101
|
Xia Y, Cao Y, Ren Y, Ling A, Du K, Li Y, Yang J, Kang X. Effect of a suitable treatment period on the genetic transformation efficiency of the plant leaf disc method. PLANT METHODS 2023; 19:15. [PMID: 36793134 PMCID: PMC9930321 DOI: 10.1186/s13007-023-00994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Agrobacterium tumefaciens-mediated leaf disc genetic transformation is an important way to achieve transgenics or gene editing. Ensuring stable and efficient genetic transformation is still an important problem in modern biology. It is assumed that the difference in the development status of genetic transformation cells of receptor materials is the main reason for the difference and instability of genetic transformation efficiency; the stable and efficient genetic transformation rate can be obtained by defining the appropriate treatment period of the receptor material and applying genetic transformation in a timely manner. RESULTS Based on these assumptions, we studied and established an efficient and stable Agrobacterium-mediated plant transformation system with hybrid poplar (Populus alba × Populus glandulosa, 84 K) leaves, stem segments and tobacco leaves as the research objects. There were differences in the development process of leaf bud primordial cells from different explants, and the genetic transformation efficiency was significantly related to the cell development stage of the in vitro cultured materials. Among them, the genetic transformation rate of poplar and tobacco leaves was the highest on the 3rd and 2nd day of culture, reaching 86.6% and 57.3%, respectively. The genetic transformation rate of poplar stem segments was the highest on the 4th day of culture, reaching 77.8%. The best treatment period was from the development of leaf bud primordial cells to the S phase of the cell cycle. The number of cells detected using flow cytometry and 5-ethynyl-2'-deoxyuridine (EdU) staining, the expression of cell cycle-related protein CDKB1; 2, CDKD1; 1, CYCA3; 4, CYCD1; 1, CYCD3; 2, CYCD6; 1, and CYCH; 1 of explants, and morphological changes of explants can be used as indicators to determine the appropriate treatment period for genetic transformation. CONCLUSIONS Our study provides a new and universal set of methods and characteristics to identify the S phase of the cell cycle and apply genetic transformation treatments at the appropriate time. Our results are of great significance for improving the efficiency and stability of plant leaf disc genetic transformation.
Collapse
Affiliation(s)
- Yufei Xia
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091 China
| | - Yongyu Ren
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Aoyu Ling
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Kang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Yun Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Jun Yang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
| | - Xiangyang Kang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083 China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091 China
| |
Collapse
|
102
|
Chang PK. A Simple CRISPR/Cas9 System for Efficiently Targeting Genes of Aspergillus Section Flavi Species, Aspergillus nidulans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger. Microbiol Spectr 2023; 11:e0464822. [PMID: 36651760 PMCID: PMC9927283 DOI: 10.1128/spectrum.04648-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
For Aspergillus flavus, a pathogen of considerable economic and health concern, successful gene knockout work for more than a decade has relied nearly exclusively on using nonhomologous end-joining pathway (NHEJ)-deficient recipients via forced double-crossover recombination of homologous sequences. In this study, a simple CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease) genome editing system that gave extremely high (>95%) gene-targeting frequencies in A. flavus was developed. It contained a shortened Aspergillus nidulans AMA1 autonomously replicating sequence that maintained good transformation frequencies and Aspergillus oryzae ptrA as the selection marker for pyrithiamine resistance. Expression of the codon-optimized cas9 gene was driven by the A. nidulans gpdA promoter and trpC terminator. Expression of single guide RNA (sgRNA) cassettes was controlled by the A. flavus U6 promoter and terminator. The high transformation and gene-targeting frequencies of this system made generation of A. flavus gene knockouts with or without phenotypic changes effortless. Additionally, multiple-gene knockouts of A. flavus conidial pigment genes (olgA/copT/wA or olgA/yA/wA) were quickly generated by a sequential approach. Cotransforming sgRNA vectors targeting A. flavus kojA, yA, and wA gave 52%, 40%, and 8% of single-, double-, and triple-gene knockouts, respectively. The system was readily applicable to other section Flavi aspergilli (A. parasiticus, A. oryzae, A. sojae, A. nomius, A. bombycis, and A. pseudotamarii) with comparable transformation and gene-targeting efficiencies. Moreover, it gave satisfactory gene-targeting efficiencies (>90%) in A. nidulans (section Nidulantes), A. fumigatus (section Fumigati), A. terreus (section Terrei), and A. niger (section Nigri). It likely will have a broad application in aspergilli. IMPORTANCE CRISPR/Cas9 genome editing systems have been developed for many aspergilli. Reported gene-targeting efficiencies vary greatly and are dependent on delivery methods, repair mechanisms of induced double-stranded breaks, selection markers, and genetic backgrounds of transformation recipient strains. They are also mostly strain specific or species specific. This developed system is highly efficient and allows knocking out multiple genes in A. flavus efficiently either by sequential transformation or by cotransformation of individual sgRNA vectors if desired. It is readily applicable to section Flavi species and aspergilli in other sections ("section" is a taxonomic rank between genus and species). This cross-Aspergillus section system is for wild-type isolates and does not require homologous donor DNAs to be added, NHEJ-deficient strains to be created, or forced recycling of knockout recipients to be performed for multiple-gene targeting. Hence, it simplifies and expedites the gene-targeting process significantly.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, Louisiana, USA
| |
Collapse
|
103
|
Godbout K, Tremblay JP. Prime Editing for Human Gene Therapy: Where Are We Now? Cells 2023; 12:536. [PMID: 36831203 PMCID: PMC9954691 DOI: 10.3390/cells12040536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Gene therapy holds tremendous potential in the treatment of inherited diseases. Unlike traditional medicines, which only treat the symptoms, gene therapy has the potential to cure the disease by addressing the root of the problem: genetic mutations. The discovery of CRISPR/Cas9 in 2012 paved the way for the development of those therapies. Improvement of this system led to the recent development of an outstanding technology called prime editing. This system can introduce targeted insertions, deletions, and all 12 possible base-to-base conversions in the human genome. Since the first publication on prime editing in 2019, groups all around the world have worked on this promising technology to develop a treatment for genetic diseases. To date, prime editing has been attempted in preclinical studies for liver, eye, skin, muscular, and neurodegenerative hereditary diseases, in addition to cystic fibrosis, beta-thalassemia, X-linked severe combined immunodeficiency, and cancer. In this review, we portrayed where we are now on prime editing for human gene therapy and outlined the best strategies for correcting pathogenic mutations by prime editing.
Collapse
Affiliation(s)
- Kelly Godbout
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
104
|
DNA Damage Response Mechanisms in Head and Neck Cancer: Significant Implications for Therapy and Survival. Int J Mol Sci 2023; 24:ijms24032760. [PMID: 36769087 PMCID: PMC9917521 DOI: 10.3390/ijms24032760] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Head and neck cancer (HNC) is a term collectively used to describe a heterogeneous group of tumors that arise in the oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx, and represents the sixth most common type of malignancy worldwide. Despite advances in multimodality treatment, the disease has a recurrence rate of around 50%, and the prognosis of metastatic patients remains poor. HNCs are characterized by a high degree of genomic instability, which involves a vicious circle of accumulating DNA damage, defective DNA damage repair (DDR), and replication stress. Nonetheless, the damage that is induced on tumor cells by chemo and radiotherapy relies on defective DDR processes for a successful response to treatment, and may play an important role in the development of novel and more effective therapies. This review summarizes the current knowledge on the genes and proteins that appear to be deregulated in DDR pathways, their implication in HNC pathogenesis, and the rationale behind targeting these genes and pathways for the development of new therapies. We give particular emphasis on the therapeutic targets that have shown promising results at the pre-clinical stage and on those that have so far been associated with a therapeutic advantage in the clinical setting.
Collapse
|
105
|
Quraish RU, Hirahata T, Quraish AU, ul Quraish S. An Overview: Genetic Tumor Markers for Early Detection and Current Gene Therapy Strategies. Cancer Inform 2023; 22:11769351221150772. [PMID: 36762284 PMCID: PMC9903029 DOI: 10.1177/11769351221150772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/24/2022] [Indexed: 02/04/2023] Open
Abstract
Genomic instability is considered a fundamental factor involved in any neoplastic disease. Consequently, the genetically unstable cells contribute to intratumoral genetic heterogeneity and phenotypic diversity of cancer. These genetic alterations can be detected by several diagnostic techniques of molecular biology and the detection of alteration in genomic integrity may serve as reliable genetic molecular markers for the early detection of cancer or cancer-related abnormal changes in the body cells. These genetic molecular markers can detect cancer earlier than any other method of cancer diagnosis, once a tumor is diagnosed, then replacement or therapeutic manipulation of these cancer-related abnormal genetic changes can be possible, which leads toward effective and target-specific cancer treatment and in many cases, personalized treatment of cancer could be performed without the adverse effects of chemotherapy and radiotherapy. In this review, we describe how these genetic molecular markers can be detected and the possible ways for the application of this gene diagnosis for gene therapy that can attack cancerous cells, directly or indirectly, which lead to overall improved management and quality of life for a cancer patient.
Collapse
Affiliation(s)
| | - Tetsuyuki Hirahata
- Tetsuyuki Hirahata, Hirahata Gene Therapy Laboratory, HIC Clinic #1105, Itocia Office Tower 11F, 2-7-1, Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan.
| | | | | |
Collapse
|
106
|
Sun H, Chen G, Guo B, Lv S, Yuan G. Potential clinical treatment prospects behind the molecular mechanism of alternative lengthening of telomeres (ALT). J Cancer 2023; 14:417-433. [PMID: 36860927 PMCID: PMC9969575 DOI: 10.7150/jca.80097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/25/2022] [Indexed: 02/04/2023] Open
Abstract
Normal somatic cells inevitably experience replicative stress and senescence during proliferation. Somatic cell carcinogenesis can be prevented in part by limiting the reproduction of damaged or old cells and removing them from the cell cycle [1, 2]. However, Cancer cells must overcome the issues of replication pressure and senescence as well as preserve telomere length in order to achieve immortality, in contrast to normal somatic cells [1, 2]. Although telomerase accounts for the bulk of telomere lengthening methods in human cancer cells, there is a non-negligible portion of telomere lengthening pathways that depend on alternative lengthening of telomeres (ALT) [3]. For the selection of novel possible therapeutic targets for ALT-related disorders, a thorough understanding of the molecular biology of these diseases is crucial [4]. The roles of ALT, typical ALT tumor cell traits, the pathophysiology and molecular mechanisms of ALT tumor disorders, such as adrenocortical carcinoma (ACC), are all summarized in this work. Additionally, this research compiles as many of its hypothetically viable but unproven treatment targets as it can (ALT-associated PML bodies (APB), etc.). This review is intended to contribute as much as possible to the development of research, while also trying to provide a partial information for prospective investigations on ALT pathways and associated diseases.
