101
|
Komarowska MD, Grubczak K, Czerniecki J, Hermanowicz A, Hermanowicz JM, Debek W, Matuszczak E. Identification of the Bisphenol A (BPA) and the Two Analogues BPS and BPF in Cryptorchidism. Front Endocrinol (Lausanne) 2021; 12:694669. [PMID: 34335471 PMCID: PMC8318035 DOI: 10.3389/fendo.2021.694669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE to explore the association of plasma concentrations of bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF) with unilateral cryptorchidism. In addition, to analyze selected demographic and intraoperative characteristics. DESIGN Retrospective analysis to determine plasma concentrations of total BPA, BPS and BPF using gas chromatography - mass spectrometry (GC-MS) among prepubertal boys with cryptorchidism and prebupertal male control subjects. During operation, the size, turgor and location of the cryptorchid testes were assessed. MAIN OUTCOME MEASURE Plasma concentrations of total BPA, BPS and BPF. RESULTS In children with cryptorchidism, plasma levels of BPA, BPS and BPF were significantly higher compared to the control subjects. For BPA, it was: median value: 9.95 ng/mL vs. 5.54 ng/mL, p<0.05. For BPS, it was: median value: 3.93 ng/mL vs. 1.45 ng/mL, p<0.001. For BPF, it was: median value: 3.56 ng/mL vs. 1.83 ng/mL, p<0.05. In cryptorchid group, BPA was detected in 61.4% samples, BPS in 19.3% and BPF in 19.3%. All the three bisphenols were detected in plasma samples of both the healthy subjects and the study cohort. In the latter group, we found significant higher levels of BPA in boys from urban areas. We found a weak positive correlation between the levels of BPS and BPF and reduced turgor of the testes. Furthermore, results showed weak positive correlations between BPA and BPS levels and the age of the children as well as between BPS and BPF concentrations and the place of residence. CONCLUSIONS Results provide a first characterization of prepubertal boys suffering from cryptorchidism and exposed to different kind of bisphenols. Our study suggests that cryptorchid boys are widely exposed to BPA and, to a lesser extent, also to its alternatives, such as BPS and BPF.
Collapse
Affiliation(s)
- Marta Diana Komarowska
- Department of Pediatric Surgery and Urology, Faculty of Medicine, Medical University of Bialystok, Białystok, Poland
- *Correspondence: Marta Diana Komarowska, ; Justyna Magdalena Hermanowicz,
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Białystok, Poland
| | - Jan Czerniecki
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research Polish Academy of Sciences, Olsztyn, Poland
| | - Adam Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Białystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Białystok, Poland
- *Correspondence: Marta Diana Komarowska, ; Justyna Magdalena Hermanowicz,
| | - Wojciech Debek
- Department of Pediatric Surgery and Urology, Faculty of Medicine, Medical University of Bialystok, Białystok, Poland
| | - Ewa Matuszczak
- Department of Pediatric Surgery and Urology, Faculty of Medicine, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
102
|
Le Magueresse-Battistoni B. Adipose Tissue and Endocrine-Disrupting Chemicals: Does Sex Matter? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249403. [PMID: 33333918 PMCID: PMC7765367 DOI: 10.3390/ijerph17249403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Obesity and metabolic-related diseases, among which diabetes, are prominent public health challenges of the 21st century. It is now well acknowledged that pollutants are a part of the equation, especially endocrine-disrupting chemicals (EDCs) that interfere with the hormonal aspect. The aim of the review is to focus on adipose tissue, a central regulator of energy balance and metabolic homeostasis, and to highlight the significant differences in the endocrine and metabolic aspects of adipose tissue between males and females which likely underlie the differences of the response to exposure to EDCs between the sexes. Moreover, the study also presents an overview of several mechanisms of action by which pollutants could cause adipose tissue dysfunction. Indeed, a better understanding of the mechanism by which environmental chemicals target adipose tissue and cause metabolic disturbances, and how these mechanisms interact and sex specificities are essential for developing mitigating and sex-specific strategies against metabolic diseases of chemical origin. In particular, considering that a scenario without pollutant exposure is not a realistic option in our current societies, attenuating the deleterious effects of exposure to pollutants by acting on the gut-adipose tissue axis may constitute a new direction of research.
Collapse
Affiliation(s)
- Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite, France; ; Tel.: +33-(0)-426235919; Fax: +33-(0)-426235916
- CarMeN Laboratory, INSERM U1060, Hopital Lyon-Sud, Bâtiment CENS ELI-2D, 165 Chemin du Grand Revoyet, 69310 Pierre-Bénite, France
| |
Collapse
|
103
|
Li M, Gao X, Tan L, Miao Y, Fan W, Gao Z, Liu S, Ding C, Shi X, Song S. Effects of bisphenol A at the safe reference dose on abdominal fat deposition in aged hens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111398. [PMID: 33010594 DOI: 10.1016/j.ecoenv.2020.111398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical. Its influence on lipid homeostasis remains to be proven. In this study, the obese model of laying hens were induced using high-fat diet (HFD) to determine the lipid metabolism interference of BPA, especially its influence on estrogen receptors (ERs) and oxidative damage, at the dose of tolerable daily intake (TDI, 50 μg/kg body weight [BW]/day) and no observable adverse effect level (NOAEL, 5000 μg/kg BW/day). The results demonstrated that the TDI dose of BPA interacted with ERα more effectively than the NOAEL dose of BPA. The TDI dose of BPA increased the expression of ERα (esr1), which further changed the expression of lipid metabolism-related genes, such as cpt-1, lpl, creb1, and apov1. Furthermore, the abdominal fat rate, hematoxylin-eosin staining of adipocytes, and the average area of the hens were reduced. Therefore, the TDI dose of BPA played an estrogen-compensating role and weakened the effect of HFD on obesity in aged hens. By contrast, BPA at NOAEL dose exhibited great oxidative stress, which remarkably inhibited the activities of antioxidant-related enzymes (total superoxide dismutase and glutathione peroxidase) and promoted the excessive accumulation of lipid peroxidation products (malondialdehyde). Moreover, the increase in oxidative stress corresponded well with the increase in the expression of fat-forming genes (srebp-1, fas, acc, and ppar γ). That is, BPA at NOAEL may accelerate the process of fat formation.
Collapse
Affiliation(s)
- Mengcong Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xiaona Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen 518000, China
| | - Yufan Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
104
|
Su H, Guan G, Ahmed RZ, Lyu L, Li Z, Jin X. TBBPA stimulated cell migration of endometrial cancer via the contribution of NOX-generated ROS in lieu of energy metabolism. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123204. [PMID: 32569978 DOI: 10.1016/j.jhazmat.2020.123204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 05/06/2023]
Abstract
Due to the extensive applications and deleterious effects of Tetrabromobisphenol A (TBBPA), the health risk and possible mechanisms have been a topic of concern. However, the knowledge on carcinogenic risk of TBBPA and corresponding mechanisms remains scarce. In this study, endometrial cancer cells were exposed to low doses of TBBPA and its main derivatives including TBBPA bis (2,3-dibromopropyl ether) (TBBPA-BDBPE) and TBBPA bis (2-hydroxyethyl ether) (TBBPA-BHEE). The data from wound healing and transwell assays demonstrated that TBBPA treatment exhibited the strongest enhanced effect on cell migration among other tested treatments. Of note, the process of invasion rather than epithelial-mesenchymal transition (EMT) was accompanied by the occurrence of migration elevated by TBBPA. Furthermore, the levels of several metabolite indicators were measured to assess the underlying mechanisms involved in TBBPA-induced cell migration. The findings suggested that NADPH oxidase (NOX)-driven ROS instead of energy metabolism was sensitive to TBBPA stimulation. In addition, molecular docking supported a link between TBBPA ligand and NOX receptor. Accordingly, this study has provided new insights for TBBPA-induced carcinogenic effects and may arise peoples' vigilance to environmental pollution of brominated flame retardant.
Collapse
Affiliation(s)
- Huilan Su
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China; School of Public Health, Qingdao University, Qingdao, China
| | - Ge Guan
- School of Public Health, Qingdao University, Qingdao, China
| | - Rifat Zubair Ahmed
- Dept. of Genetics, University of Karachi, Karachi, Pakistan; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liang Lyu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- School of Life Sciences, Shanxi University, Taiyuan, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
105
|
Criswell R, Crawford KA, Bucinca H, Romano ME. Endocrine-disrupting chemicals and breastfeeding duration: a review. Curr Opin Endocrinol Diabetes Obes 2020; 27:388-395. [PMID: 33027070 PMCID: PMC7968861 DOI: 10.1097/med.0000000000000577] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe epidemiologic and toxicological literature investigating how endocrine-disrupting chemicals (EDCs) affect mammary gland development and function, thereby impacting lactation duration. RECENT FINDINGS Perfluoroalkyl and polyfluoroalkyl substances appear to reduce breastfeeding duration through impaired mammary gland development, lactogenesis, and suppressed endocrine signaling. Halogenated aromatic hydrocarbons have differing associations with lactation duration, likely because of the variety of signaling pathways that they affect, pointing to the importance of complex mixtures in epidemiologic studies. Although epidemiologic literature suggests that pesticides and fungicides decrease or have no effect on lactation duration, toxicology literature suggests enhanced mammary gland development through estrogenic and/or antiandrogenic pathways. Toxicological studies suggest that phthalates may affect mammary gland development via estrogenic pathways but no association with lactation duration has been observed. Bisphenol A was associated with decreased duration of breastfeeding, likely through direct and indirect action on estrogenic pathways. SUMMARY EDCs play a role in mammary gland development, function, and lactogenesis, which can affect breastfeeding duration. Further research should explore direct mechanisms of EDCs on lactation, the significance of toxicant mixtures, and transgenerational effects of EDCs on lactation.
