101
|
Blatt DB, Hanisch B, Co K, Datta D, Bond C, Opoka RO, Cusick SE, Michelow IC, John CC. Impact of Oxidative Stress on Risk of Death and Readmission in African Children With Severe Malaria: A Prospective Observational Study. J Infect Dis 2022; 226:714-722. [PMID: 35678643 PMCID: PMC9890907 DOI: 10.1093/infdis/jiac234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We hypothesized that oxidative stress in Ugandan children with severe malaria is associated with mortality. METHODS We evaluated biomarkers of oxidative stress in children with cerebral malaria (CM, n = 77) or severe malarial anemia (SMA, n = 79), who were enrolled in a randomized clinical trial of immediate vs delayed iron therapy, compared with community children (CC, n = 83). Associations between admission biomarkers and risk of death during hospitalization or risk of readmission within 6 months were analyzed. RESULTS Nine children with CM and none with SMA died during hospitalization. Children with CM or SMA had higher levels of heme oxygenase-1 (HO-1) (P < .001) and lower superoxide dismutase (SOD) activity than CC (P < .02). Children with CM had a higher risk of death with increasing HO-1 concentration (odds ratio [OR], 6.07 [95% confidence interval {CI}, 1.17-31.31]; P = .03) but a lower risk of death with increasing SOD activity (OR, 0.02 [95% CI, .001-.70]; P = .03). There were no associations between oxidative stress biomarkers on admission and risk of readmission within 6 months of enrollment. CONCLUSIONS Children with CM or SMA develop oxidative stress in response to severe malaria. Oxidative stress is associated with higher mortality in children with CM but not with SMA. CLINICAL TRIALS REGISTRATION NCT01093989.
Collapse
Affiliation(s)
- Daniel B Blatt
- Department of Pediatrics, Division of Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Benjamin Hanisch
- Department of Pediatrics, Division of Infectious Diseases, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Katrina Co
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dibyadyuti Datta
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Caitlin Bond
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Sarah E Cusick
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ian C Michelow
- Department of Pediatrics, Division of Infectious Diseases, Connecticut Children’s Medical Center, University of Connecticut School of Medicine, Hartford, Connecticut, USA
| | - Chandy C John
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
102
|
Andrawes N, Weissman Z, Pinsky M, Moshe S, Berman J, Kornitzer D. Regulation of heme utilization and homeostasis in Candida albicans. PLoS Genet 2022; 18:e1010390. [PMID: 36084128 PMCID: PMC9491583 DOI: 10.1371/journal.pgen.1010390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/21/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Heme (iron-protoporphyrin IX) is an essential but potentially toxic cellular cofactor. While most organisms are heme prototrophs, many microorganisms can utilize environmental heme as iron source. The pathogenic yeast Candida albicans can utilize host heme in the iron-poor host environment, using an extracellular cascade of soluble and anchored hemophores, and plasma membrane ferric reductase-like proteins. To gain additional insight into the C. albicans heme uptake pathway, we performed an unbiased genetic selection for mutants resistant to the toxic heme analog Ga3+-protoporphyrin IX at neutral pH, and a secondary screen for inability to utilize heme as iron source. Among the mutants isolated were the genes of the pH-responsive RIM pathway, and a zinc finger transcription factor related to S. cerevisiae HAP1. In the presence of hemin in the medium, C. albicans HAP1 is induced, the Hap1 protein is stabilized and Hap1-GFP localizes to the nucleus. In the hap1 mutant, cytoplasmic heme levels are elevated, while influx of extracellular heme is lower. Gene expression analysis indicated that in the presence of extracellular hemin, Hap1 activates the heme oxygenase HMX1, which breaks down excess cytoplasmic heme, while at the same time it also activates all the known heme uptake genes. These results indicate that Hap1 is a heme-responsive transcription factor that plays a role both in cytoplasmic heme homeostasis and in utilization of extracellular heme. The induction of heme uptake genes by C. albicans Hap1 under iron satiety indicates that preferential utilization of host heme can be a dietary strategy in a heme prototroph.
Collapse
Affiliation(s)
- Natalie Andrawes
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Ziva Weissman
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Mariel Pinsky
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Shilat Moshe
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| | - Judith Berman
- School of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion–I.I.T., Haifa, Israel
| |
Collapse
|
103
|
A Model Peptide Reveals Insights into the Interaction of Human Hemopexin with Heme. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractUnder hemolytic conditions, toxic heme is scavenged by hemopexin. Recently, the heme-binding properties of hemopexin have been reassessed, which revealed a KD of ~ 0.32 nM as well as a stoichiometry of one to two heme molecules binding to hemopexin. A 66mer hemopexin-derived peptide that spans over three heme-binding motifs was used to verify the earlier suggested heme-recruiting mechanism. Herein, we employed spectroscopic and computational methods to substantiate the hypothesis of more than one heme molecule binding to hemopexin and to analyze the heme-binding mode. Both, hemopexin and the 66mer peptide, were found to bind heme in mixed penta- and hexacoordinated states, which strongly indicates that heme binding follows distinct criteria and increases rigidity of the peptide-heme complex. Additional in silico molecular dynamics simulations support these experimental findings and, thus, contribute to our understanding of the molecular basis of the heme-hemopexin interaction. This analysis provides further details for consideration of hemopexin in biomedical applications.
Collapse
|
104
|
Hawash MBF, El-Deeb MA, Gaber R, Morsy KS. The buried gems of disease tolerance in animals: Evolutionary and interspecies comparative approaches: Interspecies comparative approaches are valuable tools for exploring potential new mechanisms of disease tolerance in animals: Interspecies comparative approaches are valuable tools for exploring potential new mechanisms of disease tolerance in animals. Bioessays 2022; 44:e2200080. [PMID: 36050881 DOI: 10.1002/bies.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/07/2022]
Abstract
Host defense mechanisms are categorized into different strategies, namely, avoidance, resistance and tolerance. Resistance encompasses mechanisms that directly kill the pathogen while tolerance is mainly concerned with alleviating the harsh consequences of the infection regardless of the pathogen burden. Resistance is well-known strategy in immunology while tolerance is relatively new. Studies addressed tolerance mainly using mouse models revealing a wide range of interesting tolerance mechanisms. Herein, we aim to emphasize on the interspecies comparative approaches to explore potential new mechanisms of disease tolerance. We will discuss mechanisms of tolerance with focus on those that were revealed using comparative study designs of mammals followed by summarizing the reasons for adopting comparative approaches on disease tolerance studies. Disease tolerance is a relatively new concept in immunology, we believe combining comparative studies with model organism study designs will enhance our understanding to tolerance and unveil new mechanisms of tolerance.
Collapse
Affiliation(s)
- Mohamed B F Hawash
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.,Biochemistry and Molecular Biomedicine Department, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Mohamed A El-Deeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Rahma Gaber
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Kareem S Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
105
|
Ricci A, Di Betto G, Bergamini E, Buzzetti E, Corradini E, Ventura P. Iron Metabolism in the Disorders of Heme Biosynthesis. Metabolites 2022; 12:819. [PMID: 36144223 PMCID: PMC9505951 DOI: 10.3390/metabo12090819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
Given its remarkable property to easily switch between different oxidative states, iron is essential in countless cellular functions which involve redox reactions. At the same time, uncontrolled interactions between iron and its surrounding milieu may be damaging to cells and tissues. Heme-the iron-chelated form of protoporphyrin IX-is a macrocyclic tetrapyrrole and a coordination complex for diatomic gases, accurately engineered by evolution to exploit the catalytic, oxygen-binding, and oxidoreductive properties of iron while minimizing its damaging effects on tissues. The majority of the body production of heme is ultimately incorporated into hemoglobin within mature erythrocytes; thus, regulation of heme biosynthesis by iron is central in erythropoiesis. Additionally, heme is a cofactor in several metabolic pathways, which can be modulated by iron-dependent signals as well. Impairment in some steps of the pathway of heme biosynthesis is the main pathogenetic mechanism of two groups of diseases collectively known as porphyrias and congenital sideroblastic anemias. In porphyrias, according to the specific enzyme involved, heme precursors accumulate up to the enzyme stop in disease-specific patterns and organs. Therefore, different porphyrias manifest themselves under strikingly different clinical pictures. In congenital sideroblastic anemias, instead, an altered utilization of mitochondrial iron by erythroid precursors leads to mitochondrial iron overload and an accumulation of ring sideroblasts in the bone marrow. In line with the complexity of the processes involved, the role of iron in these conditions is then multifarious. This review aims to summarise the most important lines of evidence concerning the interplay between iron and heme metabolism, as well as the clinical and experimental aspects of the role of iron in inherited conditions of altered heme biosynthesis.
