101
|
Ebina W, Rossi DJ. Transcription factor-mediated reprogramming toward hematopoietic stem cells. EMBO J 2015; 34:694-709. [PMID: 25712209 DOI: 10.15252/embj.201490804] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs.
Collapse
Affiliation(s)
- Wataru Ebina
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA Department of Pediatrics, Harvard Medical School, Boston, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
102
|
Huang G, Ye S, Zhou X, Liu D, Ying QL. Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci 2015; 72:1741-57. [PMID: 25595304 DOI: 10.1007/s00018-015-1833-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022]
Abstract
Embryonic stem cells (ESCs) can be maintained in culture indefinitely while retaining the capacity to generate any type of cell in the body, and therefore not only hold great promise for tissue repair and regeneration, but also provide a powerful tool for modeling human disease and understanding biological development. In order to fulfill the full potential of ESCs, it is critical to understand how ESC fate, whether to self-renew or to differentiate into specialized cells, is regulated. On the molecular level, ESC fate is controlled by the intracellular transcriptional regulatory networks that respond to various extrinsic signaling stimuli. In this review, we discuss and compare important signaling pathways in the self-renewal and differentiation of mouse, rat, and human ESCs with an emphasis on how these pathways integrate into ESC-specific transcription circuitries. This will be beneficial for understanding the common and conserved mechanisms that govern self-renewal, and for developing novel culture conditions that support ESC derivation and maintenance.
Collapse
Affiliation(s)
- Guanyi Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | | | | | | | | |
Collapse
|
103
|
Joo JY, Choi HW, Kim MJ, Zaehres H, Tapia N, Stehling M, Jung KS, Do JT, Schöler HR. Establishment of a primed pluripotent epiblast stem cell in FGF4-based conditions. Sci Rep 2014; 4:7477. [PMID: 25515008 PMCID: PMC4268649 DOI: 10.1038/srep07477] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/25/2014] [Indexed: 12/31/2022] Open
Abstract
Several mouse pluripotent stem cell types have been established either from mouse blastocysts and epiblasts. Among these, embryonic stem cells (ESCs) are considered to represent a “naïve”, epiblast stem cells (EpiSCs) a “primed” pluripotent state. Although EpiSCs form derivatives of all three germ layers during invitro differentiation, they rarely incorporate into the inner cell mass of blastocysts and rarely contribute to chimera formation following blastocyst injection. Here we successfully established homogeneous population of EpiSC lines with efficient chimera-forming capability using a medium containing fibroblast growth factor (FGF)-4. The expression levels of Rex1 and Nanog was very low although Oct4 level is comparable to ESCs. EpiSCs also expressed higher levels of epiblast markers, such as Cer1, Eomes, Fgf5, Sox17, and T, and further showed complete DNA methylation of Stella and Dppa5 promoters. However, the EpiSCs were clustered separately from E3 and T9 EpiSC lines and showed a completely different global gene expression pattern to ESCs. Furthermore, the EpiSCs were able to differentiate into all three germ layers in vitro and efficiently formed teratomas and chimeric embryos (21.4%) without germ-line contribution.
Collapse
Affiliation(s)
- Jin Young Joo
- 1] Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany [2] Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea [3] Infertility Clinic Center, Haesung Hospital, Chun An 331-950, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Min Jung Kim
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Holm Zaehres
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Natalia Tapia
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Martin Stehling
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Koo Sung Jung
- Infertility Clinic Center, Haesung Hospital, Chun An 331-950, Republic of Korea
| | - Jeong Tae Do
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| |
Collapse
|
104
|
Huang G, Yan H, Ye S, Tong C, Ying QL. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells 2014; 32:1149-60. [PMID: 24302476 DOI: 10.1002/stem.1609] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/16/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022]
Abstract
STAT3 can be transcriptionally activated by phosphorylation of its tyrosine 705 or serine 727 residue. In mouse embryonic stem cells (mESCs), leukemia inhibitory factor (LIF) signaling maintains pluripotency by inducing JAK-mediated phosphorylation of STAT3 Y705 (pY705). However, the function of phosphorylated S727 (pS727) in mESCs remains unclear. In this study, we examined the roles of STAT3 pY705 and pS727 in regulating mESC identities, using a small molecule-based system to post-translationally modulate the quantity of transgenic STAT3 in STAT3(-/-) mESCs. We demonstrated that pY705 is absolutely required for STAT3-mediated mESC self-renewal, while pS727 is dispensable, serving only to promote proliferation and optimal pluripotency. S727 phosphorylation is regulated directly by fibroblast growth factor/Erk signaling and crucial in the transition of mESCs from pluripotency to neuronal commitment. Loss of S727 phosphorylation resulted in significantly reduced neuronal differentiation potential, which could be recovered by a S727 phosphorylation mimic. Moreover, loss of pS727 sufficed LIF to reprogram epiblast stem cells to naïve pluripotency, suggesting a dynamic equilibrium of STAT3 pY705 and pS727 in the control of mESC fate.
Collapse
Affiliation(s)
- Guanyi Huang
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
105
|
Inositol Polyphosphate-5-Phosphatase F (INPP5F) inhibits STAT3 activity and suppresses gliomas tumorigenicity. Sci Rep 2014; 4:7330. [PMID: 25476455 PMCID: PMC4256660 DOI: 10.1038/srep07330] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/06/2014] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma (GBM), the most common type of primary malignant brain tumors harboring a subpopulation of stem-like cells (GSCs), is a fast-growing and often fatal tumor. Signal Transducer and Activator of Transcription 3 (STAT3) is one of the major signaling pathways in GSCs maintenance but the molecular mechanisms underlying STAT3 deregulation in GSCs are poorly defined. Here, we demonstrate that Inositol Polyphosphate-5-Phosphatase F (INPP5F), one of the polyphosphoinositide phosphatases, is differentially expressed in GSCs from glioma patients, and is identified as an inhibitor of STAT3 signaling via interaction with STAT3 and inhibition of its phosphorylation. Constitutively expressed INPP5F showed to suppress self-renewal and proliferation potentials of glioblastoma cells and reduced tumorigenicity of glioblastoma. In addition, loss of INPP5F gene in gliomas is significantly correlated with lower overall patient survivals. These findings suggest that INPP5F is a potential tumor suppressor in gliomas via inhibition of STAT3 pathway, and that deregulation of INPP5F may lead to contribution to gliomagenesis.
Collapse
|
106
|
Conversion of epiblast stem cells to embryonic stem cells using growth factors and small molecule inhibitors. Methods Mol Biol 2014; 1150:215-26. [PMID: 24744001 DOI: 10.1007/978-1-4939-0512-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stem cell in vitro culture is a useful model system to study mechanisms underlying transitions between defined cell states. Epiblast stem cells, in addition to being capable of somatic differentiation, can be converted to a more primitive embryonic stem cell-like state, by overexpression of specific transcription factors. Here, we describe a reliable method to accomplish-and potentially further study-the transgene-independent reversion from epiblast stem cells to ES cells using administration of specific growth factors and small molecule inhibitors.
Collapse
|
107
|
Hawkins K, Joy S, McKay T. Cell signalling pathways underlying induced pluripotent stem cell reprogramming. World J Stem Cells 2014; 6:620-628. [PMID: 25426259 PMCID: PMC4178262 DOI: 10.4252/wjsc.v6.i5.620] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/03/2014] [Accepted: 09/17/2014] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and cMyc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few “stabilisation competent” cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-iPS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, iPS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As iPS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon.
Collapse
|
108
|
Abstract
Since human embryonic stem cells (hESCs) were first isolated and successfully cultured in vitro, the pluripotent potential of hESCs has been underestimated. The pluripotency of mouse embryonic stem cells (mESCs) can be categorized as naïve and primed, depending on their corresponding in vivo developing phases. mESC morphology differs at distinct pluripotent states, which differ in signaling dependence, gene expression, epigenetic features, and developmental potential. hESCs resemble mouse stem cells at primed pluripotency, and consequently are believed to correspond to a later developmental stage in vivo than mESCs. Nevertheless, recent studies indicate that a naïve state of pluripotency may exist in hESCs, and the pluripotency of hESCs also can be enhanced by genetic modification or optimized culture systems. These findings provide novel insight into the properties and differentiation potential of hESCs. Here, we review the recent advances in characterization of ESC states and investigate the mechanisms regulating hESC pluripotency.