Collapse
Affiliation(s)
- Haolu Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230011, China
| | - Guijuan Chen
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, China
| | - Baochang Guo
- Rehabilitation Department of Traditional Chinese Medicine, 969 Hospital of the Joint Support Force of the Chinese People's Liberation Army, Hohhot, 010000, China
| | - Shushu Lv
- Department of Pathology, The First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Guojun Yuan
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, China
| |
Collapse
|
107
|
Al-Zain A, Nester MR, Symington LS. Double-strand breaks induce inverted duplication chromosome rearrangements by a DNA polymerase δ and Rad51-dependent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525421. [PMID: 36747747 PMCID: PMC9900772 DOI: 10.1101/2023.01.24.525421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inverted duplications, also known as foldback inversions, are commonly observed in cancers and are the major class of chromosome rearrangement recovered from yeast cells lacking Mre11 nuclease. Foldback priming at naturally occurring inverted repeats is one mechanism proposed for the generation of inverted duplications. However, the initiating lesion for these events and the mechanism by which they form has not been fully elucidated. Here, we show that a DNA double-strand break (DSB) induced near natural short, inverted repeats drives high frequency inverted duplication in Sae2 and Mre11-deficient cells. We find that DNA polymerase δ proof-reading activity acts non-redundantly with Rad1 nuclease to remove heterologous tails formed during foldback annealing. Additionally, Pol32 is required for the generation of inverted duplications, suggesting that Pol δ catalyzes fill-in synthesis primed from the foldback to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric isochromosome. Stabilization of the dicentric chromosome after breakage involves telomere capture by non-reciprocal translocation mediated by repeat sequences and requires Rad51.
Collapse
|
108
|
López-Cortegano E, Craig RJ, Chebib J, Balogun EJ, Keightley PD. Rates and spectra of de novo structural mutations in Chlamydomonas reinhardtii. Genome Res 2023; 33:45-60. [PMID: 36617667 PMCID: PMC9977147 DOI: 10.1101/gr.276957.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation originates from several types of spontaneous mutation, including single-nucleotide substitutions, short insertions and deletions (indels), and larger structural changes. Structural mutations (SMs) drive genome evolution and are thought to play major roles in evolutionary adaptation, speciation, and genetic disease, including cancers. Sequencing of mutation accumulation (MA) lines has provided estimates of rates and spectra of single-nucleotide and indel mutations in many species, yet the rate of new SMs is largely unknown. Here, we use long-read sequencing to determine the full mutation spectrum in MA lines derived from two strains (CC-1952 and CC-2931) of the green alga Chlamydomonas reinhardtii The SM rate is highly variable between strains and between MA lines, and SMs represent a substantial proportion of all mutations in both strains (CC-1952 6%; CC-2931 12%). The SM spectra differ considerably between the two strains, with almost all inversions and translocations occurring in CC-2931 MA lines. This variation is associated with heterogeneity in the number and type of active transposable elements (TEs), which comprise major proportions of SMs in both strains (CC-1952 22%; CC-2931 38%). In CC-2931, a Crypton and a previously undescribed type of DNA element have caused 71% of chromosomal rearrangements, whereas in CC-1952, a Dualen LINE is associated with 87% of duplications. Other SMs, notably large duplications in CC-2931, are likely products of various double-strand break repair pathways. Our results show that diverse types of SMs occur at substantial rates, and support prominent roles for SMs and TEs in evolution.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Rory J Craig
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720, USA
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Eniolaye J Balogun
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario ON M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga ON L5L 1C6, Canada
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
109
|
Awwad SW, Darawshe MM, Machour FE, Arman I, Ayoub N. Recruitment of RBM6 to DNA Double-Strand Breaks Fosters Homologous Recombination Repair. Mol Cell Biol 2023; 43:130-142. [PMID: 36941773 PMCID: PMC10038030 DOI: 10.1080/10985549.2023.2187105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 03/23/2023] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that threaten genome integrity and cell survival. To avoid harmful repercussions of DSBs, a wide variety of DNA repair factors are recruited to execute DSB repair. Previously, we demonstrated that RBM6 splicing factor facilitates homologous recombination (HR) of DSB by regulating alternative splicing-coupled nonstop-decay of the HR protein APBB1/Fe65. Here, we describe a splicing-independent function of RBM6 in promoting HR repair of DSBs. We show that RBM6 is recruited to DSB sites and PARP1 activity indirectly regulates RBM6 recruitment to DNA breakage sites. Deletion mapping analysis revealed a region containing five glycine residues within the G-patch domain that regulates RBM6 accumulation at DNA damage sites. We further ascertain that RBM6 interacts with Rad51, and this interaction is attenuated in RBM6 mutant lacking the G-patch domain (RBM6del(G-patch)). Consequently, RBM6del(G-patch) cells exhibit reduced levels of Rad51 foci after ionizing radiation. In addition, while RBM6 deletion mutant lacking the G-patch domain has no detectable effect on the expression levels of its splicing targets Fe65 and Eya2, it fails to restore the integrity of HR. Altogether, our results suggest that RBM6 recruitment to DSB promotes HR repair, irrespective of its splicing activity.HIGHLIGHTSPARP1 activity indirectly regulates RBM6 recruitment to DNA damage sites.Five glycine residues within the G-patch domain of RBM6 are critical for its recruitment to DNA damage sites, but dispensable for its splicing activity.RBM6 G-patch domain fosters its interaction with Rad51 and promotes Rad51 foci formation following irradiation.RBM6 recruitment to DSB sites underpins HR repair.
Collapse
Affiliation(s)
- Samah W. Awwad
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Malak M. Darawshe
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Feras E. Machour
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Inbar Arman
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
110
|
Zagelbaum J, Gautier J. Double-strand break repair and mis-repair in 3D. DNA Repair (Amst) 2023; 121:103430. [PMID: 36436496 PMCID: PMC10799305 DOI: 10.1016/j.dnarep.2022.103430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
DNA double-strand breaks (DSBs) are lesions that arise frequently from exposure to damaging agents as well as from ongoing physiological DNA transactions. Mis-repair of DSBs leads to rearrangements and structural variations in chromosomes, including insertions, deletions, and translocations implicated in disease. The DNA damage response (DDR) limits pathologic mutations and large-scale chromosome rearrangements. DSB repair initiates in 2D at DNA lesions with the stepwise recruitment of repair proteins and local chromatin remodeling which facilitates break accessibility. More complex structures are then formed via protein assembly into nanodomains and via genome folding into chromatin loops. Subsequently, 3D reorganization of DSBs is guided by clustering forces which drive the assembly of repair domains harboring multiple lesions. These domains are further stabilized and insulated into condensates via liquid-liquid phase-separation. Here, we discuss the benefits and risks associated with this 3D reorganization of the broken genome.
Collapse
Affiliation(s)
- Jennifer Zagelbaum
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
111
|
Bonamino MH, Correia EM. The CRISPR/Cas System in Human Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:59-71. [PMID: 37486516 DOI: 10.1007/978-3-031-33325-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The use of CRISPR as a genetic editing tool modified the oncology field from its basic to applied research for opening a simple, fast, and cheaper way to manipulate the genome. This chapter reviews some of the major uses of this technique for in vitro- and in vivo-based biological screenings, for cellular and animal model generation, and new derivative tools applied to cancer research. CRISPR has opened new frontiers increasing the knowledge about cancer, pointing to new solutions to overcome several challenges to better understand the disease and design better treatments.
Collapse
|
112
|
Wong GCN, Chow KHM. DNA Damage Response-Associated Cell Cycle Re-Entry and Neuronal Senescence in Brain Aging and Alzheimer's Disease. J Alzheimers Dis 2023; 94:S429-S451. [PMID: 35848025 PMCID: PMC10473156 DOI: 10.3233/jad-220203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/15/2022]
Abstract
Chronological aging is by far the strongest risk factor for age-related dementia and Alzheimer's disease. Senescent cells accumulated in the aging and Alzheimer's disease brains are now recognized as the keys to describing such an association. Cellular senescence is a classic phenomenon characterized by stable cell arrest, which is thought to be applicable only to dividing cells. Emerging evidence indicates that fully differentiated post-mitotic neurons are also capable of becoming senescent, with roles in contributing to both brain aging and disease pathogenesis. The key question that arises is the identity of the upstream triggers and the molecular mechanisms that underly such changes. Here, we highlight the potential role of persistent DNA damage response as the major driver of senescent phenotypes and discuss the current evidence and molecular mechanisms that connect DNA repair infidelity, cell cycle re-entry and terminal fate decision in committing neuronal cell senescence.
Collapse
Affiliation(s)
- Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
113
|
Sretenovic S, Tang X, Ren Q, Zhang Y, Qi Y. PAM-Less CRISPR-SpRY Genome Editing in Plants. Methods Mol Biol 2023; 2653:3-19. [PMID: 36995616 DOI: 10.1007/978-1-0716-3131-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Engineered SpCas9 variant, SpRY, has been demonstrated to facilitate protospacer adjacent motif (PAM) unrestricted targeting of genomic DNA in various biological systems. Here we describe fast, efficient, and robust preparation of SpRY-derived genome and base editors that can be easily adapted to target various DNA sequences in plants due to modular Gateway assembly. Presented are detailed protocols for preparing T-DNA vectors for genome and base editors and for assessing genome editing efficiency through transient expression of these reagents in rice protoplasts.