Collapse
Affiliation(s)
- Andrea Ricci
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Giada Di Betto
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elisa Bergamini
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elena Buzzetti
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elena Corradini
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Paolo Ventura
- Regional Reference Centre for Diagnosing and Management of Porphyrias, Internal Medicine Unit and Centre for Hemochromatosis and Hereditary Liver Diseases, ERN-EuroBloodNet Centre for Iron Disorders, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Science for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
106
|
Aljawdah HMA, Abdel-Gaber R, Al-Shaebi EM, Thagfan FA, Al-Quraishy S, Qasem MAA, Murshed M, Mares MM, Al-Otaibi T, Hawsah MA, Dkhil MA. Hepatoprotective activity of Eucalyptus camaldulensis extract in murine malaria mediated by suppression of oxidative and inflammatory processes. Front Cell Infect Microbiol 2022; 12:955042. [PMID: 36034714 PMCID: PMC9412018 DOI: 10.3389/fcimb.2022.955042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Herbal extracts are promising agents against various parasitic diseases, such as malaria. This study aimed to evaluate the ameliorative action of Eucalyptus camaldulensis extract (ECE) against hepatic damage caused by Plasmodium chabaudi infection. Mice were allocated into five groups as follows: two groups served as the control non-infected groups that received distilled water and ECE, respectively; subsequent three groups were infected with 106 P. chabaudi parasitized erythrocytes; the last two groups were infected with the parasite and then treated with ECE and chloroquine. On day 8 post-infection, the parasite count increased inside erythrocytes (59.4% parasitemia in the infected group). Parasitemia was successfully reduced to 9.4% upon ECE treatment. Phytochemical screening using GC mass spectrometry revealed that ECE contained 23 phytochemical components. Total phenolics and flavonoids in ECE were 104 ± 2 and 7.1± 3 µg/mL, respectively, with 57.2% antioxidant activity. ECE ameliorated changes in liver histopathology and enzymatic activity of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. In addition, ECE prevented oxidative damage induced by the parasite in the liver, as evidenced by the change in the liver concentrations of glutathione, nitric oxide, malondialdehyde, and catalase. Moreover, ECE was able to regulate the expression of liver cytokines, interleukins-1β and 6, as well as IFN-γ mRNA. ECE possesses antiplasmodial, antioxidant, and anti-inflammatory activity against liver injury induced by the parasite P. chabaudi.
Collapse
Affiliation(s)
- Hossam M. A. Aljawdah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Esam M. Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Felwa A. Thagfan
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmood A. A. Qasem
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mutee Murshed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M. Mares
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Tahani Al-Otaibi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Science and Technology, Al-Nairiyah University College, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Maysar Abu Hawsah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- *Correspondence: Mohamed A. Dkhil,
| |
Collapse
|
107
|
Sansaloni-Pastor S, Varesio E, Lange N. Modulation and proteomic changes on the heme pathway following treatment with 5-aminolevulinic acid. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112484. [PMID: 35671620 DOI: 10.1016/j.jphotobiol.2022.112484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
5-ALA-mediated photodynamic therapy (PDT) has been developed around the heme biosynthesis physiological pathway. It is based on the external supplementation of 5 aminolevulinic acid (5-ALA), increasing the activity of the heme pathway and leading to a significant protoporphyrin IX (PpIX) accumulation. Interestingly, this metbolite accumulation is predominant in cancer cells, induced by a highly active metabolism, therefore limiting off-target side effects and increasing therapy specificity. Nevertheless, the intrinsic mechanism responsible of PpIX accumulation on cells following PDT is still unknown, limiting clinical therapy translation. In order to further understand the mechanisms behind 5-ALA-induced PDT, in this study we aimed to evaluate the proteome changes reported on the physiological heme pathway, in response to an external 5-ALA supplementation. We studied two different scenarios following 5-ALA treatment, 5-ALA accumulation (5-ALA metabolization into the heme pathway blocked with inhibitors) and accumulation of PpIX (normal heme pathway with 5-ALA supplementation). Therefore, we were able to characterize enzymatic changes and to describe bottlenecks in the pathway. Following mass spectrometry analysis, we reported significant differences between 5-ALA and PpIX effects on heme biosynthesis and regulation of degradation. 5-ALA accumulation significantly decreased porphobilinogen deaminase (HMBS) expression, while phorphyrins accumulation (PpIX) upregulated heme synthesis, specifically HMBS and uroporphyrinogen decarboxylase (UROD), and enhanced the enzymatic level of the heme degradation pathway, including Heme oxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA). Interestingly, porphyrins induced a significant downregulation effect on oxygen-dependent coproporphyrinogen-III oxidase (CPOX). In conclusion, in this study we demonstrated that porphyrins play the most relevant role in heme biosynthesis modulation, while 5-ALA alone (PDT substrate) is not responsible of the main changes observed in this pathway during PDT treatment. Understanding heme enzyme modulation would help to design a more rational approach for patient treatment in the clinic. AIM: Effect of 5-ALA and porphyrins on the different Heme biosynthesis and degradation enzymes.
Collapse
Affiliation(s)
- Sara Sansaloni-Pastor
- Institure of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Emmanuel Varesio
- Institure of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Norbert Lange
- Institure of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| |
Collapse
|
108
|
Kiening M, Lange N. A Recap of Heme Metabolism towards Understanding Protoporphyrin IX Selectivity in Cancer Cells. Int J Mol Sci 2022; 23:ijms23147974. [PMID: 35887311 PMCID: PMC9324066 DOI: 10.3390/ijms23147974] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are essential organelles of mammalian cells, often emphasized for their function in energy production, iron metabolism and apoptosis as well as heme synthesis. The heme is an iron-loaded porphyrin behaving as a prosthetic group by its interactions with a wide variety of proteins. These complexes are termed hemoproteins and are usually vital to the whole cell comportment, such as the proteins hemoglobin, myoglobin or cytochromes, but also enzymes such as catalase and peroxidases. The building block of porphyrins is the 5-aminolevulinic acid, whose exogenous administration is able to stimulate the entire heme biosynthesis route. In neoplastic cells, this methodology repeatedly demonstrated an accumulation of the ultimate heme precursor, the fluorescent protoporphyrin IX photosensitizer, rather than in healthy tissues. While manifold players have been proposed, numerous discrepancies between research studies still dispute the mechanisms underlying this selective phenomenon that yet requires intensive investigations. In particular, we wonder what are the respective involvements of enzymes and transporters in protoporphyrin IX accretion. Is this mainly due to a boost in protoporphyrin IX anabolism along with a drop of its catabolism, or are its transporters deregulated? Additionally, can we truly expect to find a universal model to explain this selectivity? In this report, we aim to provide our peers with an overview of the currently known mitochondrial heme metabolism and approaches that could explain, at least partly, the mechanism of protoporphyrin IX selectivity towards cancer cells.
Collapse
Affiliation(s)
| | - Norbert Lange
- Correspondence: ; Tel.: +41-22-379-33-35; Fax: +41-22-379-65-67
| |
Collapse
|
109
|
Structural basis for heme detoxification by an ATP-binding cassette-type efflux pump in gram-positive pathogenic bacteria. Proc Natl Acad Sci U S A 2022; 119:e2123385119. [PMID: 35767641 PMCID: PMC9271180 DOI: 10.1073/pnas.2123385119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens acquire heme from the host hemoglobin as an iron nutrient for their virulence and proliferation in blood. Concurrently, they encounter cytotoxic-free heme that escapes the heme-acquisition process. To overcome this toxicity, many gram-positive bacteria employ an ATP-binding cassette heme-dedicated efflux pump, HrtBA in the cytoplasmic membranes. Although genetic analyses have suggested that HrtBA expels heme from the bacterial membranes, the molecular mechanism of heme efflux remains elusive due to the lack of protein studies. Here, we show the biochemical properties and crystal structures of Corynebacterium diphtheriae HrtBA, alone and in complex with heme or an ATP analog, and we reveal how HrtBA extracts heme from the membrane and releases it. HrtBA consists of two cytoplasmic HrtA ATPase subunits and two transmembrane HrtB permease subunits. A heme-binding site is formed in the HrtB dimer and is laterally accessible to heme in the outer leaflet of the membrane. The heme-binding site captures heme from the membrane using a glutamate residue of either subunit as an axial ligand and sequesters the heme within the rearranged transmembrane helix bundle. By ATP-driven HrtA dimerization, the heme-binding site is squeezed to extrude the bound heme. The mechanism sheds light on the detoxification of membrane-bound heme in this bacterium.
Collapse
|
110
|
Tracking Heme-Protein Interactions in Healthy and Pathological Human Serum in Native Conditions by Miniaturized FFF-Multidetection. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136762] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The interaction of heme with blood serum proteins plays an important role in many physiological and pathological processes involving enzyme activity, gene expression and cell proliferation. The mechanisms underlying these interactions are; however, not yet fully understood. New analytical methods able to investigate protein-heme binding in native, biologically representative conditions are thus required. In this work, we present a method based on miniaturized, hollow-fiber flow field-flow fractionation with multiple spectrophotometric and light-scattering detection for size separation of high-abundance serum proteins and selective detection of heme-bound subpopulations. Heme is found to mainly interact with serum albumin, whereas a low amount also binds to other proteins such as IgM. The ability to bind heme in physiological conditions is also investigated for individual serum proteins. IgG is found unable to bind heme at clinically relevant concentrations. The proposed method allows separation, quantitation, and mass/size characterization of serum high-abundance proteins, providing information of heme-protein complex stability and preferred heme-clearing pathways. The same approach could be in perspective extended to the investigation of specific heme-antibody binding, and to further studies involving other molecules of pharmaceutical/clinical interest.
