101
|
Li W, Dong J, Cao M, Gao X, Wang D, Liu B, Chen Q. Genome-wide identification and characterization of HD-ZIP genes in potato. Gene 2019; 697:103-117. [PMID: 30776460 DOI: 10.1016/j.gene.2019.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/31/2018] [Accepted: 02/01/2019] [Indexed: 11/19/2022]
Abstract
HD-ZIP (Homeodomain leucine zipper) transcription factors play an important regulatory role in stress resistance in plants. The purpose of this study was to analyze the characteristics of the HD-ZIP genes/proteins and to study their expression profiles under high and low temperature conditions in potato (Solanum tuberosum L.). A strict homology search was used to find 43 HD-ZIP genes located on potato chromosomes 1-12. Exons/introns, protein features and conserved motifs were analyzed, and six segment duplications were identified from 43 HD-ZIP genes. Then, we analyzed the data from the PGSC (Potato Genome Sequencing Consortium) database regarding the expression of 43 HD-ZIP genes that were induced by biotic and abiotic stresses and phytohormone treatments and conducted an expression analysis for these genes across all potato life stages. Additionally, the expression levels of 13 HD-ZIP genes were analyzed under high temperature (37 °C) and low temperature (4 °C) conditions. The results showed that the transcript levels of all 13 genes changed, which indicated that these genes respond to heat and cold in plants. Especially for StHOX20, the expression significantly upregulated in roots at 37 °C and 4 °C. Our findings laid the foundation and provided clues for understanding the biological functions of HD-ZIP family genes.
Collapse
Affiliation(s)
- Wan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jieya Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Minxuan Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Xianxian Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Bailin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
102
|
The Catalase Gene Family in Cotton: Genome-Wide Characterization and Bioinformatics Analysis. Cells 2019; 8:cells8020086. [PMID: 30682777 PMCID: PMC6406514 DOI: 10.3390/cells8020086] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Catalases (CATs), which were coded by the catalase gene family, were a type notably distinguished ROS-metabolizing proteins implicated to perform various physiological functions in plant growth, development and stress responses. However, no systematical study has been performed in cotton. In the present study, we identified 7 and 7 CAT genes in the genome of Gossypium hirsutum L. Additionally, G. barbadense L., respectively. The results of the phylogenetic and synteny analysis showed that the CAT genes were divided into two groups, and whole-genome duplication (WGD) or polyploidy events contributed to the expansion of the GossypiumCAT gene family. Expression patterns analysis showed that the CAT gene family possessed temporal and spatial specificity and was induced by the Verticillium dahliae infection. In addition, we predicted the putative molecular regulatory mechanisms of the CAT gene family. Based on the analysis and preliminary verification results, we hypothesized that the CAT gene family, which might be regulated by transcription factors (TFs), alternative splicing (AS) events and miRNAs at different levels, played roles in cotton development and stress tolerance through modulating the reactive oxygen species (ROS) metabolism. This is the first report on the genome-scale analysis of the cotton CAT gene family, and these data will help further study the roles of CAT genes during stress responses, leading to crop improvement.
Collapse
|
103
|
Vaca-Vaca JC, Carrasco-Lozano EC, Lopez-Lopez K. Evaluación del potencial biotecnológico de un promotor derivado del virus de la distorsión de la hoja de maracuyá (PLDV), un begomovirus que infecta maracuyá. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2019. [DOI: 10.15446/rev.colomb.biote.v21n1.77636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los avances biotecnológicos en plantas requieren la bioprospección de nuevos promotores para la expresión de genes de interésagronómico, en particular, es necesario caracterizar nuevos promotores con expresión tejido específica. El objetivo de esta investi-gación fue evaluar la actividad de expresión del promotor del gen AV1que codifica para la proteína de la cápside (CP) del virus de la distorsión de la hoja de maracuyá (Passion fruit leaf distortion virus,PLDV) mediante ensayos transitorios de biobalística de baja presión. Se realizó un análisis de la región promotora del gen AV1empleando herramientas bioinformáticas. Se construyó una fu-sión traduccional (CP-PLDV-GUS), que porta la región promotora del gen AV1de PLDV fusionada al gen reportero uidA(GUS). CP-PLDV-GUS fue bombardeado