101
|
Cui L, Ni H, Lei K, Gao X, Wang X, Liu Z. Chemical characteristics analysis of automobile exhaust particles and the method for evaluating its ecological effect. CHEMOSPHERE 2022; 307:136152. [PMID: 36029867 DOI: 10.1016/j.chemosphere.2022.136152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Automobile exhaust has become the main source of atmospheric particulate matter with the increase in the number of automobiles. Automobile exhaust particles (AEPs) discharged into the atmosphere can enter the aquatic environment through atmospheric deposition, rain runoff, leaching, drainage water and urban sewage and further affect aquatic organisms. However, there is no comprehensive theory and method to evaluate the ecological effects of AEPs on aquatic environment. The new European driving cycle (NEDC) and the world harmonized light-duty test cycle (WLTC) were used to analyze the ecotoxicity of AEPs. The SUV gasoline, SUV hybrid and sedan gasoline under WLTC were used for further analysis. The chemical characteristics of AEPs were analyzed, and the ecotoxicity of AEPs on aquatic organisms was studied with Vibrio fischeri and Danio rerio as test organisms. The ecological effect of AEPs was studied through species sensitivity distribution based on interspecies correlation estimation (ICE) models. The results showed that (ⅰ) polycyclic aromatic hydrocarbons (PAHs) were the main organic substances in AEPs. The total concentrations of PAHs in AEPs measured under the NEDC and WLTC were 237.4 and 159.8 mg kg-1, respectively, and the EC50 values for V. fischeri measured under the NEDC and WLTC were 42.02 and 47.05 mg L-1, respectively. (ⅱ) Total heavy metal concentrations in AEPs from SUV gasoline, SUV hybrid, and sedan gasoline were 197.52, 104.86, and 89.68 mg kg-1, respectively, and the LC50 values for D. rerio were 3.22, 4.46 and 5.62 mg L-1. Cu and Mn were the main toxic heavy metals in AEPs. (ⅲ) The PNEC values of AEPs from SUV gasoline, SUV hybrid and sedan gasoline were 0.57, 0.83 and 1.02 mg L-1, respectively. This exploratory study can provide technical information on water ecological safety assessment for determining the impact of AEPs on the surface water environment and for further improving automobile exhaust emission standards.
Collapse
Affiliation(s)
- Liang Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hong Ni
- State Environment Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kun Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiangyun Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Institute of Water Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
102
|
Ding J, Meng F, Chen H, Chen Q, Hu A, Yu CP, Chen L, Lv M. Leachable Additives of Tire Particles Explain the Shift in Microbial Community Composition and Function in Coastal Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12257-12266. [PMID: 35960262 DOI: 10.1021/acs.est.2c02757] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Massive microplastics are deposited in the coastal zone. Tire particles (TPs) are an important microplastic source, but little is known about how TPs affect the microbial community composition and function in coastal sediments and the role leachable additives play in TP toxicity. Here, a microcosm experiment was performed using coastal sediments amended with different doses of TPs and with their leachable additives to investigate their effects on the sediment microbial community composition and function. Environmentally relevant concentrations of TPs can change the microbial community structure, decrease community diversity, and inhibit nutrient cycling processes, including carbon fixation and degradation, nitrification, denitrification, and sulfur cycling in sediments. Notably, the raw TP and leachate treatments showed consistent effects. A variety of additives were found in the pore water of sediment, and they could explain over 90% of the variations of the community structure. Further modeling revealed that leachable additives not only directly influenced community function but also indirectly affected community diversity and function by shifting the community structure. In addition, rare taxa could be crucial mediators of ecological functions of sediment microbial community. Combined, this study provides novel insights into the role of TPs' leachable additives in affecting sediment microbial community and function.