Collapse
Affiliation(s)
| | - Kathryn A. Crawford
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH
- Environmental Studies Program, Middlebury College, Middlebury, VT
| | - Hana Bucinca
- Research and Quality Improvement Program, Action for Mothers and Children, Prishtina, Kosovo
- Department of Pharmacy, Rezonanca College of Medical Sciences, Prishtina, Kosovo
| | - Megan E. Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH
| |
Collapse
|
106
|
Naderi M, Kwong RWM. A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. ENVIRONMENT INTERNATIONAL 2020; 145:106078. [PMID: 32911243 DOI: 10.1016/j.envint.2020.106078] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The normal brain development and function are delicately driven by an ever-changing milieu of steroid hormones arising from fetal, placental, and maternal origins. This reliance on the neuroendocrine system sets the stage for the exquisite sensitivity of the central nervous system to the adverse effects of endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is one of the most common EDCs which has been a particular focus of environmental concern for decades due to its widespread nature and formidable threat to human and animal health. The heightened regulatory actions and the scientific and public concern over the adverse health effects of BPA have led to its replacement with a suite of structurally similar but less known alternative chemicals. Bisphenol S (BPS) is the main substitute for BPA that is increasingly being used in a wide array of consumer and industrial products. Although it was considered to be a safe BPA alternative, mounting evidence points to the deleterious effects of BPS on a wide range of neuroendocrine functions in animals. In addition to its reproductive toxicity, recent experimental efforts indicate that BPS has a considerable potential to induce neurotoxicity and behavioral dysfunction. This review analyzes the current state of knowledge regarding the neurobehavioral effects of BPS and discusses its potential mode of actions on several aspects of the neuroendocrine system. We summarize the role of certain hormones and their signaling pathways in the regulation of brain and behavior and discuss how BPS induces neurotoxicity through interactions with these pathways. Finally, we review potential links between BPS exposure and aberrant neurobehavioral functions in animals and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
107
|
Zhou H, Yin N, Faiola F. Tetrabromobisphenol A (TBBPA): A controversial environmental pollutant. J Environ Sci (China) 2020; 97:54-66. [PMID: 32933740 DOI: 10.1016/j.jes.2020.04.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and is extensively used in electronic equipment, furniture, plastics, and textiles. It is frequently detected in water, soil, air, and organisms, including humans, and has raised concerns in the scientific community regarding its potential adverse health effects. Human exposure to TBBPA is mainly via diet, respiration, and skin contact. Various in vivo and in vitro studies based on animal and cell models have demonstrated that TBBPA can induce multifaceted effects in cells and animals, and potentially exert hepatic, renal, neural, cardiac, and reproductive toxicities. Nevertheless, other reports have claimed that TBBPA might be a safe chemical. In this review, we re-evaluated most of the published TBBPA toxicological assessments with the goal of reaching a conclusion about its potential toxicity. We concluded that, although low TBBPA exposure levels and rapid metabolism in humans may signify that TBBPA is a safe chemical for the general population, particular attention should be paid to the potential effects of TBBPA on early developmental stages.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
108
|
Tq D, L C, A I, K N, M M, Ml S. In vitro profiling of the potential endocrine disrupting activities affecting steroid and aryl hydrocarbon receptors of compounds and mixtures prevalent in human drinking water resources. CHEMOSPHERE 2020; 258:127332. [PMID: 32554009 DOI: 10.1016/j.chemosphere.2020.127332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Prioritizing chemicals posing threats to drinking water resources is crucial for legislation considering the cost of water treatment, remediation, and monitoring. We profiled in vitro potential endocrine disrupting activities (both agonistic and antagonistic) of 18 contaminants most prevalent in Walloon raw water resources intended for drinking water production, including several compound groups: pesticides, perfluorinated compounds, polycyclic aromatic hydrocarbons, a corrosion inhibitor, and bisphenol A. Mixtures thereof relevant for human realistic exposure were also investigated. Seven luciferase reporter gene cell lines were used i.e. three (human and rat) responsive to dioxins through the aryl hydrocarbon receptor (AhR) and four (human) responsive to steroids through the estrogen (ER), androgen (AR), progesterone (PR), and glucocorticoid (GR) receptors. Among the 18 compounds, ten caused at least one response in at least one receptor. Specifically, chlorpyrifos, bisphenol A, fluoranthene, phenanthrene, and benzo [a]pyrene displayed significant activities on several receptors. Bisphenol A agonized ER, but abolished the cells' response to androgen and progesterone. While fluoranthene and phenanthrene strongly reduced human AhR and AR transactivation, benzo [a]pyrene strongly activated AhR and ER, but inhibited GR and AR. In human breast cancer cells, benzo [a]pyrene dramatically activated AhR, inducing a 10-fold higher response than 2,3,7,8-tetrachlorodibenzodioxin (TCDD) at concentrations possibly found realistically in human blood. The mixture of the 18 compounds exerted both ER and rat AhR agonism, with the main contribution being from benzo [a]pyrene or its combination with bisphenol A. Moreover, the mixture significantly inhibited TCDD-induced CYP1A activity (detected only by EROD assays) in human hepatoma cells.
Collapse
Affiliation(s)
- Doan Tq
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - Connolly L
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, BT9 5DL, UK
| | - Igout A
- Department of Biomedical and Preclinical Sciences, Faculty of Medicine, University of Liège, Liège, 4000, Belgium
| | - Nott K
- La Société Wallonne des Eaux (SWDE), Verviers, 4800, Belgium
| | - Muller M
- GIGA-R, Laboratory for Organogenesis and Regeneration, University of Liège, Liège, 4000, Belgium
| | - Scippo Ml
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium.
| |
Collapse
|
109
|
Grelska A, Noszczyńska M. White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39958-39976. [PMID: 32803603 PMCID: PMC7546991 DOI: 10.1007/s11356-020-10382-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/03/2020] [Indexed: 05/04/2023]
Abstract
Endocrine-disrupting chemicals (EDC) are a wide group of chemicals that interfere with the endocrine system. Their similarity to natural steroid hormones makes them able to attach to hormone receptors, thereby causing unfavorable health effects. Among EDC, bisphenol A (BPA), bisphenol S (BPS), and nonylphenol (NP) seem to be particularly harmful. As the industry is experiencing rapid expansion, BPA, BPS, and NP are being produced in growing amounts, generating considerable environmental pollution. White rot fungi (WRF) are an economical, ecologically friendly, and socially acceptable way to remove EDC contamination from ecosystems. WRF secrete extracellular ligninolytic enzymes such as laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase, involved in lignin deterioration. Owing to the broad substrate specificity of these enzymes, they are able to remove numerous xenobiotics, including EDC. Therefore, WRF seem to be a promising tool in the abovementioned EDC elimination during wastewater treatment processes. Here, we review WRF application for this EDC removal from wastewater and indicate several strengths and limitations of such methods.
Collapse
Affiliation(s)
- Agnieszka Grelska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Magdalena Noszczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
110
|
Mustieles V, D'Cruz SC, Couderq S, Rodríguez-Carrillo A, Fini JB, Hofer T, Steffensen IL, Dirven H, Barouki R, Olea N, Fernández MF, David A. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. ENVIRONMENT INTERNATIONAL 2020; 144:105811. [PMID: 32866736 DOI: 10.1016/j.envint.2020.105811] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Human biomonitoring (HBM) studies have demonstrated widespread and daily exposure to bisphenol A (BPA). Moreover, BPA structural analogues (e.g. BPS, BPF, BPAF), used as BPA replacements, are being increasingly detected in human biological matrices. BPA and some of its analogues are classified as endocrine disruptors suspected of contributing to adverse health outcomes such as altered reproduction and neurodevelopment, obesity, and metabolic disorders among other developmental and chronic impairments. One of the aims of the H2020 European Human Biomonitoring Initiative (HBM4EU) is the implementation of effect biomarkers at large scales in future HBM studies in a systematic and standardized way, in order to complement exposure data with mechanistically-based biomarkers of early adverse effects. This review aimed to identify and prioritize existing biomarkers of effect for BPA, as well as to provide relevant mechanistic and adverse outcome pathway (AOP) information in order to cover knowledge gaps and better interpret effect biomarker data. A comprehensive literature search was performed in PubMed to identify all the epidemiologic studies published in the last 10 years addressing the potential relationship between bisphenols exposure and alterations in biological parameters. A total of 5716 references were screened, out of which, 119 full-text articles were analyzed and tabulated in detail. This work provides first an overview of all epigenetics, gene transcription, oxidative stress, reproductive, glucocorticoid and thyroid hormones, metabolic and allergy/immune biomarkers previously studied. Then, promising effect biomarkers related to altered neurodevelopmental and reproductive outcomes including brain-derived neurotrophic factor (BDNF), kisspeptin (KiSS), and gene expression of nuclear receptors are prioritized, providing mechanistic insights based on in vitro, animal studies and AOP information. Finally, the potential of omics technologies for biomarker discovery and its implications for risk assessment are discussed. To the best of our knowledge, this is the first effort to comprehensively identify bisphenol-related biomarkers of effect for HBM purposes.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephan Couderq
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | | | - Jean-Baptiste Fini
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Inger-Lise Steffensen
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Hubert Dirven
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Robert Barouki
- University Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France. Institut national de la santé et de la recherche médicale (INSERM, National Institute of Health & Medical Research) UMR S-1124, Paris, France
| | - Nicolás Olea
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
111
|
Reyes-Chaparro A, Verdín-Betancourt FA, Sierra-Santoyo A. Human Biotransformation Pathway of Temephos Using an In Silico Approach. Chem Res Toxicol 2020; 33:2765-2774. [PMID: 33112607 DOI: 10.1021/acs.chemrestox.0c00105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Temephos is an organophosphorothioate (OPT) larvicide used for controlling vectors of diseases such as dengue, chikungunya, and Zika. OPTs require a metabolic activation mediated by cytochrome P540 (CYP) to cause toxic effects, such as acetylcholinesterase (AChE) activity inhibition. There is no information about temephos biotransformation in humans, and it is considered to have low toxicity in mammals. Recent studies have reported that temephos-oxidized derivatives cause AChE inhibition. The aim of this study was to propose the human biotransformation pathway of temephos using in silico tools. The metabolic pathway was proposed using the MetaUltra program of MultiCase software as well as the Way2Drug and Xenosite web servers. The results show the following three essential reactions of phase I metabolism: (1) S-oxidation, (2) oxidative desulfurization, and (3) dephosphorylation, as well as the formation of 19 possible intermediary metabolites. Temephos dephosphorylation is the most likely reaction, and it enables phase II metabolism for glucuronidation to be excreted. However, the CYP-dependent metabolism showed that temephos oxon can be formed, which could lead to toxic effects in mammals. CYP2B6, 2C9, and 2C19 are the main isoforms involved in temephos metabolism, and CYP3A4 and 2D6 have minor contributions. According to computational predictions, the highest probability of temephos metabolism is dephosphorylation and phase II reactions that do not produce cholinergic toxic effects; nonetheless, the participation of CYPs is highly possible if the primary reaction is depleted.
Collapse
Affiliation(s)
- Andrés Reyes-Chaparro
- Departamento de Toxicologı́a, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, Col. Zacatenco, G. A. Madero, Mexico City 07360, Mexico
| | - Francisco Alberto Verdín-Betancourt
- Departamento de Toxicologı́a, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, Col. Zacatenco, G. A. Madero, Mexico City 07360, Mexico
| | - Adolfo Sierra-Santoyo
- Departamento de Toxicologı́a, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, Col. Zacatenco, G. A. Madero, Mexico City 07360, Mexico
| |
Collapse
|
112
|
Batista-Silva H, Rodrigues K, Sousa de Moura KR, Van Der Kraak G, Delalande-Lecapitaine C, Mena Barreto Silva FR. Role of bisphenol A on calcium influx and its potential toxicity on the testis of Danio rerio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110876. [PMID: 32563953 DOI: 10.1016/j.ecoenv.2020.110876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the acute in vitro effect of low-concentration bisphenol A (BPA) on calcium (45Ca2+) influx in zebrafish (Danio rerio) testis and examined whether intracellular Ca2+ was involved in the effects of BPA on testicular toxicity. In vitro studies on 45Ca2+ influx were performed in the testes after incubation with BPA for 30 min. Inhibitors were added 15 min before the addition of 45Ca2+ and BPA to testes to study the mechanism of action of BPA. The involvement of intracellular calcium from stores on lactate dehydrogenase (LDH) release and on triacylglycerol (TAG) content were carried out after in vitro incubation of testes with BPA for 1 h. Furthermore, gamma-glutamyl transpeptidase (GGT) and aspartate aminotransferase (AST) activities were analyzed in the liver at 1 h after in vitro BPA incubation of D. rerio. Our data show that the acute in vitro treatment of D. rerio testes with BPA at very low concentration activates plasma membrane ionic channels, such as voltage-dependent calcium channels and calcium-dependent chloride channels, and protein kinase C (PKC), which stimulates Ca2+ influx. In addition, BPA increased cytosolic Ca2+ by activating inositol triphosphate receptor (IP3R) and inhibiting sarco/endoplasmic reticulum calcium ATPase (SERCA) at the endoplasmic reticulum, contributing to intracellular Ca2+ overload. The protein kinases, PKC, MEK 1/2 and PI3K, are involved in the mechanism of action of BPA, which may indicate a crosstalk between the non-genomic initiation effects mediated by PLC/PKC/IP3R signaling and genomic responses of BPA mediated by the estrogen receptor (ESR). In vitro exposure to a higher concentration of BPA caused cell damage and plasma membrane injury with increased LDH release and TAG content; both effects were dependent on intracellular Ca2+ and mediated by IP3R. Furthermore, BPA potentially induced liver damage, as demonstrated by increased GGT activity. In conclusion, in vitro effect of BPA in a low concentration triggers cytosolic Ca2+ overload and activates downstream protein kinases pointing to a crosstalk between its non-genomic and genomic effects of BPA mediated by ESR. Moreover, in vitro exposure to a higher concentration of BPA caused intracellular Ca2+-dependent testicular cell damage and plasma membrane injury. This acute toxicity was reinforced by increased testicular LDH release and GGT activity in the liver.
