101
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
102
|
Peng X, Lan X, Zhong Z, Tu H, Yao X, Tang Q, Xia Z, Yang G, Yi S. The Dynamics of Gene Expression Unraveling the Immune Response of Macrobrachium rosenbergii Infected by Aeromonas veronii. Genes (Basel) 2023; 14:1383. [PMID: 37510289 PMCID: PMC10378942 DOI: 10.3390/genes14071383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
To further investigate the immune response of Macrobrachium rosenbergii against Aeromonas veronii, comparative transcriptomic analyses of the M. rosenbergii hepatopancreas were conducted on challenge and control groups at 6, 12, and 24 h post-infection (hpi), independently. A total of 51,707 high-quality unigenes were collected from the RNA-seq data, and 8060 differentially expressed genes (DEGs) were discovered through paired comparisons. Among the three comparison groups, a KEGG pathway enrichment analysis showed that 173 immune-related DEGs were considerably clustered into 28 immune-related pathways, including the lysosome, the phagosome, etc. Moreover, the expression levels of the four key immune-related genes (TOLL, PAK1, GSK3β, and IKKα) were evaluated at various stages following post-infection in the hepatopancreas, hemolymph, and gills. Both PAK1 and GSK3β genes were highly up-regulated in all three tissues at 6 hpi with A. veronii; TOLL was up-regulated in the hepatopancreas and hemolymph but down-regulated in the gill at 6 hpi, and IKKα was up-regulated in hemolymph and gill, but down-regulated in the hepatopancreas at 6 hpi. These findings lay the groundwork for understanding the immune mechanism of M. rosenbergii after contracting A. veronii.
Collapse
Affiliation(s)
- Xin Peng
- Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou University, Huzhou 313000, China
| | - Xuan Lan
- Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou University, Huzhou 313000, China
| | - Zhenxiao Zhong
- Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou University, Huzhou 313000, China
| | - Haihui Tu
- Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou University, Huzhou 313000, China
| | - Xinyi Yao
- Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou University, Huzhou 313000, China
| | - Qiongying Tang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Huzhou University, Huzhou 313000, China
| | - Zhenglong Xia
- Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China
| | - Guoliang Yang
- Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou University, Huzhou 313000, China
- Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China
| | - Shaokui Yi
- Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou University, Huzhou 313000, China
| |
Collapse
|
103
|
Dong X, Shu L, Zhang J, Yang X, Cheng X, Zhao X, Qu W, Zhu Q, Shou Y, Peng G, Sun B, Yi W, Shu Q, Li X. Ogt-mediated O-GlcNAcylation inhibits astrocytes activation through modulating NF-κB signaling pathway. J Neuroinflammation 2023; 20:146. [PMID: 37349834 DOI: 10.1186/s12974-023-02824-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Previous studies have shown that Ogt-mediated O-GlcNAcylation is essential for neuronal development and function. However, the function of O-GlcNAc transferase (Ogt) and O-GlcNAcylation in astrocytes remains largely unknown. Here we show that Ogt deficiency induces inflammatory activation of astrocytes in vivo and in vitro, and impairs cognitive function of mice. The restoration of O-GlcNAcylation via GlcNAc supplementation inhibits the activation of astrocytes, inflammation and improves the impaired cognitive function of Ogt deficient mice. Mechanistically, Ogt interacts with NF-κB p65 and catalyzes the O-GlcNAcylation of NF-κB p65 in astrocytes. Ogt deficiency induces the activation of NF-κB signaling pathway by promoting Gsk3β binding. Moreover, Ogt depletion induces the activation of astrocytes derived from human induced pluripotent stem cells. The restoration of O-GlcNAcylation inhibits the activation of astrocytes, inflammation and reduces Aβ plaque of AD mice in vitro and in vivo. Collectively, our study reveals a critical function of Ogt-mediated O-GlcNAcylation in astrocytes through regulating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaoxue Dong
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Liqi Shu
- Department of Neurology, The Warren Alpert Medical School of Brown University, Providence, RI, 02908, USA
| | - Jinyu Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xu Yang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xuejun Cheng
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xingsen Zhao
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Qiang Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yikai Shou
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Guoping Peng
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Binggui Sun
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Wen Yi
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310029, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
104
|
Jayasinghe AMK, Kirindage KGIS, Fernando IPS, Kim KN, Oh JY, Ahn G. The Anti-Inflammatory Effect of Low Molecular Weight Fucoidan from Sargassum siliquastrum in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via Inhibiting NF-κB/MAPK Signaling Pathways. Mar Drugs 2023; 21:347. [PMID: 37367672 PMCID: PMC10303138 DOI: 10.3390/md21060347] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/28/2023] Open
Abstract
Brown seaweed is a rich source of fucoidan, which exhibits a variety of biological activities. The present study discloses the protective effect of low molecular weight fucoidan (FSSQ) isolated from an edible brown alga, Sargassum siliquastrum, on lipopolysaccharide (LPS)-stimulated inflammatory responses in RAW 264.7 macrophages. The findings of the study revealed that FSSQ increases cell viability while decreasing intracellular reactive oxygen species production in LPS-stimulated RAW 264.7 macrophages dose-dependently. FSSQ reduced the iNOS and COX-2 expression, inhibiting the NO and prostaglandin E2 production. Furthermore, mRNA expression of IL-1β, IL-6, and TNF-α was downregulated by FSSQ via modulating MAPK and NF-κB signaling. The NLRP3 inflammasome protein complex, including NLRP3, ASC, and caspase-1, as well as the subsequent release of pro-inflammatory cytokines, such as IL-1β and IL-18, release in LPS-stimulated RAW 264.7 macrophages was inhibited by FSSQ. The cytoprotective effect of FSSQ is indicated via Nrf2/HO-1 signaling activation, which is considerably reduced upon suppression of HO-1 activity by ZnPP. Collectively, the study revealed the therapeutic potential of FSSQ against inflammatory responses in LPS-stimulated RAW 264.7 macrophages. Moreover, the study suggests further investigations on commercially viable methods for fucoidan isolation.
Collapse
Affiliation(s)
| | | | | | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Republic of Korea;
| | - Jae-Young Oh
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea;
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Republic of Korea; (A.M.K.J.); (K.G.I.S.K.)
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
105
|
Meng D, Deng X, Wu Y, Wu J, Zhang Y, Zhang J, Zhao Y, Che Y. Corilagin ameliorates macrophages inflammation in atherosclerosis through TLR4-NFκB/MAPK pathway. Heliyon 2023; 9:e16960. [PMID: 37383215 PMCID: PMC10293685 DOI: 10.1016/j.heliyon.2023.e16960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Corilagin, a polyphenolic tannic acid compound, showed significant anti-inflammatory activity in atherosclerotic mice. The present study aimed to evaluate the effect and mechanism of corilagin in atherosclerosis by in vivo, in vitro and in molecular docking strategies analysis. An atherosclerotic model was established by feeding ApoE-/- mice a high-fat diet. Murine RAW264.7 macrophages were cultured and induced with lipopolysaccharide (LPS). Treatment with corilagin had a marked inhibitory effect on the plaque area and lipid accumulation in atherosclerotic mice. Corilagin decreased the expression of iNOS and promoted the expression of CD206 in aortic plaque, as well as inhibited the production of proinflammatory factors in HFD-fed ApoE-/- mice and LPS-induced RAW264.6 cell. Corilagin also obviously inhibited the expression of TLR4, reduced the phosphorylation of the JNK, the protein expressions of p38 and NF-κB pathway. In addition, corilagin markedly diminished the nuclear translocation of NF-κBp65. Similarly, molecular docking study suggested that hydrogen bonds were detected between the corilagin and the five proteins (TLR4, Myd88, p65, P38, and JNK) with a significant "CDOCKER energy". These results showed that the antiatherosclerotic effect of corilagin against M1 macrophage polarization and inflammation via suppression the activation of TLR4-NFκB/MAPK signaling pathway. Therefore, corilagin could be a promising lead compound to develop drugs for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Da Meng
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Xin Deng
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingyi Wu
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Yaqiong Zhang
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming 650500, Yunnan, China
| | - JiaYu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Yi Zhao
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Yanyun Che
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, Yunnan University of Chinese Medicine, No. 1076 Yuhua Road, Chenggong District, Kunming 650500, Yunnan, China
| |
Collapse
|
106
|
Mokhtar DM, Sayed RKA, Zaccone G, Alesci A, Hussein MM. The potential role of the pseudobranch of molly fish (Poecilia sphenops) in immunity and cell regeneration. Sci Rep 2023; 13:8665. [PMID: 37248336 PMCID: PMC10227048 DOI: 10.1038/s41598-023-34044-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
The pseudobranch is a gill-like structure that exhibits great variations in structure and function among fish species, and therefore, it has remained a topic of investigation for a long time. This study was conducted on adult Molly fish (Poecilia sphenops) to investigate the potential functions of their pseudobranch using histological, histochemical, immunohistochemical analysis, and scanning electron microscopy. The pseudobranch of Molly fish was of embedded type. It comprised many rows of parallel lamellae that were fused completely throughout their length by a thin connective tissue. These lamellae consisted of a central blood capillary, surrounded by large secretory pseudobranch cells (PSCs). Immunohistochemical analysis revealed the expression of PSCs for CD3, CD45, iNOS-2, and NF-κB, confirming their role in immunity. Furthermore, T-lymphocytes-positive CD3, leucocytes-positive CD45, and dendritic cells-positive CD-8 and macrophage- positive APG-5 could be distinguished. Moreover, myogenin and TGF-β-positive PSCs were identified, in addition to nests of stem cells- positive SOX-9 were detected. Melanocytes, telocytes, and GFAP-positive astrocytes were also demonstrated. Scanning electron microscopy revealed that the PSCs were covered by microridges, which may increase the surface area for ionic exchange. In conclusion, pseudobranch is a highly specialized structure that may be involved in immune response, ion transport, acid-base balance, as well as cell proliferation and regeneration.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt.
| | - Giacomo Zaccone
- Department of Veterinary Sciences, Polo Universitario dell'Annunziata, University of Messina, 98168, Messina, Italy
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Marwa M Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
107
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
108
|
Li Y, Ma Y, Yu J, Li C, Yu D, Dai R, Li Q, Cao CY. A dual functional polypeptide with antibacterial and anti-inflammatory properties for the treatment of periodontitis. Int J Biol Macromol 2023; 242:124920. [PMID: 37196724 DOI: 10.1016/j.ijbiomac.2023.124920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/29/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Periodontitis has been reported as the sixth most prevalent disease in human beings. This destructive disease is closely related to systemic diseases. Existing local drug delivery systems for periodontitis suffer from poor antibacterial effect and drug resistance. Inspired by the pathogenesis of periodontitis, we implemented a strategy to construct a dual functional polypeptide LL37-C15, which exhibited remarkable antibacterial effect against P. gingivalis and A. actinomycetemcomitans. In addition, LL37-C15 inhibits the release of pro-inflammatory cytokines by controlling the inflammatory pathway and reversing macrophage M1. Furthermore, the anti-inflammatory effect of LL37-C15 was also verified in vivo in a periodontitis rat model through the morphometry and histological observations of alveolar bone, hematoxylin-eosin, and Trap staining in gingival tissue. The results of molecular dynamics simulations showed that LL37-C15 could selectively destroy the bacterial cell membrane and protect the animal cell membrane in a self-destructive manner. The results showed that the polypeptide LL37-C15, as a novel promising therapeutic agent, exhibited a great potential for the periodontitis management. What's more, this dual functional polypeptide provides a promising strategy for building a multifunctional therapeutic platform against the inflammation and other diseases.