Collapse
Affiliation(s)
- Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Fanyu Meng
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Han Chen
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Qinglin Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
| |
Collapse
|
103
|
Kim L, Lee TY, Kim H, An YJ. Toxicity assessment of tire particles released from personal mobilities (bicycles, cars, and electric scooters) on soil organisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129362. [PMID: 35716575 DOI: 10.1016/j.jhazmat.2022.129362] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Tire particles are generated by the abrasion of tire treads on roads and are major contributors to microplastics in soil environments. Contamination by tire wear particles worsens annually as the use of personal mobilities increases. Tire particles (112-541 µm) were obtained from three types of personal mobility tires (bicycle, car, and electric scooter) and exposed to plants (Vigna radiata) and springtails (Folsomia candida) for 28 d to assess the toxicity of each tire-particle type. The laboratory-generated tire particles exhibit adverse effects depending on the origin of the tire or test species. Particles from bicycle or electric-scooter tires changed the soil's bulk density and water holding capacity and adversely affected plant growth. Car tire particles had leached various organic compounds and induced detrimental effects on springtails (adult and offspring growth). We concluded that laboratory-generated tire particles (frow new tires) can affect the soil environment by changing soil properties and leaching chemicals; thus, causing adverse effects on soil organisms. Since this study found tire particle toxicity on soil organisms, it would be possible to compare the various contamination levels in areas near road soil and other clean soils.
Collapse
Affiliation(s)
- Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, the Republic of Korea
| | - Tae-Yang Lee
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, the Republic of Korea
| | - Haemi Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, the Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, the Republic of Korea.
| |
Collapse
|
104
|
Stang C, Mohamed BA, Li LY. Microplastic removal from urban stormwater: Current treatments and research gaps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115510. [PMID: 35751294 DOI: 10.1016/j.jenvman.2022.115510] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Stormwater is a major contributor to microplastic (MP) pollution in the aquatic environment. Although MPs are associated with many toxicological effects, their levels in stormwater are not regulated. This review compared the effectiveness of different MP removal technologies from stormwater runoff and examined the performance of typical stormwater treatment systems for MP removal to assess possible MP pollution control via stormwater management. Bioretention and filtration systems performed similarly with 84-96% MP removal efficiencies. Despite the limited number of studies that focused on wetlands and retention ponds, preliminary data suggested potential for MP removal with efficiencies of 28-55% and 85-99%, respectively. Despite the higher efficiency of bioretention and filtration systems, their removal efficiency of fibrous MPs was not optimal. Furthermore, wetlands were less effective in removing MPs than retention ponds, although the limited data might lead to an inaccurate representation of typical performances. Therefore, more research is required to arrive at definitive conclusions and to investigate alternative treatment options, such as ballasted sand flocculation, flotation, and biological degradation, and evaluate the effectiveness of bioretention and filtration for MPs <100 μm.
Collapse
Affiliation(s)
- Camryn Stang
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza 12613, Egypt
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
105
|
Microplastic Contamination in Urban, Farmland and Desert Environments along a Highway in Southern Xinjiang, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158890. [PMID: 35897266 PMCID: PMC9330657 DOI: 10.3390/ijerph19158890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 02/04/2023]
Abstract
The different types of microplastics (MPs), including debris, fibers, particles, foams, films and others, have become a global environmental problem. However, there is still a lack of research and understanding of the pollution characteristics and main causes of MPs in the arid region of Xinjiang, China. In this survey, we focused on the occurrence and distribution of MPs in urban, farmland and desert areas along a highway in the survey area. Our results showed that the main types of MPs were polypropylene (PP) flakes, polyethylene (PE) films and both PE and PP fragments and fibers. The abundance levels of MPs in street dust of Korla, Alar and Hotan districts equaled 804, 307 and 1526 particles kg−1, respectively, and were positively correlated with the urban population. In farmland areas, there were only two types of MPs (films and fibers), of which the film particles dominated and accounted for 91% of the total on the average. The highest abundance rate of MPs reached 7292 particles kg−1 in the desert area along the highway. The minimum microplastic particle sizes were 51.8 ± 2.2 μm in urban street dust samples, 54.2 ± 5.3 μm in farmland soil samples and 67.8 ± 8.4 μm in samples from along the desert highway. Particle sizes < 500 μm were most common and accounted for 48−91% of the total in our survey. The abundance and shape distribution of the MPs were closely related to the different types of human activities.