Collapse
Affiliation(s)
- Yifei Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University , 200030, Shanghai, China
| | | |
Collapse
|
109
|
Chemical approaches to cell reprogramming. Curr Opin Genet Dev 2014; 28:50-56. [PMID: 25461450 DOI: 10.1016/j.gde.2014.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/01/2014] [Accepted: 09/16/2014] [Indexed: 01/04/2023]
Abstract
Recent advances in cell reprogramming via employing different sets of factors, which allows generation of various cell types that are beyond the downstream developmental lineages from the starting cell type, provide significant opportunities to study fundamental biology and hold enormous promise in regenerative medicine. Small molecules have been identified to enhance and enable reprogramming by regulating various mechanisms, and provide a highly temporal and tunable approach to modulate cellular fate and functions. Here, we review the latest development in cell reprogramming from the perspective of small molecule modulation.
Collapse
|
110
|
Ye S, Liu D, Ying QL. Signaling pathways in induced naïve pluripotency. Curr Opin Genet Dev 2014; 28:10-5. [PMID: 25173148 DOI: 10.1016/j.gde.2014.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/29/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
Pluripotent stem cells have become powerful tools for both research and regenerative medicine. To date, however, only mouse and rat embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) have the ability to contribute to the formation of germline-competent chimeras. These stem cells are thus considered as 'naïve' pluripotent stem cells. Several signaling pathways have been identified to play a critical role in the induction and maintenance of this naïve pluripotent state. Understanding how these pathways induce and maintain naïve pluripotency will likely lead to the generation of germline-competent naïve ESCs/iPSCs from humans and animals phylogenetically close to humans.
Collapse
Affiliation(s)
- Shoudong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, PR China; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dahai Liu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, PR China
| | - Qi-Long Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
111
|
Chan YS, Göke J, Ng JH, Lu X, Gonzales KAU, Tan CP, Tng WQ, Hong ZZ, Lim YS, Ng HH. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 2014; 13:663-75. [PMID: 24315441 DOI: 10.1016/j.stem.2013.11.015] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 12/19/2022]
Abstract
Human embryonic stem cells (hESCs) are derived from the inner cell mass of the blastocyst. Despite sharing the common property of pluripotency, hESCs are notably distinct from epiblast cells of the preimplantation blastocyst. Here we use a combination of three small-molecule inhibitors to sustain hESCs in a LIF signaling-dependent hESC state (3iL hESCs) with elevated expression of NANOG and epiblast-enriched genes such as KLF4, DPPA3, and TBX3. Genome-wide transcriptome analysis confirms that the expression signature of 3iL hESCs shares similarities with native preimplantation epiblast cells. We also show that 3iL hESCs have a distinct epigenetic landscape, characterized by derepression of preimplantation epiblast genes. Using genome-wide binding profiles of NANOG and OCT4, we identify enhancers that contribute to rewiring of the regulatory circuitry. In summary, our study identifies a distinct hESC state with defined regulatory circuitry that will facilitate future analysis of human preimplantation embryogenesis and pluripotency.
Collapse
Affiliation(s)
- Yun-Shen Chan
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore 138672, Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Chen T, Wang X, Guo L, Wu M, Duan Z, Lv J, Tai W, Renganathan H, Didier R, Li J, Sun D, Chen X, He X, Fan J, Young W, Ren Y. Embryonic Stem Cells Promoting Macrophage Survival and Function are Crucial for Teratoma Development. Front Immunol 2014; 5:275. [PMID: 25071759 PMCID: PMC4082241 DOI: 10.3389/fimmu.2014.00275] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/27/2014] [Indexed: 11/29/2022] Open
Abstract
Stem cell therapies have had tremendous potential application for many diseases in recent years. However, the tumorigenic properties of stem cells restrict their potential clinical application; therefore, strategies for reducing the tumorigenic potential of stem cells must be established prior to transplantation. We have demonstrated that syngeneic transplantation of embryonic stem cells (ESCs) provokes an inflammatory response that involves the rapid recruitment of bone marrow-derived macrophages (BMDMs). ESCs are able to prevent mature macrophages from macrophage colony-stimulating factor (M-CSF) withdrawal-induced apoptosis, and thus prolong macrophage lifespan significantly by blocking various apoptotic pathways in an M-CSF-independent manner. ESCs express and secrete IL-34, which may be responsible for ESC-promoted macrophage survival. This anti-apoptotic effect of ESCs involves activation of extracellular signal-regulated kinase (ERK)1/2 and PI3K/Akt pathways and thus, inhibition of ERK1/2 and PI3K/AKT activation decreases ESC-induced macrophage survival. Functionally, ESC-treated macrophages also showed a higher level of phagocytic activity. ESCs further serve to polarize BMDMs into M2-like macrophages that exhibit most tumor-associated macrophage phenotypic and functional features. ESC-educated macrophages produce high levels of arginase-1, Tie-2, and TNF-α, which participate in angiogenesis and contribute to teratoma progression. Our study suggests that induction of M2-like macrophage activation is an important mechanism for teratoma development. Strategies targeting macrophages to inhibit teratoma development would increase the safety of ESC-based therapies, inasmuch as the depletion of macrophages completely inhibits ESC-induced angiogenesis and teratoma development.
Collapse
Affiliation(s)
- Tianxiang Chen
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Jersey, NJ, USA
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xi Wang
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Jersey, NJ, USA
- Institute of Neurosciences, The Fourth Military Medical University, Xian, China
| | - Lei Guo
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
- Department of Orthopedic Surgery, The Second Hospital of Xian Jiaotong University, Xian, China
| | - Mingmei Wu
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Jersey, NJ, USA
| | - Zhaoxia Duan
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Jersey, NJ, USA
| | - Jing Lv
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Wenjiao Tai
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Hemamalini Renganathan
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Jersey, NJ, USA
| | - Ruth Didier
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Jinhua Li
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Jersey, NJ, USA
| | - Xiaoming Chen
- Institute of Translational Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xijing He
- Department of Orthopedic Surgery, The Second Hospital of Xian Jiaotong University, Xian, China
| | - Jianqing Fan
- Statistics Laboratory, Princeton University, Princeton, NJ, USA
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Jersey, NJ, USA
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| |
Collapse
|
113
|
Hasegawa Y, Tang D, Takahashi N, Hayashizaki Y, Forrest ARR, Suzuki H. CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes. Sci Rep 2014; 4:5228. [PMID: 24957798 PMCID: PMC4067614 DOI: 10.1038/srep05228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/04/2014] [Indexed: 12/22/2022] Open
Abstract
Standard culture of human induced pluripotent stem cells (hiPSCs) requires basic Fibroblast Growth Factor (bFGF) to maintain the pluripotent state, whereas hiPSC more closely resemble epiblast stem cells than true naïve state ES which requires LIF to maintain pluripotency. Here we show that chemokine (C-C motif) ligand 2 (CCL2) enhances the expression of pluripotent marker genes through the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) protein. Moreover, comparison of transcriptomes between hiPSCs cultured with CCL2 versus with bFGF, we found that CCL2 activates hypoxia related genes, suggesting that CCL2 enhanced pluripotency by inducing a hypoxic-like response.Further, we show that hiPSCs cultured with CCL2 can differentiate at a higher efficiency than culturing withjust bFGF and we show CCL2 can be used in feeder-free conditions [corrected]. Taken together, our finding indicates the novel functions of CCL2 in enhancing its pluripotency in hiPSCs.
Collapse
Affiliation(s)
- Yuki Hasegawa
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| | - Dave Tang
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| | - Naoko Takahashi
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| | - Yoshihide Hayashizaki
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako-shi, Saitama, 551-0198 Japan
| | - Alistair R R Forrest
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| | | | - Harukazu Suzuki
- 1] Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan [2] RIKEN Center for Life Science Technologies, Division of Genomic Technologies, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
114
|
Amoyel M, Bach EA. Functions of the Drosophila JAK-STAT pathway: Lessons from stem cells. JAKSTAT 2014; 1:176-83. [PMID: 24058767 PMCID: PMC3670241 DOI: 10.4161/jkst.21621] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/13/2012] [Accepted: 07/25/2012] [Indexed: 01/06/2023] Open
Abstract
JAK-STAT signaling has been proposed to act in numerous stem cells in a variety of organisms. Here we provide an overview of its roles in three well characterized stem cell populations in Drosophila, in the intestine, lymph gland and testis. In flies, there is a single JAK and a single STAT, which has made the genetic dissection of pathway function considerably easier and facilitated the analysis of communication between stem cells, their niches and offspring. Studies in flies have revealed roles for this pathway as diverse as regulating bona fide intrinsic self-renewal, integrating response to environmental cues that control quiescence and promoting mitogenic responses to stress.