Collapse
Affiliation(s)
- Hemily Batista-Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil; Département Biologie et Sciences de La Terre, Université de Caen Normandie, Caen, Normandie, France
| | - Keyla Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil
| | | | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP: 88040-900, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
113
|
Malaisé Y, Lencina C, Placide F, Bacquié V, Cartier C, Olier M, Buettner M, Wallbrecht M, Ménard S, Guzylack-Piriou L. Oral exposure to bisphenols induced food intolerance and colitis in vivo by modulating immune response in adult mice. Food Chem Toxicol 2020; 146:111773. [PMID: 33011352 DOI: 10.1016/j.fct.2020.111773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 01/09/2023]
Abstract
Bisphenol (BP) A, a known food contaminant, is a possible risk factor in the epidemic of non-communicable diseases (NCD) including food intolerance and inflammatory bowel diseases (IBD). Regulatory restrictions regarding BPA usage led to BPA removal and replacement by poorly described substitutes, like BPS or BPF (few data on occurrence in food and human samples and biological effect). Oral tolerance protocol to ovalbumin (OVA) in WT mice and Il10-/- mice prone to IBD were used respectively to address immune responses towards food and microbial luminal antigens following BP oral exposure. Both mice models were orally exposed for five weeks to BPA, BPS or BPF at 0.5, 5 and 50 μg/kg of body weight (bw)/day (d). Oral exposure to BPs at low doses (0.5 and 5 μg/kg bw/d) impaired oral tolerance as indicated by higher humoral and pro-inflammatory cellular responses in OVA-tolerized mice. However, only BPF exacerbate colitis in Il10-/- prone mice associated with a defect of fecal IgA and increased secretion of TNF-α in colon. These findings provide a unique comparative study on effects of adult oral exposure to BPs on immune responses and its consequences on NCD related to intestinal luminal antigen development.
Collapse
Affiliation(s)
- Yann Malaisé
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Corinne Lencina
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Fanny Placide
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Valérie Bacquié
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Christel Cartier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Maïwenn Olier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Manuela Buettner
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Markus Wallbrecht
- Hannover Medical School, Institute for Laboratory Animal Science, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Sandrine Ménard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Laurence Guzylack-Piriou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France.
| |
Collapse
|
114
|
Liang F, Huo X, Wang W, Li Y, Zhang J, Feng Y, Wang Y. Association of bisphenol A or bisphenol S exposure with oxidative stress and immune disturbance among unexplained recurrent spontaneous abortion women. CHEMOSPHERE 2020; 257:127035. [PMID: 32702804 DOI: 10.1016/j.chemosphere.2020.127035] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Human exposure to environmental chemicals might play a role in the pathogenesis of unexplained recurrent spontaneous abortion (URSA). Bisphenol A (BPA) and bisphenol S (BPS) have been suggested to affect reproductive health. However, the mechanism remains unclear. To explore the association between BPA and BPS exposure and oxidative stress and immune homeostasis, we conducted a cross-sectional study and revealed BPA and BPS levels in relation to these two factors which were supposed to be implicated in miscarriage. 111 URSA patients were recruited and we analyzed urinary BPA and BPS concentrations, oxidative stress biomarkers (8-hydroxydeoxyguanosine and 8-isoprostane) and serum immune balance biomarkers (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-α, TGF-β and IFN-γ). Multivariable linear regression models were used to evaluate the correlation between bisphenols exposure and outcome biomarkers. After adjustment for age, BMI, menstrual cycle, and parity history, creatinine-adjusted BPA was significantly associated with increases in 8-isoprostane (β = 0.74, 95% CI = 0.07, 1.41; p = 0.031) and IFN-γ (β = 0.18, 95% CI = 0.00, 0.36; p = 0.046). No statistical correlation between BPS and biomarkers of oxidative stress or immune balance was observed when all participants were analyzed. Further analysis revealed that in the subgroup of BPS > limit of detection (0.01 ng/ml), creatinine-adjusted BPS was significantly associated with increases in IL-10 (β = 0.22, 95% CI = 0.00, 0.45; p = 0.048). Our findings suggested that BPA and BPS exposure might be related to oxidative stress and immune imbalance in URSA patients. Overall, our work might suggest potential pathogenic and aetiological associations among the bisphenols, biomarkers and URSA, which offers hypotheses for further studies.
Collapse
Affiliation(s)
- Fan Liang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Xiaona Huo
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Wei Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Yan Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
| |
Collapse
|
115
|
Association of placental concentrations of phenolic endocrine disrupting chemicals with cognitive functioning in preschool children from the Environment and Childhood (INMA) Project. Int J Hyg Environ Health 2020; 230:113597. [PMID: 32795877 DOI: 10.1016/j.ijheh.2020.113597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 11/23/2022]
Abstract
Developmental exposure to bisphenol A (BPA) and other phenolic endocrine disrupting chemicals (EDCs) may affect child neurodevelopment, but data on the effects of prenatal exposure to phenols on cognitive function remain sparse. Our aim was to examine the association of placental concentrations of several phenolic EDCs, including BPA, parabens (PBs), and benzophenones (BzPs), with cognitive development in preschool children from the Environment and Childhood (INMA) Project in Spain. Concentrations of BPA, four PBs (methylparaben [MePB], ethylparaben [EtPB], propylparaben [PrPB], and butylparaben [BuPB]), and six BzPs (BzP-1, BzP-2, BzP-3, BzP-6, BzP-8, and 4-hydroxybenzophenone [4-OH-BzP]) were measured in 490 placenta samples randomly selected from five INMA cohorts collected between 2000 and 2008. Neuropsychological assessment of cognitive and motor function was performed with the McCarthy Scales of Children's Abilities (MSCA) at the age of 4-5 years. Associations were assessed in a sub-sample of 191 mother-child pairs using linear and logistic regression models adjusted for confounding factors. PB compounds were detected in more than 71% of placentas, BPA in 62%, 4-OH-BzP in 50%, and the remaining BzPs in <9% of the samples. Because of the low detection frequency of BzP compounds, only 4-OH-BzP was included in the exposure-outcome analyses. After adjustment for confounders, BPA was associated with greater odds of scoring lower (below the 20th percentile) in the verbal (third vs. first exposure tertile: odds ratio [OR] = 2.78, 95% confidence interval [CI] = 1.00; 5.81, p-trend = 0.05) and gross motor (detected vs. undetected: OR = 1.75, 95%CI = 1.06; 9.29) areas, and these associations were only significant for boys. Regarding PB compounds, PrPB was associated with lower scores in memory (detected vs. undetected: β = -4.96, 95%CI = -9.54; -0.31), span memory (OR = 2.50, 95%CI = 0.95; 6.92 and 2.71, 95%CI = 0.97; 6.64, respectively for second and third tertiles, p-trend = 0.03), and motor function (β = -5.15, 95%CI = -9.26; -0.01 for third vs. first exposure tertile, p-trend = 0.04). EtPB and total PBs concentrations in the second tertile were also associated with poorer visual function of posterior cortex and worse quantitative performance, respectively, but linear trends were not statistically significant. The associations of BPA and PrPB with poorer verbal, memory, and motor skills are novel observations that warrant further attention. Larger prospective studies are required to confirm whether prenatal exposure to BPA and other phenolic EDCs is associated with impaired cognitive development.
Collapse
|
116
|
Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, Oriente F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int J Mol Sci 2020; 21:E5761. [PMID: 32796699 PMCID: PMC7460848 DOI: 10.3390/ijms21165761] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is an organic synthetic compound serving as a monomer to produce polycarbonate plastic, widely used in the packaging for food and drinks, medical devices, thermal paper, and dental materials. BPA can contaminate food, beverage, air, and soil. It accumulates in several human tissues and organs and is potentially harmful to human health through different molecular mechanisms. Due to its hormone-like properties, BPA may bind to estrogen receptors, thereby affecting both body weight and tumorigenesis. BPA may also affect metabolism and cancer progression, by interacting with GPR30, and may impair male reproductive function, by binding to androgen receptors. Several transcription factors, including PPARγ, C/EBP, Nrf2, HOX, and HAND2, are involved in BPA action on fat and liver homeostasis, the cardiovascular system, and cancer. Finally, epigenetic changes, such as DNA methylation, histones modification, and changes in microRNAs expression contribute to BPA pathological effects. This review aims to provide an extensive and comprehensive analysis of the most recent evidence about the potential mechanisms by which BPA affects human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT “Genomic of Diabetes” of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), 80131 Naples, Italy; (I.C.); (F.F.); (G.P.); (C.M.); (F.B.); (F.O.)
| | | |
Collapse
|
117
|
Li J, Wang J, Hou S, Huang Y, Chen H, Sun Z, Chen D. Exposure to bisphenol analogues interrupts growth, proliferation, and fatty acid compositions of protozoa Tetrahymena thermophila. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122643. [PMID: 32334280 DOI: 10.1016/j.jhazmat.2020.122643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
A number of bisphenol A (BPA) analogues are increasingly used as its industrial alternatives. However, their effects on aquatic organisms at both individual and population levels have not been well understood. In this study, effects of five bisphenol analogues (i.e., BPA, BPAF, BPB, BPE and BPS) were investigated by using the unicellular eukaryote Tetrahymena thermophila as a model organism. All of them inhibited individual growth and population proliferation at a concentration of 2.6 μM or 13.0 μM during the 60-h exposure period, with the population suppression capacify ranked as: BPB > BPA ≈ BPAF > BPE > BPS. These analogues also exhibited chemical-specific disruption of fatty acid profiles in single-cell eukaryotes and the transcriptional levels of enzymes involved in fatty acid metabolism/biosynthesis. For example, exposure to BPA and BPE significantly increased the ratio of saturated fatty acids to unsaturated fatty acids, contrary to the desaturation effects exhibited by BPAF and BPB. Overall, our results clearly indicated that these bisphenol analogues could pose chemical-specific effects on low-trophic level aquatic organisms, particularly disruption of endogenous metabolic balances. Selected analogues (i.e., BPB and BPAF) could result in effects similar to or even greater than that of BPA.
