, crystalline forms, and coating materials that all may influence the material's fate, transport, and toxicity. Our work aimed to incorporate particle size distributions into a material flow analysis (MFA) to develop a size-specific, dynamic, probabilistic MFA model (ss-DPMFA). Using titanium dioxide (TiO2) as a first case study, we aimed to determine the contribution of conventional TiO2 pigments to the total amount of nanoscale TiO2 released into the environment. Besides providing information on mass flows, the new model used particle size distributions and crystalline forms to describe the stocks and flows of TiO2. The most striking modeling result to emerge was that before TiO2 ENMs came onto the market as such in 2000, 22,400 tons of nanosized (<100 nm) TiO2 particles had already been released into the environment, originating from conventional TiO2 pigments. Even in 2016, 50% of the nanosized TiO2 particles released into wastewater came from the nanosized fraction of TiO2 particles in pigments. Quantitative data on the particle size distribution of TiO2 particles released into the environment can be used as input for environmental fate models. Our new ss-DPMFA model's additional insights about crystalline forms and coatings could pave the way for advanced size- and form-specific hazard and risk assessments for other nanomaterials in ecological systems.
Collapse
Affiliation(s)
- Yuanfang Zheng
- Empa, Swiss Federal Laboratories for Materials Science and Technologies, Technology and Society Lab, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technologies, Technology and Society Lab, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
110
|
Slomberg DL, Catalano R, Bartolomei V, Labille J. Release and fate of nanoparticulate TiO 2 UV filters from sunscreen: Effects of particle coating and formulation type. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116263. [PMID: 33383421 DOI: 10.1016/j.envpol.2020.116263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Nanoparticulate mineral UV filters, such as titanium dioxide (TiO2) nanocomposites, are being increasingly used in sunscreens as an alternative to organic UV filters. However, there is still a lack of understanding regarding their fate and behavior in aquatic environments and potential environmental impacts after being released from a bather's skin during recreational activities. In this work, we assessed the release, fate, and transformation of two commercial nanocomposite TiO2 UV filters, one hydrophobic and one hydrophilic, in ultrapure water and simulated fresh- and seawater. The hydrophobic TiO2 nanocomposite, T-SA, was coated with a primary Al2O3 photopassivation layer and a secondary stearic acid layer, while the hydrophilic TiO2 nanocomposite, T-SiO2, was coated with a single SiO2 photopassivation layer. The influence of the sunscreen formulation was examined by dispersing the TiO2 nanocomposites in their typical continuous phase (i.e., oil for T-SA and water for T-SiO2) before introduction into the aqueous system. After 48 h of aqueous aging and 48 h of settling, 88-99% of the hydrophobic T-SA remained floating on top of the water column in all aqueous systems. On the other hand, 100% of the hydrophilic T-SiO2 settled out of the water column in the fresh- and seawaters. With respect to the photopassivation coatings, no loss of the T-SA Al2O3 layer was detected after aqueous aging, but 99-100% dissolution of the SiO2 layer on the T-SiO2 nanocomposite was observed after 48 h in the fresh- and seawaters. This dissolution left behind T-SiO2 by-products exhibiting a photocatalytic activity similar to that of bare rutile TiO2. Overall, the results demonstrated that the TiO2 surface coating and sunscreen formulation type drive environmental behavior and fate and that loss of the passivation layer can result in potentially harmful, photoactive by-products. These insights will help guide regulations and assist manufacturers in developing more environmentally safe sunscreens.
Collapse
Affiliation(s)
- Danielle L Slomberg
- Aix-Marseille University, CNRS, IRD, INRAe, Coll. France, CEREGE, Aix-en-Provence, France.