Collapse
Affiliation(s)
- Marc Amoyel
- Department of Biochemistry and Molecular Pharmacology; New York University School of Medicine; New York, NY USA
| | | |
Collapse
|
115
|
Zhou X, Smith AJH, Waterhouse A, Blin G, Malaguti M, Lin CY, Osorno R, Chambers I, Lowell S. Hes1 desynchronizes differentiation of pluripotent cells by modulating STAT3 activity. Stem Cells 2014; 31:1511-22. [PMID: 23649667 PMCID: PMC4063271 DOI: 10.1002/stem.1426] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 04/03/2013] [Indexed: 01/22/2023]
Abstract
Robust development of the early embryo may benefit from mechanisms that ensure that not all pluripotent cells differentiate at exactly the same time: such mechanisms would build flexibility into the process of lineage allocation. This idea is supported by the observation that pluripotent stem cells differentiate at different rates in vitro. We use a clonal commitment assay to confirm that pluripotent cells commit to differentiate asynchronously even under uniform differentiation conditions. Stochastic variability in expression of the Notch target gene Hes1 has previously been reported to influence neural versus mesodermal differentiation through modulation of Notch activity. Here we report that Hes1 also has an earlier role to delay exit from the pluripotent state into all lineages. The early function of Hes1 to delay differentiation can be explained by an ability of Hes1 to amplify STAT3 responsiveness in a cell-autonomous manner. Variability in Hes1 expression therefore helps to explain why STAT3 responsiveness varies between individual ES cells, and this in turn helps to explain why pluripotent cells commit to differentiate asynchronously. Stem Cells 2013;31:1511–1522
Collapse
Affiliation(s)
- Xinzhi Zhou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Onishi K, Tonge PD, Nagy A, Zandstra PW. Local BMP-SMAD1 signaling increases LIF receptor-dependent STAT3 responsiveness and primed-to-naive mouse pluripotent stem cell conversion frequency. Stem Cell Reports 2014; 3:156-68. [PMID: 25068129 PMCID: PMC4110772 DOI: 10.1016/j.stemcr.2014.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/30/2022] Open
Abstract
Conversion of EpiSCs to naive ESCs is a rare event that is driven by the reestablishment of the naive transcription factor network. In mice, STAT3 activation is sufficient to drive conversion of EpiSCs to the naive pluripotent stem cell (PSC) state. However, the lack of responsiveness of EpiSCs to LIF presents a bottleneck in this conversion process. Here, we demonstrate that local accumulation of BMP-SMAD1 signaling, in cooperation with GP130 ligands, enhances the recovery of LIF responsiveness by directly controlling transcription of the LIF receptor (Lif-r). Addition of BMP and LIF to EpiSCs increases both LIF responsiveness and conversion frequencies to naive PSCs. Mechanistically, we show that the transcriptional cofactor P300 plays a critical role by mediating complex formation between STAT3 and SMAD1. This demonstration of how the local microenvironment or stem cell niche reactivates dormant signaling responsiveness and developmental potential may be applicable to other stem cell niche-containing systems. Addition of BMP increases mouse EpiSC-to-ESC conversion frequency Accumulation of BMP and gp130 ligands resuscitates JAK-STAT signaling in EpiSCs BMP and gp130 ligands control LIF-R transcription p300 mediates STAT3-SMAD1 complex to control LIF responsiveness
Collapse
Affiliation(s)
- Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Peter D Tonge
- Centre for Stem Cells and Tissue Engineering, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Andras Nagy
- Centre for Stem Cells and Tissue Engineering, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada ; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada ; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada ; The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada ; Heart and Stroke/Richard Lewar Centre of Excellence, 150 College Street, Toronto, ON M5S 3E2, Canada ; McEwan Centre for Regenerative Medicine, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
117
|
Kang PJ, Moon JH, Yoon BS, Hyeon S, Jun EK, Park G, Yun W, Park J, Park M, Kim A, Whang KY, Koh GY, Oh S, You S. Reprogramming of mouse somatic cells into pluripotent stem-like cells using a combination of small molecules. Biomaterials 2014; 35:7336-45. [PMID: 24881998 DOI: 10.1016/j.biomaterials.2014.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 12/16/2022]
Abstract
Somatic cells can be reprogrammed to generate induced pluripotent stem cells (iPSCs) by overexpression of four transcription factors, Oct4, Klf4, Sox2, and c-Myc. However, exogenous expression of pluripotency factors raised concerns for clinical applications. Here, we show that iPS-like cells (iPSLCs) were generated from mouse somatic cells in two steps with small molecule compounds. In the first step, stable intermediate cells were generated from mouse astrocytes by Bmi1. These cells called induced epiblast stem cell (EpiSC)-like cells (iEpiSCLCs) are similar to EpiSCs in terms of expression of specific markers, epigenetic state, and ability to differentiate into three germ layers. In the second step, treatment with MEK/ERK and GSK3 pathway inhibitors in the presence of leukemia inhibitory factor resulted in conversion of iEpiSCLCs into iPSLCs that were similar to mESCs, suggesting that Bmi1 is sufficient to reprogram astrocytes to partially reprogrammed pluripotency. Next, Bmi1 function was replaced with Shh activators (oxysterol and purmorphamine), which demonstrating that combinations of small molecules can compensate for reprogramming factors and are sufficient to directly reprogram mouse somatic cells into iPSLCs. The chemically induced pluripotent stem cell-like cells (ciPSLCs) showed similar gene expression profiles, epigenetic status, and differentiation potentials to mESCs.
Collapse
Affiliation(s)
- Phil Jun Kang
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jai-Hee Moon
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Byung Sun Yoon
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea; StemLab, Venture Incubation Center Korea University, Seoul 136-701, Republic of Korea
| | - Solji Hyeon
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Eun Kyoung Jun
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea; StemLab, Venture Incubation Center Korea University, Seoul 136-701, Republic of Korea
| | - Gyuman Park
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Wonjin Yun
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Jiyong Park
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Minji Park
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Aeree Kim
- Department of Pathology, College of Medicine, Korea University Guro Hospital, Seoul 152-703, Republic of Korea
| | - Kwang Youn Whang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Gou Young Koh
- National Research Laboratory of Vascular Biology and Stem Cells, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seungkwon You
- Laboratory of Cell Function Regulation, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
118
|
Chang KH, Li M. Clonal isolation of an intermediate pluripotent stem cell state. Stem Cells 2014; 31:918-27. [PMID: 23341219 DOI: 10.1002/stem.1330] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023]
Abstract
Pluripotent stem cells of different embryonic origin respond to distinct signaling pathways. Embryonic stem cells (ESCs), which are derived from the inner cell mass of preimplantation embryos, are dependent on LIF-Stat3 signaling, while epiblast stem cells (EpiSCs), which are established from postimplantation embryos, require activin-Smad2/3 signaling. Recent studies have revealed heterogeneity of ESCs and the presence of intermediate pluripotent stem cell populations, whose responsiveness to growth factors, gene expression patterns, and associated chromatic signatures are compatible to a state in between ESCs and EpiSCs. However, it remains unknown whether such cell populations represent a stable entity at single-cell level. Here, we describe the identification of clonal stem cells from mouse ESCs with global gene expression profiles representing such a state. These pluripotent stem cells display dual responsiveness to LIF-Stat3 and activin-Smad2/3 at single-cell level and thus named as intermediate epiblast stem cells (IESCs). Furthermore, these cells show accelerated temporal gene expression kinetics during embryoid body differentiation in vitro consistent with a more advanced differentiation stage than that of ESCs. The successful isolation of IESCs supports the notion that traverse from naïve ground state toward lineage commitment occurs gradually in which transition milestones can be captured as clonogenic entity. Our finding provides a new model to better understand the multiple pluripotent states.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Stem Cell Neurogenesis Group, Institute of Clinical Sciences, Imperial College London, London, United Kingdom.