Collapse
|
111
|
Ansariniya H, Yavari A, Javaheri A, Zare F. Oxidative stress-related effects on various aspects of endometriosis. Am J Reprod Immunol 2022; 88:e13593. [PMID: 35781369 DOI: 10.1111/aji.13593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 11/26/2022] Open
Abstract
Endometriosis is a chronic and relatively common disease in women of childbearing age. Complications of this disease include a wide range of disorders. The cause of this disease is not known for sure, but several hypotheses have been proposed for it. In this disease, the entry of endometrial tissues into the peritoneal cavity causes oxidative stress through the Fenton reaction and inflammation in this site. Oxidative stress can be associated with many complications of endometriosis. In this review, an attempt has been made to discuss the effects of oxidative stress on various complications of this disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hossein Ansariniya
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Abolfazl Yavari
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Atiyeh Javaheri
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Fateme Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
112
|
Xu MM, Wu B, Huang GG, Feng CL, Wang XH, Wang HY, Wu YW, Tang W. Hemin protects against Zika virus infection by disrupting virus-endosome fusion. Antiviral Res 2022; 203:105347. [DOI: 10.1016/j.antiviral.2022.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
|
113
|
David S, Jhelum P, Ryan F, Jeong SY, Kroner A. Dysregulation of Iron Homeostasis in the Central Nervous System and the Role of Ferroptosis in Neurodegenerative Disorders. Antioxid Redox Signal 2022; 37:150-170. [PMID: 34569265 DOI: 10.1089/ars.2021.0218] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Iron accumulation occurs in the central nervous system (CNS) in a variety of neurological conditions as diverse as spinal cord injury, stroke, multiple sclerosis, Parkinson's disease, and others. Iron is a redox-active metal that gives rise to damaging free radicals if its intracellular levels are not controlled or if it is not properly sequestered within cells. The accumulation of iron occurs due to dysregulation of mechanisms that control cellular iron homeostasis. Recent Advances: The molecular mechanisms that regulate cellular iron homeostasis have been revealed in much detail in the past three decades, and new advances continue to be made. Understanding which aspects of iron homeostasis are dysregulated in different conditions will provide insights into the causes of iron accumulation and iron-mediated tissue damage. Recent advances in iron-dependent lipid peroxidation leading to cell death, called ferroptosis, has provided useful insights that are highly relevant for the lipid-rich environment of the CNS. Critical Issues: This review examines the mechanisms that control normal cellular iron homeostasis, the dysregulation of these mechanisms in neurological disorders, and more recent work on how iron can induce tissue damage via ferroptosis. Future Directions: Quick and reliable tests are needed to determine if and when ferroptosis contributes to the pathogenesis of neurological disorders. In addition, there is need to develop better druggable agents to scavenge lipid radicals and reduce CNS damage for neurological conditions for which there are currently few effective treatments. Antioxid. Redox Signal. 37, 150-170.
Collapse
Affiliation(s)
- Samuel David
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Priya Jhelum
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Suh Young Jeong
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
114
|
Shao L, Chen S, Ma L. Secondary Brain Injury by Oxidative Stress After Cerebral Hemorrhage: Recent Advances. Front Cell Neurosci 2022; 16:853589. [PMID: 35813506 PMCID: PMC9262401 DOI: 10.3389/fncel.2022.853589] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a clinical syndrome in which blood accumulates in the brain parenchyma because of a nontraumatic rupture of a blood vessel. Because of its high morbidity and mortality rate and the lack of effective therapy, the treatment of ICH has become a hot research topic. Meanwhile, Oxidative stress is one of the main causes of secondary brain injury(SBI) after ICH. Therefore, there is a need for an in-depth study of oxidative stress after ICH. This review will discuss the pathway and effects of oxidative stress after ICH and its relationship with inflammation and autophagy, as well as the current antioxidant therapy for ICH with a view to deriving better therapeutic tools or targets for ICH.
Collapse
|
115
|
Bou-Fakhredin R, De Franceschi L, Motta I, Eid AA, Taher AT, Cappellini MD. Redox Balance in β-Thalassemia and Sickle Cell Disease: A Love and Hate Relationship. Antioxidants (Basel) 2022; 11:antiox11050967. [PMID: 35624830 PMCID: PMC9138068 DOI: 10.3390/antiox11050967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
β-thalassemia and sickle cell disease (SCD) are inherited hemoglobinopathies that result in both quantitative and qualitative variations in the β-globin chain. These in turn lead to instability in the generated hemoglobin (Hb) or to a globin chain imbalance that affects the oxidative environment both intracellularly and extracellularly. While oxidative stress is not among the primary etiologies of β-thalassemia and SCD, it plays a significant role in the pathogenesis of these diseases. Different mechanisms exist behind the development of oxidative stress; the result of which is cytotoxicity, causing the oxidation of cellular components that can eventually lead to cell death and organ damage. In this review, we summarize the mechanisms of oxidative stress development in β-thalassemia and SCD and describe the current and potential antioxidant therapeutic strategies. Finally, we discuss the role of targeted therapy in achieving an optimal redox balance.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, 37128 Verona, Italy;
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Ali T. Taher
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
116
|
Liu W, Lu L, Pan H, He X, Zhang M, Wang N, Zhu J, Yi H, Tang S. Haem oxygenase-1 and haemopexin gene polymorphisms and the risk of anti-tuberculosis drug-induced hepatotoxicity in China. Pharmacogenomics 2022; 23:431-441. [PMID: 35470713 DOI: 10.2217/pgs-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: To assess whether the risk of anti-tuberculosis drug-induced hepatotoxicity (ATDH) might be influenced by haem oxygenase-1 (HMOX1) and haemopexin (HPX) gene polymorphisms. Methods: A dynamic anti-tuberculosis treatment cohort was constructed, and the 1:4 matched nested case-control study was analysed. Eight single nucleotide polymorphisms (SNPs) of the two genes were selected for genotyping and Bonferroni correction was performed to correct for multiple comparison. Results: Overall, 7.8% of patients developed ATDH. SNP rs1807714 in the HMOX1 gene had decreased effects on the risk of moderate and severe hepatotoxicity under the dominant and additive models, and hepatocellular injury under the additive model. SNP rs2682099 in the HPX gene had increased effects on the risk of moderate and severe hepatotoxicity under the recessive model. However, these associations disappeared after Bonferroni correction. Conclusion: HMOX1 and HPX gene polymorphisms might not be associated with susceptibility to ATDH in the Chinese population.
Collapse
Affiliation(s)
- Wenpei Liu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People's Hospital of Changshu, Changshu, 215500, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, 212021, China
| | - Xiaomin He
- Department of Infectious Disease, The People's Hospital of Taixing, Taixing, 225400, China
| | - Meiling Zhang
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, 212400, China
| | - Nannan Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jia Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Honggang Yi
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shaowen Tang
- Department of Epidemiology & Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
117
|
Imran M, Chalmel F, Sergent O, Evrard B, Le Mentec H, Legrand A, Dupont A, Bescher M, Bucher S, Fromenty B, Huc L, Sparfel L, Lagadic-Gossmann D, Podechard N. Transcriptomic analysis in zebrafish larvae identifies iron-dependent mitochondrial dysfunction as a possible key event of NAFLD progression induced by benzo[a]pyrene/ethanol co-exposure. Cell Biol Toxicol 2022:10.1007/s10565-022-09706-4. [PMID: 35412187 DOI: 10.1007/s10565-022-09706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/28/2022] [Indexed: 11/02/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a worldwide epidemic for which environmental contaminants are increasingly recognized as important etiological factors. Among them, the combination of benzo[a]pyrene (B[a]P), a potent environmental carcinogen, with ethanol, was shown to induce the transition of steatosis toward steatohepatitis. However, the underlying mechanisms involved remain to be deciphered. In this context, we used high-fat diet fed zebrafish model, in which we previously observed progression of steatosis to a steatohepatitis-like state following a 7-day-co-exposure to 43 mM ethanol and 25 nM B[a]P. Transcriptomic analysis highlighted the potent role of mitochondrial dysfunction, alterations in heme and iron homeostasis, involvement of aryl hydrocarbon receptor (AhR) signaling, and oxidative stress. Most of these mRNA dysregulations were validated by RT-qPCR. Moreover, similar changes were observed using a human in vitro hepatocyte model, HepaRG cells. The mitochondria structural and functional alterations were confirmed by transmission electronic microscopy and Seahorse technology, respectively. Involvement of AhR signaling was evidenced by using in vivo an AhR antagonist, CH223191, and in vitro in AhR-knock-out HepaRG cells. Furthermore, as co-exposure was found to increase the levels of both heme and hemin, we investigated if mitochondrial iron could induce oxidative stress. We found that mitochondrial labile iron content was raised in toxicant-exposed larvae. This increase was prevented by the iron chelator, deferoxamine, which also inhibited liver co-exposure toxicity. Overall, these results suggest that the increase in mitochondrial iron content induced by B[a]P/ethanol co-exposure causes mitochondrial dysfunction that contributes to the pathological progression of NAFLD.