Collapse
Affiliation(s)
- Jing Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jie Wang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Sen Hou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Hexia Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Zhiqiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
118
|
Coumailleau P, Trempont S, Pellegrini E, Charlier TD. Impacts of bisphenol A analogues on zebrafish post-embryonic brain. J Neuroendocrinol 2020; 32:e12879. [PMID: 32749037 DOI: 10.1111/jne.12879] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/23/2022]
Abstract
Bisphenol A (BPA) is a widely studied and well-recognised endocrine-disrupting chemical, and one of the current issues is its safe replacement by various analogues. Using larva zebrafish as a model, the present study reveals that moderate and chronic exposure to BPA analogues such as bisphenol S, bisphenol F and bisphenol AF may also affect vertebrate neurodevelopment and locomotor activity. Several parameters of embryo-larval development were investigated, such as mortality, hatching, number of mitotically active cell, as defined by 5-bromo-2'-deoxyuridine incorporation and proliferative cell nuclear antigen labelling, aromatase B protein expression in radial glial cell and locomotor activity. Our results show that exposure to several bisphenol analogues induced an acceleration of embryo hatching rate. At the level of the developing brain, a strong up-regulation of the oestrogen-sensitive Aromatase B was also detected in the hypothalamic region. This up-regulation was not associated with effects on the numbers of mitotically active progenitors nor differentiated neurones in the preoptic area and in the nuclear recessus posterior of the hypothalamus zebrafish larvae. Furthermore, using a high-throughput video tracking system to monitor locomotor activity in zebrafish larvae, we show that some bisphenol analogues, such as bisphenol AF, significantly reduced locomotor activity following 6 days of exposure. Taken together, our study provides evidence that BPA analogues can also affect the neurobehavioural development of zebrafish.
Collapse
Affiliation(s)
- Pascal Coumailleau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, F-35000, France
| | - Sarah Trempont
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, F-35000, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, F-35000, France
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, F-35000, France
| |
Collapse
|
119
|
Serra H, Brion F, Chardon C, Budzinski H, Schulze T, Brack W, Aït-Aïssa S. Estrogenic activity of surface waters using zebrafish- and human-based in vitro assays: The Danube as a case-study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103401. [PMID: 32417722 DOI: 10.1016/j.etap.2020.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Most in vitro reporter gene assays used to assess estrogenic contamination are based on human estrogen receptor α (hERα) activation. However, fish bioassays can have distinct response to estrogenic chemicals and mixtures, questioning the relevance of human-based bioassays for assessing risk to this species. In this study, zebrafish liver cells stably expressing zebrafish ERβ2 (ZELHβ2) and human breast cancer cells expressing hERα (MELN) were used to quantify the estrogenic activity of 25 surface water samples of the Danube River, for which chemicals have been previously quantified. Most samples had a low estrogenic activity below 0.1 ng/L 17β-estradiol-equivalents that was more often detected by MELN cells, while ZELHβ2 response tend to be lower than predicted based on the chemicals identified. Nevertheless, both bioassays quantified well a higher estrogenic activity at two sites, which was confirmed in vivo using a transgenic zebrafish assay. The results are discussed considering the effect-based trigger values proposed for water quality monitoring.
Collapse
Affiliation(s)
- Hélène Serra
- Unité Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France; UMR-CNRS EPOC/LPTC, Université de Bordeaux, Talence, France
| | - François Brion
- Unité Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Clémence Chardon
- Unité Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | | | - Tobias Schulze
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Werner Brack
- UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany; RWTH Aachen University, Aachen, Germany
| | - Selim Aït-Aïssa
- Unité Ecotoxicologie in vitro et in vivo, UMR-I 02 SEBIO, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France.
| |
Collapse
|
120
|
Champmartin C, Marquet F, Chedik L, Décret MJ, Aubertin M, Ferrari E, Grandclaude MC, Cosnier F. Human in vitro percutaneous absorption of bisphenol S and bisphenol A: A comparative study. CHEMOSPHERE 2020; 252:126525. [PMID: 32220717 DOI: 10.1016/j.chemosphere.2020.126525] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/26/2020] [Accepted: 03/15/2020] [Indexed: 05/23/2023]
Abstract
Bisphenol A (BPA) is widely used in industrial products. Due to the toxicity of this compound, and to comply with restrictions and regulations, manufacturers have progressively replaced it by substitutes. One of the main substitutes used is bisphenol S (BPS). Despite increasing use in many products, the effects of BPS on human health have been little investigated, and studies on percutaneous BPS absorption and particularly toxicokinetic data are lacking. However, the endocrine-disrupting activity of BPA and BPS appears comparable. Dermal contact is a significant source of occupational exposure and is the main route during handling of bisphenol-containing receipts by cashiers. Here, percutaneous BPS absorption was investigated and compared to that of BPA. Experiments were performed according to OECD guidelines. Test compounds dissolved in a vehicle - acetone, artificial sebum or water - were applied in vitro to fresh human skin samples in static Franz diffusion cells. Flux, cumulative absorbed dose and distribution of dose recovered were measured. BPA absorption was vehicle-dependent ranging from 3% with sebum to 41% with water. BPS absorption was much lower than BPA absorption whatever the vehicle tested (less than 1% of applied dose). However, depending on the vehicle 20% to 47% of the applied BPS dose remained in the skin, and was consequently potentially absorbable. Both BPA and BPS were mainly absorbed without biotransformation. Taken together, these results indicate that workers may be exposed to BPS through skin when handling products containing it. This exposure is of concern as its toxicity is currently incompletely understood.
Collapse
Affiliation(s)
- Catherine Champmartin
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, 54519, Vandœuvre, Cedex, France.
| | - Fabrice Marquet
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, 54519, Vandœuvre, Cedex, France.
| | - Lisa Chedik
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, 54519, Vandœuvre, Cedex, France.
| | - Marie-Josèphe Décret
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, 54519, Vandœuvre, Cedex, France.
| | - Matthieu Aubertin
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, 54519, Vandœuvre, Cedex, France.
| | - Elisabeth Ferrari
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, 54519, Vandœuvre, Cedex, France.
| | | | - Frédéric Cosnier
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS 60027, 54519, Vandœuvre, Cedex, France.
| |
Collapse
|
121
|
Lucarini F, Krasniqi T, Bailat Rosset G, Roth N, Hopf NB, Broillet MC, Staedler D. Exposure to New Emerging Bisphenols Among Young Children in Switzerland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4793. [PMID: 32635338 PMCID: PMC7370163 DOI: 10.3390/ijerph17134793] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 01/02/2023]
Abstract
Restrictions on the use of bisphenol A (BPA) in consumer products led to its replacement by various bisphenol (BP) analogues, yet young children's exposure to these analogues has been poorly characterized so far. This study aimed to characterize infants' and toddlers' exposure to BPA and 14 emerging BP analogues (i.e., bisphenol AF, bisphenol AP, bisphenol B, bisphenol BP, bisphenol C (BPC), bisphenol E, bisphenol F (BPF), bisphenol G, bisphenol M (BPM), bisphenol P, bisphenol PH, bisphenol S (BPS), bisphenol TMC, and bisphenol Z). We extracted infants' and toddlers' urine from diapers (n = 109) collected in Swiss daycare centers as a practical and noninvasive alternative approach to urinary biomonitoring. Bisphenols were present in 47% of the samples, with BPC and BPM being the most frequently detected (23% and 25% of all samples, respectively). The mean concentrations of urinary BPS and BPF were greater than that of BPA. This contrasts with data reported previously. Furthermore, statistical analysis revealed a significant and negative correlation between urinary BPM concentration and the population's age. Our results provide a first characterization of infants' and toddlers' exposure to bisphenols in Switzerland. This knowledge can be used to support ongoing biomonitoring studies and to prioritize exposure reduction and prevention strategies.
Collapse
Affiliation(s)
- Fiorella Lucarini
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland; (F.L.); (T.K.); (M.-C.B.)
| | - Tropoja Krasniqi
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland; (F.L.); (T.K.); (M.-C.B.)
| | | | - Nicolas Roth
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, 4055 Basel, Switzerland; (N.R.); (N.B.H.)
| | - Nancy B Hopf
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, 4055 Basel, Switzerland; (N.R.); (N.B.H.)
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1007 Lausanne, Switzerland
| | - Marie-Christine Broillet
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland; (F.L.); (T.K.); (M.-C.B.)
| | - Davide Staedler
- Department of Biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland; (F.L.); (T.K.); (M.-C.B.)
- Scitec Research SA, Av. De Provence 18, 1007 Lausanne, Switzerland;
| |
Collapse
|
122
|
Salahinejad A, Naderi M, Attaran A, Meuthen D, Niyogi S, Chivers DP. Effects of chronic exposure to bisphenol-S on social behaviors in adult zebrafish: Disruption of the neuropeptide signaling pathways in the brain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:113992. [PMID: 32126434 DOI: 10.1016/j.envpol.2020.113992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Bisphenol S (BPS), considered to be a safe alternative to Bisphenol A, is increasingly used in a wide variety of consumer and industrial products. However, mounting evidence suggests that BPS can act as a xenoestrogen targeting a wide range of neuro-endocrine functions in animals. At present, very little is known about the impacts of BPS on social behaviors and/or the potential underlying mechanisms. To this end, we exposed adult male and female zebrafish to environmentally relevant concentrations of BPS (0 (control), 1, 10, and 30 μg/L), as well as to 17β-estradiol (E2; 1 μg/L; as positive control) for 75 days. Subsequently, alterations in social behaviors were evaluated by measuring shoal cohesion, group preferences, and locomotor activity. Furthermore, to elucidate the possible molecular mechanism underlying the neuro-behavioral effects of BPS, we also quantified the changes in the mRNA abundance of arginine vasotocin (AVT), isotocin (IT), and their corresponding receptors in the zebrafish brain. The results showed that E2 and BPS (30 μg/L) decreased shoal cohesion in both males and females. Moreover, a marked decline in group preferences was observed in all treatment groups, while locomotor activity remained unaffected. Alterations in the social behaviors were associated with sex-specific changes in the mRNA expression of genes involved in IT and AVT signaling. Taken together, the results of this study suggest that chronic exposure to BPS can impair zebrafish social behaviors via disruption of isotocinergic and vasotocinergic neuro-endocrine systems.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| | - Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada; Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
123
|
Beg MA, Sheikh IA. Endocrine disruption: Molecular interactions of environmental bisphenol contaminants with thyroid hormone receptor and thyroxine-binding globulin. Toxicol Ind Health 2020; 36:322-335. [DOI: 10.1177/0748233720928165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many bisphenol A (BPA) analogs have been commercially used recently, such as 2,2-bis(4-hydroxyphenyl)butane (BPB), 4,4′-ethylidenebisphenol, 4,4′-methylenediphenol (BPF), 4,4′-(1,4-phenylenediisopropylidene)bisphenol (BPP), 4,4′-dihydroxydiphenyl sulfone (BPS), 4,4′-cyclohexylidenebisphenol (BPZ), 4,4′-(hexafluoroisopropylidene)diphenol (BPAF), 4,4′-(1-phenylethylidene)bisphenol (BPAP), and 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane (TMBPA), to circumvent adverse effects of BPA. However, their increasing use is also contaminating the environment, which is a potential cause of concern for human health. Thyroid hormone transport and signaling are potential targets for endocrine-disrupting activity of BPA analogs. Thyroxine-binding globulin (TBG) is the major carrier protein for thyroxine (T4) and triiodothyronine (T3) in blood. Thyroid hormones exert their action through thyroid hormone receptors (TRα and TRβ). This report presents the thyroid-disrupting potential of indicated nine BPA analogs from structure-based studies with TBG and TRα. Each BPA analog formed important polar and hydrophobic interactions with a number of residues of TBG and TRα. Majority of TBG residues (77–100%) and TRα residues (70–91%) interacting with BPA analogs were common with those of native ligands T4 and T3, respectively. Majority of BPA analogs interacted with TBG forming a salt bridge interaction at Lys-270. The hydrogen-bonding interaction of T3 with TRα at His-381 was also shared by majority of analogs. The binding energy for BPP, BPB, BPZ, BPAP, and TMBPA with both proteins was closer to binding energy of respective native ligands. The similarity in structural binding characteristics suggested potential disrupting activity of thyroid hormone signaling and transport.