| | - Riccardo Catalano
- Aix-Marseille University, CNRS, IRD, INRAe, Coll. France, CEREGE, Aix-en-Provence, France
| | - Vincent Bartolomei
- Aix-Marseille University, CNRS, IRD, INRAe, Coll. France, CEREGE, Aix-en-Provence, France
| | - Jérôme Labille
- Aix-Marseille University, CNRS, IRD, INRAe, Coll. France, CEREGE, Aix-en-Provence, France
| |
Collapse
|
111
|
O'Malley E, McLachlan MS, O'Brien JW, Verhagen R, Mueller JF. The presence of selected UV filters in a freshwater recreational reservoir and fate in controlled experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142373. [PMID: 33254898 DOI: 10.1016/j.scitotenv.2020.142373] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 05/21/2023]
Abstract
UV filters present in sunscreen and other cosmetics are directly released into the environment during aquatic recreational activities. The extent to which the wide range of UV filters pose a risk to the environment remains unclear. This study investigated the occurrence and dissipation of selected organic UV filters at a recreational site (Enoggera Reservoir, Queensland, Australia) over 12 h. Furthermore, different possible degradation processes were investigated in a controlled off-site experiment with surface water exposed to natural light. Half-lives were estimated for ten UV filters. In Enoggera Reservoir, seven UV filters were detected, of which the most prevalent were octocrylene, avobenzone (BMDBM) and enzacamene (4-MBC). Summed concentrations of the seven UV filters ranged from 7330 ng L-1 at 13:00 h to 2550 ng L-1 at 21:00 h. In the degradation experiment, four UV filters showed no significant change over time. The fate of these compounds in the environment is likely to be mainly influenced by dispersion. Half-lives of the remaining UV filters were 6.6 h for amiloxate (IMC), 20 h for benzophenone 1, 23 h for octinoxate (EHMC), 30 h for 3-benzylidene camphor, 34 h for 4-MBC and 140 h for dioxybenzone (BP8). The degree of susceptibility to photodegradation and biodegradation was generally consistent within a structural class. The fate and half-lives of UV filters are variable and should be considered on a per site basis when assessing environmental risk.
Collapse
Affiliation(s)
- Elissa O'Malley
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia.
| | - Michael S McLachlan
- Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Rory Verhagen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| |
Collapse
|
112
|
Boyd A, Stewart CB, Philibert DA, How ZT, El-Din MG, Tierney KB, Blewett TA. A burning issue: The effect of organic ultraviolet filter exposure on the behaviour and physiology of Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141707. [PMID: 33182172 DOI: 10.1016/j.scitotenv.2020.141707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Ultraviolet (UV) filters are compounds utilized in many manufacturing processes and personal care products such as sunscreen to protect against UV-radiation. These highly lipophilic compounds are emerging contaminants of concern in aquatic environments due to their previously observed potential to bioaccumulate and exert toxic effects in marine ecosystems. Currently, research into the toxic effects of UV filter contamination of freshwater ecosystems is lacking, thus the present study sought to model the effects of acute and chronic developmental exposures to UV filters avobenzone, oxybenzone and octocrylene as well as a mixture of these substances in the freshwater invertebrate, Daphnia magna, at environmentally realistic concentrations. Median 48-hour effect and lethal concentrations were determined to be in the low mg/L range, with the exception of octocrylene causing 50% immobilization near environmental concentrations. 48-hour acute developmental exposures proved to behaviourally impair daphnid phototactic response; however, recovery was observed following a 19-day post-exposure period. Although no physiological disruptions were detected in acutely exposed daphnids, delayed mortality was observed up to seven days post-exposure at 200 μg/L of avobenzone and octocrylene. 21-day chronic exposure to 7.5 μg/L octocrylene yielded complete mortality within 7 days, while sublethal chronic exposure to avobenzone increased Daphnia reproductive output and decreased metabolic rate. 2 μg/L oxybenzone induced a 25% increase in metabolic rate of adult daphnids, and otherwise caused no toxic effects at this dose. These data indicate that UV filters can exert toxic effects in freshwater invertebrates, therefore further study is required. It is clear that the most well-studied UV filter, oxybenzone, may not be the most toxic to Daphnia, as both avobenzone and octocrylene induced behavioural and physiological disruption at environmentally realistic concentrations.
Collapse
Affiliation(s)
- Aaron Boyd
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada.
| | - Connor B Stewart
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Danielle A Philibert
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada; Huntsman Marine Science Centre, St. Andrews E5B 2L7, Canada
| | - Zuo Tong How
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H, Canada
| | - Mohamed Gamal El-Din
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H, Canada
| | - Keith B Tierney
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Tamzin A Blewett
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| |
Collapse
|
113
|
Fivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton BB, Norton SA. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. Int J Womens Dermatol 2021; 7:45-69. [PMID: 33537395 PMCID: PMC7838327 DOI: 10.1016/j.ijwd.2020.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Sunscreens are topical preparations containing one or more compounds that filter, block, reflect, scatter, or absorb ultraviolet (UV) light. Part 2 of this review focuses on the environmental, ecological effects and human toxicities that have been attributed to UV filters. METHODS Literature review using NIH databases (eg, PubMed and Medline), FDA and EPA databases, Google Scholar, the Federal Register, and the Code of Federal Regulations (CFR). LIMITATIONS This was a retrospective literature review that involved many different types of studies across a variety of species. Comparison between reports is limited by variations in methodology and criteria for toxicity. CONCLUSIONS In vivo and in vitro studies on the environmental and biological effects of UV filters show a wide array of unanticipated adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention from the lay press, but the scientific literature identifies potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. These effects harm a vast array of aquatic and marine biota, while almost no data supports human toxicity at currently used quantities (with the exception of contact allergy). Much of these data are from experimental studies or field observations; more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and FDA-approved alternatives.