Collapse
Affiliation(s)
- Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Xu Tang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiurong Ren
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
114
|
Evolving DNA repair synthetic lethality targets in cancer. Biosci Rep 2022; 42:232162. [PMID: 36420962 PMCID: PMC9760629 DOI: 10.1042/bsr20221713] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/25/2022] Open
Abstract
DNA damage signaling response and repair (DDR) is a critical defense mechanism against genomic instability. Impaired DNA repair capacity is an important risk factor for cancer development. On the other hand, up-regulation of DDR mechanisms is a feature of cancer chemotherapy and radiotherapy resistance. Advances in our understanding of DDR and its complex role in cancer has led to several translational DNA repair-targeted investigations culminating in clinically viable precision oncology strategy using poly(ADP-ribose) polymerase (PARP) inhibitors in breast, ovarian, pancreatic, and prostate cancers. While PARP directed synthetic lethality has improved outcomes for many patients, the lack of sustained clinical response and the development of resistance pose significant clinical challenges. Therefore, the search for additional DDR-directed drug targets and novel synthetic lethality approaches is highly desirable and is an area of intense preclinical and clinical investigation. Here, we provide an overview of the mammalian DNA repair pathways and then focus on current state of PARP inhibitors (PARPi) and other emerging DNA repair inhibitors for synthetic lethality in cancer.
Collapse
|
115
|
Chen Z, Chen J, Gao M, Liu Y, Wu Y, Wang Y, Gong Y, Yu S, Liu W, Wan X, Sun X. Comprehensive analysis of the PRPF31 gene in retinitis pigmentosa patients: Four novel Alu-mediated copy number variations at the PRPF31 locus. Hum Mutat 2022; 43:2279-2294. [PMID: 36317469 DOI: 10.1002/humu.24494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Retinitis pigmentosa (RP) is a monogenic disease characterized by irreversible degeneration of the retina. PRPF31, the second most common causative gene of autosomal dominant RP, frequently harbors copy number variations (CNVs), but the underlying mechanism is unclear. In this study, we summarized the phenotypic and genotypic characteristics of 18 RP families (F01-F18) with variants in PRPF31. The prevalence of PRPF31 variants in our cohort of Chinese RP families was 1.7% (18/1024). Seventeen different variants in PRPF31 were detected, including eight novel variants. Notably, four novel CNVs encompassing PRPF31, with a proportion of 22.2% (4/18), were validated to harbor gross deletions involving Alu/Alu-mediated rearrangements (AAMRs) in the same orientation. Among a total of 12 CNVs of PRPF31 with breakpoints mapped on nucleotide-resolution, 10 variants (83.3%) were presumably mediated by Alu elements. Furthermore, we described the correlation between the genotypes and phenotypes in PRPF31-related RP. Our findings expand the mutational spectrum of the PRPF31 gene and provide strong evidence that Alu elements of PRPF31 probably contribute to the susceptibility to genomic rearrangement in this locus.
Collapse
Affiliation(s)
- Zhixuan Chen
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jieqiong Chen
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Min Gao
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yang Liu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yidong Wu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yafang Wang
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yuanyuan Gong
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Suqin Yu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Wenjia Liu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
116
|
CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae. Nat Commun 2022; 13:7168. [PMID: 36418866 PMCID: PMC9684475 DOI: 10.1038/s41467-022-34736-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
CRISPR-Cas mediated genome engineering has revolutionized functional genomics. However, understanding of DNA repair following Cas-mediated DNA cleavage remains incomplete. Using Cas12a ribonucleoprotein genome editing in the fungal pathogen, Magnaporthe oryzae, we detail non-canonical DNA repair outcomes from hundreds of transformants. Sanger and nanopore sequencing analysis reveals significant variation in DNA repair profiles, ranging from small INDELs to kilobase size deletions and insertions. Furthermore, we find the frequency of DNA repair outcomes varies between loci. The results are not specific to the Cas-nuclease or selection procedure. Through Ku80 deletion analysis, a key protein required for canonical non-homologous end joining, we demonstrate activity of an alternative end joining mechanism that creates larger DNA deletions, and uses longer microhomology compared to C-NHEJ. Together, our results suggest preferential DNA repair pathway activity in the genome that can create different mutation profiles following repair, which could create biased genome variation and impact genome engineering and genome evolution.
Collapse
|
117
|
Huang J, Cook DE. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens. FEMS Microbiol Rev 2022; 46:fuac035. [PMID: 35810003 PMCID: PMC9779921 DOI: 10.1093/femsre/fuac035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks require repair or risk corrupting the language of life. To ensure genome integrity and viability, multiple DNA double-strand break repair pathways function in eukaryotes. Two such repair pathways, canonical non-homologous end joining and homologous recombination, have been extensively studied, while other pathways such as microhomology-mediated end joint and single-strand annealing, once thought to serve as back-ups, now appear to play a fundamental role in DNA repair. Here, we review the molecular details and hierarchy of these four DNA repair pathways, and where possible, a comparison for what is known between animal and fungal models. We address the factors contributing to break repair pathway choice, and aim to explore our understanding and knowledge gaps regarding mechanisms and regulation in filamentous pathogens. We additionally discuss how DNA double-strand break repair pathways influence genome engineering results, including unexpected mutation outcomes. Finally, we review the concept of biased genome evolution in filamentous pathogens, and provide a model, termed Biased Variation, that links DNA double-strand break repair pathways with properties of genome evolution. Despite our extensive knowledge for this universal process, there remain many unanswered questions, for which the answers may improve genome engineering and our understanding of genome evolution.
Collapse
Affiliation(s)
- Jun Huang
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| | - David E Cook
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| |
Collapse
|
118
|
Barcellos-Hoff MH. The radiobiology of TGFβ. Semin Cancer Biol 2022; 86:857-867. [PMID: 35122974 DOI: 10.1016/j.semcancer.2022.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023]
Abstract
Ionizing radiation is a pillar of cancer therapy that is deployed in more than half of all malignancies. The therapeutic effect of radiation is attributed to induction of DNA damage that kills cancers cells, but radiation also affects signaling that alters the composition of the tumor microenvironment by activating transforming growth factor β (TGFβ). TGFβ is a ubiquitously expressed cytokine that acts as biological lynchpin to orchestrate phenotypes, the stroma, and immunity in normal tissue; these activities are subverted in cancer to promote malignancy, a permissive tumor microenvironment and immune evasion. The radiobiology of TGFβ unites targets at the forefront of oncology-the DNA damage response and immunotherapy. The cancer cell intrinsic and extrinsic network of TGFβ responses in the irradiated tumor form a barrier to both genotoxic treatments and immunotherapy response. Here, we focus on the mechanisms by which radiation induces TGFβ activation, how TGFβ regulates DNA repair, and the dynamic regulation of the tumor immune microenvironment that together oppose effective cancer therapy. Strategies to inhibit TGFβ exploit fundamental radiobiology that may be the missing link to deploying TGFβ inhibitors for optimal patient benefit from cancer treatment.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
119
|
Imyanitov E, Sokolenko A. Integrative Genomic Tests in Clinical Oncology. Int J Mol Sci 2022; 23:13129. [PMID: 36361916 PMCID: PMC9656402 DOI: 10.3390/ijms232113129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/12/2023] Open
Abstract
Many clinical decisions in oncology practice rely on the presence or absence of an alteration in a single genetic locus, be it a pathogenic variant in a hereditary cancer gene or activating mutation in a drug target. In addition, there are integrative tests that produce continuous variables and evaluate complex characteristics of the entire tumor genome. Microsatellite instability (MSI) analysis identifies tumors with the accumulation of mutations in short repetitive nucleotide sequences. This procedure is utilized in Lynch syndrome diagnostic pipelines and for the selection of patients for immunotherapy. MSI analysis is well-established for colorectal malignancies, but its applications in other cancer types lack standardization and require additional research. Homologous repair deficiency (HRD) indicates tumor sensitivity to PARP inhibitors and some cytotoxic drugs. HRD-related "genomic scars" are manifested by a characteristic pattern of allelic imbalances, accumulation of deletions with flanking homology, and specific mutation signatures. The detection of the genetic consequences of HRD is particularly sophisticated and expensive, as it involves either whole genome sequencing (WGS) or the utilization of large next-generation sequencing (NGS) panels. Tumor mutation burden (TMB) can be determined by whole exome sequencing (WES) or middle-throughput NGS multigene testing. Although TMB is regarded as an agnostic indicator of tumor sensitivity to immunotherapy, the clinical utility of this test is proven only for a few cancer types.
Collapse
Affiliation(s)
- Evgeny Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Anna Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| |
Collapse
|
120
|
Jiang Y. Contribution of Microhomology to Genome Instability: Connection between DNA Repair and Replication Stress. Int J Mol Sci 2022; 23:12937. [PMID: 36361724 PMCID: PMC9657218 DOI: 10.3390/ijms232112937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 11/23/2023] Open
Abstract
Microhomology-mediated end joining (MMEJ) is a highly mutagenic pathway to repair double-strand breaks (DSBs). MMEJ was thought to be a backup pathway of homologous recombination (HR) and canonical nonhomologous end joining (C-NHEJ). However, it attracts more attention in cancer research due to its special function of microhomology in many different aspects of cancer. In particular, it is initiated with DNA end resection and upregulated in homologous recombination-deficient cancers. In this review, I summarize the following: (1) the recent findings and contributions of MMEJ to genome instability, including phenotypes relevant to MMEJ; (2) the interaction between MMEJ and other DNA repair pathways; (3) the proposed mechanistic model of MMEJ in DNA DSB repair and a new connection with microhomology-mediated break-induced replication (MMBIR); and (4) the potential clinical application by targeting MMEJ based on synthetic lethality for cancer therapy.