| | | |
Collapse
|
119
|
Drela K, Sarnowska A, Siedlecka P, Szablowska-Gadomska I, Wielgos M, Jurga M, Lukomska B, Domanska-Janik K. Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner. Cytotherapy 2014; 16:881-92. [PMID: 24726658 DOI: 10.1016/j.jcyt.2014.02.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/05/2014] [Accepted: 02/26/2014] [Indexed: 01/16/2023]
Abstract
BACKGROUND AIMS As we approach the era of mesenchymal stem cell (MSC) application in the medical clinic, the standarization of their culture conditions are of the particular importance. We re-evaluated the influences of oxygens concentration on proliferation, stemness and differentiation of human umbilical cord Wharton Jelly-derived MSCs (WJ-MSCs). METHODS Primary cultures growing in 21% oxygen were either transferred into 5% O2 or continued to grow under standard 21% oxygen conditions. Cell expansion was estimated by WST1/enzyme-linked immunosorbent assay or cell counting. After 2 or 4 weeks of culture, cell phenotypes were evaluated using microscopic, immunocytochemical, fluorescence-activated cell-sorting and molecular methods. Genes and proteins typical of mesenchymal cells, committed neural cells or more primitive stem/progenitors (Oct4A, Nanog, Rex1, Sox2) and hypoxia inducible factor (HIF)-1α-3α were evaluated. RESULTS Lowering O2 concentration from 21% to the physiologically relevant 5% level substantially affected cell characteristics, with induction of stemness-related-transcription-factor and stimulation of cell proliferative capacity, with increased colony-forming unit fibroblasts (CFU-F) centers exerting OCT4A, NANOG and HIF-1α and HIF-2α immunoreactivity. Moreover, the spontaneous and time-dependent ability of WJ-MSCs to differentiate into neural lineage under 21% O2 culture was blocked in the reduced oxygen condition. Importantly, treatment with trichostatin A (TSA, a histone deacetylase inhibitor) suppressed HIF-1α and HIF-2α expression, in addition to blockading the cellular effects of reduced oxygen concentration. CONCLUSIONS A physiologically relevant microenvironment of 5% O2 rejuvenates WJ-MSC culture toward less-differentiated, more primitive and faster-growing phenotypes with involvement of HIF-1α and HIF-2α-mediated and TSA-sensitive chromatin modification mechanisms. These observations add to the understanding of MSC responses to defined culture conditions, which is the most critical issue for adult stem cells translational applications.
Collapse
Affiliation(s)
- Katarzyna Drela
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sarnowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Siedlecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Ilona Szablowska-Gadomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Wielgos
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Jurga
- Cryo-Save Labs NV (The Cell Factory), Niel, Belgium
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Domanska-Janik
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
120
|
YE B, Dai Z, Liu B, Wang R, Li C, Huang G, Wang S, Xia P, Yang X, Kuwahara K, Sakaguchi N, Fan Z. Pcid2 Inactivates Developmental Genes in Human and Mouse Embryonic Stem Cells to Sustain Their Pluripotency by Modulation of EID1 Stability. Stem Cells 2014; 32:623-35. [DOI: 10.1002/stem.1580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Buqing YE
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Zhonghua Dai
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Benyu Liu
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Rui Wang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Chong Li
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Guanling Huang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Shuo Wang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Pengyan Xia
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Xuan Yang
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| | - Kazuhiko Kuwahara
- Department of Immunology; Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Nobuo Sakaguchi
- Department of Immunology; Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS; Institute of Biophysics, Chinese Academy of Sciences; Beijing People's Republic of China
| |
Collapse
|
121
|
Bidirectional developmental potential in reprogrammed cells with acquired pluripotency. Nature 2014; 505:676-80. [PMID: 24476891 DOI: 10.1038/nature12969] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 12/20/2013] [Indexed: 12/20/2022]
Abstract
We recently discovered an unexpected phenomenon of somatic cell reprogramming into pluripotent cells by exposure to sublethal stimuli, which we call stimulus-triggered acquisition of pluripotency (STAP). This reprogramming does not require nuclear transfer or genetic manipulation. Here we report that reprogrammed STAP cells, unlike embryonic stem (ES) cells, can contribute to both embryonic and placental tissues, as seen in a blastocyst injection assay. Mouse STAP cells lose the ability to contribute to the placenta as well as trophoblast marker expression on converting into ES-like stem cells by treatment with adrenocorticotropic hormone (ACTH) and leukaemia inhibitory factor (LIF). In contrast, when cultured with Fgf4, STAP cells give rise to proliferative stem cells with enhanced trophoblastic characteristics. Notably, unlike conventional trophoblast stem cells, the Fgf4-induced stem cells from STAP cells contribute to both embryonic and placental tissues in vivo and transform into ES-like cells when cultured with LIF-containing medium. Taken together, the developmental potential of STAP cells, shown by chimaera formation and in vitro cell conversion, indicates that they represent a unique state of pluripotency.
Collapse
|
122
|
Affiliation(s)
- Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, and in the Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
123
|
Hassani SN, Totonchi M, Gourabi H, Schöler HR, Baharvand H. Signaling Roadmap Modulating Naive and Primed Pluripotency. Stem Cells Dev 2014; 23:193-208. [DOI: 10.1089/scd.2013.0368] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
124
|
Stuart HT, van Oosten AL, Radzisheuskaya A, Martello G, Miller A, Dietmann S, Nichols J, Silva JCR. NANOG amplifies STAT3 activation and they synergistically induce the naive pluripotent program. Curr Biol 2014; 24:340-6. [PMID: 24462001 PMCID: PMC3982126 DOI: 10.1016/j.cub.2013.12.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 01/17/2023]
Abstract
Reprogramming of a differentiated cell back to a naive pluripotent identity is thought to occur by several independent mechanisms. Two such mechanisms include NANOG and activated STAT3 (pSTAT3), known master regulators of naive pluripotency acquisition [1–5]. Here, we investigated the relationship between NANOG and pSTAT3 during the establishment and maintenance of naive pluripotency. Surprisingly, we found that NANOG enhances LIF signal transduction, resulting in elevated pSTAT3. This is mediated, at least in part, by suppression of the expression of the LIF/STAT3 negative regulator SOCS3. We also discovered NANOG to be limiting for the expression of KLF4, a canonical “Yamanaka” reprogramming factor [6] and key pSTAT3 target [2, 7, 8]. KLF4 expression resulted from the codependent and synergistic action of NANOG and pSTAT3 in embryonic stem cells and during initiation of reprogramming. Additionally, within 48 hr, the combined actions of NANOG and pSTAT3 in a reprogramming context resulted in reactivation of genes associated with naive pluripotency. Importantly, we show that NANOG can be bypassed during reprogramming by exogenous provision of its downstream effectors, namely pSTAT3 elevation and KLF4 expression. In conclusion, we propose that mechanisms of reprogramming are linked, rather than independent, and are centered on a small number of genes, including NANOG. NANOG amplifies STAT3 activation NANOG and STAT3 synergistically induce KLF4 expression NANOG and STAT3 rapidly induce naive gene expression in a reprogramming context Combined STAT3 and KLF4 bypass NANOG in reprogramming
Collapse
Affiliation(s)
- Hannah T Stuart
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Anouk L van Oosten
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Aliaksandra Radzisheuskaya
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Graziano Martello
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Anzy Miller
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sabine Dietmann
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - José C R Silva
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
125
|
Efficient reprogramming of naïve-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system. PLoS One 2014; 9:e85089. [PMID: 24465482 PMCID: PMC3896366 DOI: 10.1371/journal.pone.0085089] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/22/2013] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are somatic cells reprogrammed by ectopic expression of transcription factors or small molecule treatment, which resemble embryonic stem cells (ESCs). They hold great promise for improving the generation of genetically modified large animals. However, few porcine iPSCs (piPSCs) lines obtained currently can support development of cloned embryos. Here, we generated iPSCs from porcine adipose-derived stem cells (pADSCs), using drug-inducible expression of defined human factors (Oct4, Sox2, c-Myc and Klf4). Reprogramming of iPSCs from pADSCs was more efficient than from fibroblasts, regardless of using feeder-independent or feeder-dependent manners. By addition of Lif-2i medium containing mouse Lif, CHIR99021 and PD0325901 (Lif-2i), naïve-like piPSCs were obtained under feeder-independent and serum-free conditions. These successfully reprogrammed piPSCs were characterized by short cell cycle intervals, alkaline phosphatase (AP) staining, expression of Oct4, Sox2, Nanog, SSEA3 and SSEA4, and normal karyotypes. The resemblance of piPSCs to naïve ESCs was confirmed by their packed dome morphology, growth after single-cell dissociation, Lif-dependency, up-regulation of Stella and Eras, low expression levels of TRA-1-60, TRA-1-81 and MHC I and activation of both X chromosomes. Full reprogramming of naïve-like piPSCs was evaluated by the significant up-regulation of Lin28, Esrrb, Utf1 and Dppa5, differentiating into cell types of all three germ layers in vitro and in vivo. Furthermore, nuclear transfer embryos from naïve-like piPSCs could develop to blastocysts with improved quality. Thus, we provided an efficient protocol for generating naïve-like piPSCs from pADSCs in a feeder-independent and serum-free system with controlled regulation of exogenous genes, which may facilitate optimization of culture media and the production of transgenic pigs.