Collapse
Affiliation(s)
- Muhammad Imran
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.,Iqra University, Karachi, Pakistan
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Hélène Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Antoine Legrand
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Aurélien Dupont
- Univ Rennes, Biosit - UMS 3480, US_S 018, F-35000, Rennes, France
| | - Maëlle Bescher
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Simon Bucher
- Univ Rennes, Inserm, Inrae, Institut NUMECAN (Nutrition Metabolisms and Cancer)-UMR_S 13 1241, and UMR_A 1341, 35000, Rennes, France
| | - Bernard Fromenty
- Univ Rennes, Inserm, Inrae, Institut NUMECAN (Nutrition Metabolisms and Cancer)-UMR_S 13 1241, and UMR_A 1341, 35000, Rennes, France
| | - Laurence Huc
- Université de Toulouse, Inrae, ENVT, INP-Purpan, UPS, Toxalim (Research Centre in Food Toxicology), 31027, Toulouse, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
118
|
Krishna NK, Cunnion KM, Parker GA. The EPICC Family of Anti-Inflammatory Peptides: Next Generation Peptides, Additional Mechanisms of Action, and In Vivo and Ex Vivo Efficacy. Front Immunol 2022; 13:752315. [PMID: 35222367 PMCID: PMC8863753 DOI: 10.3389/fimmu.2022.752315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
The EPICC peptides are a family of peptides that have been developed from the sequence of the capsid protein of human astrovirus type 1 and previously shown to inhibit the classical and lectin pathways of complement. The EPICC peptides have been further optimized to increase aqueous solubility and identify additional mechanisms of action. Our laboratory has developed the lead EPICC molecule, PA-dPEG24 (also known as RLS-0071), which is composed of a 15 amino acid peptide with a C-terminal monodisperse 24-mer PEGylated moiety. RLS-0071 has been demonstrated to possess other mechanisms of action in addition to complement blockade that include the inhibition of neutrophil-driven myeloperoxidase (MPO) activity, inhibition of neutrophil extracellular trap (NET) formation as well as intrinsic antioxidant activity mediated by vicinal cysteine residues contained within the peptide sequence. RLS-0071 has been tested in various ex vivo and in vivo systems and has shown promise for the treatment of both immune-mediated hematological diseases where alterations in the classical complement pathway plays an important pathogenic role as well as in models of tissue-based diseases such as acute lung injury and hypoxic ischemic encephalopathy driven by both complement and neutrophil-mediated pathways (i.e., MPO activity and NET formation). Next generation EPICC peptides containing a sarcosine residue substitution in various positions within the peptide sequence possess aqueous solubility in the absence of PEGylation and demonstrate enhanced complement and neutrophil inhibitory activity compared to RLS-0071. This review details the development of the EPICC peptides, elucidation of their dual-acting complement and neutrophil inhibitory activities and efficacy in ex vivo systems using human clinical specimens and in vivo efficacy in animal disease models.
Collapse
Affiliation(s)
- Neel K Krishna
- Division of Research, ReAlta Life Sciences, Norfolk, VA, United States
| | - Kenji M Cunnion
- Division of Research, ReAlta Life Sciences, Norfolk, VA, United States.,Department of Pediatrics, Children's Hospital of The King's Daughters, Norfolk, VA, United States.,Children's Specialty Group, Norfolk, VA, United States.,Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Grace A Parker
- Division of Research, ReAlta Life Sciences, Norfolk, VA, United States
| |
Collapse
|
119
|
Mechanisms of Resistance to Photodynamic Therapy (PDT) in Vulvar Cancer. Int J Mol Sci 2022; 23:ijms23084117. [PMID: 35456936 PMCID: PMC9028356 DOI: 10.3390/ijms23084117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a valuable treatment method for vulvar intraepithelial neoplasia (VIN). It allows for the treatment of a multifocal disease with minimal tissue destruction. 5-Aminolevulinic acid (5-ALA) is the most commonly used prodrug, which is converted in the heme pathway to protoporphyrin IX (PpIX), an actual photosensitizer (PS). Unfortunately, not all patients treated with PDT undergo complete remission. The main cause of their failure is resistance to anticancer therapy. In many cancers, resistance to various anticancer treatments is correlated with increased activity of the DNA repair protein apurinic/apyrimidinic endonuclease 1 (APE1). Enhanced activity of drug pumps may also affect the effectiveness of therapy. To investigate whether multidrug resistance mechanisms underlie PDT resistance in VIN, porphyrins were isolated from sensitive and resistant vulvar cancer cells and their culture media. APE1 activity was measured, and survival assay after PDT combined with APE1 inhibitor was performed. Our results revealed that resistant cells accumulated and effluxed less porphyrins than sensitive cells, and in response to PDT, resistant cells increased APE1 activity. Moreover, PDT combined with inhibition of APE1 significantly decreased the survival of PDT-resistant cells. This means that resistance to PDT in vulvar cancer may be the result of alterations in the heme synthesis pathway. Moreover, increased APE1 activity may be essential for the repair of PDT-mediated DNA damage, and inhibition of APE1 activity may increase the efficacy of PDT.
Collapse
|
120
|
Lechuga GC, Napoleão-Pêgo P, Morel CM, Provance DW, De-Simone SG. New Insights into Hemopexin-Binding to Hemin and Hemoglobin. Int J Mol Sci 2022; 23:3789. [PMID: 35409149 PMCID: PMC8998376 DOI: 10.3390/ijms23073789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Hemopexin (Hx) is a plasma glycoprotein that scavenges heme (Fe(III) protoporphyrin IX). Hx has important implications in hemolytic disorders and hemorrhagic conditions because releasing hemoglobin increases the labile heme, which is potentially toxic, thus producing oxidative stress. Therefore, Hx has been considered for therapeutic use and diagnostics. In this work, we analyzed and mapped the interaction sequences of Hx with hemin and hemoglobin. The spot-synthesis technique was used to map human hemopexin (P02790) binding to hemin and human hemoglobin. A library of 15 amino acid peptides with a 10-amino acid overlap was designed to represent the entire coding region (aa 1-462) of hemopexin and synthesized onto cellulose membranes. An in silico approach was taken to analyze the amino acid frequency in the identified interaction regions, and molecular docking was applied to assess the protein-protein interaction. Seven linear peptide sequences in Hx were identified to bind hemin (H1-H7), and five were described for Hb (Hb1-Hb5) interaction, with just two sequences shared between hemin and Hb. The amino acid composition of the identified sequences demonstrated that histidine residues are relevant for heme binding. H105, H293, H373, H400, H429, and H462 were distributed in the H1-H7 peptide sequences, but other residues may also play an important role. Molecular docking analysis demonstrated Hx's association with the β-chain of Hb, with several hotspot amino acids that coordinated the interaction. This study provides new insights into Hx-hemin binding motifs and protein-protein interactions with Hb. The identified binding sequences and specific peptides can be used for therapeutic purposes and diagnostics as hemopexin is under investigation to treat different diseases and there is an urgent need for diagnostics using labile heme when monitoring hemolysis.
Collapse
Affiliation(s)
- Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
- Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil
| |
Collapse
|
121
|
Abstract
Ferroptosis is a novel form of cell death characterized by the iron-dependent accumulation of lipid peroxides and is different from other types of cell death. The mechanisms of ferroptosis are discussed in the review, including System Xc-, Glutathione Peroxidase 4 pathway, Ferroptosis Suppressor Protein 1 and Dihydroorotate Dehydrogenase pathway. Ferroptosis is associated with the occurrence of various diseases, including sepsis. Research in recent years has displayed that ferroptosis is involved in sepsis occurrence and development. Iron chelators can inhibit the development of sepsis and improve the survival rate of septic mice. The ferroptotic cells can release damage-associated molecular patterns and lipid peroxidation, which further mediate inflammatory responses. Ferroptosis inhibitors can resist sepsis-induced multiple organ dysfunction and inflammation. Finally, we reviewed ferroptosis, an iron-dependent form of cell death that is different from other types of cell death in biochemistry, morphology, and major regulatory mechanisms, which is involved in multiple organ injuries caused by sepsis. Exploring the relationship between sepsis and ferroptosis may yield new treatment targets for sepsis.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, People's Republic of China
| | - Sichuang Tan
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yongbin Wu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, People's Republic of China
| | - Sipin Tan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, People's Republic of China
| |
Collapse
|
122
|
Coburn RF. Carbon Monoxide (CO), Nitric Oxide, and Hydrogen Sulfide Signaling During Acute CO Poisoning. Front Pharmacol 2022; 12:830241. [PMID: 35370627 PMCID: PMC8972574 DOI: 10.3389/fphar.2021.830241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Major toxic effects of acute carbon monoxide (CO) poisoning result from increases in reactive oxygen species (ROS) and reactive nitrogen species (RNS) producing oxidative stress. The importance of altered nitric oxide (NO) signaling in evoking increases in RNS during CO poisoning has been established. Although there is extensive literature describing NO and hydrogen sulfide (H2S) signaling in different types of cells under normal conditions, how CO poisoning-evoked deregulation of additional NO signaling pathways and H2S signaling pathways could result in cell injury has not been previously considered in detail. The goal of this article was to do this. The approach was to use published data to describe signaling pathways driven by CO bonding to different ferroproteins and then to collate data that describe NO and H2S signaling pathways that could interact with CO signaling pathways and be important during CO poisoning. Arteriolar smooth muscle cells—endothelial cells located in the coronary and some cerebral circulations—were used as a model to illustrate major signaling pathways driven by CO bonding to different ferroproteins. The results were consistent with the concept that multiple deregulated and interacting NO and H2S signaling pathways can be involved in producing cell injury evoked during acute CO poisoning and that these pathways interact with CO signaling pathways.