Collapse
Affiliation(s)
- Yuning Jiang
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
121
|
Bubenik M, Mader P, Mochirian P, Vallée F, Clark J, Truchon JF, Perryman AL, Pau V, Kurinov I, Zahn KE, Leclaire ME, Papp R, Mathieu MC, Hamel M, Duffy NM, Godbout C, Casas-Selves M, Falgueyret JP, Baruah PS, Nicolas O, Stocco R, Poirier H, Martino G, Fortin AB, Roulston A, Chefson A, Dorich S, St-Onge M, Patel P, Pellerin C, Ciblat S, Pinter T, Barabé F, Bakkouri ME, Parikh P, Gervais C, Sfeir A, Mamane Y, Morris SJ, Black WC, Sicheri F, Gallant M. Identification of RP-6685, an Orally Bioavailable Compound that Inhibits the DNA Polymerase Activity of Polθ. J Med Chem 2022; 65:13198-13215. [PMID: 36126059 PMCID: PMC9942948 DOI: 10.1021/acs.jmedchem.2c00998] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA polymerase theta (Polθ) is an attractive synthetic lethal target for drug discovery, predicted to be efficacious against breast and ovarian cancers harboring BRCA-mutant alleles. Here, we describe our hit-to-lead efforts in search of a selective inhibitor of human Polθ (encoded by POLQ). A high-throughput screening campaign of 350,000 compounds identified an 11 micromolar hit, giving rise to the N2-substituted fused pyrazolo series, which was validated by biophysical methods. Structure-based drug design efforts along with optimization of cellular potency and ADME ultimately led to the identification of RP-6685: a potent, selective, and orally bioavailable Polθ inhibitor that showed in vivo efficacy in an HCT116 BRCA2-/- mouse tumor xenograft model.
Collapse
Affiliation(s)
- Monica Bubenik
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Pavel Mader
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Philippe Mochirian
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Fréderic Vallée
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Jillian Clark
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Jean-François Truchon
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Alexander L. Perryman
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Victor Pau
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, Illinois 60439, USA
| | - Karl E. Zahn
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Marie-Eve Leclaire
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Robert Papp
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Marie-Claude Mathieu
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Martine Hamel
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Nicole M. Duffy
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Claude Godbout
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Matias Casas-Selves
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Jean-Pierre Falgueyret
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Prasamit S. Baruah
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Olivier Nicolas
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Rino Stocco
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Hugo Poirier
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Giovanni Martino
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | | | - Anne Roulston
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Amandine Chefson
- Ventus Therapeutics 7150 Frederick-Banting suite 200, Montréal, Québec, H4S 2A1, Canada
| | - Stéphane Dorich
- Ventus Therapeutics 7150 Frederick-Banting suite 200, Montréal, Québec, H4S 2A1, Canada
| | - Miguel St-Onge
- Ventus Therapeutics 7150 Frederick-Banting suite 200, Montréal, Québec, H4S 2A1, Canada
| | - Purvish Patel
- Ventus Therapeutics 7150 Frederick-Banting suite 200, Montréal, Québec, H4S 2A1, Canada
| | - Charles Pellerin
- Ventus Therapeutics 7150 Frederick-Banting suite 200, Montréal, Québec, H4S 2A1, Canada
| | - Stéphane Ciblat
- Ventus Therapeutics 7150 Frederick-Banting suite 200, Montréal, Québec, H4S 2A1, Canada
- Paraza Pharma Inc., 2525 Ave. Marie Curie, Montréal, Québec, H4S 1Z9, Canada
| | - Thomas Pinter
- Paraza Pharma Inc., 2525 Ave. Marie Curie, Montréal, Québec, H4S 1Z9, Canada
| | - Francis Barabé
- Paraza Pharma Inc., 2525 Ave. Marie Curie, Montréal, Québec, H4S 1Z9, Canada
| | - Majida El Bakkouri
- Paraza Pharma Inc., 2525 Ave. Marie Curie, Montréal, Québec, H4S 1Z9, Canada
- National Research Council of Canada, 6100 Royalmount Ave, Montréal, Québec, H4P 2R2, Canada
| | - Paranjay Parikh
- Piramal Pharma Ltd., Plot No. 18, Village Matoda, Taluka: Sanand, Ahmedabad-382213, Gujarat, India
| | - Christian Gervais
- National Research Council of Canada, 6100 Royalmount Ave, Montréal, Québec, H4P 2R2, Canada
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, MSKCC, 430 E 67th Street, New York, NY 10065, USA
| | - Yael Mamane
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Stephen J. Morris
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - W. Cameron Black
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| | - Michel Gallant
- Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9, Montréal, Québec, Canada
| |
Collapse
|
122
|
Mitochondrial DNA Repair in Neurodegenerative Diseases and Ageing. Int J Mol Sci 2022; 23:ijms231911391. [PMID: 36232693 PMCID: PMC9569545 DOI: 10.3390/ijms231911391] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are the only organelles, along with the nucleus, that have their own DNA. Mitochondrial DNA (mtDNA) is a double-stranded circular molecule of ~16.5 kbp that can exist in multiple copies within the organelle. Both strands are translated and encode for 22 tRNAs, 2 rRNAs, and 13 proteins. mtDNA molecules are anchored to the inner mitochondrial membrane and, in association with proteins, form a structure called nucleoid, which exerts a structural and protective function. Indeed, mitochondria have evolved mechanisms necessary to protect their DNA from chemical and physical lesions such as DNA repair pathways similar to those present in the nucleus. However, there are mitochondria-specific mechanisms such as rapid mtDNA turnover, fission, fusion, and mitophagy. Nevertheless, mtDNA mutations may be abundant in somatic tissue due mainly to the proximity of the mtDNA to the oxidative phosphorylation (OXPHOS) system and, consequently, to the reactive oxygen species (ROS) formed during ATP production. In this review, we summarise the most common types of mtDNA lesions and mitochondria repair mechanisms. The second part of the review focuses on the physiological role of mtDNA damage in ageing and the effect of mtDNA mutations in neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Considering the central role of mitochondria in maintaining cellular homeostasis, the analysis of mitochondrial function is a central point for developing personalised medicine.
Collapse
|
123
|
Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel) 2022; 14:4623. [PMID: 36230545 PMCID: PMC9564061 DOI: 10.3390/cancers14194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.
Collapse
Affiliation(s)
- Vanessa L. Porter
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
124
|
Schusterbauer V, Fischer JE, Gangl S, Schenzle L, Rinnofner C, Geier M, Sailer C, Glieder A, Thallinger GG. Whole Genome Sequencing Analysis of Effects of CRISPR/Cas9 in Komagataella phaffii: A Budding Yeast in Distress. J Fungi (Basel) 2022; 8:jof8100992. [PMID: 36294556 PMCID: PMC9605565 DOI: 10.3390/jof8100992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The industrially important non-conventional yeast Komagataella phaffii suffers from low rates of homologous recombination, making site specific genetic engineering tedious. Therefore, genome editing using CRISPR/Cas represents a simple and efficient alternative. To characterize on- and off-target mutations caused by CRISPR/Cas9 followed by non-homologous end joining repair, we chose a diverse set of CRISPR/Cas targets and conducted whole genome sequencing on 146 CRISPR/Cas9 engineered single colonies. We compared the outcomes of single target CRISPR transformations to double target experiments. Furthermore, we examined the extent of possible large deletions by targeting a large genomic region, which is likely to be non-essential. The analysis of on-target mutations showed an unexpectedly high number of large deletions and chromosomal rearrangements at the CRISPR target loci. We also observed an increase of on-target structural variants in double target experiments as compared to single target experiments. Targeting of two loci within a putatively non-essential region led to a truncation of chromosome 3 at the target locus in multiple cases, causing the deletion of 20 genes and several ribosomal DNA repeats. The identified de novo off-target mutations were rare and randomly distributed, with no apparent connection to unspecific CRISPR/Cas9 off-target binding sites.
Collapse
Affiliation(s)
- Veronika Schusterbauer
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
- Institute of Biomedical Imaging, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
| | | | - Sarah Gangl
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Lisa Schenzle
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | | | - Martina Geier
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Christian Sailer
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
| | - Anton Glieder
- bisy GmbH, Wuenschendorf 292, 8200 Hofstaetten, Austria
| | - Gerhard G. Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16, 8010 Graz, Austria
- OMICS Center Graz, BioTechMed Graz, Stiftingtalstraße 24, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-873-5343
| |
Collapse
|
125
|
Přibylová A, Fischer L, Pyott DE, Bassett A, Molnar A. DNA methylation can alter CRISPR/Cas9 editing frequency and DNA repair outcome in a target-specific manner. THE NEW PHYTOLOGIST 2022; 235:2285-2299. [PMID: 35524464 PMCID: PMC9545110 DOI: 10.1111/nph.18212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 05/31/2023]
Abstract
The impact of epigenetic modifications on the efficacy of CRISPR/Cas9-mediated double-stranded DNA breaks and subsequent DNA repair is poorly understood, especially in plants. In this study, we investigated the effect of the level of cytosine methylation on the outcome of CRISPR/Cas9-induced mutations at multiple Cas9 target sites in Nicotiana benthamiana leaf cells using next-generation sequencing. We found that high levels of promoter methylation, but not gene-body methylation, decreased the frequency of Cas9-mediated mutations. DNA methylation also influenced the ratio of insertions and deletions and potentially the type of Cas9 cleavage in a target-specific manner. In addition, we detected an over-representation of deletion events governed by a single 5'-terminal nucleotide at Cas9-induced DNA breaks. Our findings suggest that DNA methylation can indirectly impair Cas9 activity and subsequent DNA repair, probably through changes in the local chromatin structure. In addition to the well described Cas9-induced blunt-end double-stranded DNA breaks, we provide evidence for Cas9-mediated staggered DNA cuts in plant cells. Both types of cut may direct microhomology-mediated DNA repair by a novel, as yet undescribed, mechanism.