Collapse
|
106
|
Mennekes D, Nowack B. Tire wear particle emissions: Measurement data where are you? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154655. [PMID: 35314235 DOI: 10.1016/j.scitotenv.2022.154655] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Tire wear particle (TWP) emissions are gaining more attention since they are considered to contribute a major share to the overall microplastic emissions and are suspected to be harmful to flora, fauna and humans. Hence, recent studies derived country-based TWP emissions to better understand the significance of the problem using either tire emission factors (EF) or a material flow analysis (MFA) of tires. However, all 14 country-based TWP emission studies found and published since the year 2000 base their calculation on other studies rather than own measurements. Therefore, we started to search for the actual TWP measurements which the 14 studies would rely on. As a result, we found a network of 63 studies which were used to derive TWP emissions in different countries and regions. Only in few cases (12%) TWP emission studies reference directly to a measurement study to derive TWP emissions, but mostly (63%) they rely on reviews or summarizing studies. Additionally, we could not obtain 25 studies in the analysed network. In total we found nine studies which actually measured TWP emissions. Out of these four studies originate from the 1970s, one analysed only light vehicles and one only considered buses. Thus, only three non peer-reviewed studies were considered to show trustful results which were cited a maximum of three times in the network. The obtained 14 country-based studies suggest TWP emissions of about 1.3 kg capita-1 year-1 for the EF approach and 2.0 kg capita-1 year-1 for the MFA approach (overall range: 0.9-2.5 kg capita-1 year-1). Consequently, we call for an urgent need to minimize uncertainties of TWP emission estimates to better understand the contribution of TWP to the overall microplastic pollution of the environment. A better understanding about quantities could also help to better address the risk of environmental pollution by TWP.
Collapse
Affiliation(s)
- David Mennekes
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| |
Collapse
|
107
|
Li J, Peng D, Ouyang Z, Liu P, Fang L, Guo X. Occurrence status of microplastics in main agricultural areas of Xinjiang Uygur Autonomous Region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154259. [PMID: 35278564 DOI: 10.1016/j.scitotenv.2022.154259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
A large number of plastic products are used in the process of agricultural production, and the recycling efficiency is low, which leads to the production of a large number of microplastics. Therefore, the microplastic contamination in agricultural areas requires being investigated urgently. In addition, the occurrence characteristics of microplastics are also different in agricultural areas with various land use modes. In this study, the main agricultural areas in Xinjiang are taken as the research object. The abundance of microplastics in the main agricultural areas in Xinjiang ranges from 288 to 1452 items/kg. The shape of microplastics is mainly bulks, and white microplastics account for the highest proportion, and the majority of their sizes are less than 0.5 mm. The risk assessment results show that the contamination risk index of microplastics in this area is 108.92 and the risk level is grade III. The research shows that there is little difference in the abundance of microplastics between paddy field and garden land, which may be because there are few sources of microplastics in the land of these two utilization modes, and the potential pollution sources are similar, such as the atmospheric deposition of microplastics, the falling of fibers on people's clothes during farming, and the agricultural use of sludge. This study can provide a reference for further study on the existing circumstances of microplastics in agricultural areas.
Collapse
Affiliation(s)
- Jianlong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, China.
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
108
|
Yang K, Jing S, Liu Y, Zhou H, Liu Y, Yan M, Yi X, Liu R. Acute toxicity of tire wear particles, leachates and toxicity identification evaluation of leachates to the marine copepod, Tigriopus japonicus. CHEMOSPHERE 2022; 297:134099. [PMID: 35219709 DOI: 10.1016/j.chemosphere.2022.134099] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Tire wear particles (TWPs) have been characterized as microplastics in recent years, and many of these TWPs will be eventually deposited in coastal areas, leading to adverse effects to marine organisms. Results of the acute toxicity test in this study showed that the 96-h LC50 values of the particles and leachate were 771.4 mg/L (95% CI = 684.4-869.6 mg/L) and 5.34 g/L (95% CI = 4.75-6.07 g/L), respectively. The chemical constituents of TWP and the leachate are very complex, and little research has been conducted to determine which of these constituents contribute to the toxicity of TWP leachate to marine organisms. Therefore, the composition of the TWP and leachate was analyzed, and a variety of chemicals were identified, including metals (Mn, Zn, etc.) and organic compounds (cyclohexanthiol, 4-ethyl-1,2-dimethylbenzene, benzothiazole, stearic acid, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, etc.). In addition, the marine copepod Tigriopus japonicus was applied as a model species in the toxicity identification evaluation study to characterize, identify and confirm the toxicity-causing substances in the TWP leachate. Zn was identified and confirmed as the main toxicant contributing to the toxicity. Furthermore, Zn concentrations in the leachate over time were investigated. The release of Zn from TWPs to the aquatic environment was slow, and conformed to a parabolic model with a release constant k of 2.06. The organic component, benzothiazole, exhibited an antagonistic effect with zinc in the acute toxicity of the TWP leachate.