Collapse
Affiliation(s)
- Yuexiang Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yunfeng Ma
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Jianan Yu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Cancan Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Da Yu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Ruoxi Dai
- Tufts University School of Dental Medicine, Department of Comprehensive Care, Boston, MA 02111, USA
| | - Quanli Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Chris Ying Cao
- Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| |
Collapse
|
109
|
Wei D, Tian X, Zhai X, Sun C. Adipose Tissue Macrophage-Mediated Inflammation in Obesity: A Link to Posttranslational Modification. Immunol Invest 2023:1-25. [PMID: 37129471 DOI: 10.1080/08820139.2023.2205883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adipose tissue macrophages (ATM) are an essential type of immune cells in adipose tissue. Obesity induces the inflammation of adipose tissues, as expressed by ATM accumulation, that is more likely to become a source of systemic metabolic diseases, including insulin resistance. The process is characterized by the transcriptional regulation of inflammatory pathways by virtue of signaling molecules such as cytokines and free fatty acids. Notably, posttranslational modification (PTM) is a key link for these signaling molecules to trigger the proinflammatory or anti-inflammatory phenotype of ATMs. This review focuses on summarizing the functions and molecular mechanisms of ATMs regulating inflammation in obese adipose tissue. Furthermore, the role of PTM is elaborated, hoping to identify new horizons of treatment and prevention for obesity-mediated metabolic disease.
Collapse
Affiliation(s)
- Dongqin Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Xiangyun Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| |
Collapse
|
110
|
F S, MR R, S T, M JG, S E, A M, D M. Resveratrol improves episodic-like memory and motor coordination through modulating neuroinflammation in old rats. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
111
|
Zhang Y, Gao Y, Jiang Y, Ding Y, Chen H, Xiang Y, Zhan Z, Liu X. Histone demethylase KDM5B licenses macrophage-mediated inflammatory responses by repressing Nfkbia transcription. Cell Death Differ 2023; 30:1279-1292. [PMID: 36914768 PMCID: PMC10154333 DOI: 10.1038/s41418-023-01136-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
Macrophages play a critical role in the immune homeostasis and host defense against invading pathogens. However, uncontrolled activation of inflammatory macrophages leads to tissue injury and even fuels autoimmunity. Hence the molecular mechanisms underlying macrophage activation need to be further elucidated. The effects of epigenetic modifications on the function of immune cells draw increasing attention. Here, we demonstrated that lysine-specific demethylase 5B (KDM5B), a classical transcriptional repressor in stem cell development and cancer, was required for the full activation of NF-κB signaling cascade and pro-inflammatory cytokine production in macrophages. KDM5B deficiency or inhibitor treatment protected mice from immunologic injury in both collagen-induced arthritis (CIA) model and endotoxin shock model. Genome-wide analysis of KDM5B-binding peaks identified that KDM5B was selectively recruited to the promoter of Nfkbia, the gene encoding IκBα, in activated macrophages. KDM5B mediated the H3K4me3 modification erasing and decreased chromatin accessibility of Nfkbia gene locus, coordinating the elaborate suppression of IκBα expression and the enhanced NF-κB-mediated macrophage activation. Our finding identifies the indispensable role of KDM5B in macrophage-mediated inflammatory responses and provides a candidate therapeutic target for autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Yunkai Zhang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
- National Key Laboratory of Medical Immunology, Naval Medical University, Shanghai, 200433, China
| | - Ying Gao
- Department of Rheumatology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuyu Jiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yingying Ding
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Huiying Chen
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yan Xiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Zhenzhen Zhan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Liver Surgery, Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xingguang Liu
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China.
- National Key Laboratory of Medical Immunology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
112
|
Ye L, Ding X, Liu C, Ruan F, Zhong H, Lv R, Yu Y, He C, Zuo Z, Huang J. The hepatoprotective effects of Herbt Tea Essences on phenanthrene-induced liver damage in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114899. [PMID: 37060801 DOI: 10.1016/j.ecoenv.2023.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Phenanthrene (Phe), one of the most frequently occurring pollutants in nature, can cause substantial damage to the human liver. Herbt Tea Essences (HTE), a kind of black tea extract with strong anti-inflammatory activity, can protect humans against disease. Currently, whether HTE can protect the liver from Phe-induced hepatotoxicity remains unclear. Herein, we explore the protective effects of HTE against Phe-induced hepatotoxicity. Our results showed that Phe exposure could significantly induce liver damage and increase serum hepatic enzyme levels in mice. HTE could prevent liver damage and recover the expression levels of inflammatory factors. Furthermore, we found that HTE suppressed the excessive activation of the nuclear transcription factor kappa-B and transforming growth factor-β/SMAD signaling pathways to alleviate Phe-induced liver inflammation and fibrosis. Overall, our data showed that HTE treatment could be a new preventive means for Phe-induced liver disease.
Collapse
Affiliation(s)
- Lingxiao Ye
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Hongbin Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Rongfu Lv
- Xiamen Herbt Biotechnology Company Limited, Xiamen, Fujian 361005, China
| | - Yi Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jiyi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Nephrology, Fujian Clinical Research Center for Chronic Glomerular Disease, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
113
|
Hahn J, Bressler J, Domingo-Relloso A, Chen MH, McCartney DL, Teumer A, van Dongen J, Kleber ME, Aïssi D, Swenson BR, Yao J, Zhao W, Huang J, Xia Y, Brown MR, Costeira R, de Geus EJC, Delgado GE, Dobson DA, Elliott P, Grabe HJ, Guo X, Harris SE, Huffman JE, Kardia SLR, Liu Y, Lorkowski S, Marioni RE, Nauck M, Ratliff SM, Sabater-Lleal M, Spector TD, Suchon P, Taylor KD, Thibord F, Trégouët DA, Wiggins KL, Willemsen G, Bell JT, Boomsma DI, Cole SA, Cox SR, Dehghan A, Greinacher A, Haack K, März W, Morange PE, Rotter JI, Sotoodehnia N, Tellez-Plaza M, Navas-Acien A, Smith JA, Johnson AD, Fornage M, Smith NL, Wolberg AS, Morrison AC, de Vries PS. DNA methylation analysis is used to identify novel genetic loci associated with circulating fibrinogen levels in blood. J Thromb Haemost 2023; 21:1135-1147. [PMID: 36716967 PMCID: PMC11556295 DOI: 10.1016/j.jtha.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/04/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Fibrinogen plays an essential role in blood coagulation and inflammation. Circulating fibrinogen levels may be determined based on interindividual differences in DNA methylation at cytosine-phosphate-guanine (CpG) sites and vice versa. OBJECTIVES To perform an EWAS to examine an association between blood DNA methylation levels and circulating fibrinogen levels to better understand its biological and pathophysiological actions. METHODS We performed an epigenome-wide association study of circulating fibrinogen levels in 18 037 White, Black, American Indian, and Hispanic participants, representing 14 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium. Circulating leukocyte DNA methylation was measured using the Illumina 450K array in 12 904 participants and using the EPIC array in 5133 participants. In each study, an epigenome-wide association study of fibrinogen was performed using linear mixed models adjusted for potential confounders. Study-specific results were combined using array-specific meta-analysis, followed by cross-replication of epigenome-wide significant associations. We compared models with and without CRP adjustment to examine the role of inflammation. RESULTS We identified 208 and 87 significant CpG sites associated with fibrinogen levels from the 450K (p < 1.03 × 10-7) and EPIC arrays (p < 5.78 × 10-8), respectively. There were 78 associations from the 450K array that replicated in the EPIC array and 26 vice versa. After accounting for overlapping sites, there were 83 replicated CpG sites located in 61 loci, of which only 4 have been previously reported for fibrinogen. The examples of genes located near these CpG sites were SOCS3 and AIM2, which are involved in inflammatory pathways. The associations of all 83 replicated CpG sites were attenuated after CRP adjustment, although many remained significant. CONCLUSION We identified 83 CpG sites associated with circulating fibrinogen levels. These associations are partially driven by inflammatory pathways shared by both fibrinogen and CRP.
Collapse
Affiliation(s)
- Julie Hahn
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Statistics and Operations Research, University of Valencia, Burjassot, Spain
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Alexander Teumer
- Department SHIP/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany; Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Dylan Aïssi
- Univ. Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, Molecular Epidemiology of Vascular and Brain Disorders, Bordeaux, France
| | - Brenton R Swenson
- Cardiovascular Health Research Unit, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Jie Yao
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Yujing Xia
- Department of Twin Research and Genetic Epidemiology, St Thomas Hospital Campus, King's College London, London, United Kingdom
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, St Thomas Hospital Campus, King's College London, London, United Kingdom
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dre'Von A Dobson
- Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; UK Dementia Research Institute, Imperial College London, London, United Kingdom; British Heart Foundation Centre for Research Excellence, Imperial College London, London, United Kingdom
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Xiuqing Guo
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer E Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Yongmei Liu
- Medicine, Cardiology, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Maria Sabater-Lleal
- Genomics of Complex Disease Unit, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain; Department of Medicine, Cardiovascular Medicine Unit, Karolinska Institutet, Stockholm, Sweden
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, St Thomas Hospital Campus, King's College London, London, United Kingdom
| | - Pierre Suchon
- Center for CardioVascular and Nutrition research (C2VN), INSERM 1263, INRAE 1260, Hematology Laboratory, La Timone University Hospital of Marseille, Aix-Marseille University, Marseille, France
| | - Kent D Taylor
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Florian Thibord
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - David-Alexandre Trégouët
- Univ. Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, Molecular Epidemiology of Vascular and Brain Disorders, Bordeaux, France
| | - Kerri L Wiggins
- Department of Medicine, Division of General Internal Medicine, University of Washington, Seattle, Washington, USA
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, St Thomas Hospital Campus, King's College London, London, United Kingdom
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Simon R Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany; Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Pierre-Emmanuel Morange
- Cardiovascular and Nutrition Reserach Center (C2VN), INSERM, INRAE, Aix-Marseille University, Marseille, France
| | - Jerome I Rotter
- Pediatrics, Genomic Outcomes, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Nona Sotoodehnia
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA; Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA; Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nicholas L Smith
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, Washington, USA
| | - Alisa S Wolberg
- Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
114
|
Zhang X, Hu Y, Zhang Z, Zhang X, Liang L, Cui X, Wu Y, Hu F, Wu X. Inhibition of TMUB1 blocks apoptosis and NF-κB pathway-mediated inflammation in recurrent spontaneous abortion. Immun Inflamm Dis 2023; 11:e879. [PMID: 37249279 PMCID: PMC10214570 DOI: 10.1002/iid3.879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/20/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Approximately 50% of cases with recurrent spontaneous abortion (RSA) have unexplained etiology. Aberrant expression of transmembrane and ubiquitin-like domain containing 1 (TMUB1) is closely related to a series of diseases, including RSA. However, the function and underlying mechanism of TMUB1 in the occurrence of RSA has not been described. METHODS TMUB1 expression was detected in the placental villous tissues of 30 women with normal miscarriages and 12 women with RSA. The pregnant mice were injected intraperitoneally with lipopolysaccharide (LPS) to induce abortion. Human chorionic trophoblast cells were treated with LPS. Pathological analysis of placental tissues was performed by hematoxylin and eosin staining. RESULTS TMUB1 was highly expressed in the placental villous tissues of RSA patients compared to the patients who underwent induced abortions. After LPS administration, the mice exhibited high embryo absorption and pathological alterations, as well as presented an increase in inflammation and apoptosis (the etiology of RSA induction) in placental tissues. Moreover, the upregulated expression of TMUB1 was also found in placental tissues of LPS-induced mice, and further investigation showed that TMUB1 deficiency blocked embryo loss as well as inhibited apoptotic rate and inflammation after LPS activation. Furthermore, we found that the loss of TMUB1 suppressed the phosphorylation of IkappaB kinase (IKK) α/β and attenuated cytoplasmic-nuclear translocation of nuclear factor-κB (NF-κB) p65 in LPS-induced cells. CONCLUSION Our results indicate that TMUB1 may involve in the modulation of apoptosis and NF-κB pathway-mediated inflammation in RSA. Therefore, TMUB1 may develop as a potential biomarker for RSA treatment.