Collapse
Affiliation(s)
- Adéla Přibylová
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
- Faculty of ScienceCharles UniversityPrague128 44Czech Republic
| | - Lukáš Fischer
- Faculty of ScienceCharles UniversityPrague128 44Czech Republic
| | - Douglas E. Pyott
- The Wellcome Trust Center for Cell BiologyInstitute of Cell BiologyThe University of EdinburghEdinburghEH9 3BFUK
| | - Andrew Bassett
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonCB10 1SAUK
| | - Attila Molnar
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
| |
Collapse
|
126
|
Petković I, Bischof J, Kocher T, March OP, Liemberger B, Hainzl S, Strunk D, Raninger AM, Binder HM, Reichelt J, Guttmann-Gruber C, Wally V, Piñón Hofbauer J, Bauer JW, Koller U. COL17A1 editing via homology-directed repair in junctional epidermolysis bullosa. Front Med (Lausanne) 2022; 9:976604. [PMID: 36091706 PMCID: PMC9454317 DOI: 10.3389/fmed.2022.976604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEpidermolysis bullosa (EB), a severe genetic disorder characterized by blister formation in skin, is caused by mutations in genes encoding dermal-epidermal junction proteins that function to hold the skin layers together. CRISPR/Cas9-induced homology-directed repair (HDR) represents a promising tool for editing causal mutations in COL17A1 in the treatment of junctional epidermolysis bullosa (JEB).MethodsIn this study, we treated primary type XVII collagen (C17)-deficient JEB keratinocytes with either Cas9 nuclease or nickase (Cas9n) ribonucleoproteins (RNP) and a single-stranded oligonucleotide (ssODN) HDR template in order to correct a causal pathogenic frameshift mutation within the COL17A1 gene.ResultsAs analyzed by next-generation sequencing of RNP-nucleofected keratinocytes, we observed an HDR efficiency of ∼38% when cells were treated with the high-fidelity Cas9 nuclease, a mutation-specific sgRNA, and an ssODN template. The combined induction of end-joining repair and HDR-mediated pathways resulted in a C17 restoration efficiency of up to 60% as assessed by flow cytometry. Furthermore, corrected JEB keratinocytes showed a significantly increased adhesive strength to laminin-332 and an accurate deposition of C17 along the basement membrane zone (BMZ) upon differentiation into skin equivalents.ConclusionHere we present a gene editing approach capable of reducing end joining-generated repair products while increasing the level of seamless HDR-mediated gene repair outcomes, thereby providing a promising CRISPR/Cas9-based gene editing approach for JEB.
Collapse
Affiliation(s)
- Igor Petković
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Oliver Patrick March
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Bernadette Liemberger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Anna Maria Raninger
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Heide-Marie Binder
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Julia Reichelt
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johann Wolfgang Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
- *Correspondence: Ulrich Koller,
| |
Collapse
|
127
|
Vergara X, Schep R, Medema RH, van Steensel B. From fluorescent foci to sequence: Illuminating DNA double strand break repair by high-throughput sequencing technologies. DNA Repair (Amst) 2022; 118:103388. [PMID: 36037787 DOI: 10.1016/j.dnarep.2022.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Technologies to study DNA double-strand break (DSB) repair have traditionally mostly relied on fluorescence read-outs, either by microscopy or flow cytometry. The advent of high throughput sequencing (HTS) has created fundamentally new opportunities to study the mechanisms underlying DSB repair. Here, we review the suite of HTS-based assays that are used to study three different aspects of DNA repair: detection of broken ends, protein recruitment and pathway usage. We highlight new opportunities that HTS technology offers towards a better understanding of the DSB repair process.
Collapse
Affiliation(s)
- Xabier Vergara
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - Ruben Schep
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands.
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands; Department of Cell Biology, Erasmus University Medical Centre, the Netherlands.
| |
Collapse
|
128
|
Córdova-Fletes C, Rivera H, Aguayo-Orozco TA, Martínez-Jacobo LA, Garza-González E, Robles-Espinoza CD, Basurto-Lozada P, Avalos-Gómez HG, Esparza-García E, Domínguez-Quezada MG. A chromoanagenesis-driven ultra-complex t(5;7;21)dn truncates neurodevelopmental genes in a disabled boy as revealed by whole-genome sequencing. Eur J Med Genet 2022; 65:104579. [PMID: 35933106 DOI: 10.1016/j.ejmg.2022.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/30/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
Abstract
Germline or constitutional chromoanagenesis-related complex chromosomal rearrangements (CCRs) are rare, apparently "all-at-once", catastrophic events that occur in a single cell cycle, exhibit an unexpected complexity, and sometimes correlate with a severe abnormal phenotype. The term chromoanagenesis encompasses three distinct phenomena, namely chromothripsis, chromoanasynthesis, and chromoplexy. Herein, we found hallmarks of chromothripsis and chromoplexy in an ultra-complex t(5; 7;21)dn involving several disordered breakpoint junctions (BPJs) accompanied by some microdeletions and the disruption of neurodevelopmental genes in a patient with a phenotype resembling autosomal dominant MRD44 (OMIM 617061). G-banded chromosomes and FISH showed that the CCR implied the translocation of the 5p15.2→pter segment onto 7q11.23; in turn, the fragment 7q11.23→qter of der(7) separated into two pieces: the segment q11.23→q32 translocated onto 5p15.2 and fused to 21q22.1→ter in the der(5) while the distal 7q32→qter segment translocated onto der(21) at q22.1. Subsequent whole-genome sequencing unveiled that CCT5, CMBL, RETREG1, MYO10, and TRIO from der(5), IMMP2L, TES, VPS37D, DUS4L, TYW1B, and FEZF1-AS1 from der(7), and TIAM1 and SOD1 from der(21), were disrupted by BPJs, whereas some other genes (predicted to be haplosufficient or inconsequential) were completely deleted. Although remarkably CCT5, TRIO, TES, MYO10, and TIAM1 (and even VPS37D) cooperate in key biological processes for normal neuronal development such as cell adhesion, migration, growth, and/or cytoskeleton formation, the disruption of TRIO most likely caused the patient's MRD44-like phenotype, including intellectual disability, microcephaly, finger anomalies, and facial dysmorphia. Our observation represents the first truncation of TRIO related to a chromoanagenesis event and therefore expands the mutational spectrum of this crucial gene. Moreover, our findings indicate that more than one mechanism is involved in modeling the architecture of ultra-complex rearrangements.
Collapse
Affiliation(s)
- Carlos Córdova-Fletes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.
| | - Horacio Rivera
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Thania Alejandra Aguayo-Orozco
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico; División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Lizeth Alejandra Martínez-Jacobo
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García, Mexico
| | - Elvira Garza-González
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro, Mexico; Wellcome Sanger Institute, Hinxton, UK
| | - Patricia Basurto-Lozada
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro, Mexico
| | | | - Eduardo Esparza-García
- Hospital de Pediatría, UMAE-CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Ma Guadalupe Domínguez-Quezada
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico.
| |
Collapse
|
129
|
Bischof J, March OP, Liemberger B, Haas SA, Hainzl S, Petković I, Leb-Reichl V, Illmer J, Korotchenko E, Klausegger A, Hoog A, Binder HM, Garcia M, Duarte B, Strunk D, Larcher F, Reichelt J, Guttmann-Gruber C, Wally V, Hofbauer JP, Bauer JW, Cathomen T, Kocher T, Koller U. Paired nicking-mediated COL17A1 reframing for junctional epidermolysis bullosa. Mol Ther 2022; 30:2680-2692. [PMID: 35490295 PMCID: PMC9372311 DOI: 10.1016/j.ymthe.2022.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Junctional epidermolysis bullosa (JEB) is a debilitating hereditary skin disorder caused by mutations in genes encoding laminin-332, type XVII collagen (C17), and integrin-α6β4, which maintain stability between the dermis and epidermis. We designed patient-specific Cas9-nuclease- and -nickase-based targeting strategies for reframing a common homozygous deletion in exon 52 of COL17A1 associated with a lack of full-length C17 expression. Subsequent characterization of protein restoration, indel composition, and divergence of DNA and mRNA outcomes after treatment revealed auspicious efficiency, safety, and precision profiles for paired nicking-based COL17A1 editing. Almost 46% of treated primary JEB keratinocytes expressed reframed C17. Reframed COL17A1 transcripts predominantly featured 25- and 37-nt deletions, accounting for >42% of all edits and encoding C17 protein variants that localized accurately to the cell membrane. Furthermore, corrected cells showed accurate shedding of the extracellular 120-kDa C17 domain and improved adhesion capabilities to laminin-332 compared with untreated JEB cells. Three-dimensional (3D) skin equivalents demonstrated accurate and continuous deposition of C17 within the basal membrane zone between epidermis and dermis. Our findings constitute, for the first time, gene-editing-based correction of a COL17A1 mutation and demonstrate the superiority of proximal paired nicking strategies based on Cas9 D10A nickase over wild-type Cas9-based strategies for gene reframing in a clinical context.
Collapse
Affiliation(s)
- Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Oliver Patrick March
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Bernadette Liemberger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Simone Alexandra Haas
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Igor Petković
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Victoria Leb-Reichl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Julia Illmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Evgeniia Korotchenko
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Alfred Klausegger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Anna Hoog
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Heide-Marie Binder
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Marta Garcia
- Epithelial Biomedicine Division, CIEMAT-CIBERER, Department of Bioengineering, UC3M, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Blanca Duarte
- Epithelial Biomedicine Division, CIEMAT-CIBERER, Department of Bioengineering, UC3M, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Dirk Strunk
- Cell Therapy Institute, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Fernando Larcher
- Epithelial Biomedicine Division, CIEMAT-CIBERER, Department of Bioengineering, UC3M, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Julia Reichelt
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Johann Wolfgang Bauer
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria.
| |
Collapse
|
130
|
Nishiga M, Liu C, Qi LS, Wu JC. The use of new CRISPR tools in cardiovascular research and medicine. Nat Rev Cardiol 2022; 19:505-521. [PMID: 35145236 PMCID: PMC10283450 DOI: 10.1038/s41569-021-00669-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Many novel CRISPR-based genome-editing tools, with a wide variety of applications, have been developed in the past few years. The original CRISPR-Cas9 system was developed as a tool to alter genomic sequences in living organisms in a simple way. However, the functions of new CRISPR tools are not limited to conventional genome editing mediated by non-homologous end-joining or homology-directed repair but expand into gene-expression control, epigenome editing, single-nucleotide editing, RNA editing and live-cell imaging. Furthermore, genetic perturbation screening by multiplexing guide RNAs is gaining popularity as a method to identify causative genes and pathways in an unbiased manner. New CRISPR tools can also be applied to ex vivo or in vivo therapeutic genome editing for the treatment of conditions such as hyperlipidaemia. In this Review, we first provide an overview of the diverse new CRISPR tools that have been developed to date. Second, we summarize how these new CRISPR tools are being used to study biological processes and disease mechanisms in cardiovascular research and medicine. Finally, we discuss the prospect of therapeutic genome editing by CRISPR tools to cure genetic cardiovascular diseases.