Collapse
Affiliation(s)
- Kaiming Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China
| | - Siyuan Jing
- School of Engineering, Westlake University, Zhejiang, China
| | - Yang Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China
| | - Yan Liu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China
| | - Ming Yan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China
| | - Xianliang Yi
- School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Panjin City, Liaoning, China.
| | - Renyan Liu
- National Marine Environmental Monitoring Center, Dalian, Liaoning, China.
| |
Collapse
|
109
|
Lee TY, Kim L, Kim D, An S, An YJ. Microplastics from shoe sole fragments cause oxidative stress in a plant (Vigna radiata) and impair soil environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128306. [PMID: 35101758 DOI: 10.1016/j.jhazmat.2022.128306] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 05/06/2023]
Abstract
Shoe sole fragments are generated by sole abrasion, which is unavoidable. These fragments can enter the soil ecosystem. However, limited studies have evaluated their effects on soils and plants. Here, we aimed to evaluate the toxicity of shoe sole fragments on a crop plant, Vigna radiata (mung bean). Shoe sole fragments (size: 57-229 µm) were obtained from four shoe types (trekking shoes, slippers, sneakers, and running shoes) and plant toxicity assessments were performed. Additionally, the fragments were leached for 30 d, and potentially toxic leachates were identified. Shoe sole fragments exhibited adverse effects depending on the shoe type. The fragments of soles from sneakers increased the bulk density of the soil but reduced its water holding capacity. Moreover, the microplastic fragments and leachates directly affected plant growth and photosynthetic activities. The fragments of slippers and running shoes boosted plant growth but changed the flavonoid content and photosynthetic factors. Trekking shoe sole fragments did not exhibit plant photoinhibition; however, their leachate inhibited photosynthesis. Overall, it was concluded that shoe sole fragments can cause adverse effects in plants and impair soil environment. Our study findings indicate that it is necessary to develop shoe soles that have less harmful environmental effects.
Collapse
Affiliation(s)
- Tae-Yang Lee
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dokyung Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanghee An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
110
|
Magni S, Tediosi E, Maggioni D, Sbarberi R, Noé F, Rossetti F, Fornai D, Persici V, Neri MC. Ecological Impact of End-of-Life-Tire (ELT)-Derived Rubbers: Acute and Chronic Effects at Organism and Population Levels. TOXICS 2022; 10:201. [PMID: 35622615 PMCID: PMC9144162 DOI: 10.3390/toxics10050201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Considering the large amount of tires that reach the end of life every year, the aim of this study was the evaluation of both acute and chronic effects of end-of-life-tire (ELT)-derived rubber granules (ELT-dg) and powder (ELT-dp) on a freshwater trophic chain represented by the green alga Pseudokirchneriella subcapitata, the crustacean Daphnia magna and the teleost Danio rerio (zebrafish). Adverse effects were evaluated at the organism and population levels through the classical ecotoxicological tests. Acute tests on D. magna and D. rerio revealed a 50% effect concentration (EC50) > 100.0 mg/L for both ELT-dg and ELT-dp. Chronic exposures had a lowest observed effect concentration (LOEC) of 100.0 mg/L for both ELT-dg and ELT-dp on P. subcapitata grow rate and yield. LOEC decreased in the other model organisms, with a value of 9.8 mg/L for D. magna, referring to the number of living offspring, exposed to ELT-dg suspension. Similarly, in D. rerio, the main results highlighted a LOEC of 10.0 mg/L regarding the survival and juvenile weight parameters for ELT-dg and a LOEC of 10.0 mg/L concerning the survival and abnormal behavior in specimens exposed to ELT-dp. Tested materials exhibited a threshold of toxicity of 9.8 mg/L, probably a non-environmental concentration, although further investigations are needed to clarify the potential ecological impact of these emerging contaminants.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy;
| | - Erica Tediosi
- ChemService Controlli e Ricerche s.r.l.—Lab Analysis Group, Via Fratelli Beltrami 15, 20026 Novate Milanese, Italy; (F.N.); (M.C.N.)