Collapse
Affiliation(s)
- Xiuping Zhang
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Yuanjing Hu
- Department of Gynecologic OncologyTianjin Central Hospital of Gynecology ObstetricsTianjinChina
| | - Zhiping Zhang
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Xueluo Zhang
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Lixia Liang
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Xiangrong Cui
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Yuanxia Wu
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Fen Hu
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| | - Xueqing Wu
- Reproductive Medicine CenterChildren's Hospital of Shanxi and Women Health Center of ShanxiTaiyuanShanxiChina
| |
Collapse
|
115
|
Yu H, Jia X, Pang Y, Niu H, Du B, Xu X, Li J. Identification of multifunctionality of grass carp (Ctenopharyngodon idella) TBK1 during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108630. [PMID: 36906050 DOI: 10.1016/j.fsi.2023.108630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
TBK1 is an atypical IκB kinase family member with a set of functions. It is involved in congenital immunization and autophagy in mammals. In this study, we reported that grass carp TBK1 gene expression could be upregulated by bacterial infection. Overexpression of TBK1 could decrease the number of adhesive bacteria in CIK cells. TBK1 could promote cellular migration, proliferation, vitality, and anti-apoptosis ability. Furthermore, the expression of TBK1 could activate the NF-κB signaling pathway by inducing inflammatory cytokines. In addition, we found that the grass carp TBK1 could cause the autophagy level of CIK cells within the decreasing level of p62 protein. Our finding indicated that TBK1 participated in grass carp innate immune progress and autophagy. This study provides evidence of the positive regulation of TBK1 in teleost innate immunity with its multiple functions. It thus may provide important information about the defense and immune mechanisms used by teleost against pathogens.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xuewen Jia
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yifan Pang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Huiqin Niu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
116
|
Kim JE, Lee DS, Kim TH, Park H, Kim MJ, Kang TC. PLPP/CIN-mediated NF2 S10 dephosphorylation distinctly regulates kainate-induced seizure susceptibility and neuronal death through PAK1-NF-κB-COX-2-PTGES2 signaling pathway. J Neuroinflammation 2023; 20:99. [PMID: 37118736 PMCID: PMC10141957 DOI: 10.1186/s12974-023-02788-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates serine (S) 10 site on neurofibromin 2 (NF2, also known as merlin (moesin-ezrin-radixin-like protein) or schwannomin). p21-activated kinase 1 (PAK1) is a serine/threonine protein kinase, which is involved in synaptic activity and plasticity in neurons. NF2 and PAK1 reciprocally regulate each other in a positive feedback manner. Thus, the aim of the present study is to investigate the effects of PLPP/CIN-mediated NF2 S10 dephosphorylation on PAK1-related signaling pathways under physiological and neuroinflammatory conditions, which are largely unknown. METHODS After kainate (KA) injection in wild-type, PLPP/CIN-/- and PLPP/CINTg mice, seizure susceptibility, PAK1 S204 autophosphorylation, nuclear factor-κB (NF-κB) p65 S276 phosphorylation, cyclooxygenase-2 (COX-2) upregulation, prostaglandin E synthase 2 (PTGES2) induction and neuronal damage were measured. The effects of 1,1'-dithiodi-2-naphthtol (IPA-3, a selective inhibitor of PAK1) pretreatment on these responses to KA were also validated. RESULTS PLPP/CIN overexpression increased PAK1 S204 autophosphorylation concomitant with the enhanced NF2 S10 dephosphorylation in hippocampal neurons under physiological condition. Following KA treatment, PLPP/CIN overexpression delayed the seizure on-set and accelerated PAK1 S204 phosphorylation, NF-κB p65 S276 phosphorylation, COX-2 upregulation and PTGES2 induction, which were ameliorated by PLPP/CIN deletion or IPA-3. Furthermore, IPA-3 pretreatment shortened the latency of seizure on-set without affecting seizure severity (intensity) and ameliorated CA3 neuronal death induced by KA. CONCLUSIONS These findings indicate that PLPP/CIN may regulate seizure susceptibility (the latency of seizure on-set) and CA3 neuronal death in response to KA through NF2-PAK1-NF-κB-COX-2-PTGES2 signaling pathway.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Min-Ju Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea.
| |
Collapse
|
117
|
Lee H, Liu Z, Dong L, Lee DY, Yoon D, Oh H, Kim YC, An RB, Lee DS. Anti-Neuroinflammatory and Neuroprotective Effect of Intermedin B Isolated from the Curcuma longa L. via NF-κB and ROS Inhibition in BV2 Microglia and HT22 Hippocampal Cells. Int J Mol Sci 2023; 24:ijms24087390. [PMID: 37108568 PMCID: PMC10138482 DOI: 10.3390/ijms24087390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Compounds derived from Curcuma longa L. (C. longa) have been extensively studied and reported to be effective and safe for the prevention and treatment of various diseases, but most research has been focused on curcuminoids derived from C. longa. As neurodegenerative diseases are associated with oxidation and inflammation, the present study aimed to isolate and identify active compounds other than curcuminoids from C. longa to develop substances to treat these diseases. Seventeen known compounds, including curcuminoids, were chromatographically isolated from the methanol extracts of C. longa, and their chemical structures were identified using 1D and 2D NMR spectroscopy. Among the isolated compounds, intermedin B exhibited the best antioxidant effect in the hippocampus and anti-inflammatory effect in microglia. Furthermore, intermedin B was confirmed to inhibit the nuclear translocation of NF-κB p-65 and IκBα, exerting anti-inflammatory effects and inhibiting the generation of reactive oxygen species, exerting neuroprotective effects. These results highlight the research value of active components other than curcuminoids in C. longa-derived compounds and suggest that intermedin B may be a promising candidate for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hwan Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Zhiming Liu
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Linsha Dong
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong 27709, Republic of Korea
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong 27709, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Ren-Bo An
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
118
|
Jung CJ, Park SM, Lee DG, Yu YE, Ku TH, La IJ, Cho IJ, Ku SK. Adenophora Stricta Root Extract Alleviates Airway Inflammation in Mice with Ovalbumin-Induced Allergic Asthma. Antioxidants (Basel) 2023; 12:antiox12040922. [PMID: 37107297 PMCID: PMC10135616 DOI: 10.3390/antiox12040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Adenophora stricta Miq. (Campanulaceae family) is a traditional herb used for relieving cough and phlegm in East Asia. This study explored the effects of A. stricta root extract (AsE) in ovalbumin (OVA)-induced allergic asthma and lipopolysaccharide (LPS)-stimulated macrophages. Administration of 100-400 mg/kg AsE dose-dependently decreased pulmonary congestion and suppressed the reduction of alveolar surface area in mice with OVA-mediated allergic asthma. Histopathological analysis of lung tissue and cytological analysis of bronchioalveolar lavage fluid showed that AsE administration significantly attenuated inflammatory cell infiltration into the lungs. In addition, AsE also alleviated OVA-specific immunoglobulin E, interleukin (IL)-4, and IL-5 production, which are essential for OVA-dependent activation of T helper 2 lymphocytes. In Raw264.7 macrophage cells, AsE significantly blocked nitric oxide, tumor necrosis factor-α, IL-1β, IL-6, and monocyte chemoattractant factor-1 production in response to LPS. Results from an immunoblot assay revealed that AsE inhibited the phosphorylation of c-jun N-terminal kinase, inhibitory-κB kinase α/β, and p65 in LPS-stimulated cells. Furthermore, 2-furoic acid, 5-hydroxymethylfurfural, and vanillic acid 4-β-D-glucopyranoside in AsE were shown to inhibit the production of proinflammatory mediators by LPS. Taken together, the present results suggest that A. stricta root will be a useful herb for relieving allergic asthma through managing airway inflammation.
Collapse
Affiliation(s)
- Cheol-Jong Jung
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea
| | - Seok-Man Park
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea
| | - Dae-Geon Lee
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea
| | - Yeong-Eun Yu
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea
| | - Tae-Hun Ku
- Okchundang Korean Medicine Clinic, Ulsan 44900, Republic of Korea
| | - Im-Joung La
- Atomy R&D Center, Gongju 32511, Republic of Korea
| | - Il-Je Cho
- Central Research Center, Okchundang Inc., Daegu 41059, Republic of Korea
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| |
Collapse
|
119
|
Aobulikasimu N, Zheng D, Guan P, Xu L, Liu B, Li M, Huang X, Han L. The Anti-inflammatory Effects of Isoflavonoids from Radix Astragali in Hepatoprotective Potential against LPS/D-gal-induced Acute Liver Injury. PLANTA MEDICA 2023; 89:385-396. [PMID: 36509104 DOI: 10.1055/a-1953-0369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Radix Astragali (RA) is an important Traditional Chinese Medicine widely used in the treatment of various diseases, such as pneumonia, atherosclerosis, diabetes, kidney and liver fibrosis. The role of isoflavonoids from RA in the treatment of liver injury remains unclear. The study aimed to explore hepatoprotective and anti-inflammatory effects of isoflavonoids from Astragalus mongholicus. Network pharmacological analysis showed that RA had a multi-target regulating effect on alleviating liver injury and inhibiting inflammation through its active ingredients, among which isoflavones were closely related to its key molecular targets. The anti-inflammatory and liver protection effects of isoflavonoids of RA were investigated using lipopolysaccharide (LPS)-induced RAW 264.7 cells in vitro and LPS/D-galactosamine (D-gal)-induced acute liver injury mice in vivo. The experimental results showed that methylnissolin (ML) and methylnissolin-3-O-β-D-glucoside (MLG) presented more notable anti-inflammatory effects. Both of them suppressed the release of pro-inflammatory cytokines, such as iNOS, COX-2, IL-1β, IL-6, and TNF-α in LPS-stimulated RAW 264.7 cells. In vivo investigation demonstrated that ML markedly meliorated liver injury in LPS/D-gal-induced mice. Western blot results revealed that ML and MLG down-regulated the expression of proinflammatory cytokines via NF-κB signaling pathway. The isoflavonoids, methylnissolin (ML), and methylnissolin-3-O-β-D-glucoside (MLG), play a vital role in the hepatoprotective and anti-inflammatory effects of RA.
Collapse
Affiliation(s)
- Nuerbiye Aobulikasimu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Peipei Guan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Lixiao Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Bo Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Minglei Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| |
Collapse
|
120
|
Lee SE, Park S, Jang GY, Lee J, Moon M, Ji YJ, Jung JW, Nam Y, Shin SJ, Lee Y, Choi J, Kim DH. Extract of Aster koraiensis Nakai Leaf Ameliorates Memory Dysfunction via Anti-inflammatory Action. Int J Mol Sci 2023; 24:ijms24065765. [PMID: 36982837 PMCID: PMC10052554 DOI: 10.3390/ijms24065765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Aster koraiensis Nakai (AK) leaf reportedly ameliorates health problems, such as diabetes. However, the effects of AK on cognitive dysfunction or memory impairment remain unclear. This study investigated whether AK leaf extract could attenuate cognitive impairment. We found that AK extract reduced the production of nitric oxide (NO), tumour necrosis factor (TNF)-α, phosphorylated-tau (p-tau), and the expression of inflammatory proteins in lipopolysaccharide- or amyloid-β-treated cells. AK extract exhibited inhibitory activity of control specific binding on N-methyl-D-aspartate (NMDA) receptors. Scopolamine-induced AD models were used chronically in rats and acutely in mice. Relative to negative controls (NC), hippocampal choline acetyltransferase (ChAT) and B-cell lymphoma 2 (Bcl2) activity was increased in rats chronically treated with scopolamine and fed an AK extract-containing diet. In the Y-maze test, spontaneous alterations were increased in the AK extract-fed groups compared to NC. Rats administered AK extract showed increased escape latency in the passive avoidance test. In the hippocampus of rats fed a high-AK extract diet (AKH), the expression of neuroactive ligand–receptor interaction-related genes, including Npy2r, Htr2c, and Rxfp1, was significantly altered. In the Morris water maze assay of mice acutely treated with scopolamine, the swimming times in the target quadrant of AK extract-treated groups increased significantly to the levels of the Donepezil and normal groups. We used Tg6799 Aβ-overexpressing 5XFAD transgenic mice to investigate Aβ accumulation in animals. In the AD model using 5XFAD, the administration of AK extract decreased amyloid-β (Aβ) accumulation and increased the number of NeuN antibody-reactive cells in the subiculum relative to the control group. In conclusion, AK extract ameliorated memory dysfunction by modulating ChAT activity and Bcl2-related anti-apoptotic pathways, affecting the expression of neuroactive ligand–receptor interaction-related genes and inhibiting Aβ accumulation. Therefore, AK extract could be a functional material improving cognition and memory.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
- Correspondence:
| | - Saetbyeol Park
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Gwi Yeong Jang
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Jeonghoon Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Gwanjeodong-ro 158, Soe-gu, Daejeon 35365, Republic of Korea; (M.M.); (Y.N.); (S.J.S.)
| | - Yun-Jeong Ji
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Ji Wook Jung
- Division of Biotechnology and Convergence, College of Cosmetics and Pharm, Daegu Haany University, Kyungsan 38610, Republic of Korea;
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Gwanjeodong-ro 158, Soe-gu, Daejeon 35365, Republic of Korea; (M.M.); (Y.N.); (S.J.S.)