Collapse
Affiliation(s)
- Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
131
|
Talibova G, Bilmez Y, Ozturk S. DNA double-strand break repair in male germ cells during spermatogenesis and its association with male infertility development. DNA Repair (Amst) 2022; 118:103386. [DOI: 10.1016/j.dnarep.2022.103386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
|
132
|
Vali-Pour M, Park S, Espinosa-Carrasco J, Ortiz-Martínez D, Lehner B, Supek F. The impact of rare germline variants on human somatic mutation processes. Nat Commun 2022; 13:3724. [PMID: 35764656 PMCID: PMC9240060 DOI: 10.1038/s41467-022-31483-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/17/2022] [Indexed: 02/07/2023] Open
Abstract
Somatic mutations are an inevitable component of ageing and the most important cause of cancer. The rates and types of somatic mutation vary across individuals, but relatively few inherited influences on mutation processes are known. We perform a gene-based rare variant association study with diverse mutational processes, using human cancer genomes from over 11,000 individuals of European ancestry. By combining burden and variance tests, we identify 207 associations involving 15 somatic mutational phenotypes and 42 genes that replicated in an independent data set at a false discovery rate of 1%. We associate rare inherited deleterious variants in genes such as MSH3, EXO1, SETD2, and MTOR with two phenotypically different forms of DNA mismatch repair deficiency, and variants in genes such as EXO1, PAXIP1, RIF1, and WRN with deficiency in homologous recombination repair. In addition, we identify associations with other mutational processes, such as APEX1 with APOBEC-signature mutagenesis. Many of the genes interact with each other and with known mutator genes within cellular sub-networks. Considered collectively, damaging variants in the identified genes are prevalent in the population. We suggest that rare germline variation in diverse genes commonly impacts mutational processes in somatic cells.
Collapse
Affiliation(s)
- Mischan Vali-Pour
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Solip Park
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Jose Espinosa-Carrasco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel Ortiz-Martínez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
133
|
Miskel D, Poirier M, Beunink L, Rings F, Held E, Tholen E, Tesfaye D, Schellander K, Salilew-Wondim D, Blaschka C, Große-Brinkhaus C, Brenig B, Hoelker M. The cell cycle stage of bovine zygotes electroporated with CRISPR/Cas9-RNP affects frequency of Loss-of-heterozygosity editing events. Sci Rep 2022; 12:10793. [PMID: 35750764 PMCID: PMC9232522 DOI: 10.1038/s41598-022-14699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/10/2022] [Indexed: 12/14/2022] Open
Abstract
At the embryonic level, CRISPR technologies have been used to edit genomes reliably and efficiently in various mammalian models, with Ribonucleoprotein (RNP) electroporation potentially representing a superior delivery method into mammalian zygotes. However, detailed insights of the interactions between varying technical settings as well as the time point of electroporation in a bovine zygote's cell cycle on developmental metrics and the frequency and type of editing events are largely unknown. The present study uncovers that increasing pulse lengths result in higher Full Edit rates, with Mosaicism in Full-Edit embryos being significantly affected by adjusting RNP-electroporation relative to zygote cell cycle. A considerable proportion of Full Edit embryos demonstrated loss-of-heterozygosity after RNP-electroporation prior to S-phase. Some of these loss-of-heterozygosity events are a consequence of chromosomal disruptions along large sections of the target chromosomes making it necessary to check for their presence prior use of this technique in animal breeding. One out of 2 of these loss-of-heterozygosity events, however, was not associated with loss of an entire chromosome or chromosomal sections. Whether analysed loss-of-heterozygosity in these cases, however, was a false negative result due to loss of PCR primer sequences after INDEL formation at the target side or indeed due to interhomolog recombination needs to be clarified in follow up studies since the latter would for sure offer attractive options for future breeding schedules.
Collapse
Affiliation(s)
- Dennis Miskel
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Mikhael Poirier
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Luisa Beunink
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Franca Rings
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Eva Held
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 3105 Rampart Rd, Fort Collins, CO, 80521, USA
| | - Karl Schellander
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Carina Blaschka
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, Georg August University Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany
| | - Christine Große-Brinkhaus
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg August University Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany
| | - Michael Hoelker
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, Georg August University Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany.
| |
Collapse
|
134
|
Kosicki M, Allen F, Steward F, Tomberg K, Pan Y, Bradley A. Cas9-induced large deletions and small indels are controlled in a convergent fashion. Nat Commun 2022; 13:3422. [PMID: 35701408 PMCID: PMC9197861 DOI: 10.1038/s41467-022-30480-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
Repair of Cas9-induced double-stranded breaks results primarily in formation of small insertions and deletions (indels), but can also cause potentially harmful large deletions. While mechanisms leading to the creation of small indels are relatively well understood, very little is known about the origins of large deletions. Using a library of clonal NGS-validated mouse embryonic stem cells deficient for 32 DNA repair genes, we have shown that large deletion frequency increases in cells impaired for non-homologous end joining and decreases in cells deficient for the central resection gene Nbn and the microhomology-mediated end joining gene Polq. Across deficient clones, increase in large deletion frequency was closely correlated with the increase in the extent of microhomology and the size of small indels, implying a continuity of repair processes across different genomic scales. Furthermore, by targeting diverse genomic sites, we identified examples of repair processes that were highly locus-specific, discovering a role for exonuclease Trex1. Finally, we present evidence that indel sizes increase with the overall efficiency of Cas9 mutagenesis. These findings may have impact on both basic research and clinical use of CRISPR-Cas9, in particular in conjunction with repair pathway modulation.
Collapse
Affiliation(s)
| | | | - Frances Steward
- The Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kärt Tomberg
- The Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Yangyang Pan
- The Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Allan Bradley
- The Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
135
|
Jamsen JA, Shock DD, Wilson SH. Watching right and wrong nucleotide insertion captures hidden polymerase fidelity checkpoints. Nat Commun 2022; 13:3193. [PMID: 35680862 PMCID: PMC9184648 DOI: 10.1038/s41467-022-30141-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
Efficient and accurate DNA synthesis is enabled by DNA polymerase fidelity checkpoints that promote insertion of the right instead of wrong nucleotide. Erroneous X-family polymerase (pol) λ nucleotide insertion leads to genomic instability in double strand break and base-excision repair. Here, time-lapse crystallography captures intermediate catalytic states of pol λ undergoing right and wrong natural nucleotide insertion. The revealed nucleotide sensing mechanism responds to base pair geometry through active site deformation to regulate global polymerase-substrate complex alignment in support of distinct optimal (right) or suboptimal (wrong) reaction pathways. An induced fit during wrong but not right insertion, and associated metal, substrate, side chain and pyrophosphate reaction dynamics modulated nucleotide insertion. A third active site metal hastened right but not wrong insertion and was not essential for DNA synthesis. The previously hidden fidelity checkpoints uncovered reveal fundamental strategies of polymerase DNA repair synthesis in genomic instability. DNA polymerase (pol) λ performs DNA synthesis in base excision and double strand break repair. How pol λ accomplishes nucleotide insertion that can lead to mutagenesis and genomic instability was unclear. Here the authors employ time-lapse crystallography to reveal hidden polymerase checkpoints that enable right and wrong natural nucleotide insertion by pol λ.
Collapse
Affiliation(s)
- Joonas A Jamsen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - David D Shock
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
136
|
Predicting CRISPR/Cas9 Repair Outcomes by Attention-Based Deep Learning Framework. Cells 2022; 11:cells11111847. [PMID: 35681543 PMCID: PMC9180579 DOI: 10.3390/cells11111847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
As a simple and programmable nuclease-based genome editing tool, the CRISPR/Cas9 system has been widely used in target-gene repair and gene-expression regulation. The DNA mutation generated by CRISPR/Cas9-mediated double-strand breaks determines its biological and phenotypic effects. Experiments have demonstrated that CRISPR/Cas9-generated cellular-repair outcomes depend on local sequence features. Therefore, the repair outcomes after DNA break can be predicted by sequences near the cleavage sites. However, existing prediction methods rely on manually constructed features or insufficiently detailed prediction labels. They cannot satisfy clinical-level-prediction accuracy, which limit the performance of these models to existing knowledge about CRISPR/Cas9 editing. We predict 557 repair labels of DNA, covering the vast majority of Cas9-generated mutational outcomes, and build a deep learning model called Apindel, to predict CRISPR/Cas9 editing outcomes. Apindel, automatically, trains the sequence features of DNA with the GloVe model, introduces location information through Positional Encoding (PE), and embeds the trained-word vector matrixes into a deep learning model, containing BiLSTM and the Attention mechanism. Apindel has better performance and more detailed prediction categories than the most advanced DNA-mutation-predicting models. It, also, reveals that nucleotides at different positions relative to the cleavage sites have different influences on CRISPR/Cas9 editing outcomes.
Collapse
|
137
|
Rasheed A, Barqawi AA, Mahmood A, Nawaz M, Shah AN, Bay DH, Alahdal MA, Hassan MU, Qari SH. CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review. Mol Biol Rep 2022; 49:5595-5609. [PMID: 35585381 DOI: 10.1007/s11033-022-07529-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Legumes are an imperative source of food and proteins across the globe. They also improve soil fertility through symbiotic nitrogen fixation (SNF). Genome editing (GE) is now a novel way of developing desirable traits in legume crops. Genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) system permits a defined genome alteration to improve crop performance. This genome editing tool is reliable, cost-effective, and versatile, and it has to deepen in terms of use compared to other tools. Recently, many novel variations have drawn the attention of plant geneticists, and efforts are being made to develop trans-gene-free cultivars for ensuring biosafety measures. This review critically elaborates on the recent development in genome editing of major legumes crops. We hope this updated review will provide essential informations for the researchers working on legumes genome editing. In general, the CRISPR/Cas9 novel GE technique can be integrated with other techniques like omics approaches and next-generation tools to broaden the range of gene editing and develop any desired legumes traits. Regulatory ethics of CRISPR/Cas9 are also discussed.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Crops Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Aminah A Barqawi
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan.
| | - Daniyah H Bay
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam A Alahdal
- Biology Department Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
| |
Collapse
|
138
|
Lei T, Du S, Peng Z, Chen L. Multifaceted regulation and functions of 53BP1 in NHEJ‑mediated DSB repair (Review). Int J Mol Med 2022; 50:90. [PMID: 35583003 PMCID: PMC9162042 DOI: 10.3892/ijmm.2022.5145] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is crucial for the preservation of genomic integrity and the maintenance of cellular homeostasis. Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism for any type of DNA DSB during the majority of the cell cycle. NHEJ defects regulate tumor sensitivity to ionizing radiation and anti-neoplastic agents, resulting in immunodeficiencies and developmental abnormalities in malignant cells. p53-binding protein 1 (53BP1) is a key mediator involved in DSB repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. 53BP1 promotes DSB repair via NHEJ and antagonizes DNA end overhang resection. At present, novel lines of evidence have revealed the molecular mechanisms underlying the recruitment of 53BP1 and DNA break-responsive effectors to DSB sites, and the promotion of NHEJ-mediated DSB repair via 53BP1, while preventing homologous recombination. In the present review article, recent advances made in the elucidation of the structural and functional characteristics of 53BP1, the mechanisms of 53BP1 recruitment and interaction with the reshaping of the chromatin architecture around DSB sites, the post-transcriptional modifications of 53BP1, and the up- and downstream pathways of 53BP1 are discussed. The present review article also focuses on the application perspectives, current challenges and future directions of 53BP1 research.