Collapse
Key Words
- 4-MBC, 4-methylbenzylidene camphor
- AAD, American Academy of Dermatology
- Aquatic organism toxicity of UV filters
- BP-3, Benzophenone-3 or Oxybenzone
- Bioaccumulation
- CDER, Center for Drug Evaluation and Research (part of FDA)
- Coral bleaching
- EPA, Environmental Protection Agency
- Europa, European Union Commission for Public Health
- FDA, Food and Drug Administration
- GBRMPA, Great Barrier Reef Marine Park Authority
- GRASE, Generally Recognized As Safe and Effective
- Human toxicity of UV filters
- NDA, New drug application
- NHANES, National Health and Nutrition Examination Survey
- NanoTiO2, Nanoparticle titanium dioxide
- Nanoparticle toxicity
- OC, Octocrylene
- OMC, Octyl methoxycinnamate or octinoxate
- OTC, Over-the-counter
- PABA, Para-aminobenzoic acid
- PCPC, Personal care products and cosmetics
- PPCP, Pharmaceuticals and personal care products
- Sunscreen side effects
- TiO2, Titanium dioxide
- UV filter
- UV, Ultraviolet
- UVF, Ultraviolet filter
- WWTP, Wastewater treatment plant
Collapse
Affiliation(s)
- David Fivenson
- Fivenson Dermatology, 3200 W. Liberty Rd., Suite C5, Ann Arbor, MI 48103, United States
- St. Joseph Mercy Health System Ann Arbor-Dermatology Residency Program, United States
| | - Nina Sabzevari
- St. Joseph Mercy Hospital, Dermatology Resident, 5333 McAuley Drive, Suite 5003, Ypsilanti, MI 48197, United States
| | - Sultan Qiblawi
- Michigan State University College of Human Medicine, 965 Fee Rd A110, East Lansing, MI 48824, United States
| | - Jason Blitz
- Navy Region Hawaii Public Health Emergency Officer (PHEO) NMRTC, 480 Central Avenue, Code DPH, Pearl Harbor Hawaii JBPHH, HI 96860-4908, United States
| | - Benjamin B. Norton
- Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Scott A. Norton
- Dermatology Division, Children’s National Hospital, 111 Michigan Avenue, NW, Washington, DC 20010, United States
- Dermatology and Pediatrics, George Washington University, Washington, DC, United States
| |
Collapse
|
114
|
Occurrence and Distribution of UV Filters in Beach Sediments of the Southern Baltic Sea Coast. WATER 2020. [DOI: 10.3390/w12113024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interest in UV filters’ occurrence in the environment has increased since they were recognized as “emerging contaminants” having potentially adverse impacts on many ecosystems and organisms. Increased worldwide demand for sunscreens is associated with temperature anomalies, high irradiance, and changes in the tourist market. Recently, it has been demonstrated that personal care products, including sunscreens, appear in various ecosystems and geographic locations causing an ecotoxicological threat. Our goal was to determine for the first time the presence of selected organic UV filters at four beaches in the central Pomeranian region in northern Poland and to assess their horizontal and vertical distribution as well as temporal variation at different locations according to the touristic pressure. In this pioneering study, the concentration of five UV filters was measured in core sediments dredged from four exposed beaches (Darłowo, Ustka, Rowy, and Czołpino). UV filters were detected in 89.6% of collected cores at detection frequencies of 0–22.2%, 75–100%, 0–16.7%, and 2.8–25% for benzophenone-1 (BP-1), benzophenone-2 (BP-2), benzophenone-3 (BP-3), and enzacamene (4-MBC), respectively. In terms of seasonality, the concentration of UV filters generally increased in the following order: summer > autumn > spring. No detectable levels of 3-BC (also known as 3-benzylidene camphor) were recorded. No differences were found in the concentration of UV filters according to the depth of the sediment core. During the summer and autumn seasons, all UV filters were detected in higher concentrations in the bathing area or close to the waterline than halfway or further up the beach. Results presented in this study demonstrate that the Baltic Sea coast is not free from UV filters. Even if actual concentrations can be quantified as ng·kg−1 causing limited environmental threat, much higher future levels are expected due to the Earth’s principal climatic zones shifting northward.