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Gwanjeodong-ro 158, Soe-gu, Daejeon 35365, Republic of Korea; (M.M.); (Y.N.); (S.J.S.)
| | - Yunji Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Jehun Choi
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| | - Dong Hwi Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science (NIHHS), Eumseong 27709, Republic of Korea; (S.P.); (G.Y.J.); (J.L.); (Y.-J.J.); (Y.L.); (J.C.); (D.H.K.)
| |
Collapse
|
121
|
Abdelnaser M, Alaaeldin R, Attya ME, Fathy M. Hepatoprotective potential of gabapentin in cecal ligation and puncture-induced sepsis; targeting oxidative stress, apoptosis, and NF-kB/MAPK signaling pathways. Life Sci 2023; 320:121562. [PMID: 36907325 DOI: 10.1016/j.lfs.2023.121562] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
AIMS Sepsis is a severe inflammatory response to infection with an incidence rate exceeding 48 million cases and 11 million sepsis-related deaths yearly. Furthermore, sepsis remains the fifth most common cause of death worldwide. The present study aimed to examine, for the first time, the potential hepatoprotective activity of gabapentin on cecal ligation and puncture (CLP)-induced sepsis in rats at the molecular level. MAIN METHODS CLP was used as a model of sepsis in male Wistar rats. Histological examination and liver functions were evaluated. Levels of MDA, GSH, SOD, IL-6, IL-1β, and TNF-α were investigated using ELISA. mRNA levels of Bax, Bcl-2, and NF-kB were assessed by qRT-PCR. Western blotting investigated the expression of ERK1/2, JNK1/2, and cleaved caspase 3 proteins. KEY FINDINGS CLP resulted in liver damage, elevated serum levels of ALT, AST, ALP, MDA, TNF-α, IL-6, and IL-1β, increased expression of ERK1/2, JNK1/2, and cleaved caspase 3 proteins, and upregulated Bax and NF-κB genes expression while it down-regulated Bcl-2 gene expression. However, gabapentin treatment significantly reduced the severity of CLP-induced biochemical, molecular, and histopathological changes. Gabapentin attenuated the levels of the proinflammatory mediators, decreased the expression of JNK1/2, ERK1/2, and cleaved caspase 3 proteins, suppressed Bax and NF-κB genes expression and increased the expression of the Bcl-2 gene. SIGNIFICANCE Consequently, Gabapentin reduced hepatic injury resulting from CLP-induced sepsis by reducing proinflammatory mediators, attenuating apoptosis, and inhibiting the intracellular MAPK (ERK1/2, JNK1/2)-NF-kB signaling pathway.
Collapse
Affiliation(s)
- Mahmoud Abdelnaser
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
122
|
Inhibition of Microglial GSK3β Activity Is Common to Different Kinds of Antidepressants: A Proposal for an In Vitro Screen to Detect Novel Antidepressant Principles. Biomedicines 2023; 11:biomedicines11030806. [PMID: 36979785 PMCID: PMC10045655 DOI: 10.3390/biomedicines11030806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Depression is a major public health concern. Unfortunately, the present antidepressants often are insufficiently effective, whilst the discovery of more effective antidepressants has been extremely sluggish. The objective of this review was to combine the literature on depression with the pharmacology of antidepressant compounds, in order to formulate a conceivable pathophysiological process, allowing proposals how to accelerate the discovery process. Risk factors for depression initiate an infection-like inflammation in the brain that involves activation microglial Toll-like receptors and glycogen synthase kinase-3β (GSK3β). GSK3β activity alters the balance between two competing transcription factors, the pro-inflammatory/pro-oxidative transcription factor NFκB and the neuroprotective, anti-inflammatory and anti-oxidative transcription factor NRF2. The antidepressant activity of tricyclic antidepressants is assumed to involve activation of GS-coupled microglial receptors, raising intracellular cAMP levels and activation of protein kinase A (PKA). PKA and similar kinases inhibit the enzyme activity of GSK3β. Experimental antidepressant principles, including cannabinoid receptor-2 activation, opioid μ receptor agonists, 5HT2 agonists, valproate, ketamine and electrical stimulation of the Vagus nerve, all activate microglial pathways that result in GSK3β-inhibition. An in vitro screen for NRF2-activation in microglial cells with TLR-activated GSK3β activity, might therefore lead to the detection of totally novel antidepressant principles with, hopefully, an improved therapeutic efficacy.
Collapse
|
123
|
Yang C, Zhao Y, Luo Z, Hu Y, Wang S, Hu S, Yao Y, Pan L, Shen C, Xu T. Honokiol Inhibits the Inflammatory Response and Lipid Metabolism Disorder by Inhibiting p38α in Alcoholic Liver Disease. PLANTA MEDICA 2023; 89:273-285. [PMID: 35714651 DOI: 10.1055/a-1878-3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alcoholic liver disease is one of the leading causes of liver-related morbidity and mortality worldwide, but effective treatments are still lacking. Honokiol, a lignin-type natural compound isolated from the leaves and bark of Magnolia plants, has been widely studied for its beneficial effects on several chronic diseases. Accumulating studies have revealed that honokiol displays a potential therapeutic effect on alcoholic liver disease. In this study, the protective activity of honokiol on alcoholic liver disease was confirmed due to its significant inhibitory activity on the expression levels of inflammatory cytokines (such as tumor necrosis factor-alpha, interleukin-6, and interleukin-1β) in EtOH-fed mice and in EtOH-induced AML-12 cells. Meanwhile, the expression of the lipid metabolic parameter sterol regulatory element-binding protein-1c was also reduced. However, peroxisome proliferator-activated receptor α was increased in animal and cell experiments, which indicates that the activity of honokiol was related to its regulated activity on lipid metabolism. The result showed that honokiol significantly inhibited the expression level of p38α in vivo and in vitro. Blocking p38α inhibited the expression levels of tumor necrosis factor-alpha, interleukin-6, interleukin-1β, and sterol regulatory element-binding protein-1c but promoted the expression level of peroxisome proliferator-activated receptor α compared with the honokiol-treated group. Moreover, the forced expression level of p38α further produced the opposite effect on inflammatory cytokines and lipid metabolism indicators. Furthermore, p38α has been related to the activation of the nuclear factor kappa B signaling pathway. In our study, honokiol significantly inhibited the activation of the nuclear factor kappa B signaling pathway mediated by p38α. In conclusion, the results suggest that honokiol might be an effective regulator of p38α by downregulating the nuclear factor kappa B signaling pathway, thereby reducing the inflammatory response and lipid metabolism disorder in alcoholic liver disease.
Collapse
Affiliation(s)
- Chenchen Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Hefei, China
| | - Yinglian Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People's Hospital, Hefei, China
| | - Zhipan Luo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
| | - Shuxian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
| | - Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
| | - Yan Yao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
| | - Linxin Pan
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Chuanpu Shen
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
124
|
Li C, Wang S, Ma X, Wang T, Lu R, Jia X, Leng Z, Kong X, Zhang J, Li L. Ranitidine as an adjuvant regulates macrophage polarization and activates CTLs through the PI3K-Akt2 signaling pathway. Int Immunopharmacol 2023; 116:109729. [PMID: 37800555 DOI: 10.1016/j.intimp.2023.109729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/19/2023]
Abstract
Adjuvants are an indispensable component of vaccines, but there are few adjuvants for human vaccines. H2 receptor blockers, inhibiting gastric acid secretion, have immune enhancement effects. Ranitidine (RAN) is a water-soluble H2 receptor blocker, and whether it has an immune-enhancing effect is still unknown. In this study, flow cytometry, western blotting, and immunofluorescence methods were used to analyze whether RAN could activate macrophage polarization to the M1 phenotype in vivo and in vitro. Here, we found that the M1 inflammatory cytokine levels and surface markers in RAW264.7 cells were upregulated by NF-κB activation, possibly through the PI3K-Akt2 signaling pathway, after RAN treatment. Endocytic function was also enhanced by feedback regulation of Akt2/GSK3β/Dynmin1 signaling. Furthermore, to evaluate the adjuvant function of RAN, we used OVA plus RAN as a vaccine to inhibit the growth of B16-OVA tumors in mice. We also found that in the RAN adjuvant group, macrophage polarization to M1, Th1 cell differentiation, and cytotoxic T lymphocyte (CTL) activation were significantly upregulated. The tumor growth of mice was inhibited, and the survival rate of mice was significantly improved. This study provides new evidence for the mechanism by which RAN activates the immune response and is expected to provide a new strategy for the research and development of tumor vaccine adjuvants.
Collapse
Affiliation(s)
- Chenglin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Shuang Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| | - Xiaoran Ma
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Tiantian Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Ran Lu
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xihui Jia
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Zhe Leng
- Department of Gynecology, Qingdao Women and Children's Hospital, Qingdao 266000, China
| | - Xiaowen Kong
- School of Stomatology, Qingdao University, Qingdao 266071, China
| | - Jinyu Zhang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
125
|
Dong J, Chen J, Li Q, Qiu S. Knockdown of FKBP3 suppresses nasopharyngeal carcinoma cell growth, invasion and migration, deactivated NF-κB/IL-6 signaling pathway through inhibiting histone deacetylase 2 expression. CHINESE J PHYSIOL 2023; 66:85-92. [PMID: 37082996 DOI: 10.4103/cjop.cjop-d-22-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent malignant tumor worldwide. FKBP3 has been reported to participate in tumorigenesis. Nevertheless, the role and mechanism of FKBP3 in NPC remains unclear. In this study, FKBP3 expression was observed to upregulate in NPC patients and cells. Moreover, knockdown of FKBP3 suppressed cell growth, invasion, and migration in HK1 and C666-1 cells. Mechanically, FKBP3 could enhance the p-p65 expression and activated p65 signaling pathway and increased interleukin-6 (IL-6) expression through enhancing histone deacetylase 2 (HDAC2) expression. In rescued experiment, the overexpression of HDAC2 restored diminished cell growth, invasion, and migration caused by FKBP3 depletion. In summary, the knockdown of FKBP3 suppressed NPC cell growth, invasion and migration, deactivated nuclear factor-κB/IL-6 signaling pathway through inhibiting HDAC2 expression, providing a potential therapeutic strategy for NPC treatment.
Collapse
Affiliation(s)
- Jiadi Dong
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Jingjing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Qun Li
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Shijie Qiu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
126
|
Luo J, Zhao H, Chen L, Liu M. Multifaceted functions of RPS27a: An unconventional ribosomal protein. J Cell Physiol 2023; 238:485-497. [PMID: 36580426 DOI: 10.1002/jcp.30941] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
The ribosomal protein S27a (RPS27a) is cleaved from the fusion protein ubiquitin-RPS27a (Ub-RPS27a). Generally, Ub and RPS27a are coexpressed as a fusion protein but function independently after Ub is cleaved from RPS27a by a deubiquitinating enzyme. As an RP, RPS27a assembles into ribosomes, but it also functions independently of ribosomes. RPS27a is involved in the development and poor prognosis of various cancers, such as colorectal cancer, liver cancer, chronic myeloid leukemia, and renal carcinoma, and is associated with poor prognosis. Notably, the murine double minute 2/P53 axis is a major pathway through which RPS27a regulates cancer development. Moreover, RPS27a maintains sperm motility, regulates winged aphid indirect flight muscle degeneration, and facilitates plant growth. Additionally, RPS27a is a metalloprotein and mercury (Hg) biomarker. In the present review, we described the origin, structure, and biological functions of RPS27a.