Collapse
|
123
|
Matz JM. Plasmodium’s bottomless pit: properties and functions of the malaria parasite's digestive vacuole. Trends Parasitol 2022; 38:525-543. [DOI: 10.1016/j.pt.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
|
124
|
Abuhelwa AY, Badaoui S, Yuen HY, McKinnon RA, Ruanglertboon W, Shankaran K, Tuteja A, Sorich MJ, Hopkins AM. A clinical scoring tool validated with machine learning for predicting severe hand-foot syndrome from sorafenib in hepatocellular carcinoma. Cancer Chemother Pharmacol 2022; 89:479-485. [PMID: 35226112 PMCID: PMC8956540 DOI: 10.1007/s00280-022-04411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022]
Abstract
Purpose Sorafenib is an effective therapy for advanced hepatocellular carcinoma (HCC). Hand–foot syndrome (HFS) is a serious adverse effect associated with sorafenib therapy. This study aimed to develop an updated clinical prediction tool that allows personalized prediction of HFS following sorafenib initiation. Methods Individual participant data from Phase III clinical trial NCT00699374 were used in Cox proportional hazard analysis of the association between pre-treatment clinicopathological data and grade ≥ 3 HFS occurring within the first 365 days of sorafenib treatment for advanced HCC. Multivariable prediction models were developed using stepwise forward inclusion and backward deletion and internally validated using a random forest machine learning approach. Results Of 542 patients, 116 (21%) experienced grades ≥ 3 HFS. The prediction tool was optimally defined by sex (male vs female), haemoglobin (< 130 vs ≥ 130 g/L) and bilirubin (< 10 vs 10–20 vs ≥ 20 µmol/L). The prediction tool was able to discriminate subgroups with significantly different risks of grade ≥ 3 HFS (P ≤ 0.001). The high (score = 3 +)-, intermediate (score = 2)- and low (score = 0–1)-risk subgroups had 40%, 27% and 14% probability of developing grade ≥ 3 HFS within the first 365 days of sorafenib treatment, respectively. Conclusion A clinical prediction tool defined by female sex, high haemoglobin and low bilirubin had high discrimination for predicting HFS risk. The tool may enable improved evaluation of personalized risks of HFS for patients with advanced HCC initiating sorafenib. Supplementary Information The online version contains supplementary material available at 10.1007/s00280-022-04411-9.
Collapse
Affiliation(s)
- Ahmad Y Abuhelwa
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Sarah Badaoui
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Hoi-Yee Yuen
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Ross A McKinnon
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Warit Ruanglertboon
- Department of Pharmacology, Division of Health and Applied Sceinces, Prince of Songkla University, Songkhla, Thailand
| | - Kiran Shankaran
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Anniepreet Tuteja
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia.
| |
Collapse
|
125
|
The Toxic Influence of Excess Free Iron on Red Blood Cells in the Biophysical Experiment: An In Vitro Study. J Toxicol 2022; 2022:7113958. [PMID: 35256882 PMCID: PMC8898121 DOI: 10.1155/2022/7113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Iron is needed for life-essential processes, but free iron overload causes dangerous clinical consequences. The study of the role of red blood cells (RBCs) in the influence of excess free iron in the blood on the pathological consequences in an organism is relevant. Here, in a direct biophysical experiment in vitro, we studied the action of free iron overload on the packed red blood cell (pRBC) characteristics. In experiments, we incubated pRBCs with the ferrous sulfate solution (Fe2+). Wе used free iron in a wide range of concentrations. High Fe2+ concentrations made us possible to establish the pattern of the toxic effect of excess iron on pRBCs during a reduced incubation time in a biophysical experiment in vitro. It was found that excess free iron causes changes in pRBC morphology, the appearance of bridges between cells, and the formation of clots, increasing the membrane stiffness and methemoglobin concentration. We created a kinetic model of changes in the hemoglobin derivatives. The complex of simultaneous distortions of pRBCs established in our experiments can be taken into account when studying the mechanism of the toxic influence of excess free iron in the blood on pathological changes in an organism.
Collapse
|
126
|
Pillai R, Hayashi M, Zavitsanou AM, Papagiannakopoulos T. NRF2: KEAPing Tumors Protected. Cancer Discov 2022; 12:625-643. [PMID: 35101864 DOI: 10.1158/2159-8290.cd-21-0922] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
The Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway plays a physiologic protective role against xenobiotics and reactive oxygen species. However, activation of NRF2 provides a powerful selective advantage for tumors by rewiring metabolism to enhance proliferation, suppress various forms of stress, and promote immune evasion. Genetic, epigenetic, and posttranslational alterations that activate the KEAP1/NRF2 pathway are found in multiple solid tumors. Emerging clinical data highlight that alterations in this pathway result in resistance to multiple therapies. Here, we provide an overview of how dysregulation of the KEAP1/NRF2 pathway in cancer contributes to several hallmarks of cancer that promote tumorigenesis and lead to treatment resistance. SIGNIFICANCE: Alterations in the KEAP1/NRF2 pathway are found in multiple cancer types. Activation of NRF2 leads to metabolic rewiring of tumors that promote tumor initiation and progression. Here we present the known alterations that lead to NRF2 activation in cancer, the mechanisms in which NRF2 activation promotes tumors, and the therapeutic implications of NRF2 activation.
Collapse
Affiliation(s)
- Ray Pillai
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, New York.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Makiko Hayashi
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Anastasia-Maria Zavitsanou
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Thales Papagiannakopoulos
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York.
| |
Collapse
|
127
|
A Journey into the Clinical Relevance of Heme Oxygenase 1 for Human Inflammatory Disease and Viral Clearance: Why Does It Matter on the COVID-19 Scene? Antioxidants (Basel) 2022; 11:antiox11020276. [PMID: 35204159 PMCID: PMC8868141 DOI: 10.3390/antiox11020276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Heme oxygenase 1 (HO-1), the rate-limiting enzyme in heme degradation, is involved in the maintenance of cellular homeostasis, exerting a cytoprotective role by its antioxidative and anti-inflammatory functions. HO-1 and its end products, biliverdin, carbon monoxide and free iron (Fe2+), confer cytoprotection against inflammatory and oxidative injury. Additionally, HO-1 exerts antiviral properties against a diverse range of viral infections by interfering with replication or activating the interferon (IFN) pathway. Severe cases of coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are characterized by systemic hyperinflammation, which, in some cases, leads to severe or fatal symptoms as a consequence of respiratory failure, lung and heart damage, kidney failure, and nervous system complications. This review summarizes the current research on the protective role of HO-1 in inflammatory diseases and against a wide range of viral infections, positioning HO-1 as an attractive target to ameliorate clinical manifestations during COVID-19.
Collapse
|
128
|
Wojtunik-Kulesza K, Oniszczuk T, Mołdoch J, Kowalska I, Szponar J, Oniszczuk A. Selected Natural Products in Neuroprotective Strategies for Alzheimer's Disease-A Non-Systematic Review. Int J Mol Sci 2022; 23:1212. [PMID: 35163136 PMCID: PMC8835836 DOI: 10.3390/ijms23031212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD) are distinguished by the irreversible degeneration of central nervous system function and structure. AD is characterized by several different neuropathologies-among others, it interferes with neuropsychiatrical controls and cognitive functions. This disease is the number one neurodegenerative disorder; however, its treatment options are few and, unfortunately, ineffective. In the new strategies devised for AD prevention and treatment, the application of plant-based natural products is especially popular due to lesser side effects associated with their taking. Moreover, their neuroprotective activities target different pathological mechanisms. The current review presents the anti-AD properties of several natural plant substances. The paper throws light on products under in vitro and in vivo trials and compiles information on their mechanism of actions. Knowledge of the properties of such plant compounds and their combinations will surely lead to discovering new potent medicines for the treatment of AD with lesser side effects than the currently available pharmacological proceedings.
Collapse
Affiliation(s)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Jarosław Mołdoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Iwona Kowalska
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (J.M.); (I.K.)
| | - Jarosław Szponar
- Toxicology Clinic, Clinical Department of Toxicology and Cardiology, Medical University of Lublin, Stefan Wyszyński Regional Specialist Hospital, Al. Kraśnicka 100, 20-718 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| |
Collapse
|
129
|
Krüger A, Keppel M, Sharma V, Frunzke J. The diversity of heme sensor systems - heme-responsive transcriptional regulation mediated by transient heme protein interactions. FEMS Microbiol Rev 2022; 46:6506450. [PMID: 35026033 DOI: 10.1093/femsre/fuac002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Heme is a versatile molecule that is vital for nearly all cellular life by serving as prosthetic group for various enzymes or as nutritional iron source for diverse microbial species. However, elevated levels of heme molecule are toxic to cells. The complexity of this stimulus has shaped the evolution of diverse heme sensor systems, which are involved in heme-dependent transcriptional regulation in eukaryotes and prokaryotes. The functions of these systems are manifold - ranging from the specific control of heme detoxification or uptake systems to the global integration of heme and iron homeostasis. This review focuses on heme sensor systems, regulating heme homeostasis by transient heme protein interaction. We provide an overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors. Besides the central ligands, the surrounding amino acid environment was shown to play a pivotal role in heme binding. The diversity of heme-regulatory systems therefore illustrates that prediction based on pure sequence information is hardly possible and requires careful experimental validation. Comprehensive understanding of heme-regulated processes is not only important for our understanding of cellular physiology, but also provides a basis for the development of novel antibacterial drugs and metabolic engineering strategies.