Collapse
Affiliation(s)
- Mohd A Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ishfaq A Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
124
|
Naderi M, Salahinejad A, Attaran A, Chivers DP, Niyogi S. Chronic exposure to environmentally relevant concentrations of bisphenol S differentially affects cognitive behaviors in adult female zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114060. [PMID: 32045791 DOI: 10.1016/j.envpol.2020.114060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/02/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Evidence is emerging that environmental exposure to bisphenol S (BPS), a substitute for bisphenol A (BPA), to humans and wildlife is on the rise. However, research on the neurobehavioral effects of this endocrine disruptive chemical is still in its infancy. In this study, we aimed to investigate the effects of long-term exposure to environmentally relevant concentrations of BPS on recognition memory and its mechanism(s) of action, especially focusing on the glutamatergic/ERK/CREB pathway in the brain. Adult female zebrafish were exposed to the vehicle, 17β-estradiol (E2, 1 μg/L), or BPS (1, 10 and 30 μg/L) for 120 days. Fish were then tested in the object recognition (OR), object placement (OP), and social recognition tasks (SR). Chronic exposure to E2 and 1 μg/L of BPS improved fish performance in OP task. This was associated with an up-regulation in the mRNA expression of several subtypes of metabotropic and ionotropic glutamate receptors, an increase in the phosphorylation levels of ERK1/2 and CREB, and an elevated transcript abundance of several immediate early genes involved in synaptic plasticity and memory formation. In contrast, the exposure to 10 and 30 μg/L of BPS attenuated fish performance in all recognition memory tasks. The impairment of these memory functions was associated with a marked down-regulation in the expression and activity of genes and proteins involved in glutamatergic/ERK/CREB signaling cascade. Collectively, our study demonstrated that the long-term exposure to BPS elicits hermetic effects on the recognition memory in zebrafish. Furthermore, the effect of BPS on the recognition memory seems to be mediated by the glutamatergic/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
125
|
Zaborowska M, Wyszkowska J, Borowik A. Soil Microbiome Response to Contamination with Bisphenol A, Bisphenol F and Bisphenol S. Int J Mol Sci 2020; 21:ijms21103529. [PMID: 32429402 PMCID: PMC7278947 DOI: 10.3390/ijms21103529] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 01/13/2023] Open
Abstract
The choice of the study objective was affected by numerous controversies and concerns around bisphenol F (BPF) and bisphenol S (BPS)—analogues of bisphenol A (BPA). The study focused on the determination and comparison of the scale of the BPA, BPF, and BPS impact on the soil microbiome and its enzymatic activity. The following parameters were determined in soil uncontaminated and contaminated with BPA, BPF, and BPS: the count of eleven groups of microorganisms, colony development (CD) index, microorganism ecophysiological diversity (EP) index, genetic diversity of bacteria and activity of dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), arylsulphatase (Aryl) and β-glucosidase (Glu). Bisphenols A, S and F significantly disrupted the soil homeostasis. BPF is regarded as the most toxic, followed by BPS and BPA. BPF and BPS reduced the abundance of Proteobacteria and Acidobacteria and increased that of Actinobacteria. Unique types of bacteria were identified as well as the characteristics of each bisphenol: Lysobacter, Steroidobacter, Variovorax, Mycoplana, for BPA, Caldilinea, Arthrobacter, Cellulosimicrobium and Promicromonospora for BPF and Dactylosporangium Geodermatophilus, Sphingopyxis for BPS. Considering the strength of a negative impact of bisphenols on the soil biochemical activity, they can be arranged as follows: BPS > BPF > BPA. Urease and arylsulphatase proved to be the most susceptible and dehydrogenases the least susceptible to bisphenols pressure, regardless of the study duration.
Collapse
|
126
|
Bisphenol S adsorption with activated carbon prepared from corncob: optimization using response surface methodology. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2019-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractActivated carbon derived from raw corncob (CCAC), which prepared with steam as the activating agent, was used to adsorb bisphenol S (BPS) from aqueous solution. Characterizations of CCAC were measured by using the Brunauer-Emmett-Teller, scanning electron microscopy, and Fourier transform infrared spectroscopy. Adsorption conditions including initial BPS concentration, contact time, adsorbent dosage and pH were optimized by response surface methodology (RSM). The results show that adsorption equilibrium was well described by the Langmuir and Koble–Corrigan models. The maximum monolayer adsorption capacity of BPS was found to be 617.29 mg g−1 at 298 K. Based on the thermodynamic parameters analysis, the BPS adsorption process was turned out to be spontaneous and exothermic. The adsorption process of BPS was well described by the pseudo-second-order kinetic model. It also found that H-bonding, π–π interaction, and electrostatic interaction were the main mechanisms in the process of BPS adsorption onto the CCAC.
Collapse
|
127
|
Viguié C, Chaillou E, Gayrard V, Picard-Hagen N, Fowler PA. Toward a better understanding of the effects of endocrine disrupting compounds on health: Human-relevant case studies from sheep models. Mol Cell Endocrinol 2020; 505:110711. [PMID: 31954824 DOI: 10.1016/j.mce.2020.110711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/25/2022]
Abstract
There are many challenges to overcome in order to properly understand both the exposure to, and effects of, endocrine disruptors (EDs). This is particularly true with respect to fetal life where ED exposures are a major issue requiring toxicokinetic studies of materno-fetal exchange and identification of pathophysiological consequences. The sheep, a large, monotocous, species, is very suitable for in utero fetal catheterization allowing a modelling approach predictive of human fetal exposure. Predicting adverse effects of EDs on human health is frequently impeded by the wide interspecies differences in the regulation of endocrine functions and their effects on biological processes. Because of its similarity to humans as regards gestational and thyroid physiologies and brain ontogeny, the sheep constitutes a highly appropriate model to move one step further on thyroid disruptor hazard assessment. As a grazing animal, the sheep has also proven to be useful in the evaluation of the consequences of chronic environmental exposure to "real-life" complex mixtures at different stages of the reproductive life cycle.
Collapse
Affiliation(s)
- Catherine Viguié
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France.
| | - Elodie Chaillou
- PRC, INRAE Val de Loire, UMR85 Physiologie de la Reproduction et des Comportements, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Véronique Gayrard
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
128
|
Luo C, Hou R, Chen G, Liu C, Zhou L, Yuan Y. UVC-assisted electrochemical degradation of novel bisphenol analogues with boron-doped diamond electrodes: kinetics, pathways and eco-toxicity removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134539. [PMID: 32000307 DOI: 10.1016/j.scitotenv.2019.134539] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
In the present study, the UVC-assisted electrochemical degradation ofthree novel bisphenol analogues (BPs; including bisphenol F, S, and B, i.e., BPF, BPS and BPB, respectively), along with bisphenol A (BPA), was investigated using boron-doped diamond (BDD) electrode. At first, this study demonstrated a significant influence ofcurrent density on the degradation rates of BPF by the BDD anode. The pseudo-first order rate constants for BPF were calculated as 0.012, 0.028 and 0.029 min-1 at the applied current densities of 10, 20 and 30 mA/cm2, respectively. UVC irradiation significantly enhanced the electrochemical degradation of BPF in the concentration range from 5 to 30 mg/L, with synergistic effects in the range of 32.0%-40.9%. The UVC-BDD electrolysisshowed comparable or even lower electric energy per order (EEO) than single BDD electrolysis. The UVC-assisted degradation of the investigated BPs showed decreased pseudo-first order rate constants in the following order: BPF > BPA > BPB > BPS. Based on the identifiedtransformation products, UVC-assisted electrochemical degradation pathways of the novel BPs were proposed to be mainly hydroxylation and bond-cleavage. UVC irradiation has been proved to promote the formation of hydroxyl radicals by BDD electrode to facilitate the degradation process. For these BPs, nearly 100% mineralization can be achieved by a modified strategy using a short-time UVC-assisted BDD electrolysis (120 min) that is followed by UVC photolysis (360 min). Finally, the eco-toxicity of the BPs solutions towardsVibrio Fischeri was significantly removed after 120 min of the electrochemical degradation period. Based on these results, the UVC-assisted electrochemical treatment using a BDD electrode can be considered a promising technology for the removal of novel BPs and the reduction of their hazardous effects to aqueous environments.
Collapse
Affiliation(s)
- Cheng Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Rui Hou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guanhua Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuangchuang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
129
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
130
|
Toporova L, Balaguer P. Nuclear receptors are the major targets of endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110665. [PMID: 31760044 DOI: 10.1016/j.mce.2019.110665] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that are suspected to cause adverse effects in the endocrine system mainly by acting through their interaction with nuclear receptors such as the estrogen receptors α and β (ERα and ERβ), the androgen receptor (AR), the pregnan X receptor (PXR), the peroxisome proliferator activated receptors α and γ (PPARα, PPARγ) and the thyroid receptors α and β (TRα and TRβ). More recently, the retinoid X receptors (RXRα, RXRβ and RXRγ), the constitutive androstane receptor (CAR) and the estrogen related receptor γ (ERRγ) have also been identified as targets of EDCs. Finally, nuclear receptors still poorly studied for their interaction with environmental ligands such as the progesterone receptor (PR), the mineralocorticoid receptor (MR), the glucocorticoid receptor (GR), the retinoic acid receptors (RAR α, RARβ and RARγ), the farnesoid X receptor (FXR) and the liver X receptors α and β (LXRα and LXβ) as well are suspected targets of EDCs. Humans are generally exposed to low doses of pollutants, therefore the aim of current research is to identify the targets of EDCs at environmental concentrations. In this review, we analyze recent works referring that nuclear receptors are targets of EDCs and we highlight which EDCs are able to act at low concentrations.
Collapse
Affiliation(s)
- Lucia Toporova
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, 34090, Montpellier, France.
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, 34090, Montpellier, France.
| |
Collapse
|
131
|
Peinado FM, Lendínez I, Sotelo R, Iribarne-Durán LM, Fernández-Parra J, Vela-Soria F, Olea N, Fernández MF, Freire C, León J, Pérez-Cabrera B, Ocón-Hernández O, Artacho-Cordón F. Association of Urinary Levels of Bisphenols A, F, and S with Endometriosis Risk: Preliminary Results of the EndEA Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1194. [PMID: 32069886 PMCID: PMC7068366 DOI: 10.3390/ijerph17041194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/13/2023]
Abstract
Aim: The aim of this study was to explore associations of urinary concentrations of bisphenols A (BPA), S (BPS), and F (BPF) and of thiobarbituric acid reactive substances (TBARS) with the risk of endometriosis in women of childbearing age. Methods: This case-control study enrolled 124 women between January 2018 and July 2019: 35 women with endometriosis (cases) and 89 women without endometriosis undergoing abdominal surgery for other reasons (controls). Endometriosis was diagnosed (cases) or ruled out (controls) by laparoscopic inspection of the pelvis and the biopsy of suspected lesions (histological diagnosis). Fasting urine samples were collected before surgery to determine concentrations of BPA, BPS, BPF, and TBARS. Associations of bisphenol and TBARS concentrations with endometriosis risk were explored with multivariate logistic and linear regression analyses. Results: After adjustment for urinary creatinine, age, BMI, parity, and residence, endometriosis risk was increased with each 1 log unit of BPA [OR 1.5; 95%CI 1.0-2.3] and Σbisphenols [OR 1.5; 95%CI 0.9-2.3] but was not associated with the presence of BPS and BPF. Classification of the women by tertiles of exposure revealed statistically significant associations between endometriosis risk and the second tertile of exposure to BPA [OR 3.7; 95%CI 1.3-10.3] and Σbisphenols [OR 5.4; 95%CI 1.9-15.6]. In addition, TBARS concentrations showed a close-to-significant relationship with increased endometriosis risk [OR 1.6; 95%CI 1.0-2.8], and classification by TBARS concentration tertile revealed that the association between endometriosis risk and concentrations of BPA [OR 2.0; 95%CI 1.0-4.1] and Σbisphenols [OR 2.2; 95%CI 1.0-4.6] was only statistically significant for women in the highest TBARS tertile (>4.23 μM). Conclusion: Exposure to bisphenols may increase the risk of endometriosis, and oxidative stress may play a crucial role in this association. Further studies are warranted to verify these findings.