Collapse
Affiliation(s)
- Jingshun Luo
- Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Zhao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Nursing College, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Meiqing Liu
- Key Laboratory of Cardiovascular Diseases of Yunnan Province, Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Central laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
127
|
Qin X, Zhang B, Sun X, Zhang M, Xiao D, Lin S, Liu Z, Cui W, Lin Y. Tetrahedral-Framework Nucleic Acid Loaded with MicroRNA-155 Enhances Immunocompetence in Cyclophosphamide-Induced Immunosuppressed Mice by Modulating Dendritic Cells and Macrophages. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7793-7803. [PMID: 36745737 DOI: 10.1021/acsami.2c20657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanomaterials are often used as immunomodulators because they can be tailored by a controllable process. In this work, a complex based on a tetrahedral framework nucleic acid delivery system and MicroRNA-155, known as T-155, is synthesized for the modulation of immunosuppression. In vivo, T-155 ameliorated spleen and thymus damage and hematopoiesis suppression in cyclophosphamide-induced immunosuppressed mice by promoting T-cell proliferation to resist oxidative stress. In vitro, T-155 induced immature dendritic cells (DCs) to differentiate into mature DCs by the ERK1/2 pathway and converted M0 macrophages (Mφ) into the M1 type by the NF-κB pathway to enhance the surveillance capabilities of antigen-presenting cells. The experimental results suggest that T-155 has therapeutic potential as an immunomodulator for immunosuppression.
Collapse
Affiliation(s)
- Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Xiaoqin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
128
|
Whole-Transcriptome Analysis Highlights Adenylyl Cyclase Toxins-Derived Modulation of NF-κB and ERK1/2 Pathways in Macrophages. Toxins (Basel) 2023; 15:toxins15020139. [PMID: 36828453 PMCID: PMC9967024 DOI: 10.3390/toxins15020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Edema toxin (ET), one of the main toxic factors of Bacillus anthracis (B. anthracis), is a kind of potent adenylate cyclase (AC). B. anthracis has adapted to resist macrophage microbicidal mechanisms in part by secreting ET. To date, there is limited information on the pathogenic mechanisms used by ET to manipulate macrophage function, especially at the transcriptome level. We used RNA sequencing to study transcriptional changes in RAW264.7 cells treated with ET. We aimed to identify molecular events associated with the establishment of infection and followed changes in cellular proteins. Our results indicate that ET inhibited TNF-α expression in the RAW264.7 mouse macrophage cell line by activating the cAMP/PKA pathway. ET challenge of macrophages induced a differential expression of genes that participate in multiple macrophage effector functions such as cytokine production, cell adhesion, and the inflammatory response. Furthermore, ET influenced the expression of components of the ERK1/2, as well as the NF-αB signaling pathways. We also showed that ET treatments inhibit the phosphorylation of the ERK1/2 protein. ET also attenuated NF-αB subunit p65 phosphorylation and transcriptional activity of NF-αB via the cAMP/PKA pathway in macrophages. Since the observed modulatory effects were characteristic only of the bacterial exotoxin ET, we propose this may be a mechanism used by B. anthracis to manipulate macrophages and establish systemic infection.
Collapse
|
129
|
Wang R, Li L, Wang J, Zhao X, Shen J. CircBRMS1L Participates in Lipopolysaccharide-induced Chondrocyte Injury via the TLR4/NF-κB Pathway through Serving as a miR-142-5p Decoy. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-021-0224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
130
|
Zhou Z, Yeung W, Gravel N, Salcedo M, Soleymani S, Li S, Kannan N. Phosformer: an explainable transformer model for protein kinase-specific phosphorylation predictions. Bioinformatics 2023; 39:7000331. [PMID: 36692152 PMCID: PMC9900213 DOI: 10.1093/bioinformatics/btad046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
MOTIVATION The human genome encodes over 500 distinct protein kinases which regulate nearly all cellular processes by the specific phosphorylation of protein substrates. While advances in mass spectrometry and proteomics studies have identified thousands of phosphorylation sites across species, information on the specific kinases that phosphorylate these sites is currently lacking for the vast majority of phosphosites. Recently, there has been a major focus on the development of computational models for predicting kinase-substrate associations. However, most current models only allow predictions on a subset of well-studied kinases. Furthermore, the utilization of hand-curated features and imbalances in training and testing datasets pose unique challenges in the development of accurate predictive models for kinase-specific phosphorylation prediction. Motivated by the recent development of universal protein language models which automatically generate context-aware features from primary sequence information, we sought to develop a unified framework for kinase-specific phosphosite prediction, allowing for greater investigative utility and enabling substrate predictions at the whole kinome level. RESULTS We present a deep learning model for kinase-specific phosphosite prediction, termed Phosformer, which predicts the probability of phosphorylation given an arbitrary pair of unaligned kinase and substrate peptide sequences. We demonstrate that Phosformer implicitly learns evolutionary and functional features during training, removing the need for feature curation and engineering. Further analyses reveal that Phosformer also learns substrate specificity motifs and is able to distinguish between functionally distinct kinase families. Benchmarks indicate that Phosformer exhibits significant improvements compared to the state-of-the-art models, while also presenting a more generalized, unified, and interpretable predictive framework. AVAILABILITY AND IMPLEMENTATION Code and data are available at https://github.com/esbgkannan/phosformer. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, GA 30602, USA
| | - Mariah Salcedo
- Department of Biochemistry and Molecular Biology, University of Georgia, GA 30602, USA
| | | | - Sheng Li
- To whom correspondence should be addressed. or
| | | |
Collapse
|
131
|
Nagasaka A, Terawaki T, Noda M, Takashima M, Fujino M, Yamauchi Y, Arawaka S, Kato T, Nakaya M. GRK5-mediated inflammation and fibrosis exert cardioprotective effects during the acute phase of myocardial infarction. FEBS Open Bio 2023; 13:380-391. [PMID: 36633120 PMCID: PMC9900089 DOI: 10.1002/2211-5463.13551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/19/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
During myocardial infarction (MI), cardiac cells at the infarcted area undergo cell death. In response, cardiac myofibroblasts, which are mainly differentiated from resident fibroblasts upon inflammation, produce extracellular matrix proteins such as collagen to fill the damaged areas of the heart to prevent cardiac rupture. In this study, we identified a cardioprotective role of G-protein-coupled receptor kinase 5 (GRK5) in MI. GRK5 expression was found to increase in the mouse heart after MI and was highly expressed in cardiac fibroblasts/myofibroblasts. In fibroblasts/myofibroblasts, GRK5 promoted the expression of inflammation-related genes through nuclear factor-κB activation, leading to an increase in the expression levels of fibrosis-related genes. Bone marrow transfer experiments confirmed that GRK5 in fibroblasts/myofibroblasts, but not in infiltrated macrophages in the infarcted area, is mainly responsible for GRK5-mediated inflammation in infarcted hearts. In addition, inflammation and fibrosis at the infarcted area were significantly suppressed in GRK5 knockout mice, resulting in increased mortality compared with that in wild-type mice. These data indicate that GRK5 in cardiac fibroblasts/myofibroblasts promotes inflammation and fibrosis to ameliorate the damage after MI.
Collapse
Affiliation(s)
- Akiomi Nagasaka
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Tsuyoshi Terawaki
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Makoto Noda
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Miyuki Takashima
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Mika Fujino
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Yuto Yamauchi
- Department of Disease control, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Shigeki Arawaka
- Division of Neurology, Department of Internal Medicine IVOsaka Medical CollegeJapan
| | - Takeo Kato
- Division of Neurology and Clinical Neuroscience, Department of Internal Medicine IIIYamagata University School of MedicineJapan
| | - Michio Nakaya
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
- Department of Disease control, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
- AMED‐PRIMEJapan Agency for Medical Research and DevelopmentTokyoJapan
| |
Collapse
|
132
|
Zhang J, He G, Jin X, Alenezi BT, Naeem AA, Abdulsamad SA, Ke Y. Molecular mechanisms on how FABP5 inhibitors promote apoptosis-induction sensitivity of prostate cancer cells. Cell Biol Int 2023; 47:929-942. [PMID: 36651331 DOI: 10.1002/cbin.11989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Previous work showed that FABP5 inhibitors suppressed the malignant progression of prostate cancer cells, and this suppression might be achieved partially by promoting apoptosis. But the mechanisms involved were not known. Here, we investigated the effect of inhibitors on apoptosis and studied the relevant mechanisms. WtrFABP5 significantly reduced apoptotic cells in 22Rv1 and PC3 by 18% and 42%, respectively. In contrast, the chemical inhibitor SB-FI-26 produced significant increases in percentages of apoptotic cells in 22Rv1 and PC3 by 18.8% (±4.1) and 4.6% (±1.1), respectively. The bio- inhibitor dmrFABP5 also did so by 23.1% (±2.4) and 15.8% (±3.0), respectively, in these cell lines. Both FABP5 inhibitors significantly reduced the levels of the phosphorylated nuclear fatty acid receptor PPARγ, indicating that these inhibitors promoted apoptosis-induction sensitivity of the cancer cells by suppressing the biological activity of PPARγ. Thus, the phosphorylated PPARγ levels were reduced by FABP5 inhibitors, the levels of the phosphorylated AKT and activated nuclear factor kapper B (NFκB) were coordinately altered by additions of the inhibitors. These changes eventually led to the increased levels of cleaved caspase-9 and cleaved caspase-3; and thus, increase in the percentage of cells undergoing apoptosis. In untreated prostate cancer cells, increased FABP5 suppressed the apoptosis by increasing the biological activity of PPARγ, which, in turn, led to a reduced apoptosis by interfering with the AKT or NFκB signaling pathway. Our results suggested that the FABP5 inhibitors enhanced the apoptosis-induction of prostate cancer cells by reversing the biological effect of FABP5 and its related pathway.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, UK
| | - Gang He
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China
| | - Xi Jin
- Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bandar T Alenezi
- Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, UK
| | - Abdulghani A Naeem
- Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, UK
| | - Saud A Abdulsamad
- Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, UK
| | - Youqiang Ke
- Department of Molecular and Clinical Cancer Medicine, Liverpool University, Liverpool, UK.,Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, Sichuan, China.,Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
133
|
Kuber B, Fadnavis M, Chatterjee B. Role of angiotensin receptor blockers in the context of Alzheimer's disease. Fundam Clin Pharmacol 2023; 37:429-445. [PMID: 36654189 DOI: 10.1111/fcp.12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/06/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
As the world's population ages, the prevalence of age-related neurological disorders such as Alzheimer's disease (AD) is increasing. There is currently no treatment for Alzheimer's disease, and the few approved medications have a low success rate in lowering symptoms. As a result, several attempts are underway worldwide to identify new targets for the therapy of Alzheimer's disease. In preclinical studies of Alzheimer's disease, it was recently found that inhibition of angiotensin-converting enzyme (ACE) and blocking of the angiotensin II receptors reduce symptoms of neurodegeneration, Aβ plaque development, and tau hyperphosphorylation. Angiotensin II type I (AT1) blockers, such as telmisartan, candesartan, valsartan, and others, have a wide safety margin and are commonly used to treat hypertension. Renal and cardiovascular failures are reduced due to their vascular protective actions. Inhibition of AT1 receptors in the brain has a neuroprotective impact in humans, reducing the risk of stroke, increasing cognition, and slowing the progression of Alzheimer's disease. The review focuses on the mechanisms via which AT1 blockers may act beneficially in Alzheimer's disease. Although their effect is evident in preclinical studies, clinical trials, on the other hand, are in short supply to validate the strategy. More dose-response experiments with possible AT1 blockers and brain-targeted administration will be needed in the future.