Collapse
Affiliation(s)
- Aileen Krüger
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Marc Keppel
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| |
Collapse
|
130
|
Banesh S, Layek S, Trivedi DV. Hemin acts as CD36 ligand to activate down-stream signalling to disturb immune responses and cytokine secretion from macrophages. Immunol Lett 2022; 243:1-18. [DOI: 10.1016/j.imlet.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/28/2022]
|
131
|
Hanna DA, Moore CM, Liu L, Yuan X, Dominic IM, Fleischhacker AS, Hamza I, Ragsdale SW, Reddi AR. Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells. J Biol Chem 2021; 298:101549. [PMID: 34973332 PMCID: PMC8808069 DOI: 10.1016/j.jbc.2021.101549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Heme oxygenases (HOs) detoxify heme by oxidatively degrading it into carbon monoxide, iron, and biliverdin, which is reduced to bilirubin and excreted. Humans express two isoforms of HO: the inducible HO-1, which is upregulated in response to excess heme and other stressors, and the constitutive HO-2. Much is known about the regulation and physiological function of HO-1, whereas comparatively little is known about the role of HO-2 in regulating heme homeostasis. The biochemical necessity for expressing constitutive HO-2 is dependent on whether heme is sufficiently abundant and accessible as a substrate under conditions in which HO-1 is not induced. By measuring labile heme, total heme, and bilirubin in human embryonic kidney HEK293 cells with silenced or overexpressed HO-2, as well as various HO-2 mutant alleles, we found that endogenous heme is too limiting a substrate to observe HO-2-dependent heme degradation. Rather, we discovered a novel role for HO-2 in the binding and buffering of heme. Taken together, in the absence of excess heme, we propose that HO-2 regulates heme homeostasis by acting as a heme buffering factor that controls heme bioavailability. When heme is in excess, HO-1 is induced, and both HO-2 and HO-1 can provide protection from heme toxicity via enzymatic degradation. Our results explain why catalytically inactive mutants of HO-2 are cytoprotective against oxidative stress. Moreover, the change in bioavailable heme due to HO-2 overexpression, which selectively binds ferric over ferrous heme, is consistent with labile heme being oxidized, thereby providing new insights into heme trafficking and signaling.
Collapse
Affiliation(s)
- David A. Hanna
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Iramofu M. Dominic
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA,School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA,For correspondence: Amit R. Reddi
| |
Collapse
|
132
|
Dysregulation of the CD163-Haptoglobin Axis in the Airways of COPD Patients. Cells 2021; 11:cells11010002. [PMID: 35011566 PMCID: PMC8750523 DOI: 10.3390/cells11010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023] Open
Abstract
Pulmonary iron levels are increased in chronic obstructive pulmonary disease (COPD) patients. Iron causes oxidative stress and is a nutrient for pathogenic bacteria. Iron may therefore play an important role in the pathophysiology of COPD. The CD163-haptglobin axis plays a central role in the regulation of iron bioavailability. The aim of this study was to examine dysregulation of the CD163-haptglobin axis in COPD. We measured soluble CD163 (sCD163) and haptoglobin levels in sputum supernatants by enzyme-linked immunosorbent assay (ELISA) and sputum macrophage CD163 and haptoglobin expression by flow cytometry in COPD patients and controls. SCD163 levels were lower in COPD patients compared to controls (p = 0.02), with a significant correlation to forced expiratory volume in 1 s (FEV1)% predicted (rho = 0.5, p = 0.0007). Sputum macrophage CD163 expression was similar between COPD patients and controls. SCD163 levels and macrophage CD163 expression were lower in COPD current smokers compared to COPD ex-smokers. Haptoglobin levels were not altered in COPD patients but were regulated by genotype. Macrophage CD163 and haptolgobin expression were significantly correlated, supporting the role of CD163 in the cellular uptake of haptoglobin. Our data implicates a dysfunctional CD163-haptoglobin axis in COPD, which may contribute to disease pathophysiology, presumably due to reduced clearance of extracellular iron.
Collapse
|
133
|
Zhou X, Yuan W, Xiong X, Zhang Z, Liu J, Zheng Y, Wang J, Liu J. HO-1 in Bone Biology: Potential Therapeutic Strategies for Osteoporosis. Front Cell Dev Biol 2021; 9:791585. [PMID: 34917622 PMCID: PMC8669958 DOI: 10.3389/fcell.2021.791585] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis is a prevalent bone disorder characterized by bone mass reduction and deterioration of bone microarchitecture leading to bone fragility and fracture risk. In recent decades, knowledge regarding the etiological mechanisms emphasizes that inflammation, oxidative stress and senescence of bone cells contribute to the development of osteoporosis. Studies have demonstrated that heme oxygenase 1 (HO-1), an inducible enzyme catalyzing heme degradation, exhibits anti-inflammatory, anti-oxidative stress and anti-apoptosis properties. Emerging evidence has revealed that HO-1 is critical in the maintenance of bone homeostasis, making HO-1 a potential target for osteoporosis treatment. In this Review, we aim to provide an introduction to current knowledge of HO-1 biology and its regulation, focusing specifically on its roles in bone homeostasis and osteoporosis. We also examine the potential of HO-1-based pharmacological therapeutics for osteoporosis and issues faced during clinical translation.
Collapse
Affiliation(s)
- Xueman Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenxiu Yuan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhenzhen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yingcheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Liu
- Lab for Aging Research, State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
134
|
Adegboye O, Field MA, Kupz A, Pai S, Sharma D, Smout MJ, Wangchuk P, Wong Y, Loiseau C. Natural-Product-Based Solutions for Tropical Infectious Diseases. Clin Microbiol Rev 2021; 34:e0034820. [PMID: 34494873 PMCID: PMC8673330 DOI: 10.1128/cmr.00348-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Garvin Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Saparna Pai
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Dileep Sharma
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Cairns, QLD, Australia
| | - Michael J. Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
135
|
Nath S, Roy P, Mandal R, Roy R, Buell AK, Sengupta N, Tarafdar PK. Hydroxy-Porphyrin as an Effective, Endogenous Molecular Clamp during Early Stages of Amyloid Fibrillization. Chem Asian J 2021; 16:3931-3936. [PMID: 34570963 DOI: 10.1002/asia.202100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/08/2022]
Abstract
Amyloid fibril formation of proteins is of great concern in neurodegenerative disease and can be detrimental to the storage and stability of biologics. Recent evidence suggests that insulin fibril formation reduces the efficacy of type II diabetes management and may lead to several complications. To develop anti-amyloidogenic compounds of endogenous origin, we have utilized the hydrogen bond anchoring, π stacking ability of porphyrin, and investigated its role on the inhibition of insulin amyloid formation. We report that hydroxylation and metal removal from the heme moiety yields an excellent inhibitor of insulin fibril formation. Thioflavin T, tyrosine fluorescence, Circular Dichorism (CD) spectroscopy, Field emission scanning electron microscopy (FESEM) and molecular dynamics (MD) simulation studies suggest that hematoporphyrin (HP) having hydrogen bonding ability on both sides is a superior inhibitor compared to hemin and protoporphyrin (PP). Experiments with hen egg white lysozyme (HEWL) amyloid fibril formation also validated the efficacy of endogenous porphyrin based small molecules. Our results will help to decipher a general therapeutic strategy to counter amyloidogenesis.
Collapse
Affiliation(s)
- Soumav Nath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Priti Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Rajat Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark DTU, Søltofts Plads, 2800 Kgs., Lyngby, Denmark
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| |
Collapse
|
136
|
Kitagishi H, Mao Q. Capture of carbon monoxide using a heme protein model: from biomimetic chemistry of heme proteins to physiological and therapeutic applications. Polym J 2021. [DOI: 10.1038/s41428-021-00591-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
137
|
Zafar M, Mirza MR, Awan FR, Tahir M, Sultan R, Hussain M, Bilal A, Abbas S, Larsen MR, Choudhary MI, Malik IR. Effect of APOB polymorphism rs562338 (G/A) on serum proteome of coronary artery disease patients: a "proteogenomic" approach. Sci Rep 2021; 11:22766. [PMID: 34815491 PMCID: PMC8610978 DOI: 10.1038/s41598-021-02211-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
In the current study, APOB (rs1052031) genotype-guided proteomic analysis was performed in a cohort of Pakistani population. A total of 700 study subjects, including Coronary Artery Disease (CAD) patients (n = 480) and healthy individuals (n = 220) as a control group were included in the study. Genotyping was carried out by using tetra primer-amplification refractory mutation system-based polymerase chain reaction (T-ARMS-PCR) whereas mass spectrometry (Orbitrap MS) was used for label free quantification of serum samples. Genotypic frequency of GG genotype was found to be 90.1%, while 6.4% was for GA genotype and 3.5% was for AA genotypes in CAD patients. In the control group, 87.2% healthy subjects were found to have GG genotype, 11.8% had GA genotype, and 0.9% were with AA genotypes. Significant (p = 0.007) difference was observed between genotypic frequencies in the patients and the control group. The rare allele AA was found to be strongly associated with the CAD [OR: 4 (1.9-16.7)], as compared to the control group in recessive genetic model (p = 0.04). Using label free proteomics, altered expression of 60 significant proteins was observed. Enrichment analysis of these protein showed higher number of up-regulated pathways, including phosphatidylcholine-sterol O-acyltransferase activator activity, cholesterol transfer activity, and sterol transfer activity in AA genotype of rs562338 (G>A) as compared to the wild type GG genotype. This study provides a deeper insight into CAD pathobiology with reference to proteogenomics, and proving this approach as a good platform for identifying the novel proteins and signaling pathways in relation to cardiovascular diseases.