sobre hojas de plántulas de tabaco cultivadas in vitro empleando una pistola de genes. Como control positivo se utilizó el plásmido pBI121 que porta el gen GUS bajo el control del promotor 35S de CaMV. Se llevaron a cabo 11 re-peticiones, donde la unidad experimental fue la hoja y la variable de respuesta, la expresión transitoria del gen GUS representado por el número de puntos azules observados en las hojas bombardeadas. Como resultado, el análisis estadístico no paramétrico demostró que existe evidencia muestral suficiente para confirmar que, tanto el promotor AV1del PLDV y 35S de CaMV presentan una actividad de expresión semejante. Finalmente, el promotor del gen AV1de PLDV mostró una fuerte actividad de expresión del gen reportero en las células del mesófilo de las hojas, el cual podría ser usado para conferir expresión tejido específica enplantas transgénicas
Collapse
|
104
|
Cheng X, Xiong R, Liu H, Wu M, Chen F, Xiang Y. Basic helix-loop-helix gene family: Genome wide identification, phylogeny, and expression in Moso bamboo. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:104-119. [PMID: 30179736 DOI: 10.1016/j.plaphy.2018.08.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 05/26/2023]
Abstract
Studies have shown that basic helix-loop-helix (bHLH) transcription factors play important roles in plant growth and survival, and response to various biotic/abiotic stresses. We identified a total of 448 bHLH genes. These genes were classified into 21 bHLH subfamilies, and most genes in a given subfamily had similar gene structures and conserved motifs. We identified 176 homologous pairs in the three species. We calculated Ka, Ks, and Ka/Ks to analyze the replication relationships among the three species. Multiple sequence analysis revealed that the PebHLH genes had the distinct bHLH structure. The gene ontology annotation analysis showed that the PebHLH genes had many molecular functions. Promoter cis-element analysis revealed that most of the PebHLH genes contained cis-elements that can respond to various biotic/abiotic stress-related events. The tissue expression patterns of the PebHLH genes indicated that most members were expressed in leaves, roots, and stems. Quantitative real-time PCR analysis showed that 21 selected PebHLH genes were differentially regulated after abscisic acid, drought, and methyl jasmonate treatments. This study has laid the basis for studying the functions of AtbHLH, OsbHLH, and PebHLH genes, and will contribute to future studies of the functions of bHLH genes in other plant species.
Collapse
Affiliation(s)
- Xinran Cheng
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Rui Xiong
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Huanlong Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Feng Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
105
|
Sasnauskas G, Manakova E, Lapėnas K, Kauneckaitė K, Siksnys V. DNA recognition by Arabidopsis transcription factors ABI3 and NGA1. FEBS J 2018; 285:4041-4059. [PMID: 30183137 DOI: 10.1111/febs.14649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/24/2018] [Accepted: 08/31/2018] [Indexed: 01/31/2023]
Abstract
B3 transcription factors constitute a large plant-specific protein superfamily, which plays a central role in plant life. Family members are characterized by the presence of B3 DNA-binding domains (DBDs). To date, only a few B3 DBDs were structurally characterized; therefore, the DNA recognition mechanism of other family members remains to be elucidated. Here, we analyze DNA recognition mechanism of two structurally uncharacterized B3 transcription factors, ABI3 and NGA1. Guided by the structure of the DNA-bound B3 domain of Arabidopsis transcriptional repressor VAL1, we have performed mutational analysis of the ABI3 B3 domain. We demonstrate that both VAL1-B3 and ABI3-B3 recognize the Sph/RY DNA sequence 5'-TGCATG-3' via a conserved set of base-specific contacts. We have also solved a 1.8 Å apo-structure of NGA1-B3, DBD of Arabidopsis transcription factor NGA1. We show that NGA1-B3, like the structurally related RAV1-B3 domain, is specific for the 5'-CACCTG-3' DNA sequence, albeit tolerates single base pair substitutions at the 5'-terminal half of the recognition site. Employing distance-dependent fluorophore quenching, we show that NGA1-B3 binds the asymmetric recognition site in a defined orientation, with the 'N-arm' and 'C-arm' structural elements interacting with the 5'- and 3'-terminal nucleotides of the 5'-CACCTG-3' sequence, respectively. Mutational analysis guided by the model of DNA-bound NGA1-B3 helped us identify NGA1-B3 residues involved in base-specific and DNA backbone contacts, providing new insights into the mechanism of DNA recognition by plant B3 domains of RAV and REM families. DATABASES: RCSB Protein Data Bank, accession number 5OS9.