Collapse
Affiliation(s)
- Binal Kuber
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Mitisha Fadnavis
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| |
Collapse
|
134
|
NF- κB Inhibitor Myrislignan Induces Ferroptosis of Glioblastoma Cells via Regulating Epithelial-Mesenchymal Transformation in a Slug-Dependent Manner. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7098313. [PMID: 36699318 PMCID: PMC9870699 DOI: 10.1155/2023/7098313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023]
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the adult central nervous system. Aberrant regulation of cell death is an important feature of GBM, and investigating the regulatory mechanisms of cell death in GBM may provide insights into development of new therapeutic strategies. We demonstrated that myrislignan has ferroptosis-promoting activity. Myrislignan is a lignan isolated from Myristica fragrans Houtt and an inhibitor of NF-κB signaling pathway. Ferroptosis is an iron-dependent form of programmed cell death characterized by the accumulation of intracellular lipid peroxidation products. Interestingly, ferroptosis was associated with other biological processes in tumor cells such as autophagy and necroptosis. Recently, the crosstalk between epithelial-mesenchymal transition (EMT) and ferroptosis has also been reported, but the mechanisms underlying the crosstalk have not been identified. Our results indicated that myrislignan suppressed growth of GBM through EMT-mediated ferroptosis in a Slug-dependent manner. Myrislignan inhibited the activation of NF-κB signaling by blocking the phosphorylation of p65 protein and induced ferroptosis through the Slug-SLC7A11 signaling pathway in GBM cells. In addition, myrislignan suppressed the progression of GBM in xenograft mouse model. Hence, our findings contribute to the understanding of EMT-induced ferroptosis and provide targets for the development of targeted therapy against GBM.
Collapse
|
135
|
Heck KA, Lindholm HT, Niederdorfer B, Tsirvouli E, Kuiper M, Flobak Å, Lægreid A, Thommesen L. Characterisation of Colorectal Cancer Cell Lines through Proteomic Profiling of Their Extracellular Vesicles. Proteomes 2023; 11:proteomes11010003. [PMID: 36648961 PMCID: PMC9844407 DOI: 10.3390/proteomes11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers, driven by several factors including deregulations in intracellular signalling pathways. Small extracellular vesicles (sEVs) are nanosized protein-packaged particles released from cells, which are present in liquid biopsies. Here, we characterised the proteome landscape of sEVs and their cells of origin in three CRC cell lines HCT116, HT29 and SW620 to explore molecular traits that could be exploited as cancer biomarker candidates and how intracellular signalling can be assessed by sEV analysis instead of directly obtaining the cell of origin itself. Our findings revealed that sEV cargo clearly reflects its cell of origin with proteins of the PI3K-AKT pathway highly represented in sEVs. Proteins known to be involved in CRC were detected in both cells and sEVs including KRAS, ARAF, mTOR, PDPK1 and MAPK1, while TGFB1 and TGFBR2, known to be key players in epithelial cancer carcinogenesis, were found to be enriched in sEVs. Furthermore, the phosphopeptide-enriched profiling of cell lysates demonstrated a distinct pattern between cell lines and highlighted potential phosphoproteomic targets to be investigated in sEVs. The total proteomic and phosphoproteomics profiles described in the current work can serve as a source to identify candidates for cancer biomarkers that can potentially be assessed from liquid biopsies.
Collapse
Affiliation(s)
- Kathleen A. Heck
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Håvard T. Lindholm
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Barbara Niederdorfer
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Martin Kuiper
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Åsmund Flobak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- The Cancer Clinic, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Astrid Lægreid
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Liv Thommesen
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Correspondence:
| |
Collapse
|
136
|
Lee SH, Seo D, Lee KH, Park SJ, Park S, Kim H, Kim T, Joo IH, Park JM, Kang YH, Lim GH, Kim DH, Yang JY. Biometabolites of Citrus unshiu Peel Enhance Intestinal Permeability and Alter Gut Commensal Bacteria. Nutrients 2023; 15:nu15020319. [PMID: 36678190 PMCID: PMC9862503 DOI: 10.3390/nu15020319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Flavanones in Citrus unshiu peel (CUP) have been used as therapeutic agents to reduce intestinal inflammation; however, the anti-inflammatory effects of their biometabolites remain ambiguous. Here, we identified aglycone-type flavanones, such as hesperetin and naringenin, which were more abundant in the bioconversion of the CUP than in the ethanol extracts of the CUP. We found that the bioconversion of the CUP induced the canonical nuclear factor-κB pathway via degradation of IκB in Caco-2 cells. To check the immune suppressive capacity of the aglycones of the CUP in vivo, we orally administered the bioconversion of the CUP (500 mg/kg) to mice for two weeks prior to the 3% dextran sulfate sodium treatment. The CUP-pretreated group showed improved body weight loss, colon length shortage, and intestinal inflammation than the control mice. We also found a significant decrease in the population of lamina propria Th17 cells in the CUP-pretreated group following dextran sodium sulfate (DSS) treatment and an increase in mRNA levels of occludin in CUP-treated Caco-2 cells. Pyrosequencing analysis revealed a decreased abundance of Alistipes putredinis and an increased abundance of Muribaculum intestinale in the feces of the CUP-pretreated mice compared to those of the control mice. Overall, these findings suggest that the pre-administration of CUP biometabolites may inhibit the development of murine colitis by modulating intestinal permeability and the gut microbiome.
Collapse
Affiliation(s)
- Se-Hui Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Dongju Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Kang-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - So-Jung Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sun Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeyun Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Taekyung Kim
- Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea
| | - In Hwan Joo
- Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jong-Min Park
- Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Yun-Hwan Kang
- Department of Industry Promotion, National Institute for Korean Medicine Development, Geongsan 38540, Republic of Korea
| | - Gah-Hyun Lim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Dong Hee Kim
- Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jin-Young Yang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: ; Tel.: +82-51-510-2286; Fax: +82-51-581-2962
| |
Collapse
|
137
|
Hussein MM, Sayed RKA, Mokhtar DM. Structural and immunohistochemical analysis of the cellular compositions of the liver of molly fish (Poecilia sphenops), focusing on its immune role. ZOOLOGICAL LETTERS 2023; 9:1. [PMID: 36604695 PMCID: PMC9814241 DOI: 10.1186/s40851-022-00200-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The liver of fish is considered an ideal model for studying the collaboration between environmental agents and the health state of the fish, where it gives good indications about aquatic ecosystem status. Therefore, this study presented immune roles for the liver in molly fish (Poecilia sphenops), using immunohistochemistry and transmission electron microscopy (TEM). The hepatocytes' sinusoidal structures of molly fish livers had taken two different forms; cord-like and tubular, while the biliary tract system showed two different types: isolated and biliary venous tract. The TEM showed that the hepatocytes possessed well-developed cytoplasmic organelles and numerous glycogen and lipid droplets of different sizes. Kupffer cells, Ito cells, aggregation of intrahepatic macrophages and melanomacrophages were also recognized. Melanomacrophages contained numerous phagosomes, many lysosomes, cytoplasmic vacuoles, and melanin pigments. Hepatocytes and Kupffer cells expressed immunoreactivity to APG5, indicating that these cells were involved in the process of autophagy. Telocytes (TCs) were also recognized in the liver of molly fish, and they shared the same morphological characteristics as those in mammals. However, TCs expressed strong immunoreactivity to APG5, TGF-β, and Nrf2, suggesting their possible role in cellular differentiation and regeneration, in addition to phagocytosis and autophagy. Both IL-1β and NF-KB showed immunoreactivity in the hepatocytes and in inflammatory cells (including intrahepatic macrophages and melanomacrophage center). Nrf2 and SOX9 showed immunoreactivity in hepatocytes, stem cells, and macrophages. The present study showed the spatial distribution of hepatic vascular-biliary tracts in molly fish. The liver of molly fish has unique functions in phagocytosis, autophagy, and cell regeneration. The expression of APG5 in hepatocytes, Kupffer cells, melanomacrophages, and telocytes supports the role of the liver in lymphocyte development and proliferation. The expression of TGF-β and NF-κB in hepatocytes, Kupffer cells, telocytes, and macrophages suggests the role of the liver in regulation of cell proliferation and immune response suppression. The expression of IL-1β and Sox9 in macrophages and melanomacrophages suggests the role of the liver in regulation of both innate and adaptive immunity, cell proliferation and apoptosis, in addition to stem cell maintenance.
Collapse
Affiliation(s)
- Marwa M Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, 82524, Sohag, Egypt.
| | - Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
- Department of Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| |
Collapse
|
138
|
Wang D, Tan Z, Yang J, Li L, Li H, Zhang H, Liu H, Liu Y, Wang L, Li Q, Guo H. Perfluorooctane sulfonate promotes atherosclerosis by modulating M1 polarization of macrophages through the NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114384. [PMID: 36512850 DOI: 10.1016/j.ecoenv.2022.114384] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a widely used and distributed perfluorinated compounds and is reported to be harmful to cardiovascular health; however, the direct association between PFOS exposure and atherosclerosis and the underlying mechanisms remain unknown. Therefore, this study aimed to investigate the effects of PFOS exposure on the atherosclerosis progression and the underlying mechanisms. PFOS was administered through oral gavage to apolipoprotein E-deficient (ApoE-/-) mice for 12 weeks. PFOS exposure significantly increased pulse wave velocity (PWV) and intima-media thickness (IMT), increased aortic plaque burden and vulnerability, and elevated serum lipid and inflammatory cytokine levels. PFOS promoted aortic and RAW264.7 M1 macrophage polarization, which increased the secretion of nitric oxide synthase (iNOS) and pro-inflammatory factors (tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6], and interleukin-1β [IL-1β]), and suppressed M2 macrophage polarization, which decreased the expression of CD206, arginine I (Arg-1), and interleukin-10 (IL-10). Moreover, PFOS activated nuclear factor-kappa B (NF-κB) in the aorta and macrophages. BAY11-7082 was used to inhibit NF-κB-alleviated M1 macrophage polarization and the inflammatory response induced by PFOS in RAW264.7 macrophages. Our results are the first to reveal the acceleratory effect of PFOS on the atherosclerosis progression in ApoE-/- mice, which is associated with the NF-κB activation of macrophages to M1 polarization to induce inflammation.
Collapse
Affiliation(s)
- Dan Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Zhenzhen Tan
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Jing Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Longfei Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Haoran Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, China
| | - Heqiong Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Yi Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- Department of Physiology, Hebei Medical University, Shijiazhuang, China.
| | - Huicai Guo
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
139
|
Yim J, Lee J, Yi S, Koo JY, Oh S, Park H, Kim SS, Bae MA, Park J, Park SB. Phenotype-based screening rediscovered benzopyran-embedded microtubule inhibitors as anti-neuroinflammatory agents by modulating the tubulin-p65 interaction. Exp Mol Med 2022; 54:2200-2209. [PMID: 36509830 PMCID: PMC9743128 DOI: 10.1038/s12276-022-00903-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is one of the critical processes implicated in central nervous system (CNS) diseases. Therefore, alleviating neuroinflammation has been highlighted as a therapeutic strategy for treating CNS disorders. However, the complexity of neuroinflammatory processes and poor drug transport to the brain are considerable hurdles to the efficient control of neuroinflammation using small-molecule therapeutics. Thus, there is a significant demand for new chemical entities (NCEs) targeting neuroinflammation. Herein, we rediscovered benzopyran-embedded tubulin inhibitor 1 as an anti-neuroinflammatory agent via phenotype-based screening. A competitive photoaffinity labeling study revealed that compound 1 binds to tubulin at the colchicine-binding site. Structure-activity relationship analysis of 1's analogs identified SB26019 as a lead compound with enhanced anti-neuroinflammatory efficacy. Mechanistic studies revealed that upregulation of the tubulin monomer was critical for the anti-neuroinflammatory activity of SB26019. We serendipitously found that the tubulin monomer recruits p65, inhibiting its translocation from the cytosol to the nucleus and blocking NF-κB-mediated inflammatory pathways. Further in vivo validation using a neuroinflammation mouse model demonstrated that SB26019 suppressed microglial activation by downregulating lba-1 and proinflammatory cytokines. Intraperitoneal administration of SB26019 showed its therapeutic potential as an NCE for successful anti-neuroinflammatory regulation. Along with the recent growing demands on tubulin modulators for treating various inflammatory diseases, our results suggest that colchicine-binding site-specific modulation of tubulins can be a potential strategy for preventing neuroinflammation and treating CNS diseases.