Collapse
Affiliation(s)
- Muneeza Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences ICCBS), University of Karachi, Karachi, 75270, Pakistan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
- Diabetes and Cardio-Metabolic Disorders Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Fazli Rabbi Awan
- Diabetes and Cardio-Metabolic Disorders Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan.
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rabia Sultan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Misbah Hussain
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
- Diabetes and Cardio-Metabolic Disorders Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Ahmed Bilal
- Allied Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Shahid Abbas
- Faisalabad Institute of Cardiology (FIC), Faisalabad, Pakistan
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Muhammad Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Imran Riaz Malik
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan.
| |
Collapse
|
138
|
Dkhil MA, Abdel-Gaber R, Alojayri G, Thagfan FA, Al-Shaebi EM, Al-Quraishy S. Biosynthesized nanosilver as anti-oxidant, anti-apoptotic and anti-inflammatory agent against Plasmodium chabaudi infection in the mouse liver. Saudi J Biol Sci 2021; 28:6254-6259. [PMID: 34759744 PMCID: PMC8568723 DOI: 10.1016/j.sjbs.2021.06.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/13/2021] [Accepted: 06/27/2021] [Indexed: 10/27/2022] Open
Abstract
In recent years, the use of plant-mediated nanoparticle synthesis to combat infectious diseases has become increasingly significant. Malaria is one of the world's most infectious diseases caused by Plasmodium species. The antioxidant, anti-apoptotic, and anti-inflammatory properties of nanosilver biosynthesized from Indigofera oblongifolia leaf extracts (NS) against Plasmodium chabaudi infection of the mouse liver were investigated in this research. Male mice were infected with P. chabaudi infected erythrocytes then treated with NS for 7 days. The parasitemia was suppressed by approximately 24, 28, 47 and 75% on days 4, 5, 6 and 7 postinfection, respectively after treatment of mice with NS. Also, NS was able to regulate the leucocytes count and the IL1β and TNF-α-mRNA expression in mice. Ns could increase the antioxidant activity in liver of mice and was able to regulate the apoptotic genes, Bcl2 and Casp3. We showed that NS has antioxidant, anti-apoptotic, and anti-inflammatory properties when it was used to treat the livers of mice infected with P. chabaudi.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ghada Alojayri
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Felwa A Thagfan
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
139
|
Hamza R, Roque E, Gómez-Mena C, Madueño F, Beltrán JP, Cañas LA. PsEND1 Is a Key Player in Pea Pollen Development Through the Modulation of Redox Homeostasis. FRONTIERS IN PLANT SCIENCE 2021; 12:765277. [PMID: 34777450 PMCID: PMC8586548 DOI: 10.3389/fpls.2021.765277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Redox homeostasis has been linked to proper anther and pollen development. Accordingly, plant cells have developed several Reactive Oxygen Species (ROS)-scavenging mechanisms to maintain the redox balance. Hemopexins constitute one of these mechanisms preventing heme-associated oxidative stress in animals, fungi, and plants. Pisum sativum ENDOTHECIUM 1 (PsEND1) is a pea anther-specific gene that encodes a protein containing four hemopexin domains. We report the functional characterization of PsEND1 and the identification in its promoter region of cis-regulatory elements that are essential for the specific expression in anthers. PsEND1 promoter deletion analysis revealed that a putative CArG-like regulatory motif is necessary to confer promoter activity in developing anthers. Our data suggest that PsEND1 might be a hemopexin regulated by a MADS-box protein. PsEND1 gene silencing in pea, and its overexpression in heterologous systems, result in similar defects in the anthers consisting of precocious tapetum degradation and the impairment of pollen development. Such alterations were associated to the production of superoxide anion and altered activity of ROS-scavenging enzymes. Our findings demonstrate that PsEND1 is essential for pollen development by modulating ROS levels during the differentiation of the anther tissues surrounding the microsporocytes.
Collapse
|
140
|
Gallio A, Fung SSP, Cammack-Najera A, Hudson AJ, Raven EL. Understanding the Logistics for the Distribution of Heme in Cells. JACS AU 2021; 1:1541-1555. [PMID: 34723258 PMCID: PMC8549057 DOI: 10.1021/jacsau.1c00288] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 05/03/2023]
Abstract
Heme is essential for the survival of virtually all living systems-from bacteria, fungi, and yeast, through plants to animals. No eukaryote has been identified that can survive without heme. There are thousands of different proteins that require heme in order to function properly, and these are responsible for processes such as oxygen transport, electron transfer, oxidative stress response, respiration, and catalysis. Further to this, in the past few years, heme has been shown to have an important regulatory role in cells, in processes such as transcription, regulation of the circadian clock, and the gating of ion channels. To act in a regulatory capacity, heme needs to move from its place of synthesis (in mitochondria) to other locations in cells. But while there is detailed information on how the heme lifecycle begins (heme synthesis), and how it ends (heme degradation), what happens in between is largely a mystery. Here we summarize recent information on the quantification of heme in cells, and we present a discussion of a mechanistic framework that could meet the logistical challenge of heme distribution.
Collapse
Affiliation(s)
- Andrea
E. Gallio
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Simon S.-P. Fung
- Department
of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Ana Cammack-Najera
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Andrew J. Hudson
- Department
of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Emma L. Raven
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
141
|
Gasier HG, Suliman HB, Piantadosi CA. The HO-1/CO System and Mitochondrial Quality Control in Skeletal Muscle. Exerc Sport Sci Rev 2021; 50:49-55. [PMID: 34690283 DOI: 10.1249/jes.0000000000000277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Inducible heme oxygenase (HO)-1 catalyzes the breakdown of heme to biliverdin, iron and carbon monoxide (CO). CO binds to cytochrome c oxidase and alters mitochondrial redox balance and coordinately regulates mitochondrial quality control (MQC) during oxidant stress and inflammation. The hypothesis presented is that skeletal muscle HO-1/CO system helps modulate components in the MQC cycle during metabolic stress.
Collapse
Affiliation(s)
- Heath G Gasier
- Department of Anesthesiology Department of Pathology Department of Medicine, Duke University Medical Center, Durham, NC
| | | | | |
Collapse
|
142
|
Environmental Factors and Endometriosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111025. [PMID: 34769544 PMCID: PMC8582818 DOI: 10.3390/ijerph182111025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Endometriosis is a common disease, affecting up to 60-80% of women, with pelvic pain or/and infertility. Despite years of studies, its pathogenesis still remains enigmatic. Genetic, hormonal, environmental, and lifestyle-related factors may be involved in its pathogenesis. Thus, the design of the review was to discuss the possible role of environmental factors in the development of endometriosis. The results of individual studies greatly differ, making it very difficult to draw any definite conclusions. There is no reasonable consistency in the role of environmental factors in endometriosis etiopathogenesis.
Collapse
|
143
|
Karg CA, Wang S, Al Danaf N, Pemberton RP, Bernard D, Kretschmer M, Schneider S, Zisis T, Vollmar AM, Lamb DC, Zahler S, Moser S. Tetrapyrrolische Pigmente aus dem Häm‐ und Chlorophyllabbau interagieren mit Aktin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cornelia A. Karg
- Pharmazeutische Biologie Department Pharmazie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Shuaijun Wang
- Pharmazeutische Biologie Department Pharmazie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Nader Al Danaf
- Center for Nanoscience (CeNS) und Nanosystems Initiative Munich (NIM) Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Ryan P. Pemberton
- Atomwise Inc. 717 Market Street, Suite 800 San Francisco CA 94103 USA
| | - Denzil Bernard
- Atomwise Inc. 717 Market Street, Suite 800 San Francisco CA 94103 USA
| | - Maibritt Kretschmer
- Pharmazeutische Biologie Department Pharmazie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Sabine Schneider
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Themistoklis Zisis
- Pharmazeutische Biologie Department Pharmazie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Angelika M. Vollmar
- Pharmazeutische Biologie Department Pharmazie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Don C. Lamb
- Center for Nanoscience (CeNS) und Nanosystems Initiative Munich (NIM) Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Stefan Zahler
- Pharmazeutische Biologie Department Pharmazie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Simone Moser
- Pharmazeutische Biologie Department Pharmazie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
144
|
Karg CA, Wang S, Al Danaf N, Pemberton RP, Bernard D, Kretschmer M, Schneider S, Zisis T, Vollmar AM, Lamb DC, Zahler S, Moser S. Tetrapyrrolic Pigments from Heme- and Chlorophyll Breakdown are Actin-Targeting Compounds. Angew Chem Int Ed Engl 2021; 60:22578-22584. [PMID: 34310831 PMCID: PMC8519017 DOI: 10.1002/anie.202107813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Indexed: 11/11/2022]
Abstract
Chlorophyll and heme are among the "pigments of life", tetrapyrrolic structures, without which life on Earth would not be possible. Their catabolites, the phyllobilins and the bilins, respectively, share not only structural features, but also a similar story: Long considered waste products of detoxification processes, important bioactivities for both classes have now been demonstrated. For phyllobilins, however, research on physiological roles is sparse. Here, we introduce actin, the major component of the cytoskeleton, as the first discovered target of phyllobilins and as a novel target of bilins. We demonstrate the inhibition of actin dynamics in vitro and effects on actin and related processes in cancer cells. A direct interaction with G-actin is shown by in silico studies and confirmed by affinity chromatography. Our findings open a new chapter in bioactivities of tetrapyrroles-especially phyllobilins-for which they form the basis for broad implications in plant science, ecology, and physiology.