Collapse
Affiliation(s)
| | - Elena Manakova
- Institute of Biotechnology, Vilnius University, Lithuania
| | | | | | | |
Collapse
|
106
|
Fujimoto M, Sazuka T, Oda Y, Kawahigashi H, Wu J, Takanashi H, Ohnishi T, Yoneda JI, Ishimori M, Kajiya-Kanegae H, Hibara KI, Ishizuna F, Ebine K, Ueda T, Tokunaga T, Iwata H, Matsumoto T, Kasuga S, Yonemaru JI, Tsutsumi N. Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems. Proc Natl Acad Sci U S A 2018; 115:E8783-E8792. [PMID: 30150370 PMCID: PMC6140496 DOI: 10.1073/pnas.1807501115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pith parenchyma cells store water in various plant organs. These cells are especially important for producing sugar and ethanol from the sugar juice of grass stems. In many plants, the death of pith parenchyma cells reduces their stem water content. Previous studies proposed that a hypothetical D gene might be responsible for the death of stem pith parenchyma cells in Sorghum bicolor, a promising energy grass, although its identity and molecular function are unknown. Here, we identify the D gene and note that it is located on chromosome 6 in agreement with previous predictions. Sorghum varieties with a functional D allele had stems enriched with dry, dead pith parenchyma cells, whereas those with each of six independent nonfunctional D alleles had stems enriched with juicy, living pith parenchyma cells. D expression was spatiotemporally coupled with the appearance of dead, air-filled pith parenchyma cells in sorghum stems. Among D homologs that are present in flowering plants, Arabidopsis ANAC074 also is required for the death of stem pith parenchyma cells. D and ANAC074 encode previously uncharacterized NAC transcription factors and are sufficient to ectopically induce programmed death of Arabidopsis culture cells via the activation of autolytic enzymes. Taken together, these results indicate that D and its Arabidopsis ortholog, ANAC074, are master transcriptional switches that induce programmed death of stem pith parenchyma cells. Thus, targeting the D gene will provide an approach to breeding crops for sugar and ethanol production.
Collapse
Affiliation(s)
- Masaru Fujimoto
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoshihisa Oda
- Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Hiroyuki Kawahigashi
- National Agriculture and Food Research Organization (NARO), Institute of Crop Science, Tsukuba, Ibaraki 305-8602, Japan
| | - Jianzhong Wu
- National Agriculture and Food Research Organization (NARO), Institute of Crop Science, Tsukuba, Ibaraki 305-8602, Japan
| | - Hideki Takanashi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takayuki Ohnishi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Jun-Ichi Yoneda
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Motoyuki Ishimori
- Laboratory of Biometry and Bioinformatics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiromi Kajiya-Kanegae
- Laboratory of Biometry and Bioinformatics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ken-Ichiro Hibara
- Laboratory of Plant Breeding and Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Fumiko Ishizuna
- Technology Advancement Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | | | - Hiroyoshi Iwata
- Laboratory of Biometry and Bioinformatics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Matsumoto
- National Agriculture and Food Research Organization (NARO), Institute of Crop Science, Tsukuba, Ibaraki 305-8602, Japan
| | - Shigemitsu Kasuga
- Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Jun-Ichi Yonemaru
- National Agriculture and Food Research Organization (NARO), Institute of Crop Science, Tsukuba, Ibaraki 305-8602, Japan;
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| |
Collapse
|
107
|
Kessens R, Sorensen N, Kabbage M. An inhibitor of apoptosis (SfIAP) interacts with SQUAMOSA promoter-binding protein (SBP) transcription factors that exhibit pro-cell death characteristics. PLANT DIRECT 2018; 2:e00081. [PMID: 31245745 PMCID: PMC6508781 DOI: 10.1002/pld3.81] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/07/2018] [Accepted: 07/18/2018] [Indexed: 06/09/2023]
Abstract
Despite the importance of proper cell death regulation across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental process in plants remains largely elusive. This is despite its critical importance to development, homeostasis, and proper responses to stress. The identification of endogenous plant regulators of cell death has been hindered by the fact that many core regulators of cell death in animals are absent in plant genomes. Remarkably, numerous studies have shown that the ectopic expression of animal prosurvival genes in plants can suppress cell death imposed by many stresses. In this study, we capitalize on the ectopic expression of one of these animal prosurvival genes, an inhibitor of apoptosis from Spodoptera frugiperda (SfIAP), to identify novel cell death regulators in plants. A yeast two-hybrid assay was conducted using SfIAP as bait to screen a tomato cDNA library. This screen identified several transcription factors of the SQUAMOSA promoter-binding protein (SBP) family as potential SfIAP binding partners. We confirmed this interaction in vivo for our top two interactors, SlySBP8b and SlySBP12a, using coimmunoprecipitation. Interestingly, overexpression of SlySBP8b and SlySBP12a induced cell death in Nicotiana benthamiana leaves. Overexpression of these two transcription factors also induced the accumulation of reactive oxygen species and enhanced the growth of the necrotrophic pathogen Alternaria alternata. Fluorescence microscopy confirmed the nuclear localization of both SlySBP8b and SlySBP12a, while SlySBP12a was also localized to the ER membrane. These results suggest a prodeath role for SlySBP8b and SlySBP12a and implicate ER membrane tethering as a means of regulating SlySBP12a activity.