Collapse
Affiliation(s)
- Junhyeong Yim
- grid.31501.360000 0004 0470 5905Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826 Korea
| | - Jaeseok Lee
- grid.412010.60000 0001 0707 9039Department of Chemistry, Kangwon National University, Chuncheon, 24341 Korea
| | - Sihyeong Yi
- grid.31501.360000 0004 0470 5905CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826 Korea
| | - Ja Young Koo
- grid.31501.360000 0004 0470 5905CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826 Korea
| | - Sangmi Oh
- grid.31501.360000 0004 0470 5905CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826 Korea
| | - Hankum Park
- grid.31501.360000 0004 0470 5905CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826 Korea ,grid.31501.360000 0004 0470 5905Present Address: Department of Dental Sciences, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826 Korea
| | - Seong Soon Kim
- grid.29869.3c0000 0001 2296 8192Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114 Korea
| | - Myung Ae Bae
- grid.29869.3c0000 0001 2296 8192Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114 Korea ,grid.412786.e0000 0004 1791 8264Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, 34114 Korea
| | - Jongmin Park
- grid.412010.60000 0001 0707 9039Department of Chemistry, Kangwon National University, Chuncheon, 24341 Korea ,grid.412010.60000 0001 0707 9039Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341 Korea
| | - Seung Bum Park
- grid.31501.360000 0004 0470 5905Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826 Korea ,grid.31501.360000 0004 0470 5905CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
140
|
Mo S, Kim EY, Kwon YS, Lee MY, Ahn JC. NF-κB-mediated anti-inflammatory effects of an organic light-emitting diode (OLED) device in lipopolysaccharide (LPS)-induced in vitro and in vivo inflammation models. Front Immunol 2022; 13:1050908. [PMID: 36561754 PMCID: PMC9763281 DOI: 10.3389/fimmu.2022.1050908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is the body's physiological response to harmful agents. However, if not regulated properly, inflammation can become pathological. Macrophages are key players in the inflammatory process, and modulate the immune response. Due to the side effects of anti-inflammatory drugs, non-pharmaceutical therapies for inflammatory diseases must be developed. Photobiomodulation is a non-invasive therapeutic approach to treating certain pathological conditions using light energy. Light-emitting diodes (LEDs) are commonly used as light sources for photobiomodulation treatment, but their clinical applications are limited. Organic LEDs (OLEDs) are thin, lightweight and flexible, enabling consistent and even delivery of light energy to target areas; this makes OLED promising components for therapeutic devices. In the present study, we examined the effects of OLED treatment on inflammation in vitro using a lipopolysaccharide (LPS)-induced macrophage RAW264.7 cell model, and in vivo using a pinna skin mouse model. We found that LPS-induced morphological changes and inflammatory cytokine expression were significantly reduced in RAW264.7 cells subjected to OLED treatment compared to the LPS-induced controls. This work provides evidence for the anti-inflammatory effects of OLEDs, demonstrating their potential to be incorporated into medical devices in the future.
Collapse
Affiliation(s)
- SangJoon Mo
- Medical Laser Research Center, Dankook University, Cheonan, South Korea,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea
| | - Eun Young Kim
- Beckman Laser Institute Korea, Dankook University, Cheonan, South Korea
| | - Yi-Suk Kwon
- Korea Testing Laboratory, Medical Device Evaluation Center, Medical Health Division, Seoul, South Korea
| | - Min Young Lee
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, South Korea,Beckman Laser Institute Korea, Dankook University, Cheonan, South Korea,*Correspondence: Min Young Lee, ; Jin Chul Ahn,
| | - Jin Chul Ahn
- Medical Laser Research Center, Dankook University, Cheonan, South Korea,Beckman Laser Institute Korea, Dankook University, Cheonan, South Korea,Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan, South Korea,*Correspondence: Min Young Lee, ; Jin Chul Ahn,
| |
Collapse
|
141
|
A Biflavonoid-Rich Extract from Selaginella doederleinii Hieron. against Throat Carcinoma via Akt/Bad and IKKβ/NF-κB/COX-2 Pathways. Pharmaceuticals (Basel) 2022; 15:ph15121505. [PMID: 36558956 PMCID: PMC9785591 DOI: 10.3390/ph15121505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Selaginella doederleinii Hieron. is a common pharmacological plant, and this folk herbal medicine and its complex preparations have been widely used for the treatment of throat carcinoma (TC) and several associated complications in traditional Chinese medicine. This study was aimed at investigating the specific anti-throat carcinoma impacts and potential mechanisms of a biflavonoid-rich extract from S. doederleinii (SD-BFRE). The phytochemical profiling of SD-BFRE was performed by HPLC-ESI-QTOF-MS and UPLC-PDA, and the detailed pharmacological effects and mechanisms were respectively evaluated in vitro and in vivo. MTT assay, the Transwell assay and flow cytometry were performed to evaluate the abilities of SD-BFRE on inhibiting cell infiltrative growth in TC cells (Hep-2 and FaDu) in in vitro experiments. In vivo experiments used Hep-2 tumor-bearing nude mice to evaluate the anti-TC effect of SD-BFRE. Western blotting was used to explore the potential apoptotic pathway of TC cells. Here, we found that SD-BFRE exhibited anti-proliferation and pro-apoptotic effects in TC cells. Mechanistic studies have identified that SD-BFRE can suppress the activity of IKKβ and IκB-α kinase and then down-regulate the effector proteins of NF-κB/COX-2 signaling. Moreover, SD-BFRE induced apoptosis partly by regulating the Akt/Bad/caspase signaling pathway. Taken together, this study firstly demonstrated that SD-BFRE exerted its anti-TC effects by way of IKKβ/NF-κB/COX-2 and Akt/Bad pathways and might represent a potential chemotherapeutic agent for throat carcinoma.
Collapse
|
142
|
Shi J, Zhu T, Lin H, Liu Z, Zhou M, Yu Z, Zhou X, Song X, Wang Y, Jia R, Fan X, Zhou Y. Proteotranscriptomics of ocular adnexal B-cell lymphoma reveals an oncogenic role of alternative splicing and identifies a diagnostic marker. J Exp Clin Cancer Res 2022; 41:234. [PMID: 35906682 PMCID: PMC9338531 DOI: 10.1186/s13046-022-02445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ocular adnexal B-cell lymphoma (OABL) is a rare subtype of non-Hodgkin lymphoma. The molecular characteristics of OABL remain poorly understood. We performed an integrated study to investigate the proteotranscriptome landscape and identify novel molecular characteristics and biomarkers of OABL. Methods Integrated quantitative proteome and transcriptome were performed on 40 OABL 12 idiopathic orbital inflammation, 6 reactive lymphoid hyperplasia, and 13 aesthetic orbital plastic surgery specimens. Complete clinicopathologic and prognostic data of the patients were recorded. Results We identified high global protein-mRNA concordance as a novel characteristic of OABL. High concordance was related to OABL recurrence. By integrated expression profile, motif enrichment and trend analysis, we found that alternative splicing is inflammation-independently dysregulated in OABL. After portraying the aberrant alternative splicing event landscape, we demonstrated the oncogenic role of ADAR, a core splicing regulator that regulates the splicing of Rho GTPase and cell cycle members. We found that ADAR regulates cell proliferation and Rho GTPase inhibitor sensitivity of lymphoma. We identified DNAJC9 as a potential biomarker for OABL in proteomic analyses. Immunohistochemistry and immunofluorescent staining showed the nuclear staining of DNAJC9 was significantly higher in extranodal marginal zone lymphomas compared with inflammation specimens. Conclusions These results provide an integrated gene expression profiling and demonstrate that high global protein-mRNA concordance is a prognosis-related molecular characteristic of OABL. We portray the alternative splicing events landscape of OABL, and reveal the oncogenic role of ADAR. We identified strong nuclear staining of DNAJC9 as a promising pathology diagnostic biomarker for extranodal marginal zone lymphomas. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02445-8.
Collapse
|
143
|
Xu T, Jiang Y, Hu X, Yang G, Chen Y, Zhang S, Zhang Q, Zheng L, Xie HQ, Xu L, Zhao B. Effects of the emerging contaminant 1,3,6,8-tetrabromocarbazole on the NF-κB and correlated mechanism in human hepatocellular carcinoma cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114199. [PMID: 36274317 DOI: 10.1016/j.ecoenv.2022.114199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
1,3,6,8-Tetrabromocarbazole (1368-BCZ) is identified as an emerging contaminant that exerts angiogenic effects. Multiple studies indicated there was a positive correlation between angiogenesis and nuclear factor kappa B (NF-κB) activation. While the role of NF-κB in inflammation and apoptosis has been well known, the potential biological effects of 1368-BCZ on NF-κB signaling and related mechanism remain unclear. We, therefore, explored the possible effects of 1368-BCZ on the NF-κB pathway at the gene and protein levels and confirmed that NF-κB activation by 1368-BCZ exposure caused an augmented phosphorylated protein level, induction of NF-κB response element (κBRE)-driven luciferase activity and upregulation of transcriptional level of downstream responsive genes. Although 1368-BCZ did not produce detectable changes in hepatic fibrosis in vivo, it obviously altered the apoptosis in human hepatocellular carcinoma (HepG2) cells. Furthermore, the induction of apoptosis was confirmed by the increased cleaved caspase-3 level. These data revealed the activating effects of 1368-BCZ on NF-κB and its involvement in the underlying mechanisms, providing additional information for toxicology studies of emerging contaminants and introducing a mechanism-based toxicological evaluation of emerging pollutants.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Jiang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xiaoxu Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanglei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songyan Zhang
- Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Liping Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
144
|
Yun HJ, Suh YJ, Kim YB, Kang EJ, Choi JH, Choi YK, Lee IB, Choi DH, Seo YJ, Noh JR, Choi HS, Kim YH, Lee CH. Hepatocyte DAX1 Deletion Exacerbates Inflammatory Liver Injury by Inducing the Recruitment of CD4 + and CD8 + T Cells through NF-κB p65 Signaling Pathway in Mice. Int J Mol Sci 2022; 23:ijms232214009. [PMID: 36430486 PMCID: PMC9698938 DOI: 10.3390/ijms232214009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fulminant hepatitis is characterized by rapid and massive immune-mediated liver injury. Dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX1; NR0B1) represses the transcription of various genes. Here, we determine whether DAX1 serves as a regulator of inflammatory liver injury induced by concanavalin A (ConA). C57BL/6J (WT), myeloid cell-specific Dax1 knockout (MKO), and hepatocyte-specific Dax1 knockout (LKO) mice received single intravenous administration of ConA. Histopathological changes in liver and plasma alanine aminotransferase and aspartate aminotransferase levels in Dax1 MKO mice were comparable with those in WT mice following ConA administration. Unlike Dax1 MKO mice, Dax1 LKO mice were greatly susceptible to ConA-induced liver injury, which was accompanied by enhanced infiltration of immune cells, particularly CD4+ and CD8+ T cells, in the liver. Factors related to T-cell recruitment, including chemokines and adhesion molecules, significantly increased following enhanced and prolonged phosphorylation of NF-κB p65 in the liver of ConA-administered Dax1 LKO mice. This is the first study to demonstrate that hepatocyte-specific DAX1 deficiency exacerbates inflammatory liver injury via NF-κB p65 activation, thereby causing T-cell infiltration by modulating inflammatory chemokines and adhesion molecules. Our results suggest DAX1 as a therapeutic target for fulminant hepatitis treatment.
Collapse
Affiliation(s)
- Hyo-Jeong Yun
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Young-Joo Suh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Yu-Bin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Eun-Jung Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jung Hyeon Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Young-Keun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - In-Bok Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Yun Jeong Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: (Y.-H.K.); (C.-H.L.)