Collapse
Affiliation(s)
- Tiantian Lei
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Zhe Peng
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| | - Lin Chen
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, P.R. China
| |
Collapse
|
139
|
Tatman PD, Black JC. Extrachromosomal Circular DNA from TCGA Tumors Is Generated from Common Genomic Loci, Is Characterized by Self-Homology and DNA Motifs near Circle Breakpoints. Cancers (Basel) 2022; 14:cancers14092310. [PMID: 35565439 PMCID: PMC9101409 DOI: 10.3390/cancers14092310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Extrachromosomal circular DNA has emerged as a frequent genomic alteration in tumors. High numbers of circular DNAs correspond to poor prognosis suggesting an important function in tumor biology. However, despite mounting evidence supporting the importance of circular DNA, little is known about their production, maintenance, or selection. To provide insight into these processes, we analyzed circular DNA elements computationally identified in 355 TCGA tumors spanning 22 tumor types. Circular DNAs originated from common genomic loci irrespective of cancer type. Genes found in circularized genomic regions were more likely to be expressed and were enriched in cancer-related pathways. Finally, in support of a model for circle generation through either a homology or microhomology-mediated process, circles exhibit homology near their breakpoint. These breakpoints are also enriched in specific DNA motifs. Our analysis supports a model where gene-containing circles emerge from common, highly transcribed regions through a homology-mediated process.
Collapse
|
140
|
Mirman Z, Sharma K, Carroll TS, de Lange T. Expression of BRCA1, BRCA2, RAD51, and other DSB repair factors is regulated by CRL4 WDR70. DNA Repair (Amst) 2022; 113:103320. [PMID: 35316728 PMCID: PMC9474743 DOI: 10.1016/j.dnarep.2022.103320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022]
Abstract
Double-strand break (DSB) repair relies on DNA damage response (DDR) factors including BRCA1, BRCA2, and RAD51, which promote homology-directed repair (HDR); 53BP1, which affects single-stranded DNA formation; and proteins that mediate end-joining. Here we show that the CRL4/DDB1/WDR70 complex (CRL4WDR70) controls the expression of DDR factors. Auxin-mediated degradation of WDR70 led to reduced expression of BRCA1, BRCA2, RAD51, and other HDR factors; 53BP1 and its downstream effectors; and other DDR factors. In contrast, cNHEJ factors were generally unaffected. WDR70 loss abrogated the localization of HDR factors to DSBs and elicited hallmarks of genomic instability, although 53BP1/RIF1 foci still formed. Mutation of the DDB1-binding WD40 motif, disruption of DDB1, or inhibition of cullins phenocopied WDR70 loss, consistent with CRL4, DDB1, and WDR70 functioning as a complex. RNA-sequencing revealed that WDR70 degradation affects the mRNA levels of DDR and many other factors. The data indicate that CRL4WDR70 is critical for expression of myriad genes including BRCA1, BRCA2, and RAD51.
Collapse
Affiliation(s)
- Zachary Mirman
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Keshav Sharma
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
141
|
Kelm JM, Samarbakhsh A, Pillai A, VanderVere-Carozza PS, Aruri H, Pandey DS, Pawelczak KS, Turchi JJ, Gavande NS. Recent Advances in the Development of Non-PIKKs Targeting Small Molecule Inhibitors of DNA Double-Strand Break Repair. Front Oncol 2022; 12:850883. [PMID: 35463312 PMCID: PMC9020266 DOI: 10.3389/fonc.2022.850883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
The vast majority of cancer patients receive DNA-damaging drugs or ionizing radiation (IR) during their course of treatment, yet the efficacy of these therapies is tempered by DNA repair and DNA damage response (DDR) pathways. Aberrations in DNA repair and the DDR are observed in many cancer subtypes and can promote de novo carcinogenesis, genomic instability, and ensuing resistance to current cancer therapy. Additionally, stalled or collapsed DNA replication forks present a unique challenge to the double-strand DNA break (DSB) repair system. Of the various inducible DNA lesions, DSBs are the most lethal and thus desirable in the setting of cancer treatment. In mammalian cells, DSBs are typically repaired by the error prone non-homologous end joining pathway (NHEJ) or the high-fidelity homology directed repair (HDR) pathway. Targeting DSB repair pathways using small molecular inhibitors offers a promising mechanism to synergize DNA-damaging drugs and IR while selective inhibition of the NHEJ pathway can induce synthetic lethality in HDR-deficient cancer subtypes. Selective inhibitors of the NHEJ pathway and alternative DSB-repair pathways may also see future use in precision genome editing to direct repair of resulting DSBs created by the HDR pathway. In this review, we highlight the recent advances in the development of inhibitors of the non-phosphatidylinositol 3-kinase-related kinases (non-PIKKs) members of the NHEJ, HDR and minor backup SSA and alt-NHEJ DSB-repair pathways. The inhibitors described within this review target the non-PIKKs mediators of DSB repair including Ku70/80, Artemis, DNA Ligase IV, XRCC4, MRN complex, RPA, RAD51, RAD52, ERCC1-XPF, helicases, and DNA polymerase θ. While the DDR PIKKs remain intensely pursued as therapeutic targets, small molecule inhibition of non-PIKKs represents an emerging opportunity in drug discovery that offers considerable potential to impact cancer treatment.
Collapse
Affiliation(s)
- Jeremy M. Kelm
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Athira Pillai
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | | | - Hariprasad Aruri
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Deepti S. Pandey
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | | | - John J. Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,NERx Biosciences, Indianapolis, IN, United States,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States,*Correspondence: Navnath S. Gavande, ; orcid.org/0000-0002-2413-0235
| |
Collapse
|
142
|
Guix I, Liu Q, Pujuana MA, Ha P, Piulats J, Linares I, Guedea F, Mao JH, Lazar A, Chapman J, Yom SS, Ashworth A, Barcellos-Hoff MH. Validation of Anticorrelated TGFβ Signaling and Alternative End-Joining DNA Repair Signatures that Predict Response to Genotoxic Cancer Therapy. Clin Cancer Res 2022; 28:1372-1382. [PMID: 35022323 PMCID: PMC8976728 DOI: 10.1158/1078-0432.ccr-21-2846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/13/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Loss of TGFβ signaling increases error-prone alternative end-joining (alt-EJ) DNA repair. We previously translated this mechanistic relationship as TGFβ and alt-EJ gene expression signatures, which we showed are anticorrelated across cancer types. A score representing anticorrelation, βAlt, predicts patient outcome in response to genotoxic therapy. Here we sought to verify this biology in live specimens and additional datasets. EXPERIMENTAL DESIGN Human head and neck squamous carcinoma (HNSC) explants were treated in vitro to test whether the signatures report TGFβ signaling, indicated by SMAD2 phosphorylation, and unrepaired DNA damage, indicated by persistent 53BP1 foci after irradiation or olaparib. A custom NanoString assay was implemented to analyze the signatures' expression in explants. Each signature gene was then weighted by its association with functional responses to define a modified score, βAltw, that was retested for association with response to genotoxic therapies in independent datasets. RESULTS Most genes in each signature were positively correlated with the expected biological response in tumor explants. Anticorrelation of TGFβ and alt-EJ signatures measured by NanoString was confirmed in explants. βAltw was significantly (P < 0.001) better than βAlt in predicting overall survival in response to genotoxic therapy in The Cancer Genome Atlas (TCGA) pancancer patients and in independent HNSC and ovarian cancer patient datasets. CONCLUSIONS Association of the TGFβ and alt-EJ signatures with their biological response validates TGFβ competency as a key mediator of DNA repair that can be readily assayed by gene expression. The predictive value of βAltw supports its development to assist in clinical decision making.
Collapse
Affiliation(s)
- Ines Guix
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Radiobiology and Cancer Group, Oncobell, Bellvitge institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Qi Liu
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Current address: Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Miquel Angel Pujuana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Patrick Ha
- Department of Otolaryngology Head and Neck Surgery and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Josep Piulats
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Isabel Linares
- Radiobiology and Cancer Group, Oncobell, Bellvitge institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Ferran Guedea
- Radiobiology and Cancer Group, Oncobell, Bellvitge institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ann Lazar
- Division of Oral Epidemiology and Dental Public Health, University of California, San Francisco, CA, USA
- Division of Biostatistics, University of California, San Francisco, CA, USA
| | - Jocelyn Chapman
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Sue S. Yom
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
143
|
Schaub JM, Soniat MM, Finkelstein IJ. Polymerase theta-helicase promotes end joining by stripping single-stranded DNA-binding proteins and bridging DNA ends. Nucleic Acids Res 2022; 50:3911-3921. [PMID: 35357490 PMCID: PMC9023281 DOI: 10.1093/nar/gkac119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/20/2022] [Accepted: 03/29/2022] [Indexed: 01/20/2023] Open
Abstract
Homologous recombination-deficient cancers rely on DNA polymerase Theta (Polθ)-Mediated End Joining (TMEJ), an alternative double-strand break repair pathway. Polθ is the only vertebrate polymerase that encodes an N-terminal superfamily 2 (SF2) helicase domain, but the role of this helicase domain in TMEJ remains unclear. Using single-molecule imaging, we demonstrate that Polθ-helicase (Polθ-h) is a highly processive single-stranded DNA (ssDNA) motor protein that can efficiently strip Replication Protein A (RPA) from ssDNA. Polθ-h also has a limited capacity for disassembling RAD51 filaments but is not processive on double-stranded DNA. Polθ-h can bridge two non-complementary DNA strands in trans. PARylation of Polθ-h by PARP-1 resolves these DNA bridges. We conclude that Polθ-h removes RPA and RAD51 filaments and mediates bridging of DNA overhangs to aid in polymerization by the Polθ polymerase domain.