Collapse
|
126
|
Nagamatsu G, Kosaka T, Saito S, Honda H, Takubo K, Kinoshita T, Akiyama H, Sudo T, Horimoto K, Oya M, Suda T. Induction of pluripotent stem cells from primordial germ cells by single reprogramming factors. Stem Cells 2014; 31:479-87. [PMID: 23255173 DOI: 10.1002/stem.1303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 11/27/2012] [Indexed: 12/27/2022]
Abstract
Germ cells are similar to pluripotent stem cells in terms of gene expression patterns and the capacity to convert to pluripotent stem cells in culture. The factors involved in germ cell development are also able to reprogram somatic cells. This suggests that germ cells are useful tools for investigating the mechanisms responsible for somatic cell reprograming. In this study, the expression of reprograming factors in primordial germ cells (PGCs) was analyzed. PGCs expressed Oct3/4, Sox2, and c-Myc but not Klf4. However, Klf2, Klf5, Essrb, or Essrg, which were expressed in PGCs, could compensate for Klf4 during somatic cell reprograming. Furthermore, PGCs could be converted to a pluripotent state by infection with any of the known reprogramming factors (Oct3/4, Sox2, Klf4, and c-Myc). These cells were designated as multipotent PGCs (mPGCs). Contrary to differences in the origins of somatic cells in somatic cell reprogramming, we hypothesized that the gene expression levels of the reprogramming factors would vary in mPGCs. Candidate genes involved in the regulation of tumorigenicity and/or reprogramming efficiency were identified by comparing the gene expression profiles of mPGCs generated by the exogenous expression of c-Myc or L-Myc.
Collapse
Affiliation(s)
- Go Nagamatsu
- Department of Cell Differentiation, The Sakaguchi Laboratory and , Keio University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Zhao W, Ning B, Qian C. Regulatory factors of induced pluripotency: current status. Stem Cell Investig 2014; 1:15. [PMID: 27358861 DOI: 10.3978/j.issn.2306-9759.2014.07.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/08/2014] [Indexed: 11/14/2022]
Abstract
Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) through enforced expression of four transcription factors [Oct4, Sox2, Klf4, and c-Myc (OSKM)]; however, the reprogramming efficiency is extremely low. This finding raises fundamental questions about the regulators that influence the change in epigenetic stability and endowment of dedifferentiation potential during reprogramming. Identification of such regulators is critical to removing the roadblocks impeding the efficient generation of safe iPSCs and their successful translation into clinical therapies. In this review, we summarize the current progress that has been made in understanding cellular reprogramming, with an emphasis on the molecular mechanisms of epigenetic regulators in induced pluripotency.
Collapse
Affiliation(s)
- Wei Zhao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bo Ning
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chen Qian
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
128
|
Schroeder A, Herrmann A, Cherryholmes G, Kowolik C, Buettner R, Pal S, Yu H, Müller-Newen G, Jove R. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res 2013; 74:1227-37. [PMID: 24177177 DOI: 10.1158/0008-5472.can-13-0594] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Androgen receptor (AR) signaling is important for prostate cancer progression. However, androgen-deprivation and/or AR targeting-based therapies often lead to resistance. Here, we demonstrate that loss of AR expression results in STAT3 activation in prostate cancer cells. AR downregulation further leads to development of prostate cancer stem-like cells (CSC), which requires STAT3. In human prostate tumor tissues, elevated cancer stem-like cell markers coincide with those cells exhibiting high STAT3 activity and low AR expression. AR downregulation-induced STAT3 activation is mediated through increased interleukin (IL)-6 expression. Treating mice with soluble IL-6 receptor fusion protein or silencing STAT3 in tumor cells significantly reduced prostate tumor growth and CSCs. Together, these findings indicate an opposing role of AR and STAT3 in prostate CSC development.
Collapse
Affiliation(s)
- Anne Schroeder
- Authors' Affiliations: Departments of Molecular Medicine, Cancer Immunotherapy and Tumor Immunology, and Medical Oncology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, California; and Institute for Biochemistry and Molecular Biology, Universitätsklinikum RWTH Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Liu L, Souto J, Liao W, Jiang Y, Li Y, Nishinakamura R, Huang S, Rosengart T, Yang VW, Schuster M, Ma Y, Yang J. Histone lysine-specific demethylase 1 (LSD1) protein is involved in Sal-like protein 4 (SALL4)-mediated transcriptional repression in hematopoietic stem cells. J Biol Chem 2013; 288:34719-28. [PMID: 24163373 DOI: 10.1074/jbc.m113.506568] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The stem cell protein SALL4 plays a critical role in hematopoiesis by regulating the cell fate. In primitive hematopoietic precursors, it activates or represses important genes via recruitment of various epigenetic factors such as DNA methyltransferases, and histone deacylases. Here, we demonstrate that LSD1, a histone lysine demethylase, also participates in the trans-repressive effects of SALL4. Based on luciferase assays, the amine oxidase domain of LSD1 is important in suppressing SALL4-mediated reporter transcription. In freshly isolated adult mouse bone marrows, both SALL4 and LSD1 proteins are preferentially expressed in undifferentiated progenitor cells and co-localize in the nuclei. Further sequential chromatin immunoprecipitation assay confirmed that these two factors share the same binding sites at the promoter regions of important hematopoietic regulatory genes including EBF1, GATA1, and TNF. In addition, studies from both gain- and loss-of-function models revealed that SALL4 dynamically controls the binding levels of LSD1, which is accompanied by a reversely changed histone 3 dimethylated lysine 4 at the same promoter regions. Finally, shRNA-mediated knockdown of LSD1 in hematopoietic precursor cells resulted in altered SALL4 downstream gene expression and increased cellular activity. Thus, our data revealed that histone demethylase LSD1 may negatively regulate SALL4-mediated transcription, and the dynamic regulation of SALL4-associated epigenetic factors cooperatively modulates early hematopoietic precursor proliferation.
Collapse
Affiliation(s)
- Li Liu
- From the Departments of Surgery
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Apostolou E, Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature 2013; 502:462-71. [PMID: 24153299 PMCID: PMC4216318 DOI: 10.1038/nature12749] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/05/2013] [Indexed: 12/13/2022]
Abstract
Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics that are inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes that involve changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to new approaches in regenerative medicine and cancer treatment.
Collapse
Affiliation(s)
- Effie Apostolou
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
131
|
Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. EMBO J 2013; 32:2561-74. [PMID: 23942233 PMCID: PMC3791366 DOI: 10.1038/emboj.2013.177] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/16/2013] [Indexed: 02/02/2023] Open
Abstract
Self-renewal of pluripotent mouse embryonic stem (ES) cells is sustained by the cytokine leukaemia inhibitory factor (LIF) acting through the transcription factor Stat3. Several targets of Stat3 have previously been identified, most notably the reprogramming factor Klf4. However, such factors are neither required nor sufficient for the potent effect of LIF. We took advantage of Stat3 null ES cells to confirm that Stat3 mediates the self-renewal response to LIF. Through comparative transcriptome analysis intersected with genome location data, we arrived at a set of candidate transcription factor effectors. Among these, Tfcp2l1 (also known as Crtr-1) was most abundant. Constitutive expression of Tfcp2l1 at levels similar to those induced by LIF effectively substituted for LIF or Stat3 in sustaining clonal self-renewal and pluripotency. Conversely, knockdown of Tfcp2l1 profoundly compromised responsiveness to LIF. We further found that Tfcp2l1 is both necessary and sufficient to direct molecular reprogramming of post-implantation epiblast stem cells to naïve pluripotency. These results establish Tfcp2l1 as the principal bridge between LIF/Stat3 input and the transcription factor core of naïve pluripotency.
Collapse
|
132
|
Festuccia N, Osorno R, Wilson V, Chambers I. The role of pluripotency gene regulatory network components in mediating transitions between pluripotent cell states. Curr Opin Genet Dev 2013; 23:504-11. [PMID: 23932125 PMCID: PMC3790975 DOI: 10.1016/j.gde.2013.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/07/2013] [Accepted: 06/23/2013] [Indexed: 12/21/2022]
Abstract
Pluripotency is a property that early embryonic cells possess over a considerable developmental time span. Accordingly, pluripotent cell lines can be established from the pre-implantation or post-implantation mouse embryo as embryonic stem (ES) or epiblast stem (EpiSC) cell lines, respectively. Maintenance of the pluripotent phenotype depends on the function of specific transcription factors (TFs) operating within a pluripotency gene regulatory network (PGRN). As cells move from an ES cell to an EpiSC state, the PGRN changes with expression of some TFs reduced (e.g. Nanog) or eliminated (e.g. Esrrb). Re-expressing such TFs can move cells back to an earlier developmental identity and is being applied to attempt establishment of human cell lines with the properties of mouse ES cells.