Collapse
Affiliation(s)
- Francisco M. Peinado
- Instituto de Investigación Biosanitaria ibs, E-18012 Granada, Spain; (F.M.P.); (L.M.I.-D.); (F.V.-S.); (N.O.); (M.F.F.); (C.F.); (J.L.)
| | - Inmaculada Lendínez
- General Surgery, San Cecilio University Hospital, E-18016 Granada, Spain; (I.L.); (B.P.-C.)
| | - Rafael Sotelo
- Gynaecology and Obstetrics Unit, ‘San Cecilio’ University Hospital, E-18016 Granada, Spain;
| | - Luz M. Iribarne-Durán
- Instituto de Investigación Biosanitaria ibs, E-18012 Granada, Spain; (F.M.P.); (L.M.I.-D.); (F.V.-S.); (N.O.); (M.F.F.); (C.F.); (J.L.)
| | - Jorge Fernández-Parra
- Gynaecology and Obstetrics Unit, ‘Virgen de las Nieves’ University Hospital, E-18014 Granada, Spain;
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria ibs, E-18012 Granada, Spain; (F.M.P.); (L.M.I.-D.); (F.V.-S.); (N.O.); (M.F.F.); (C.F.); (J.L.)
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria ibs, E-18012 Granada, Spain; (F.M.P.); (L.M.I.-D.); (F.V.-S.); (N.O.); (M.F.F.); (C.F.); (J.L.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain
- Nuclear Medicine Unit, ‘San Cecilio’ University Hospital, E-18016 Granada, Spain
| | - Mariana F. Fernández
- Instituto de Investigación Biosanitaria ibs, E-18012 Granada, Spain; (F.M.P.); (L.M.I.-D.); (F.V.-S.); (N.O.); (M.F.F.); (C.F.); (J.L.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria ibs, E-18012 Granada, Spain; (F.M.P.); (L.M.I.-D.); (F.V.-S.); (N.O.); (M.F.F.); (C.F.); (J.L.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain
| | - Josefa León
- Instituto de Investigación Biosanitaria ibs, E-18012 Granada, Spain; (F.M.P.); (L.M.I.-D.); (F.V.-S.); (N.O.); (M.F.F.); (C.F.); (J.L.)
- Digestive Medicine Unit, ‘San Cecilio’ University Hospital, E-18012 Granada, Spain
- CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), E-28029 Madrid, Spain
| | - Beatriz Pérez-Cabrera
- General Surgery, San Cecilio University Hospital, E-18016 Granada, Spain; (I.L.); (B.P.-C.)
| | - Olga Ocón-Hernández
- Instituto de Investigación Biosanitaria ibs, E-18012 Granada, Spain; (F.M.P.); (L.M.I.-D.); (F.V.-S.); (N.O.); (M.F.F.); (C.F.); (J.L.)
- Gynaecology and Obstetrics Unit, ‘San Cecilio’ University Hospital, E-18016 Granada, Spain;
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria ibs, E-18012 Granada, Spain; (F.M.P.); (L.M.I.-D.); (F.V.-S.); (N.O.); (M.F.F.); (C.F.); (J.L.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain
| |
Collapse
|
132
|
Brulport A, Vaiman D, Chagnon MC, Le Corre L. Obesogen effect of bisphenol S alters mRNA expression and DNA methylation profiling in male mouse liver. CHEMOSPHERE 2020; 241:125092. [PMID: 31683443 DOI: 10.1016/j.chemosphere.2019.125092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Environmental pollution is increasingly considered an important factor involved in the obesity incidence. Endocrine disruptors (EDs) are important actors in the concept of DOHaD (Developmental Origins of Health and Disease), where epigenetic mechanisms play crucial roles. Bisphenol A (BPA), a monomer used in the manufacture of plastics and resins is one of the most studied obesogenic endocrine disruptor. Bisphenol S (BPS), a BPA substitute, has the same obesogenic properties, acting at low doses with a sex-specific effect following perinatal exposure. Since the liver is a major organ in regulating body lipid homeostasis, we investigated gene expression and DNA methylation under low-dose BPS exposure. The BPS obesogenic effect was associated with an increase of hepatic triglyceride content. These physiological disturbances were accompanied by genome-wide changes in gene expression (1366 genes significantly modified more than 1.5-fold). Gene ontology analysis revealed alteration of gene cascades involved in protein translation and complement regulation. It was associated with hepatic DNA hypomethylation in autosomes and hypermethylation in sex chromosomes. Although no systematic correlation has been found between gene repression and hypermethylation, several genes related to liver metabolism were either hypermethylated (Acsl4, Gpr40, Cel, Pparδ, Abca6, Ces3a, Sgms2) or hypomethylated (Soga1, Gpihbp1, Nr1d2, Mlxipl, Rps6kb2, Esrrb, Thra, Cidec). In specific cases (Hapln4, ApoA4, Cidec, genes involved in lipid metabolism and liver fibrosis) mRNA upregulation was associated with hypomethylation. In conclusion, we show for the first time wide disruptive physiological effects of low-dose of BPS, which raises the question of its harmlessness as an industrial substitute for BPA.
Collapse
Affiliation(s)
- Axelle Brulport
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSup, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Daniel Vaiman
- From Gametes to Birth Team (FGTB), INSERM, U1016, Institut Cochin, F-75014, Paris, France; CNRS UMR8104, F-75014, Paris, France; Université Sorbonne Paris Cité, F-75014, Paris, France
| | - Marie-Christine Chagnon
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSup, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France
| | - Ludovic Le Corre
- Université de Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; AgroSup, LNC UMR1231, F-21000, Dijon, France; Nutrition Physiology and Toxicology Team (NUTox), INSERM, LNC UMR1231, F-21000, Dijon, France.
| |
Collapse
|
133
|
Sheikh IA, Beg MA. Structural binding interactions of tetrabromobisphenol A with sex steroid nuclear receptors and sex hormone‐binding globulin. J Appl Toxicol 2020; 40:832-842. [DOI: 10.1002/jat.3947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Ishfaq A. Sheikh
- King Fahd Medical Research CenterKing Abdulaziz University Jeddah Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesKing Abdulaziz University Jeddah Saudi Arabia
| | - Mohd A. Beg
- King Fahd Medical Research CenterKing Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
134
|
Rugard M, Coumoul X, Carvaillo JC, Barouki R, Audouze K. Deciphering Adverse Outcome Pathway Network Linked to Bisphenol F Using Text Mining and Systems Toxicology Approaches. Toxicol Sci 2020; 173:32-40. [PMID: 31596483 PMCID: PMC6944215 DOI: 10.1093/toxsci/kfz214] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bisphenol F (BPF) is one of several Bisphenol A (BPA) substituents that is increasingly used in manufacturing industry leading to detectable human exposure. Whereas a large number of studies have been devoted to decipher BPA effects, much less is known about its substituents. To support decision making on BPF's safety, we have developed a new computational approach to rapidly explore the available data on its toxicological effects, combining text mining and integrative systems biology, and aiming at connecting BPF to adverse outcome pathways (AOPs). We first extracted from different databases BPF-protein associations that were expanded to protein complexes using protein-protein interaction datasets. Over-representation analysis of the protein complexes allowed to identify the most relevant biological pathways putatively targeted by BPF. Then, automatic screening of scientific abstracts from literature using the text mining tool, AOP-helpFinder, combined with data integration from various sources (AOP-wiki, CompTox, etc.) and manual curation allowed us to link BPF to AOP events. Finally, we combined all the information gathered through those analyses and built a comprehensive complex framework linking BPF to an AOP network including, as adverse outcomes, various types of cancers such as breast and thyroid malignancies. These results which integrate different types of data can support regulatory assessment of the BPA substituent, BPF, and trigger new epidemiological and experimental studies.
Collapse
Affiliation(s)
| | - Xavier Coumoul
- Université de Paris, Inserm UMR S-1124, 75006 Paris, France
| | | | - Robert Barouki
- Université de Paris, Inserm UMR S-1124, 75006 Paris, France
| | - Karine Audouze
- Université de Paris, Inserm UMR S-1124, 75006 Paris, France
| |
Collapse
|
135
|
Kim JJ, Kumar S, Kumar V, Lee YM, Kim YS, Kumar V. Bisphenols as a Legacy Pollutant, and Their Effects on Organ Vulnerability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E112. [PMID: 31877889 PMCID: PMC6982222 DOI: 10.3390/ijerph17010112] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
Bisphenols are widely used in the synthesis of polycarbonate plastics, epoxy resins, and thermal paper, which are used in manufacturing items of daily use. Packaged foods and drinks are the main sources of exposure to bisphenols. These chemicals affect humans and animals by disrupting the estrogen, androgen, progesterone, thyroid, and aryl hydrocarbon receptor functions. Bisphenols exert numerous harmful effects because of their interaction with receptors, reactive oxygen species (ROS) formation, lipid peroxidation, mitochondrial dysfunction, and cell signal alterations. Both cohort and case-control studies have determined an association between bisphenol exposure and increased risk of cardiovascular diseases, neurological disorders, reproductive abnormalities, obesity, and diabetes. Prenatal exposure to bisphenols results in developmental disorders in animals. These chemicals also affect the immune cells and play a significant role in initiating the inflammatory response. Exposure to bisphenols exhibit age, gender, and dose-dependent effects. Even at low concentrations, bisphenols exert toxicity, and hence deserve a critical assessment of their uses. Since bisphenols have a global influence on human health, the need to discover the underlying pathways involved in all disease conditions is essential. Furthermore, it is important to promote the use of alternatives for bisphenols, thereby restricting their uses.
Collapse
Affiliation(s)
- Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| | - Surendra Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Vinay Kumar
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh 758307, Vietnam;
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| | - You-Sam Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (J.-J.K.); (Y.-M.L.); (Y.-S.K.)
| |
Collapse
|
136
|
Peng Y, Wang J, Wu C. Determination of Endocrine Disruption Potential of Bisphenol A Alternatives in Food Contact Materials Using In Vitro Assays: State of the Art and Future Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12613-12625. [PMID: 31180677 DOI: 10.1021/acs.jafc.9b01543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alternatives to bisphenol A (BPA) are developed for food contact materials as a result of increasing evidence of exposure-correlated harmful effects of BPA. In vitro assays provide the fast, affordable, and mechanism insightful ways to screen endocrine disruption (ED), which is a major concern of new BPA alternatives. In this review, we summarize the safety and regulation information on the alternatives to BPA, review the state of the art of in vitro assays for ED evaluation, highlight their advantages and limitations, and discuss the challenges and future research needs. Our review shows that ligand binding, reporter gene, cell proliferation, and steroidogenesis are four commonly used in vitro assays to determine the ED at the response of receptor, gene transcription, and whole cell level. Major challenges are found from in vitro-in vivo translation and identification of ED chemicals in polymers. More studies on these areas are needed in the future.