Collapse
Affiliation(s)
- Jeffrey M Schaub
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael M Soniat
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
144
|
Computational tools and resources for CRISPR/Cas genome editing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022:S1672-0229(22)00027-4. [PMID: 35341983 PMCID: PMC10372911 DOI: 10.1016/j.gpb.2022.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
Abstract
The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genomic editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the efficiency and specificity of single guide RNA (sgRNA)-directed recognition of targeted DNA sequences. Recent advances in empirical scoring algorithms and machine learning models have facilitated sgRNA design and off-target prediction. In this review, we first briefly introduced the different features of CRISPR/Cas tools that should be taken into consideration to achieve specific purposes. Secondly, we focused on the computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights on the limitations of available computational tools that surely help researchers of this field for further optimization. Lastly, we suggested a simple but effective workflow for choosing and applying web-based resources and tools for CRISPR/Cas genome editing.
Collapse
|
145
|
Gnedina OO, Morshneva AV, Skvortsova EV, Igotti MV. HDAC Inhibitor Sodium Butyrate Attenuates the DNA Repair in Transformed but Not in Normal Fibroblasts. Int J Mol Sci 2022; 23:ijms23073517. [PMID: 35408878 PMCID: PMC8998589 DOI: 10.3390/ijms23073517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Many cancer therapy strategies cause DNA damage leading to the death of tumor cells. The DNA damage response (DDR) modulators are considered as promising candidates for use in combination therapy to enhance the efficacy of DNA-damage-mediated cancer treatment. The inhibitors of histone deacetylases (HDACis) exhibit selective antiproliferative effects against transformed and tumor cells and could enhance tumor cell sensitivity to genotoxic agents, which is partly attributed to their ability to interfere with DDR. Using the comet assay and host-cell reactivation of transcription, as well as γH2AX staining, we have shown that sodium butyrate inhibited DNA double-strand break (DSB) repair of both endo- and exogenous DNA in transformed but not in normal cells. According to our data, the dysregulation of the key repair proteins, especially the phosphorylated Mre11 pool decrease, is the cause of DNA repair impairment in transformed cells. The inability of HDACis to obstruct DSB repair in normal cells shown in this work demonstrates the advantages of HDACis in combination therapy with genotoxic agents to selectively enhance their cytotoxic activity in cancer cells.
Collapse
|
146
|
Sharma A, Pham MN, Reyes JB, Chana R, Yim WC, Heu CC, Kim D, Chaverra-Rodriguez D, Rasgon JL, Harrell RA, Nuss AB, Gulia-Nuss M. Cas9-mediated gene editing in the black-legged tick, Ixodes scapularis, by embryo injection and ReMOT Control. iScience 2022; 25:103781. [PMID: 35535206 PMCID: PMC9076890 DOI: 10.1016/j.isci.2022.103781] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 11/04/2022] Open
Abstract
Despite their capacity to acquire and pass on an array of debilitating pathogens, research on ticks has lagged behind other arthropod vectors, such as mosquitoes, largely because of challenges in applying available genetic and molecular tools. CRISPR-Cas9 is transforming non-model organism research; however, successful gene editing has not yet been reported in ticks. Technical challenges for injecting tick embryos to attempt gene editing have further slowed research progress. Currently, no embryo injection protocol exists for any chelicerate species, including ticks. Herein, we report a successful embryo injection protocol for the black-legged tick, Ixodes scapularis, and the use of this protocol for genome editing with CRISPR-Cas9. We also demonstrate that the ReMOT Control technique could be successfully used to generate genome mutations outside Insecta. Our results provide innovative tools to the tick research community that are essential for advancing our understanding of the molecular mechanisms governing pathogen transmission by tick vectors and the underlying biology of host-vector-pathogen interactions.
Collapse
Affiliation(s)
- Arvind Sharma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Michael N. Pham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Jeremiah B. Reyes
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Randeep Chana
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Won C. Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Chan C. Heu
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Donghun Kim
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Duverney Chaverra-Rodriguez
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jason L. Rasgon
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Robert A. Harrell
- Insect Transformation Facility, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Andrew B. Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
147
|
CRISPR-Cas9 gene editing induced complex on-target outcomes in human cells. Exp Hematol 2022; 110:13-19. [PMID: 35304271 DOI: 10.1016/j.exphem.2022.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
CRISPR-Cas9 is a powerful tool to edit the genome and holds great promise for gene therapy applications. Initial concerns of gene engineering focus on off-target effects. However, in addition to short indel mutations (often < 50 bp), an increasing number of studies have revealed complex on-target results after double-strand break repair by CRISPR-Cas9, such as large deletions, gene rearrangement, and loss of heterozygosity. These unintended mutations are potential safety concerns in clinical gene editing. Here, in this review, we summarize the significant findings of CRISPR-Cas9-induced on-target deleterious outcomes and discuss putative ways to achieve safe gene therapy.
Collapse
|
148
|
Chen P, Liu C, Zhang J, Chen X, Liu X, He S, He A, Chen S, Qiu J, Li Y, Jiang Z, Yu K, Zhuang J. Tsp-1 is involved in DNA stability through Tgf-β1 activation domain in cone photoreceptor 661 W cells. Cell Tissue Res 2022; 388:259-271. [PMID: 35260935 DOI: 10.1007/s00441-022-03606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Thrombospondin-1 (Tsp-1), a matricellular protein, could protect retinal neurons from endogenous or exogenous insults; however, its underlying mechanism remains unclear. Thus, this study aimed to investigate Tsp-1-mediated neuron-protection effect in retinal cells. Our data showed that Tsp-1 downregulation would aggravate UV irradiation-induced DNA damage in 661 W cells and cone photoreceptor cells. The increasing levels of poly (ADP ribose) polymer (PAR) and γ-H2AX in Tsp-1-silenced 661 W cells indicate severe DNA single-strand breaks (SSBs) and double-strand breaks (DSBs). By utilizing an error-prone substrate, Tsp-1 silencing significantly increased deleted DNA end joining in 661 W cells with spontaneous DNA damage (SDD). Moreover, Tsp-1 is indirectly involved in DNA stability in 661 W cells as UV treatment caused a significant Tsp-1 decreasing in cytoplasm, but no obvious Tsp-1 alteration in cell nuclear of 661 W cells. Furthermore, our data indicate that Tgf-β1 activation domain in Tsp-1 plays a critical role in DNA stability in 661 W cells through expressing mutated exogenous Tsp-1 and Tgf-β inhibitor, LSKL. Therefore, this study provides new insights into the mechanism of the neuroprotective action positively mediated by Tsp-1, which might be a therapeutic target for the treatment of retinal pathology.
Collapse
Affiliation(s)
- Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xuan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shengyu He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Anqi He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shuilian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zihua Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
149
|
Zhao Z, Shang P, Sage F, Geijsen N. Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR. Nucleic Acids Res 2022; 50:e62. [PMID: 35212386 PMCID: PMC9226534 DOI: 10.1093/nar/gkac118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
CRISPR/Cas12a is a single effector nuclease that, like CRISPR/Cas9, has been harnessed for genome editing based on its ability to generate targeted DNA double strand breaks (DSBs). Unlike the blunt-ended DSB generated by Cas9, Cas12a generates sticky-ended DSB that could potentially aid precise genome editing, but this unique feature has thus far been underutilized. In the current study, we found that a short double-stranded DNA (dsDNA) repair template containing a sticky end that matched one of the Cas12a-generated DSB ends and a homologous arm sharing homology with the genomic region adjacent to the other end of the DSB enabled precise repair of the DSB and introduced a desired nucleotide substitution. We termed this strategy ‘Ligation-Assisted Homologous Recombination’ (LAHR). Compared to the single-stranded oligo deoxyribonucleotide (ssODN)-mediated homology directed repair (HDR), LAHR yields relatively high editing efficiency as demonstrated for both a reporter gene and endogenous genes. We found that both HDR and microhomology-mediated end joining (MMEJ) mechanisms are involved in the LAHR process. Our LAHR genome editing strategy, extends the repertoire of genome editing technologies and provides a broader understanding of the type and role of DNA repair mechanisms involved in genome editing.
Collapse
Affiliation(s)
- Zhihan Zhao
- Dept. of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Peng Shang
- Dept. of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Fanny Sage
- Dept. of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Niels Geijsen
- Dept. of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| |
Collapse
|
150
|
Rezazade Bazaz M, Dehghani H. From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods. Life Sci 2022; 295:120409. [PMID: 35182556 DOI: 10.1016/j.lfs.2022.120409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Various DNA breaks created via programmable CRISPR/Cas9 nuclease activity results in different intracellular DNA break repair pathways. Based on the cellular repair pathways, CRISPR-based gene knock-in methods can be categorized into two major strategies: 1) Homology-independent strategies which are targeted insertion events based on non-homologous end joining, and 2) Homology-dependent strategies which are targeted insertion events based on the homology-directed repair. This review elaborates on various gene knock-in methods in mammalian cells using the CRISPR/Cas9 system and in sync with DNA-break repair pathways. Gene knock-in methods are applied in functional genomics and gene therapy. To compensate or correct genetic defects, different CRISPR-based gene knock-in strategies can be used. Thus, researchers need to make a conscious decision about the most suitable knock-in method. For a successful gene-targeted insertion, some determinant factors should be considered like cell cycle, dominant DNA repair pathway, size of insertions, and donor properties. In this review, different aspects of each gene knock-in strategy are discussed to provide a framework for choosing the most appropriate gene knock-in method in different applications.
Collapse
Affiliation(s)
- Mahere Rezazade Bazaz
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|