| | - Daniela Maggioni
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy;
| | - Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy;
| | - Francesca Noé
- ChemService Controlli e Ricerche s.r.l.—Lab Analysis Group, Via Fratelli Beltrami 15, 20026 Novate Milanese, Italy; (F.N.); (M.C.N.)
| | - Fabio Rossetti
- Lab Analysis s.r.l., Via Europa 5, 27041 Casanova Lonati, Italy;
| | | | - Valentina Persici
- Waste and Chemicals s.r.l., Circonvallazione Gianicolense 216E, 00152 Rome, Italy;
| | - Maria Chiara Neri
- ChemService Controlli e Ricerche s.r.l.—Lab Analysis Group, Via Fratelli Beltrami 15, 20026 Novate Milanese, Italy; (F.N.); (M.C.N.)
| |
Collapse
|
111
|
Armada D, Llompart M, Celeiro M, Garcia-Castro P, Ratola N, Dagnac T, de Boer J. Global evaluation of the chemical hazard of recycled tire crumb rubber employed on worldwide synthetic turf football pitches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152542. [PMID: 34952075 DOI: 10.1016/j.scitotenv.2021.152542] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Social and environmental concern about the use of crumb rubber from end-of-life car tires in the construction of different sport and recreational facilities is increasing due to the presence of hazardous compounds. The aim of this research was the assessment of 42 organic chemicals, including polycyclic aromatic hydrocarbons (PAHs), phthalates, adipates, antioxidants and vulcanisation agents in a large number of infill samples (91) from synthetic turf football pitches of diverse characteristics and geographical origin. Samples were taken worldwide, in 17 countries on 4 continents, to show the global dimension of this problem. Ultrasound assisted extraction was employed to extract the target compounds, followed by gas chromatography coupled to tandem-mass spectrometry (UAE-GC-MS/MS). Seventy-eight crumb rubber samples as well as thirteen samples of alternatives materials, such as cork granulates, thermoplastic elastomers and coconut fibre, were analyzed. The results highlight the presence of all target PAH in most rubber samples at concentrations up to μg g-1, including the eight ECHA (European Chemicals Agency) PAHs considered as carcinogenic, and anthracene (ANC), pyrene (PYR) and benzo[ghi]perylene (B[ghi]P), catalogued as substances of very high concern (SVHC). Endocrine disruptors such as some plasticizers (mainly phthalates), and other compounds like benzothiazole (BTZ) and 2-mercaptobenzothiazole (MBTZ) were found reaching the mg g-1 level. This confirms the presence of the hazardous substances in the recycled crumb rubber samples collected all around the world. Three crumb rubber samples exceeded the limit of 20 μg g-1 for the sum of the eight ECHA PAHs. Regarding the chemical composition of other infill alternatives, cork appears to be adequate, while the thermoplastic elastomers contained high levels of some plasticizers. In addition, the plastic infill as well as the crumb rubber both are microplastics. Microplastics are considered contaminants of emerging concern since they do not biodegrade and remain in the environment for a long time.
Collapse
Affiliation(s)
- Daniel Armada
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Maria Llompart
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Maria Celeiro
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Pablo Garcia-Castro
- CRETUS, Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Nuno Ratola
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Thierry Dagnac
- Agronomic Research Centre (AGACAL-CIAM), Unit of Organic Contaminants, Apartado 10, E-15080 A Coruña, Spain
| | - Jacob de Boer
- Vrije Universiteit Amsterdam, Department of Environment & Health, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| |
Collapse
|
112
|
Wagner S, Klöckner P, Reemtsma T. Aging of tire and road wear particles in terrestrial and freshwater environments - A review on processes, testing, analysis and impact. CHEMOSPHERE 2022; 288:132467. [PMID: 34624341 DOI: 10.1016/j.chemosphere.2021.132467] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The environmental fate of tire and road wear particles (TRWPs) receives increasing attention due to the per capita emission volumes of 0.2-5.5 kg/(cap year) and recent reports on the environmental hazard of TRWP constituents. It is expected that aging impacts TRWPs fate in the environment but detailed knowledge is quite limited, yet. Making use of information on tire aging, the available knowledge on environmental aging processes such as thermooxidation, photooxidation, ozonolysis, shear stress, biodegradation and leaching is reviewed here. Experimental techniques to simulate aging are addressed as are analytical techniques to determine aging induced changes of TRWPs, covering physical and chemical properties. The suitability of various tire wear test materials is discussed. Findings and methods from tire aging can be partially applied to study aging of TRWPs in the environment. There is a complex interplay between aging processes in the environment that needs to be considered in future aging studies. In addition to existing basic qualitative understanding of the aging processes, quantitative understanding of TRWP aging is largely lacking. Aging in the environment needs to consider the TRWPs as well as chemicals released. Next steps for filling the gaps in knowledge on aging of TRWPs in the environment are elaborated.