Collapse
|
133
|
Kim HS, Kim J, Jo Y, Jeon D, Cho YS. Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors. Stem Cell Res 2013; 12:60-8. [PMID: 24145188 DOI: 10.1016/j.scr.2013.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/20/2013] [Accepted: 09/16/2013] [Indexed: 12/20/2022] Open
Abstract
The direct lineage reprogramming of somatic cells to other lineages by defined factors has led to innovative cell-fate-change approaches for providing patient-specific cells. Recent reports have demonstrated that four pluripotency factors (Oct4, Sox2, Klf4, and c-Myc) are sufficient to directly reprogram fibroblasts to other specific cells, including induced neural stem cells (iNSCs). Here, we show that mouse fibroblasts can be directly reprogrammed into midbrain dopaminergic neuronal progenitors (DPs) by temporal expression of the pluripotency factors and environment containing sonic hedgehog and fibroblast growth factor 8. Within thirteen days, self-renewing and functional induced DPs (iDPs) were generated. Interestingly, the inhibition of both Jak and Gsk3β notably enhanced the iDP reprogramming efficiency. We confirmed the functionality of the iDPs by showing that the dopaminergic neurons generated from iDPs express midbrain markers, release dopamine, and show typical electrophysiological profiles. Our results demonstrate that the pluripotency factors-mediated direct reprogramming is an invaluable strategy for supplying functional and proliferating iDPs and may be useful for other neural progenitors required for disease modeling and cell therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Han-Seop Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Yeonju Jo
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Daejong Jeon
- Laboratory for Brain Behavior and Therapeutics, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Yee Sook Cho
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 305-333, Republic of Korea.
| |
Collapse
|
134
|
Induction of pluripotency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:5-25. [PMID: 23696349 DOI: 10.1007/978-94-007-6621-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The molecular and phenotypic irreversibility of mammalian cell differentiation was a fundamental principle of developmental biology at least until the 1980s, despite numerous reports dating back to the 1950s of the induction of pluripotency in amphibian cells by nuclear transfer (NT). Landmark reports in the 1980s and 1990s in sheep progressively challenged this dogmatic assumption; firstly, embryonic development of reconstructed embryos comprising whole (donor) blastomeres fused to enucleated oocytes, and famously, the cloning of Dolly from a terminally differentiated cell. Thus, the intrinsic ability of oocyte-derived factors to reverse the differentiated phenotype was confirmed. The concomitant elucidation of methods for human embryonic stem cell isolation and cultivation presented opportunities for therapeutic cell replacement strategies, particularly through NT of patient nuclei to enucleated oocytes for subsequent isolation of patient-specific (autologous), pluripotent cells from the resulting blastocysts. Associated logistical limitations of working with human oocytes, in addition to ethical and moral objections prompted exploration of alternative approaches to generate autologous stem cells for therapy, utilizing the full repertoire of factors characteristic of pluripotency, primarily through cell fusion and use of pluripotent cell extracts. Stunningly, in 2006, Japanese scientists described somatic cell reprogramming through delivery of four key factors (identified through a deductive approach from 24 candidate genes). Although less efficient than previous approaches, much of current stem cell research adopts this focused approach to cell reprogramming and (autologous) cell therapy. This chapter is a quasi-historical commentary of the various aforementioned approaches for the induction of pluripotency in lineage-committed cells, and introduces transcriptional and epigenetic changes occurring during reprogramming.
Collapse
|
135
|
|
136
|
Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO J 2013; 32:2548-60. [PMID: 23942238 DOI: 10.1038/emboj.2013.175] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/16/2013] [Indexed: 11/08/2022] Open
Abstract
Mouse embryonic stem cell (mESC) self-renewal can be maintained by activation of the leukaemia inhibitory factor (LIF)/signal transducer and activator of transcription 3 (Stat3) signalling pathway or dual inhibition (2i) of glycogen synthase kinase 3 (Gsk3) and mitogen-activated protein kinase kinase (MEK). Several downstream targets of the pathways involved have been identified that when individually overexpressed can partially support self-renewal. However, none of these targets is shared among the involved pathways. Here, we show that the CP2 family transcription factor Tfcp2l1 is a common target in LIF/Stat3- and 2i-mediated self-renewal, and forced expression of Tfcp2l1 can recapitulate the self-renewal-promoting effect of LIF or either of the 2i components. In addition, Tfcp2l1 can reprogram post-implantation epiblast stem cells to naïve pluripotent ESCs. Tfcp2l1 upregulates Nanog expression and promotes self-renewal in a Nanog-dependent manner. We conclude that Tfcp2l1 is at the intersection of LIF- and 2i-mediated self-renewal pathways and plays a critical role in maintaining ESC identity. Our study provides an expanded understanding of the current model of ground-state pluripotency.
Collapse
|
137
|
Lin C, Yu C, Ding S. Toward directed reprogramming through exogenous factors. Curr Opin Genet Dev 2013; 23:519-25. [PMID: 23932127 DOI: 10.1016/j.gde.2013.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/10/2013] [Accepted: 06/23/2013] [Indexed: 12/25/2022]
Abstract
Direct reprogramming of one cell type into another provides unprecedented opportunities to study fundamental biology, model disease, and develop regenerative medicine. Different paradigms of reprogramming strategies with different sets of factors have been developed to generate various cell types, including induced pluripotent stem cells, neuronal or neural precursor cells, cardiomyocyte-like cells, endothelial cells, and hepatocyte-like cells. Various exogenous factors, especially small molecules modulating signaling, cellular state, and transcription, have been identified to enhance and enable reprogramming. With an increased understanding of reprogramming mechanisms and discovery of new molecules, it is conceivable that reprogramming can be achieved in a more directed and deterministic manner under entirely chemically defined conditions.
Collapse
Affiliation(s)
- Changsheng Lin
- Gladstone Institute of Cardiovascular Disease, Department of Pharmaceutical Chemistry, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
138
|
Abstract
Fluctuating expression of transcription factors in embryonic stem cells is an alluring observation, but, as outlined by two articles in this issue, appearances can be misleading.
Collapse
Affiliation(s)
- Austin Smith
- Wellcome Trust-Medical Research Council, Cambridge Stem Cell Institute, University of Cambridge, UK.
| |
Collapse
|
139
|
Leitch H, Nichols J, Humphreys P, Mulas C, Martello G, Lee C, Jones K, Surani M, Smith A. Rebuilding pluripotency from primordial germ cells. Stem Cell Reports 2013; 1:66-78. [PMID: 24052943 PMCID: PMC3757743 DOI: 10.1016/j.stemcr.2013.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 02/02/2023] Open
Abstract
Mammalian primordial germ cells (PGCs) are unipotent progenitors of the gametes. Nonetheless, they can give rise directly to pluripotent stem cells in vitro or during teratocarcinogenesis. This conversion is inconsistent, however, and has been difficult to study. Here, we delineate requirements for efficient resetting of pluripotency in culture. We demonstrate that in defined conditions, routinely 20% of PGCs become EG cells. Conversion can occur from the earliest specified PGCs. The entire process can be tracked from single cells. It is driven by leukemia inhibitory factor (LIF) and the downstream transcription factor STAT3. In contrast, LIF signaling is not required during germ cell ontogeny. We surmise that ectopic LIF/STAT3 stimulation reconstructs latent pluripotency and self-renewal. Notably, STAT3 targets are significantly upregulated in germ cell tumors, suggesting that dysregulation of this pathway may underlie teratocarcinogenesis. These findings demonstrate that EG cell formation is a robust experimental system for exploring mechanisms involved in reprogramming and cancer. A defined system for generation of pluripotent EG cells at high efficiency 20% of single primordial germ cells become EG cells Stimulation with LIF but not FGF drives conversion to pluripotency LIF/STAT3 targets are upregulated in pluripotent germ cell tumors
Collapse
Affiliation(s)
- Harry G. Leitch
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Peter Humphreys
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Graziano Martello
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Caroline Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Ken Jones
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - M. Azim Surani
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- Corresponding author
| |
Collapse
|
140
|
Wagner RT, Cooney AJ. Minireview: the diverse roles of nuclear receptors in the regulation of embryonic stem cell pluripotency. Mol Endocrinol 2013; 27:864-78. [PMID: 23504955 PMCID: PMC3656235 DOI: 10.1210/me.2012-1383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
Extensive research has been devoted to the goal of understanding how a single cell of embryonic origin can give rise to every somatic cell type and the germ cell lineage, a hallmark defined as "pluripotency." The aggregate of this work supports fundamentally important roles for the gene transcription networks inherent to the pluripotent cell. Transcription networks have been identified that are both required for pluripotency, as well as sufficient to reprogram somatic cells to a naive pluripotent state. Several members of the nuclear receptor (NR) superfamily of transcription factors have been identified to play diverse roles in the regulation of pluripotency. The ligand-responsive nature of NRs coupled with the abundance of genetic models available has led to a significant advance in the understanding of NR roles in embryonic stem cell pluripotency. Furthermore, the presence of a ligand-binding domain may lead to development of small molecules for a wide range of therapeutic and research applications, even in cases of NRs that are not known to respond to physiologic ligands. Presented here is an overview of NR regulation of pluripotency with a focus on the transcriptional, proteomic, and epigenetic mechanisms by which they promote or suppress the pluripotent state.