Collapse
Affiliation(s)
- Cornelia A. Karg
- Pharmaceutical BiologyDepartment of PharmacyLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| | - Shuaijun Wang
- Pharmaceutical BiologyDepartment of PharmacyLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| | - Nader Al Danaf
- Center for Nanoscience (CeNS) and Nanosystems Initiative Munich (NIM)Department of ChemistryLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| | | | - Denzil Bernard
- Atomwise Inc.717 Market Street, Suite 800San FranciscoCA94103USA
| | - Maibritt Kretschmer
- Pharmaceutical BiologyDepartment of PharmacyLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| | - Sabine Schneider
- Department of ChemistryLudwig-Maximilians University MunichButenandtstrasse 5–1381377MunichGermany
| | - Themistoklis Zisis
- Pharmaceutical BiologyDepartment of PharmacyLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| | - Angelika M. Vollmar
- Pharmaceutical BiologyDepartment of PharmacyLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| | - Don C. Lamb
- Center for Nanoscience (CeNS) and Nanosystems Initiative Munich (NIM)Department of ChemistryLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| | - Stefan Zahler
- Pharmaceutical BiologyDepartment of PharmacyLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| | - Simone Moser
- Pharmaceutical BiologyDepartment of PharmacyLudwig-Maximilians University of MunichButenandtstraße 5–1381377MunichGermany
| |
Collapse
|
145
|
Siegel MG. Editorial Commentary: If Individual Treatments Are Potentiated, Multimodal Therapy Including Cells and Platelet-Rich Plasma May Beneficially Treat Cartilage Degeneration and Arthritis. Arthroscopy 2021; 37:3138-3139. [PMID: 34602153 DOI: 10.1016/j.arthro.2021.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 02/02/2023]
Abstract
Multimodal therapies may optimize treatments if individual treatments are potentiated. In an attempt to obtain the elusive cure for cartilage degeneration, combined biologic injectable therapy might improve results. Due to the multipotent mesenchymal stem cells in adipose tissue, microfat containing adipose-derived stem cells may assist in cartilage repair. Platelet-rich plasma (PRP) has been similarly shown to be an effective biologic therapy through the release of growth factors affecting chondrocyte metabolism and decreasing inflammation. These 2 different products might be synergistic. Recent study, however, shows no significant differences when evaluating microfat with or without PRP, and importantly also shows that PRP with microfat does provide improvement in knee arthritic pain. This improvement may not correlate with the development of new cartilage, but it does improve function. Each biologic has beneficial effects on knee joint function through different mechanisms.
Collapse
|
146
|
Heme: driver of erythrocyte elimination. Blood 2021; 138:1092-1094. [PMID: 34591096 DOI: 10.1182/blood.2021012875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
|
147
|
Juhász T, Quemé-Peña M, Kővágó B, Mihály J, Ricci M, Horváti K, Bősze S, Zsila F, Beke-Somfai T. Interplay between membrane active host defense peptides and heme modulates their assemblies and in vitro activity. Sci Rep 2021; 11:18328. [PMID: 34526616 PMCID: PMC8443738 DOI: 10.1038/s41598-021-97779-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023] Open
Abstract
In the emerging era of antimicrobial resistance, the susceptibility to co-infections of patients suffering from either acquired or inherited hemolytic disorders can lead to dramatic increase in mortality rates. Closely related, heme liberated during hemolysis is one of the major sources of iron, which is vital for both host and invading microorganisms. While recent intensive research in the field has demonstrated that heme exerts diverse local effects including impairment of immune cells functions, it is almost completely unknown how it may compromise key molecules of our innate immune system, such as antimicrobial host defense peptides (HDPs). Since HDPs hold great promise as natural therapeutic agents against antibiotic-resistant microbes, understanding the effects that may modulate their action in microbial infection is crucial. Here we explore how hemin can interact directly with selected HDPs and influence their structure and membrane activity. It is revealed that induced helical folding, large assembly formation, and altered membrane activity is promoted by hemin. However, these effects showed variations depending mainly on peptide selectivity toward charged lipids, and the affinity of the peptide and hemin to lipid bilayers. Hemin-peptide complexes are sought to form semi-folded co-assemblies, which are present even with model membranes resembling mammalian or bacterial lipid compositions. In vitro cell-based toxicity assays supported that toxic effects of HDPs could be attenuated due to their assembly formation. These results are in line with our previous findings on peptide-lipid-small molecule systems suggesting that small molecules present in the complex in vivo milieu can regulate HDP function. Inversely, diverse effects of endogenous compounds could also be manipulated by HDPs.
Collapse
Affiliation(s)
- Tünde Juhász
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Mayra Quemé-Peña
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary ,grid.5591.80000 0001 2294 6276Hevesy György PhD School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bence Kővágó
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judith Mihály
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Maria Ricci
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kata Horváti
- grid.5591.80000 0001 2294 6276ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary ,grid.5591.80000 0001 2294 6276Department of Organic Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Bősze
- grid.5591.80000 0001 2294 6276ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Zsila
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Beke-Somfai
- grid.425578.90000 0004 0512 3755Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
148
|
Alonso-Piñeiro JA, Gonzalez-Rovira A, Sánchez-Gomar I, Moreno JA, Durán-Ruiz MC. Nrf2 and Heme Oxygenase-1 Involvement in Atherosclerosis Related Oxidative Stress. Antioxidants (Basel) 2021; 10:1463. [PMID: 34573095 PMCID: PMC8466960 DOI: 10.3390/antiox10091463] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis remains the underlying process responsible for cardiovascular diseases and the high mortality rates associated. This chronic inflammatory disease progresses with the formation of occlusive atherosclerotic plaques over the inner walls of vascular vessels, with oxidative stress being an important element of this pathology. Oxidation of low-density lipoproteins (ox-LDL) induces endothelial dysfunction, foam cell activation, and inflammatory response, resulting in the formation of fatty streaks in the atherosclerotic wall. With this in mind, different approaches aim to reduce oxidative damage as a strategy to tackle the progression of atherosclerosis. Special attention has been paid in recent years to the transcription factor Nrf2 and its downstream-regulated protein heme oxygenase-1 (HO-1), both known to provide protection against atherosclerotic injury. In the current review, we summarize the involvement of oxidative stress in atherosclerosis, focusing on the role that these antioxidant molecules exert, as well as the potential therapeutic strategies applied to enhance their antioxidant and antiatherogenic properties.
Collapse
Affiliation(s)
- Jose Angel Alonso-Piñeiro
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Almudena Gonzalez-Rovira
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), UGC Nephrology, Hospital Universitario Reina Sofia, 14004 Cordoba, Spain;
- Department of Cell Biology, Physiology, and Immunology, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Cordoba, Spain
| | - Ma Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, 11519 Puerto Real, Spain; (J.A.A.-P.); (A.G.-R.); (I.S.-G.)
- Institute of Research and Innovation in Biomedical Sciences of Cádiz (INiBICA), 11001 Cádiz, Spain
| |
Collapse
|
149
|
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc 2021; 97:141-162. [PMID: 34472688 DOI: 10.1111/brv.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023]
Abstract
The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| |
Collapse
|
150
|
Kopeć Z, Starzyński RR, Jończy A, Mazgaj R, Lipiński P. Role of Iron Metabolism-Related Genes in Prenatal Development: Insights from Mouse Transgenic Models. Genes (Basel) 2021; 12:1382. [PMID: 34573364 PMCID: PMC8465470 DOI: 10.3390/genes12091382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Iron is an essential nutrient during all stages of mammalian development. Studies carried out over the last 20 years have provided important insights into cellular and systemic iron metabolism in adult organisms and led to the deciphering of many molecular details of its regulation. However, our knowledge of iron handling in prenatal development has remained remarkably under-appreciated, even though it is critical for the health of both the embryo/fetus and its mother, and has a far-reaching impact in postnatal life. Prenatal development requires a continuous, albeit quantitatively matched with the stage of development, supply of iron to support rapid cell division during embryogenesis in order to meet iron needs for erythropoiesis and to build up hepatic iron stores, (which are the major source of this microelement for the neonate). Here, we provide a concise overview of current knowledge of the role of iron metabolism-related genes in the maintenance of iron homeostasis in pre- and post-implantation development based on studies on transgenic (mainly knock-out) mouse models. Most studies on mice with globally deleted genes do not conclude whether underlying in utero iron disorders or lethality is due to defective placental iron transport or iron misregulation in the embryo/fetus proper (or due to both). Therefore, there is a need of animal models with tissue specific targeted deletion of genes to advance the understanding of prenatal iron metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Paweł Lipiński
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (Z.K.); (R.R.S.); (A.J.); (R.M.)
| |
Collapse
|