Collapse
Affiliation(s)
- Stephan Wagner
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318, Leipzig, Germany; Hochschule für Angewandte Wissenschaften Hof, Institut für Wasser und Energiemanagement, Alfons-Goppel-Platz 1, 95028, Hof, Germany.
| | - Philipp Klöckner
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318, Leipzig, Germany; Umweltbundesamt, Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318, Leipzig, Germany; University of Leipzig, Institute for Analytical Chemistry, Linnéstrasse 3, 04103, Leipzig, Germany.
| |
Collapse
|
113
|
Investigating the Human Impacts and the Environmental Consequences of Microplastics Disposal into Water Resources. SUSTAINABILITY 2022. [DOI: 10.3390/su14020828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During the last decades, one of the most contentious environmental issues has been the investigation of the fate of microplastics (MPs) and detrimental consequences in natural and water resources worldwide. In this respect, it is critical research firstly to track the ways in which MPs are determined as key anthropogenic pollutants in terms of ecological risk and secondly to plan feasible policies under which the role of science and society in tackling this global issue in the future should be prioritized. In this study, a systematic theoretical, technical, and planning analysis was developed in alignment with a Scopus search deployed in the second half of the year 2021 and covering a wide chronological range (from 1970s onwards) and thematic contexts of analysis by using keywords and key phrases organized into two groups. The document results were graphically represented, revealing the main scientific focus of studies. Subsequently, our study investigated the quantitative assessment methods of MPs in marine environments, denoting the range of standard procedures applied for collecting and analyzing samples of water, bottom sediments, and coastal deposits. The technological part of the study includes the presentation of the relevant analytical techniques applied for MPs tracking and monitoring in water resources, determining the wide spectrum of plastic compounds traced. Of particular interest was the determination of environmental depletion and human implications caused, even by extremely low concentrations of MPs, for marine biota, posing potential risks to marine ecosystems, biodiversity, and food availability. Finally, the research proposed the challenges of actions needed to support scientific, industry, policy, and civil society communities to curb the ongoing flow of MPs and the toxic chemicals they contain into water resources, while rethinking the ways of plastics consumption by humanity.
Collapse
|
114
|
Plastic Pollution, Waste Management Issues, and Circular Economy Opportunities in Rural Communities. SUSTAINABILITY 2021. [DOI: 10.3390/su14010020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rural areas are exposed to severe environmental pollution issues fed by industrial and agricultural activities combined with poor waste and sanitation management practices, struggling to achieve the United Nations’ Sustainable Development Goals (SDGs) in line with Agenda 2030. Rural communities are examined through a “dual approach” as both contributors and receivers of plastic pollution leakage into the natural environment (through the air–water–soil–biota nexus). Despite the emerging trend of plastic pollution research, in this paper, we identify few studies investigating rural communities. Therefore, proxy analysis of peer-reviewed literature is required to outline the significant gaps related to plastic pollution and plastic waste management issues in rural regions. This work focuses on key stages such as (i) plastic pollution effects on rural communities, (ii) plastic pollution generated by rural communities, (iii) the development of a rural waste management sector in low- and middle-income countries in line with the SDGs, and (iv) circular economy opportunities to reduce plastic pollution in rural areas. We conclude that rural communities must be involved in both future plastic pollution and circular economy research to help decision makers reduce environmental and public health threats, and to catalyze circular initiatives in rural areas around the world, including less developed communities.