Collapse
Affiliation(s)
- Ryan T Wagner
- Department of Cell Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston TX 77030-3498, USA
| | | |
Collapse
|
141
|
Verma V, Huang B, Kallingappa PK, Oback B. Dual Kinase Inhibition Promotes Pluripotency in Finite Bovine Embryonic Cell Lines. Stem Cells Dev 2013; 22:1728-42. [DOI: 10.1089/scd.2012.0481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Vinod Verma
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Ben Huang
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | | | - Björn Oback
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| |
Collapse
|
142
|
Hsu DM, Agarwal S, Benham A, Coarfa C, Trahan DN, Chen Z, Stowers PN, Courtney AN, Lakoma A, Barbieri E, Metelitsa LS, Gunaratne P, Kim ES, Shohet JM. G-CSF receptor positive neuroblastoma subpopulations are enriched in chemotherapy-resistant or relapsed tumors and are highly tumorigenic. Cancer Res 2013; 73:4134-46. [PMID: 23687340 DOI: 10.1158/0008-5472.can-12-4056] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroblastoma is a neural crest-derived embryonal malignancy, which accounts for 13% of all pediatric cancer mortality, primarily due to tumor recurrence. Therapy-resistant cancer stem cells are implicated in tumor relapse, but definitive phenotypic evidence of the existence of these cells has been lacking. In this study, we define a highly tumorigenic subpopulation in neuroblastoma with stem cell characteristics, based on the expression of CSF3R, which encodes the receptor for granulocyte colony-stimulating factor (G-CSF). G-CSF receptor positive (aka G-CSFr(+) or CD114(+)) cells isolated from a primary tumor and the NGP cell line by flow cytometry were highly tumorigenic and capable of both self-renewal and differentiation to progeny cells. CD114(+) cells closely resembled embryonic and induced pluripotent stem cells with respect to their profiles of cell cycle, miRNA, and gene expression. In addition, they reflect a primitive undifferentiated neuroectodermal/neural crest phenotype revealing a developmental hierarchy within neuroblastoma tumors. We detected this dedifferentiated neural crest subpopulation in all established neuroblastoma cell lines, xenograft tumors, and primary tumor specimens analyzed. Ligand activation of CD114 by the addition of exogenous G-CSF to CD114(+) cells confirmed intact STAT3 upregulation, characteristic of G-CSF receptor signaling. Together, our data describe a novel distinct subpopulation within neuroblastoma with enhanced tumorigenicity and a stem cell-like phenotype, further elucidating the complex heterogeneity of solid tumors such as neuroblastoma. We propose that this subpopulation may represent an additional target for novel therapeutic approaches to this aggressive pediatric malignancy.
Collapse
Affiliation(s)
- Danielle M Hsu
- Division of Pediatric Surgery, Michael E DeBakey Department of Surgery, Section of Hematology-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Tang Y, Tian XC. JAK-STAT3 and somatic cell reprogramming. JAKSTAT 2013; 2:e24935. [PMID: 24470976 PMCID: PMC3894236 DOI: 10.4161/jkst.24935] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 01/19/2023] Open
Abstract
Reprogramming somatic cells to pluripotency, especially by the induced pluripotent stem cell (iPSC) technology, has become widely used today to generate various types of stem cells for research and for regenerative medicine. However the mechanism(s) of reprogramming still need detailed elucidation, including the roles played by the leukemia inhibitory factor (LIF) signaling pathway. LIF is central in maintaining the ground state pluripotency of mouse embryonic stem cells (ESCs) and iPSCs by activating the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) pathway. Characterizing and understanding this pathway holds the key to generate naïve pluripotent human iPSCs which will facilitate the development of patient-specific stem cell therapy. Here we review the historical and recent developments on how LIF signaling pathway regulates ESC pluripotency maintenance and somatic cell reprogramming, with a focus on JAK-STAT3.
Collapse
Affiliation(s)
- Yong Tang
- Center for Regenerative Biology; Department of Animal Science; University of Connecticut; Storrs, CT USA
| | - Xiuchun Cindy Tian
- Center for Regenerative Biology; Department of Animal Science; University of Connecticut; Storrs, CT USA
| |
Collapse
|
144
|
Betschinger J, Nichols J, Dietmann S, Corrin P, Paddison P, Smith A. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell 2013; 153:335-47. [PMID: 23582324 PMCID: PMC3661979 DOI: 10.1016/j.cell.2013.03.012] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/14/2013] [Accepted: 03/07/2013] [Indexed: 02/02/2023]
Abstract
Factors that sustain self-renewal of mouse embryonic stem cells (ESCs) are well described. In contrast, the machinery regulating exit from pluripotency is ill defined. In a large-scale small interfering RNA (siRNA) screen, we found that knockdown of the tumor suppressors Folliculin (Flcn) and Tsc2 prevent ESC commitment. Tsc2 lies upstream of mammalian target of rapamycin (mTOR), whereas Flcn acts downstream and in parallel. Flcn with its interaction partners Fnip1 and Fnip2 drives differentiation by restricting nuclear localization and activity of the bHLH transcription factor Tfe3. Conversely, enforced nuclear Tfe3 enables ESCs to withstand differentiation conditions. Genome-wide location and functional analyses showed that Tfe3 directly integrates into the pluripotency circuitry through transcriptional regulation of Esrrb. These findings identify a cell-intrinsic rheostat for destabilizing ground-state pluripotency to allow lineage commitment. Congruently, stage-specific subcellular relocalization of Tfe3 suggests that Flcn-Fnip1/2 contributes to developmental progression of the pluripotent epiblast in vivo.
Collapse
Affiliation(s)
- Joerg Betschinger
- Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QR, UK
| | - Sabine Dietmann
- Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Philip D. Corrin
- Human Biology Division, Fred Hutchinson Cancer Research Centre, Seattle, WA 98109, USA
| | - Patrick J. Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Centre, Seattle, WA 98109, USA
| | - Austin Smith
- Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QR, UK
| |
Collapse
|
145
|
Onishi K, Tonge PD, Nagy A, Zandstra PW. Microenvironment-mediated reversion of epiblast stem cells by reactivation of repressed JAK-STAT signaling. Integr Biol (Camb) 2013; 4:1367-76. [PMID: 22990140 DOI: 10.1039/c2ib20098h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Embryonic stem cells (ESC) and epiblast stem cells (EpiSC) are distinct pluripotent stem cell states that require different signaling pathways for their self-renewal. Forward transitions between ESC and EpiSC can be accomplished by changing culture conditions; however reverse transitions between EpiSC and ESC are rare events that require transgene insertion or culture on feeders. We demonstrate that transgene-free reversion of EpiSCs to ESCs can be enhanced by local microenvironmental control and the subsequent reactivation of dormant LIF-STAT3 signaling. Reactivation of LIF responsiveness occurs in regions of colony constraint (high local cell density) typical of culture on feeders, a condition that can be recapitulated using micropatterned (μP) colonies under defined conditions. This increased LIF responsiveness results in a subsequent increase in the frequency of EpiSC reversion. Importantly, the resulting revertant EpiSCs are functionally indistinguishable from naïve mESC. Our findings demonstrate that signaling pathway activation and repression create barriers to cell fate transitions that can be overcome by microenvironmental control.