Collapse
Affiliation(s)
- Ying Peng
- Department of Animal and Food Sciences , University of Delaware , Newark , Delaware 19716 , United States
| | - Jieliang Wang
- College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Changqing Wu
- Department of Animal and Food Sciences , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
137
|
Atlas E, Dimitrova V. Bisphenol S and Bisphenol A disrupt morphogenesis of MCF-12A human mammary epithelial cells. Sci Rep 2019; 9:16005. [PMID: 31690802 PMCID: PMC6831626 DOI: 10.1038/s41598-019-52505-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the most common cancers diagnosed in women worldwide. Genetic predisposition, such as breast cancer 1 (BRCA1) mutations, account for a minor percentage of the total breast cancer incidences. And thus, many life style factors have also been linked to the disease such as smoking, alcohol consumption and obesity. Emerging studies show that environmental pollutants may also play a role. Bisphenol-A (BPA) has been suspected to contribute to breast cancer development, and has been shown to affect mammary gland development amongst other effects. This prompted its replacement with other bisphenol analogs such as, bisphenol-S (BPS). In this study we used the human mammary epithelial cells, MCF-12A, grown in extracellular matrix to investigate the ability of BPA and BPS to disrupt mammary epithelial cells organization. We show that both BPA and BPS were equipotent in disrupting the organization of the acinar structures, despite BPS being less oestrogenic by other assays. Further, treatment with both compounds enabled the cells to invade the lumen of the structures. This study shows that BPS and BPA are environmental pollutants that may affect mammary development and may contribute to the development of breast cancer.
Collapse
Affiliation(s)
- Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Canada. .,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada.
| | - Valeria Dimitrova
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
138
|
In vitro inhibition of human red blood cell acetylcholinesterase (AChE) by temephos-oxidized products. Sci Rep 2019; 9:14758. [PMID: 31611606 PMCID: PMC6791832 DOI: 10.1038/s41598-019-51261-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023] Open
Abstract
Temephos (Tem) is an organophosphorus pesticide widely used to kill and prevent the growth of the main vectors for the transmission of dengue, zika, and chikungunya viruses. In chlorinated water, Tem is oxidized to its dioxon-sulfoxide (Tem-dox-SO), dioxon-sulfone (Tem-dox-SO2), and sulfoxide (Tem-SO) derivatives; however, these compounds are not commercially available to be used as standards and in toxicological studies. In the present study, we synthesized and characterized the Tem-oxidation products and the compound 4,4′-sulfinyldiphenol. These compounds were obtained by a simple reaction between Tem or 4,4′-thiodiphenol with sodium hypochlorite or potassium periodate, and were characterized by IR, NMR, and UPLC-HRESIMS. The in vitro evaluation of inhibitory potency of Tem-oxidized products on human red blood cell acetylcholinesterase (RBC AChE) showed that Tem-dox-SO2 was the most potent inhibitor of human RBC AChE, and its effect was more pronounced than that observed for ethyl-paraoxon, a potent typical inhibitor of AChE. An HPLC-DAD method for the analysis of metabolic products of Tem was developed, which may be useful for monitoring in biological and environmental samples. The ability of Tem-oxidized metabolites to inhibit human RBC AChE suggests that the addition of Tem to chlorinated drinking water could result in an increase in the risk of RBC AChE inhibition after exposure.
Collapse
|
139
|
Ijaz S, Ullah A, Shaheen G, Jahan S. Exposure of BPA and its alternatives like BPB, BPF, and BPS impair subsequent reproductive potentials in adult female Sprague Dawley rats. Toxicol Mech Methods 2019; 30:60-72. [DOI: 10.1080/15376516.2019.1652873] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Saman Ijaz
- Department of Animal Sciences, Reproductive Physiology Lab, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asad Ullah
- Department of Animal Sciences, Reproductive Physiology Lab, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghazala Shaheen
- Department of Animal Sciences, Reproductive Physiology Lab, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sarwat Jahan
- Department of Animal Sciences, Reproductive Physiology Lab, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
140
|
Andújar N, Gálvez-Ontiveros Y, Zafra-Gómez A, Rodrigo L, Álvarez-Cubero MJ, Aguilera M, Monteagudo C, Rivas AA. Bisphenol A Analogues in Food and Their Hormonal and Obesogenic Effects: A Review. Nutrients 2019; 11:nu11092136. [PMID: 31500194 PMCID: PMC6769843 DOI: 10.3390/nu11092136] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Bisphenol A (BPA) is the most well-known compound from the bisphenol family. As BPA has recently come under pressure, it is being replaced by compounds very similar in structure, but data on the occurrence of these BPA analogues in food and human matrices are limited. The main objective of this work was to investigate human exposure to BPA and analogues and the associated health effects. We performed a literature review of the available research made in humans, in in vivo and in vitro tests. The findings support the idea that exposure to BPA analogues may have an impact on human health, especially in terms of obesity and other adverse health effects in children.
Collapse
Affiliation(s)
- Natalia Andújar
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, 18071 Granada, Spain
| | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, 18071 Granada, Spain
| | - María Jesús Álvarez-Cubero
- Department of Biochemistry & Molecular Biology III, University of Granada, PTS, 18016 Granada, Spain.
- GENYO, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research, Av. de la Ilustración 114, 18016 Granada, Spain.
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, 18016 Granada, Spain
| | - Celia Monteagudo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, 18016 Granada, Spain
| | - And Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, 18016 Granada, Spain
| |
Collapse
|
141
|
Chen Q, Allgeier A, Yin D, Hollert H. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. ENVIRONMENT INTERNATIONAL 2019; 130:104938. [PMID: 31234003 DOI: 10.1016/j.envint.2019.104938] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 05/25/2023]
Abstract
Microplastics (MPs) and mesoplastics are able to sorb harmful substances and often contain additives, e.g., endocrine disrupting chemicals (EDCs), that can cause adverse effects to organisms. The present study aims to determine EDC concentrations and their endocrine activities in leachates of field-collected marine MPs and mesoplastics under stress conditions that are known to occur during the plastic life cycle. Estrogens were the dominant EDCs on plastic particles and were either concentrated from the surrounding water or originated from plastic manufacturing. Bisphenol A had the highest detection frequency (75%) with an average concentration of 475 ± 882 μg/kg, followed by bisphenol S, octylphenol and nonylphenol. Moreover, smaller marine MPs leached greater quantities of EDCs because the sorption from surrounding seawater is more efficient for smaller particles. It was found that normal life stresses such as microwaving (MW) and autoclaving (AC) can decrease EDC concentrations, but solar irradiation (solar) can increase EDC concentrations in leachates. Even though organisms with higher metabolic ability exhibited greater estrogenic effects, the comprehensive toxicity of plastic leachates after common life treatments was still limited (below the EC10 value) if 0.1% is taken as the EDC uptake from plastic. In future studies, the accurate contribution of plastic bound EDCs needs to be further explored, and the monitoring of MPs and mesoplastics in the human diet remains important because the concentrations of these plastics may change in the future.
Collapse
Affiliation(s)
- Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, PR China; Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Annika Allgeier
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Daqiang Yin
- State Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, PR China
| | - Henner Hollert
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, PR China
| |
Collapse
|
142
|
Occurrence of Bisphenol A and its analogues in some foodstuff marketed in Europe. Food Chem Toxicol 2019; 131:110575. [DOI: 10.1016/j.fct.2019.110575] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022]
|
143
|
Rodríguez-Carrillo A, Mustieles V, Pérez-Lobato R, Molina-Molina JM, Reina-Pérez I, Vela-Soria F, Rubio S, Olea N, Fernández MF. Bisphenol A and cognitive function in school-age boys: Is BPA predominantly related to behavior? Neurotoxicology 2019; 74:162-171. [DOI: 10.1016/j.neuro.2019.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
|
144
|
Occurrence, toxicity and endocrine disrupting potential of Bisphenol-B and Bisphenol-F: A mini-review. Toxicol Lett 2019; 312:222-227. [DOI: 10.1016/j.toxlet.2019.05.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 01/08/2023]
|
145
|
Huang X, Cang X, Liu J. Molecular mechanism of Bisphenol A on androgen receptor antagonism. Toxicol In Vitro 2019; 61:104621. [PMID: 31415812 DOI: 10.1016/j.tiv.2019.104621] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Bisphenol A (BPA), one of the highest production volume chemicals, is a typical endocrine-disrupting chemical (EDC) that exhibits antiandrogenic activity. However, how BPA antagonizes androgen effects remains ambiguous. In this study, the in silico and in vitro assays were carried out to explore the molecular mechanism(s) of BPA on androgen receptor (AR) antagonism. In reporter gene assay, BPA caused a significant antagonistic effect on 5α-dihydrotestosterone (DHT)-induced AR transcriptional activity at concentrations of 10-9 M-10-5 M. The results of molecular docking and molecular dynamics simulations indicated the availability of BPA binding to the ligand binding domain of AR. BPA treatment prevented the inhibition of receptor degradation caused by DHT binding to AR. BPA exposure also abolished DHT-dependent dissociation of AR from its co-chaperone, 90-kDa heat shock protein (Hsp90), and resulted in the blockage of DHT-induced AR nuclear translocation. This is the first report to show that BPA inhibited the DHT-induced stabilization of AR and the DHT-induced dissociation of AR-Hsp90 complex. This study provided new evidence for further understanding the precise mechanisms of antagonism of BPA on AR.
Collapse
Affiliation(s)
- Xin Huang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
146
|
Pelch KE, Li Y, Perera L, Thayer KA, Korach KS. Characterization of Estrogenic and Androgenic Activities for Bisphenol A-like Chemicals (BPs): In Vitro Estrogen and Androgen Receptors Transcriptional Activation, Gene Regulation, and Binding Profiles. Toxicol Sci 2019; 172:23-37. [PMID: 31388671 PMCID: PMC6813750 DOI: 10.1093/toxsci/kfz173] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 06/27/2019] [Accepted: 07/28/2019] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is a high production volume chemical widely used in plastics, food packaging, and many other products. It is well known that endocrine-disrupting chemicals (EDC) might be harmful to human health due to interference with normal hormone actions. Recent studies report widespread usage and exposure to many BPA-like chemicals (BPs) that are structurally or functionally similar to BPA. However, the biological actions and toxicity of those BPs are still relatively unknown. To address this data gap, we used in vitro cell models to evaluate the ability of twenty-two BPs to induce or inhibit estrogenic and androgenic activity. BPA, Bisphenol AF (BPAF), bisphenol Z (BPZ), bisphenol C (BPC), tetramethyl bisphenol A (TMBPA), bisphenol S (BPS), bisphenol E (BPE), 4,4-bisphenol F (4,4-BPF), bisphenol AP (BPAP), bisphenol B (BPB), tetrachlorobisphenol A (TCBPA), and benzylparaben (PHBB) induced estrogen receptor (ER)α and/or ERβ-mediated activity. With the exception of BPS, TCBPA, and PHBB, these same BPs were also androgen receptor (AR) antagonists. Only three BPs were found to be ER antagonists. Bisphenol P (BPP) selectively inhibited ERβ-mediated activity and 4-(4-phenylmethoxyphenyl)sulfonylphenol (BPS-MPE) and 2,4-bisphenol S (2,4-BPS) selectively inhibited ERα-mediated activity. None of the BPs induced AR mediated activity. In addition, we identify that the BPs can bind to ER or AR with varying degrees by a molecular modeling analysis. Taken together, these findings help us to understand the molecular mechanism of BPs and further consideration of their usage in consumer products.