Collapse
|
115
|
Masset T, Ferrari BJD, Oldham D, Dudefoi W, Minghetti M, Schirmer K, Bergmann A, Vermeirssen E, Breider F. In Vitro Digestion of Tire Particles in a Fish Model ( Oncorhynchus mykiss): Solubilization Kinetics of Heavy Metals and Effects of Food Coingestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15788-15796. [PMID: 34807574 DOI: 10.1021/acs.est.1c04385] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tire and road wear particles (TRWP) have been shown to represent a large part of anthropogenic particles released into the environment. Nevertheless, the potential ecological risk of TRWP in the different environmental compartments and their potential toxic impacts on terrestrial and aquatic organisms remain largely underinvestigated. Several heavy metals compose TRWP, including Zn, which is used as a catalyst during the vulcanization process of rubber. This study investigated the solubilization potential of metals from cryogenically milled tire tread (CMTT) and TRWP in simulated gastric fluids (SFGASTRIC) and simulated intestinal fluids (SFINTESTINAL) designed to mimic rainbow trout (Oncorhynchus mykiss) gastrointestinal conditions. Our results indicate that the solubilization of heavy metals was greatly enhanced by gastrointestinal fluids compared to that by mineral water. After a 26 h in vitro digestion, 9.6 and 23.0% of total Zn content of CMTT and TRWP, respectively, were solubilized into the simulated gastrointestinal fluids. Coingestion of tire particles (performed with CMTT only) and surrogate prey items (Gammarus pulex) demonstrated that the animal organic matter reduced the amount of bioavailable Zn solubilized from CMTT. Contrastingly, in the coingestion scenario with vegetal organic matter (Lemna minor), high quantities of Zn were solubilized from L. minor and cumulated with Zn solubilized from CMTT.
Collapse
Affiliation(s)
- Thibault Masset
- Ecole Polytechnique Fédérale de Lausanne─EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - Benoit J D Ferrari
- Ecotox Centre─EPFL ENAC IIE, GE, Station 2, CH-1015 Lausanne, Switzerland
- Ecotox Centre, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Dean Oldham
- Department of Integrative Biology, Oklahoma State University, 501 Life Science West, Stillwater, Oklahoma 74078, United States
| | - William Dudefoi
- Department Environmental Toxicology, Eawag─Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, 501 Life Science West, Stillwater, Oklahoma 74078, United States
| | - Kristin Schirmer
- Department Environmental Toxicology, Eawag─Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne 1015, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETHZ, Zurich 8092, Switzerland
| | - Alan Bergmann
- Ecotox Centre, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | | | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne─EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| |
Collapse
|
116
|
The Influence of Microplastics from Ground Tyres on the Acute, Subchronical Toxicity and Microbial Respiration of Soil. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a rubber annular coat of rim wheels, tyres are inevitable parts of all vehicles in modern times. As to their composition, however, they represent a risk for the environment. During the use of tyres, tyre tread patterns become abraded, which results in its gradual wear and necessary re- placement. These micro and nano particles are then gradually extracted into the environment, namely soils and waters. Our research study was focused on the assessment of subchronical phytotoxicity (pot trial with a mixture of substrate and predetermined ratio of abrasion products lasting 28 days) and biological tests (testing phytotoxicity of leaches with predetermined ratio of abrasion products on Petri dishes). The biological tests were comprised two plant species—seeds of white mustard (Sinapis alba L.) and garden cress (Lepidium sativum L.). In the mixtures of substrate with determined shares of abrasion products (5%, 25%, 50% and 75%), respiration of CO2 was also established by means of soil microbial respiration (Solvita CO2-Burst). Substrates with 5% and 25% abrasion proportions showed increased biological activity as well as increased CO2-C emissions. The increasing share of abrasion products resulted in decreasing biological activity and decreasing CO2-C emissions. The results of subchronical phytotoxicity ranged from 62% to 94% with values below 90% indicating substrate phytotoxicity. The results of biological tests focused on the phytotoxicity of tested samples exhibiting values from 35% to 70% with respect to the germination index with values below 66% indicating the phytotoxicity of tyre abrasion products.
Collapse
|