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: (Y.-H.K.); (C.-H.L.)
| |
Collapse
|
145
|
Hunter JE, Campbell AE, Kerridge S, Fraser C, Hannaway NL, Luli S, Ivanova I, Brownridge PJ, Coxhead J, Taylor L, Leary P, Hasoon MSR, Eyers CE, Perkins ND. Up-regulation of the PI3K/AKT and RHO/RAC/PAK signalling pathways in CHK1 inhibitor resistant Eµ-Myc lymphoma cells. Biochem J 2022; 479:2131-2151. [PMID: 36240067 PMCID: PMC9704644 DOI: 10.1042/bcj20220103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
The development of resistance and the activation of bypass pathway signalling represents a major problem for the clinical application of protein kinase inhibitors. While investigating the effect of either a c-Rel deletion or RelAT505A phosphosite knockin on the Eµ-Myc mouse model of B-cell lymphoma, we discovered that both NF-κB subunit mutations resulted in CHK1 inhibitor resistance, arising from either loss or alteration of CHK1 activity, respectively. However, since Eµ-Myc lymphomas depend on CHK1 activity to cope with high levels of DNA replication stress and consequent genomic instability, it was not clear how these mutant NF-κB subunit lymphomas were able to survive. To understand these survival mechanisms and to identify potential compensatory bypass signalling pathways in these lymphomas, we applied a multi-omics strategy. With c-Rel-/- Eµ-Myc lymphomas we observed high levels of Phosphatidyl-inositol 3-kinase (PI3K) and AKT pathway activation. Moreover, treatment with the PI3K inhibitor Pictilisib (GDC-0941) selectively inhibited the growth of reimplanted c-Rel-/- and RelAT505A, but not wild type (WT) Eµ-Myc lymphomas. We also observed up-regulation of a RHO/RAC pathway gene expression signature in both Eµ-Myc NF-κB subunit mutation models. Further investigation demonstrated activation of the RHO/RAC effector p21-activated kinase (PAK) 2. Here, the PAK inhibitor, PF-3758309 successfully overcame resistance of RelAT505A but not WT lymphomas. These findings demonstrate that up-regulation of multiple bypass pathways occurs in CHK1 inhibitor resistant Eµ-Myc lymphomas. Consequently, drugs targeting these pathways could potentially be used as either second line or combinatorial therapies to aid the successful clinical application of CHK1 inhibitors.
Collapse
Affiliation(s)
- Jill E. Hunter
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Amy E. Campbell
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Scott Kerridge
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Callum Fraser
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Nicola L. Hannaway
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Saimir Luli
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging (PIVI), Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Iglika Ivanova
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Philip J. Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Jonathan Coxhead
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Leigh Taylor
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Peter Leary
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Megan S. R. Hasoon
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Claire E. Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Neil D. Perkins
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
146
|
Hunter JE, Campbell AE, Butterworth JA, Sellier H, Hannaway NL, Luli S, Floudas A, Kenneth NS, Moore AJ, Brownridge PJ, Thomas HD, Coxhead J, Taylor L, Leary P, Hasoon MS, Knight AM, Garrett MD, Collins I, Eyers CE, Perkins ND. Mutation of the RelA(p65) Thr505 phosphosite disrupts the DNA replication stress response leading to CHK1 inhibitor resistance. Biochem J 2022; 479:2087-2113. [PMID: 36240065 PMCID: PMC9704643 DOI: 10.1042/bcj20220089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/22/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Jill E. Hunter
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Amy E. Campbell
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Jacqueline A. Butterworth
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Helene Sellier
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Nicola L. Hannaway
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Saimir Luli
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Achilleas Floudas
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Niall S. Kenneth
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Adam J. Moore
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Philip J. Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Huw D. Thomas
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Jonathan Coxhead
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Leigh Taylor
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Peter Leary
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Megan S.R. Hasoon
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Andrew M. Knight
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Michelle D. Garrett
- School of Biosciences, University of Kent, Stacey Building, Canterbury, Kent CT2 7NJ, U.K
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton SM2 5NG, U.K
| | - Claire E. Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Neil D. Perkins
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|
147
|
Hunter JE, Campbell AE, Hannaway NL, Kerridge S, Luli S, Butterworth JA, Sellier H, Mukherjee R, Dhillon N, Sudhindar PD, Shukla R, Brownridge PJ, Bell HL, Coxhead J, Taylor L, Leary P, Hasoon MS, Collins I, Garrett MD, Eyers CE, Perkins ND. Regulation of CHK1 inhibitor resistance by a c-Rel and USP1 dependent pathway. Biochem J 2022; 479:2063-2086. [PMID: 36240066 PMCID: PMC9704646 DOI: 10.1042/bcj20220102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/19/2022]
Abstract
Previously, we discovered that deletion of c-Rel in the Eµ-Myc mouse model of lymphoma results in earlier onset of disease, a finding that contrasted with the expected function of this NF-κB subunit in B-cell malignancies. Here we report that Eµ-Myc/cRel-/- cells have an unexpected and major defect in the CHK1 pathway. Total and phospho proteomic analysis revealed that Eµ-Myc/cRel-/- lymphomas highly resemble wild-type (WT) Eµ-Myc lymphomas treated with an acute dose of the CHK1 inhibitor (CHK1i) CCT244747. Further analysis demonstrated that this is a consequence of Eµ-Myc/cRel-/- lymphomas having lost expression of CHK1 protein itself, an effect that also results in resistance to CCT244747 treatment in vivo. Similar down-regulation of CHK1 protein levels was also seen in CHK1i resistant U2OS osteosarcoma and Huh7 hepatocellular carcinoma cells. Further investigation revealed that the deubiquitinase USP1 regulates CHK1 proteolytic degradation and that its down-regulation in our model systems is responsible, at least in part, for these effects. We demonstrate that treating WT Eµ-Myc lymphoma cells with the USP1 inhibitor ML323 was highly effective at reducing tumour burden in vivo. Targeting USP1 activity may thus be an alternative therapeutic strategy in MYC-driven tumours.
Collapse
Affiliation(s)
- Jill E. Hunter
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Amy E. Campbell
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Nicola L. Hannaway
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Scott Kerridge
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Saimir Luli
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging (PIVI), Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Jacqueline A. Butterworth
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Helene Sellier
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Reshmi Mukherjee
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Nikita Dhillon
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Praveen D. Sudhindar
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Ruchi Shukla
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Philip J. Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Hayden L. Bell
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Jonathan Coxhead
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Leigh Taylor
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Peter Leary
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Megan S.R. Hasoon
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton SM2 5NG, U.K
| | - Michelle D. Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent CT2 7NJ, U.K
| | - Claire E. Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Neil D. Perkins
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| |
Collapse
|
148
|
Bapat A, Li G, Xiao L, Yeri A, Hulsmans M, Grune J, Yamazoe M, Schloss MJ, Iwamoto Y, Tedeschi J, Yang X, Nahrendorf M, Rosenzweig A, Ellinor PT, Das S, Milan D. Genetic inhibition of serum glucocorticoid kinase 1 prevents obesity-related atrial fibrillation. JCI Insight 2022; 7:160885. [PMID: 35998035 PMCID: PMC9675459 DOI: 10.1172/jci.insight.160885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023] Open
Abstract
Obesity is an important risk factor for atrial fibrillation (AF), but a better mechanistic understanding of obesity-related atrial fibrillation is required. Serum glucocorticoid kinase 1 (SGK1) is a kinase positioned within multiple obesity-related pathways, and prior work has shown a pathologic role of SGK1 signaling in ventricular arrhythmias. We validated a mouse model of obesity-related AF using wild-type mice fed a high-fat diet. RNA sequencing of atrial tissue demonstrated substantial differences in gene expression, with enrichment of multiple SGK1-related pathways, and we showed upregulated of SGK1 transcription, activation, and signaling in obese atria. Mice expressing a cardiac specific dominant-negative SGK1 were protected from obesity-related AF, through effects on atrial electrophysiology, action potential characteristics, structural remodeling, inflammation, and sodium current. Overall, this study demonstrates the promise of targeting SGK1 in a mouse model of obesity-related AF.
Collapse
Affiliation(s)
- Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ling Xiao
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashish Yeri
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jana Grune
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- German Centre for Cardiovascular Research, Berlin, Germany
| | - Masahiro Yamazoe
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maximilian J. Schloss
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Justin Tedeschi
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyu Yang
- Fangshan Hospital of Beijing, University of Traditional Chinese Medicine, Beijing, China
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Demoulas Family Foundation Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David Milan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Leducq Foundation, Boston, Massachusetts, USA
| |
Collapse
|
149
|
Xiang Z, Wang M, Miao C, Jin D, Wang H. Mechanism of calcitriol regulating parathyroid cells in secondary hyperparathyroidism. Front Pharmacol 2022; 13:1020858. [PMID: 36267284 PMCID: PMC9577402 DOI: 10.3389/fphar.2022.1020858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
A common consequence of chronic renal disease is secondary hyperparathyroidism (SHPT) and is closely related to the mortality and morbidity of uremia patients. Secondary hyperparathyroidism (SHPT) is caused by excessive PTH production and release, as well as parathyroid enlargement. At present, the mechanism of cell proliferation in secondary hyperparathyroidism (SHPT) is not completely clear. Decreased expression of the vitamin D receptor (VDR) and calcium-sensing receptor (CaSR), and 1,25(OH)2D3 insufficiency all lead to a decrease in cell proliferation suppression, and activation of multiple pathways is also involved in cell proliferation in renal hyperparathyroidism. The interaction between the parathormone (PTH) and parathyroid hyperplasia and 1,25(OH)2D3 has received considerable attention. 1,25(OH)2D3 is commonly applied in the therapy of renal hyperparathyroidism. It regulates the production of parathormone (PTH) and parathyroid cell proliferation through transcription and post-transcription mechanisms. This article reviews the role of 1,25(OH)2D3 in parathyroid cells in secondary hyperparathyroidism and its current understanding and potential molecular mechanism.
Collapse
|
150
|
Baca-Gonzalez L, Serrano Zamora R, Rancan L, González Fernández-Tresguerres F, Fernández-Tresguerres I, López-Pintor RM, López-Quiles J, Leco I, Torres J. Plasma rich in growth factors (PRGF) and leukocyte-platelet rich fibrin (L-PRF): comparative release of growth factors and biological effect on osteoblasts. Int J Implant Dent 2022; 8:39. [PMID: 36184700 PMCID: PMC9527267 DOI: 10.1186/s40729-022-00440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To compare the release of platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-I) and interleukin 1β (IL-1β) of plasma rich in growth factors (PRGF) and leucocyte platelet-rich fibrin (L-PRF) and to evaluate their biological implication in osteoblasts. METHODS Blood from 3 healthy volunteers was processed into PRGF, immediate L-PRF (L-PRF 0') and L-PRF 30 min after collection (L-PRF-30') and a control group. Growth factors release were analyzed at 7 times by ELISA. Cell proliferation, collagen-I synthesis and alkaline phosphatase activity were assessed in primary cultures of human osteoblasts. RESULTS A slower controlled release of IGF-I, VEGF and PDGF was observed in the PRGF group at day 14. A higher synthesis of type I collagen was also quantified in PRGF. L-PRF released significantly higher amounts of IL-1β, that was almost absent in the PRGF. CONCLUSIONS The addition of leukocytes dramatically increases the secretion of proinflammatory cytokines, which are likely to negatively influence the synthesis of type I collagen and alkaline phosphatase (ALP) by osteoblasts.
Collapse
Affiliation(s)
- Laura Baca-Gonzalez
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain.
| | - Rebeca Serrano Zamora
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Lisa Rancan
- Department of Biochemistry and Molecular Biology. Faculty of Medicine, Complutense University, Madrid, Spain
| | | | - Isabel Fernández-Tresguerres
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Rosa M López-Pintor
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Juan López-Quiles
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Isabel Leco
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Jesús Torres
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| |
Collapse
|