Collapse
Affiliation(s)
| | - Yin Li
- Reproductive and Developmental Biology Laboratory
| | - Lalith Perera
- Genome Integrity and Structure Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | | | | |
Collapse
|
147
|
John N, Rehman H, Razak S, David M, Ullah W, Afsar T, Almajwal A, Alam I, Jahan S. Comparative study of environmental pollutants bisphenol A and bisphenol S on sexual differentiation of anteroventral periventricular nucleus and spermatogenesis. Reprod Biol Endocrinol 2019; 17:53. [PMID: 31292004 PMCID: PMC6621953 DOI: 10.1186/s12958-019-0491-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bisphenol A is well known endocrine-disrupting chemical while Bisphenol S was considered a safe alternative. The present study aims to examine the comparative effects of xenobiotic bisphenol-A (BPA) and its substitute bisphenol-S (BPS) on spermatogenesis and development of sexually dimorphic nucleus population of dopaminergic neurons in the anteroventral periventricular nucleus (AVPV) of the hypothalamus in male pups. METHODS Sprague Dawley rat's pups were administered subcutaneously at the neonatal stage from postnatal day PND1 to PND 27. Thirty animals were divided into six experimental groups (6 animals/group). The first group served as control and was provided with normal olive oil. The four groups were treated with 2 μg/kg and 200 μg/kg of BPA and BPS, respectively. The sixth group was given with 50 μg/kg of estradiol dissolved in olive oil as a standard to find the development of dopaminergic tyrosine hydroxylase neurons in AVPV regions. Histological analysis for testicular tissues and immunohistochemistry for brain tissues was performed. RESULTS The results revealed adverse histopathological changes in testis after administration of different doses of BPA and BPS. These degenerative changes were marked by highly significant (p < 0.001) decrease in tubular and luminal diameters of seminiferous tubule and epithelial height among bisphenols treated groups as compared to control. Furthermore, significantly increased (p < 0.001) TH-ir cell bodies in the AVPV region of the brain with 200 μg/kg dose of BPA and BPS was evident. CONCLUSION It is concluded that exposure of BPA and BPS during a critical developmental period can structural impairments in testes and affects sexual differentiation of a dimorphic dopaminergic population of AVPV region of hypothalamus in the male brain.
Collapse
Affiliation(s)
- Naham John
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| | - Humaira Rehman
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| | - Suhail Razak
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
- 0000 0004 1773 5396grid.56302.32Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mehwish David
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| | - Waheed Ullah
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| | - Tayyaba Afsar
- 0000 0004 1773 5396grid.56302.32Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- 0000 0004 1773 5396grid.56302.32Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Iftikhar Alam
- 0000 0004 1773 5396grid.56302.32Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sarwat Jahan
- 0000 0001 2215 1297grid.412621.2Reproductive Physiology Lab, Department of Animal Sciences, Quaid- i- Azam University Islamabad, Islamabad, 45320 Pakistan
| |
Collapse
|
148
|
Gayrard V, Lacroix MZ, Grandin FC, Collet SH, Mila H, Viguié C, Gély CA, Rabozzi B, Bouchard M, Léandri R, Toutain PL, Picard-Hagen N. Oral Systemic Bioavailability of Bisphenol A and Bisphenol S in Pigs. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:77005. [PMID: 31313948 PMCID: PMC6792350 DOI: 10.1289/ehp4599] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Given its hormonal activity, bisphenol S (BPS) as a substitute for bisphenol A (BPA) could actually increase the risk of endocrine disruption if its toxicokinetic (TK) properties, namely its oral availability and systemic persistency, were higher than those of BPA. OBJECTIVES The TK behavior of BPA and BPS was investigated by administering the two compounds by intravenous and oral routes in piglet, a known valid model for investigating oral TK. METHODS Experiments were conducted in piglets to evaluate the kinetics of BPA, BPS, and their glucuronoconjugated metabolites in plasma and urine after intravenous administration of BPA, BPS, and BPS glucuronide (BPSG) and gavage administration of BPA and BPS. A population semiphysiologically based TK model describing the disposition of BPA and BPS and their glucuronides was built from these data to estimate the key TK parameters that drive the internal exposure to active compounds. RESULTS The data indicated that almost all the BPS oral dose was absorbed and transported into the liver where only 41% of BPS was glucuronidated, leading to a systemic bioavailability of 57.4%. In contrast, only 77% of the oral dose of BPA was absorbed and underwent an extensive first-pass glucuronidation either in the gut (44%) or in the liver (53%), thus accounting for the low systemic bioavailability of BPA (0.50%). Due to the higher systemic availability of BPS, in comparison with BPA, and its lower plasma clearance (3.5 times lower), the oral BPS systemic exposure was on average about 250 times higher than for BPA for an equal oral molar dose of the two compounds. CONCLUSION Given the similar digestive tracts of pigs and humans, our results suggest that replacing BPA with BPS will likely lead to increased internal exposure to an endocrine-active compound that would be of concern for human health. https://doi.org/10.1289/EHP4599.
Collapse
Affiliation(s)
- Véronique Gayrard
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Marlène Z Lacroix
- Therapeutic Innovations and Resistance (INTHERES), Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Flore C Grandin
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Séverine H Collet
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Hanna Mila
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Catherine Viguié
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Clémence A Gély
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Blandine Rabozzi
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| | - Michèle Bouchard
- Département de santé environnementale et santé au travail, Institut de recherche en santé publique de l'Université de Montréal (IRSPUM), Université de Montréal, Montréal, Canada
| | - Roger Léandri
- EA 3694 Human Fertility Research Group, Toulouse University Hospital, Toulouse, France
| | - Pierre-Louis Toutain
- Therapeutic Innovations and Resistance (INTHERES), Université de Toulouse, INRA, ENVT, Toulouse, France
- The Royal Veterinary College, University of London, London, United Kingdom
| | - Nicole Picard-Hagen
- Toxalim, Université de Toulouse, INRA (Institut National de la Recherche Agronomique), INP (Institut National Polytechnique de Toulouse)-ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse France
- Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), EIP (Ecole d'Ingénieurs de Purpan), UPS (Université Paul Sabatier), Toulouse, France
| |
Collapse
|
149
|
López-Ramón MV, Ocampo-Pérez R, Bautista-Toledo MI, Rivera-Utrilla J, Moreno-Castilla C, Sánchez-Polo M. Removal of bisphenols A and S by adsorption on activated carbon clothes enhanced by the presence of bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:767-776. [PMID: 30897435 DOI: 10.1016/j.scitotenv.2019.03.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 05/15/2023]
Abstract
This study investigated the adsorption of two endocrine-disrupting chemicals, bisphenol A (BPA) and S (BPS), from water using activated carbon clothes (ACCs), as-received and oxidized, in the absence and presence of bacteria, analyzing both kinetic and equilibrium adsorption data. Kinetic study of the different systems showed that the adsorption rate was affected both by the oxidation of the adsorbent and by the presence of bacteria. Bisphenol adsorption kinetics followed a second-order kinetic model, with rate constants between 0.0228 and 0.0013 g min-1 mol-1. ACC was a much better adsorbent of E. coli compared to granular activated carbons, achieving 100% adsorption at 24 h. ACC oxidation reduced the adsorption capacity and the adsorbent-adsorbate relative affinity due to the decrease in carbon surface hydrophobicity. Conversely, the presence of bacteria in aqueous solution increased the ACC surface hydrophobicity and therefore enhanced the adsorption capacity of BPA and BPS on ACC, which was 33% and 24%, respectively. In all cases, more BPS than BPA was removed due to the greater dipolar moment of the former. Results found show that activated carbon clothes in the presence of bacteria can be an adequate process to remove bisphenol A and S from different aqueous systems.
Collapse
Affiliation(s)
- M Victoria López-Ramón
- Department of Inorganic and Organic Chemistry, Faculty of Experimental Science, University of Jaen, 23071 Jaen, Spain.
| | - Raúl Ocampo-Pérez
- Faculty of Chemical Sciences, Universidad Autónoma de San Luis de Potosí, 78260 San Luis de Potosí, Mexico
| | | | - José Rivera-Utrilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Carlos Moreno-Castilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Manuel Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
150
|
Liu X, Sakai H, Nishigori M, Suyama K, Nawaji T, Ikeda S, Nishigouchi M, Okada H, Matsushima A, Nose T, Shimohigashi M, Shimohigashi Y. Receptor-binding affinities of bisphenol A and its next-generation analogs for human nuclear receptors. Toxicol Appl Pharmacol 2019; 377:114610. [PMID: 31195007 DOI: 10.1016/j.taap.2019.114610] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
An endocrine-disrupting chemical Bisphenol A (BPA) binds specifically to a nuclear receptor (NR) named ERRγ. Although the importance of receptor-binding evaluation for human NRs is often stressed, the binding characteristics of so-called next-generation (NextGen) bisphenol compounds are still poorly understood. The ultimate objective of this investigation was to evaluate BPA and its NextGen analogs for their abilities to bind to 21 human NRs, the greatest members of NRs for which tritium-labeled specific ligands were available. After establishing the detailed assay conditions for each NR, the receptor binding affinities of total 11 bisphenols were evaluated in competitive binding assays. The results clearly revealed that BPA and the NextGen bisphenols of BPAF, BPAP, BPB, BPC, BPE, and BPZ were highly potent against one or more of NRs such as CAR, ERα, ERβ, ERRγ, and GR, with IC50 values of 3.3-73 nM. These bisphenols were suggested strongly to be disruptive to these NRs. BPM and BPP also appeared to be disruptive, but less potently. BPF exhibited only weak effects and only against estrogen-related NRs. Surprisingly, most doubtful bisphenol BPS was supposed not to be disruptive. The NRs to which BPA and NextGen bisphenols did not bind were RARα, RARβ, RARγ, and VDR. PPARγ, RORα, RORβ, RORγ, RXRα, RXRβ, and RXRγ, exhibited very weak interaction with these bisphenols. The ten remaining NRs, namely, ERRγ, ERβ, ERα, CAR, GR, PXR, PR, AR, LXRβ, and LXRα, showed distinctly strong binding to some bisphenols in this order, being likely to have consequential endocrine-disruption effects.
Collapse
Affiliation(s)
- Xiaohui Liu
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Hiroki Sakai
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mitsuhiro Nishigori
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keitaro Suyama
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tasuku Nawaji
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shin Ikeda
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Makoto Nishigouchi
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Okada
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ayami Matsushima
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeru Nose
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Miki Shimohigashi
- Division of Biology, Department of Earth System of Science, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; Risk Science Research Institute, Ikimatsudai 3-7-5, Nishi-ku, Fukuoka 819-0044, Japan
| | - Yasuyuki Shimohigashi
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Center, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; Risk Science Research Institute, Ikimatsudai 3-7-5, Nishi-ku, Fukuoka 819-0044, Japan.
| |
Collapse
|