Collapse
Affiliation(s)
- Kento Onishi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | | | | |
Collapse
|
146
|
Festuccia N, Osorno R, Halbritter F, Karwacki-Neisius V, Navarro P, Colby D, Wong F, Yates A, Tomlinson SR, Chambers I. Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells. Cell Stem Cell 2013; 11:477-90. [PMID: 23040477 PMCID: PMC3473361 DOI: 10.1016/j.stem.2012.08.002] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 11/30/2022]
Abstract
Embryonic stem cell (ESC) self-renewal efficiency is determined by the level of Nanog expression. However, the mechanisms by which Nanog functions remain unclear, and in particular, direct Nanog target genes are uncharacterized. Here we investigate ESCs expressing different Nanog levels and Nanog−/− cells with distinct functionally inducible Nanog proteins to identify Nanog-responsive genes. Surprisingly, these constitute a minor fraction of genes that Nanog binds. Prominent among Nanog-reponsive genes is Estrogen-related receptor b (Esrrb). Nanog binds directly to Esrrb, enhances binding of RNAPolII, and stimulates Esrrb transcription. Overexpression of Esrrb in ESCs maintains cytokine-independent self-renewal and pluripotency. Remarkably, this activity is retained in Nanog−/− ESCs. Moreover, Esrrb can reprogram Nanog−/− EpiSCs and can rescue stalled reprogramming in Nanog−/− pre-iPSCs. Finally, Esrrb deletion abolishes the defining ability of Nanog to confer LIF-independent ESC self-renewal. These findings are consistent with the functional placement of Esrrb downstream of Nanog.
Collapse
Affiliation(s)
- Nicola Festuccia
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, Scotland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Rodríguez-Jimnez FJ, Alastrue-Agudo A, Erceg S, Stojkovic M, Moreno-Manzano V. FM19G11 favors spinal cord injury regeneration and stem cell self-renewal by mitochondrial uncoupling and glucose metabolism induction. Stem Cells 2013; 30:2221-33. [PMID: 22865656 DOI: 10.1002/stem.1189] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Spinal cord injury is a major cause of paralysis with no currently effective therapies. Induction of self-renewal and proliferation of endogenous regenerative machinery with noninvasive and nontoxic therapies could constitute a real hope and an alternative to cell transplantation for spinal cord injury patients. We previously showed that FM19G11 promotes differentiation of adult spinal cord-derived ependymal stem cells under hypoxia. Interestingly, FM19G11 induces self-renewal of these ependymal stem cells grown under normoxia. The analysis of the mechanism of action revealed an early increment of mitochondrial uncoupling protein 1 and 2 with an early drop of ATP, followed by a subsequent compensatory recovery with activated mitochondrial metabolism and the induction of glucose uptake by upregulation of the glucose transporter GLUT-4. Here we show that phosphorylation of AKT and AMP-activated kinase (AMPK) is involved in FM19G11-dependent activation of GLUT-4, glucose influx, and consequently in stem cell self-renewal. Small interfering RNA of uncoupling protein 1/2, GLUT-4 and pharmacological inhibitors of AKT, mTOR and AMPK signaling blocked the FM19G11-dependent induction of the self-renewal-related markers Sox2, Oct4, and Notch1. Importantly, FM19G11-treated animals showed accelerated locomotor recovery. In vivo intrathecal sustained administration of FM19G11 in rats after spinal cord injury showed more neurofilament TUJ1-positive fibers crossing the injured area surrounded by an increase of neural precursor Vimentin-positive cells. Overall, FM19G11 exerts an important influence on the self-renewal of ependymal stem progenitor cells with a plausible neuroprotective role, providing functional benefits for spinal cord injury treatment.
Collapse
|
148
|
Hawkins K, Mohamet L, Ritson S, Merry CLR, Ward CM. E-cadherin and, in its absence, N-cadherin promotes Nanog expression in mouse embryonic stem cells via STAT3 phosphorylation. Stem Cells 2013; 30:1842-51. [PMID: 22696497 DOI: 10.1002/stem.1148] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have recently shown that loss of E-cadherin in mouse embryonic stem cells (mESCs) results in significant alterations to both the transcriptome and hierarchy of pluripotency-associated signaling pathways. Here, we show that E-cadherin promotes kruppel-like factor 4 (Klf4) and Nanog transcript and protein expression in mESCs via STAT3 phosphorylation and that β-catenin, and its binding region in E-cadherin, is required for this function. To further investigate the role of E-cadherin in leukemia inhibitory factor (LIF)-dependent pluripotency, E-cadherin null (Ecad(-/-)) mESCs were cultured in LIF/bone morphogenetic protein supplemented medium. Under these conditions, Ecad(-/-) mESCs exhibited partial restoration of cell-cell contact and STAT3 phosphorylation and upregulated Klf4, Nanog, and N-cadherin transcripts and protein. Abrogation of N-cadherin using an inhibitory peptide caused loss of phospho STAT3, Klf4, and Nanog in these cells, demonstrating that N-cadherin supports LIF-dependent pluripotency in this context. We therefore identify a novel molecular mechanism linking E- and N-cadherin to the core circuitry of pluripotency in mESCs. This mechanism may explain the recently documented role of E-cadherin in efficient induced pluripotent stem cell reprogramming.
Collapse
Affiliation(s)
- Kate Hawkins
- Stem Cell Biology Group, Core Technology Facility, The University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
149
|
Tai CI, Ying QL. Gbx2, a LIF/Stat3 target, promotes reprogramming to and retention of the pluripotent ground state. J Cell Sci 2013; 126:1093-8. [PMID: 23345404 DOI: 10.1242/jcs.118273] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activation of signal transducer and activator of transcription 3 (Stat3) by leukemia inhibitory factor (LIF) maintains mouse embryonic stem cell (mESC) self-renewal and also facilitates reprogramming to ground state pluripotency. Exactly how LIF/Stat3 signaling exerts these effects, however, remains elusive. We identified gastrulation brain homeobox 2 (Gbx2) as a LIF/Stat3 downstream target that, when overexpressed, allows long-term expansion of undifferentiated mESCs in the absence of LIF/Stat3 signaling. Elevated Gbx2 expression also enhanced reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Moreover, overexpression of Gbx2 was sufficient to reprogram epiblast stem cells to ground state ESCs. Our results reveal a novel function of Gbx2 in mESC reprogramming and LIF/Stat3-mediated self-renewal.
Collapse
Affiliation(s)
- Chih-I Tai
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | |
Collapse
|
150
|
Pasque V, Radzisheuskaya A, Gillich A, Halley-Stott RP, Panamarova M, Zernicka-Goetz M, Surani MA, Silva JCR. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J Cell Sci 2012; 125:6094-104. [PMID: 23077180 PMCID: PMC3585521 DOI: 10.1242/jcs.113019] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 01/05/2023] Open
Abstract
How cell fate becomes restricted during somatic cell differentiation is a long-lasting question in biology. Epigenetic mechanisms not present in pluripotent cells and acquired during embryonic development are expected to stabilize the differentiated state of somatic cells and thereby restrict their ability to convert to another fate. The histone variant macroH2A acts as a component of an epigenetic multilayer that heritably maintains the silent X chromosome and has been shown to restrict tumor development. Here we show that macroH2A marks the differentiated cell state during mouse embryogenesis. MacroH2A.1 was found to be present at low levels upon the establishment of pluripotency in the inner cell mass and epiblast, but it was highly enriched in the trophectoderm and differentiated somatic cells later in mouse development. Chromatin immunoprecipitation revealed that macroH2A.1 is incorporated in the chromatin of regulatory regions of pluripotency genes in somatic cells such as mouse embryonic fibroblasts and adult neural stem cells, but not in embryonic stem cells. Removal of macroH2A.1, macroH2A.2 or both increased the efficiency of induced pluripotency up to 25-fold. The obtained induced pluripotent stem cells reactivated pluripotency genes, silenced retroviral transgenes and contributed to chimeras. In addition, overexpression of macroH2A isoforms prevented efficient reprogramming of epiblast stem cells to naïve pluripotency. In summary, our study identifies for the first time a link between an epigenetic mark and cell fate restriction during somatic cell differentiation, which helps to maintain cell identity and antagonizes induction of a pluripotent stem cell state.
Collapse
Affiliation(s)
- Vincent Pasque
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, CB2 1QN Cambridge, UK
| | - Aliaksandra Radzisheuskaya
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Astrid Gillich
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Richard P. Halley-Stott
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, CB2 1QN Cambridge, UK
| | - Maryna Panamarova
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Magdalena Zernicka-Goetz
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - M. Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - José C. R. Silva
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|