Collapse
|
115
|
Catalano R, Labille J, Gaglio D, Alijagic A, Napodano E, Slomberg D, Campos A, Pinsino A. Safety Evaluation of TiO 2 Nanoparticle-Based Sunscreen UV Filters on the Development and the Immunological State of the Sea Urchin Paracentrotus lividus. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2102. [PMID: 33114014 PMCID: PMC7690680 DOI: 10.3390/nano10112102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Sunscreens are emulsions of water and oil that contain filters capable of protecting against the detrimental effects of ultraviolet radiation (UV). The widespread use of cosmetic products based on nanoparticulate UV filters has increased concerns regarding their safety and compatibility with both the environment and human health. In the present work, we evaluated the effects of titanium dioxide nanoparticle (TiO2 NP)-based UV filters with three different surface coatings on the development and immunity of the sea urchin, Paracentrotus lividus. A wide range of NP concentrations was analyzed, corresponding to different levels of dilution starting from the original cosmetic dispersion. Variations in surface coating, concentration, particle shape, and pre-dispersant medium (i.e., water or oil) influenced the embryonic development without producing a relevant developmental impairment. The most common embryonic abnormalities were related to the skeletal growth and the presence of a few cells, which were presumably involved in the particle uptake. Adult P. lividus immune cells exposed to silica-coated TiO2 NP-based filters showed a broad metabolic plasticity based on the biosynthesis of metabolites that mediate inflammation, phagocytosis, and antioxidant response. The results presented here highlight the biosafety of the TiO2 NP-based UV filters toward sea urchin, and the importance of developing safer-by-design sunscreens.
Collapse
Affiliation(s)
- Riccardo Catalano
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, 13545 Aix-en-Provence, France; (R.C.); (J.L.); (D.S.)
| | - Jérôme Labille
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, 13545 Aix-en-Provence, France; (R.C.); (J.L.); (D.S.)
| | - Daniela Gaglio
- Consiglio Nazionale delle Ricerche, Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), 20090 Segrate, MI, Italy;
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, 20126 Milano, Italy;
| | - Andi Alijagic
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy;
| | - Elisabetta Napodano
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, 20126 Milano, Italy;
| | - Danielle Slomberg
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, 13545 Aix-en-Provence, France; (R.C.); (J.L.); (D.S.)
| | - Andrea Campos
- Aix Marseille Université, CNRS, Centrale Marseille, FSCM, CP2M, 13397 Marseille, France;
| | - Annalisa Pinsino
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), 90146 Palermo, Italy;
| |
Collapse
|
116
|
Luo Z, Li Z, Xie Z, Sokolova IM, Song L, Peijnenburg WJGM, Hu M, Wang Y. Rethinking Nano-TiO 2 Safety: Overview of Toxic Effects in Humans and Aquatic Animals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002019. [PMID: 32761797 DOI: 10.1002/smll.202002019] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (nano-TiO2 ) are widely used in consumer products, raising environmental and health concerns. An overview of the toxic effects of nano-TiO2 on human and environmental health is provided. A meta-analysis is conducted to analyze the toxicity of nano-TiO2 to the liver, circulatory system, and DNA in humans. To assess the environmental impacts of nano-TiO2 , aquatic environments that receive high nano-TiO2 inputs are focused on, and the toxicity of nano-TiO2 to aquatic organisms is discussed with regard to the present and predicted environmental concentrations. Genotoxicity, damage to membranes, inflammation and oxidative stress emerge as the main mechanisms of nano-TiO2 toxicity. Furthermore, nano-TiO2 can bind with free radicals and signal molecules, and interfere with the biochemical reactions on plasmalemma. At the higher organizational level, nano-TiO2 toxicity is manifested as the negative effects on fitness-related organismal traits including feeding, reproduction and immunity in aquatic organisms. Bibliometric analysis reveals two major research hot spots including the molecular mechanisms of toxicity of nano-TiO2 and the combined effects of nano-TiO2 and other environmental factors such as light and pH. The possible measures to reduce the harmful effects of nano-TiO2 on humans and non-target organisms has emerged as an underexplored topic requiring further investigation.
Collapse
Affiliation(s)
- Zhen Luo
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhuoqing Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhe Xie
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, 18051, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, 18051, Germany
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, RA, 2300, The Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, BA, 3720, The Netherlands
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
117
|
Optimizing the dispersion of nanoparticulate TiO2-based UV filters in a non-polar medium used in sunscreen formulations – The roles of surfactants and particle coatings. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|