Collapse
Affiliation(s)
- Ryan Kessens
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Nick Sorensen
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Mehdi Kabbage
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| |
Collapse
|
108
|
Xiong JS, Zheng D, Zhu HY, Chen JQ, Na R, Cheng ZM. Genome-wide identification and expression analysis of the SPL gene family in woodland strawberry Fragaria vesca. Genome 2018; 61:675-683. [PMID: 30067072 DOI: 10.1139/gen-2018-0014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SQUAMOSA promoter-binding protein-like (SPL) is a class of plant-specific transcription factors that play critical roles in regulating plant growth and development. However, little systematic research on SPL genes has been conducted in strawberry. In this study, 14 SPL genes were identified in the genome of woodland strawberry (Fragaria vesca), one of the model plants of the family Rosaceae. Chromosome localization analysis indicated that the 14 FvSPL genes were unevenly distributed on six chromosomes. Phylogenetic analysis indicated that the FvSPL proteins could be clustered into six groups (G1 to G6). Genes with similar structure were classified into the same group, implying their functional redundancy. In addition, nine out of the 14 FvSPL genes, belonging to G1, G2, and G5, were found to be the putative targets of FvmiR156 genes. Expression analysis indicated FvSPL genes exhibited highly diverse expression patterns in the tissues and organs examined. The transcript levels of most FvmiR156-targeted FvSPL genes in fruit were lower than those non-miR156-targeted genes. In addition, the expression of the FvmiR156-targeted FvSPL genes decreased during fruit ripening, whereas the expression of FvmiR156 genes increased in fruit during this process. The results provide a foundation for future functional analysis of FvSPL genes in strawberry growth and development.
Collapse
Affiliation(s)
- Jin-Song Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong-Yu Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Qiu Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ran Na
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zong-Ming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
109
|
Hosford CJ, Chappie JS. The crystal structure of the Helicobacter pylori LlaJI.R1 N-terminal domain provides a model for site-specific DNA binding. J Biol Chem 2018; 293:11758-11771. [PMID: 29895618 PMCID: PMC6066307 DOI: 10.1074/jbc.ra118.001888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Restriction modification systems consist of an endonuclease that cleaves foreign DNA site-specifically and an associated methyltransferase that protects the corresponding target site in the host genome. Modification-dependent restriction systems, in contrast, specifically recognize and cleave methylated and/or glucosylated DNA. The LlaJI restriction system contains two 5-methylcytosine (5mC) methyltransferases (LlaJI.M1 and LlaJI.M2) and two restriction proteins (LlaJI.R1 and LlaJI.R2). LlaJI.R1 and LlaJI.R2 are homologs of McrB and McrC, respectively, which in Escherichia coli function together as a modification-dependent restriction complex specific for 5mC-containing DNA. Lactococcus lactis LlaJI.R1 binds DNA site-specifically, suggesting that the LlaJI system uses a different mode of substrate recognition. Here we present the structure of the N-terminal DNA-binding domain of Helicobacter pylori LlaJI.R1 at 1.97-Å resolution, which adopts a B3 domain fold. Structural comparison to B3 domains in plant transcription factors and other restriction enzymes identifies key recognition motifs responsible for site-specific DNA binding. Moreover, biochemistry and structural modeling provide a rationale for how H. pylori LlaJI.R1 may bind a target site that differs from the 5-bp sequence recognized by other LlaJI homologs and identify residues critical for this recognition activity. These findings underscore the inherent structural plasticity of B3 domains, allowing recognition of a variety of substrates using the same structural core.
Collapse
Affiliation(s)
- Christopher J Hosford
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Joshua S Chappie
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
110
|
Mathew IE, Agarwal P. May the Fittest Protein Evolve: Favoring the Plant-Specific Origin and Expansion of NAC Transcription Factors. Bioessays 2018; 40:e1800018. [PMID: 29938806 DOI: 10.1002/bies.201800018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/26/2018] [Indexed: 12/12/2022]
Abstract
Plant-specific NAC transcription factors (TFs) evolve during the transition from aquatic to terrestrial plant life and are amplified to become one of the biggest TF families. This is because they regulate genes involved in water conductance and cell support. They also control flower and fruit formation. The review presented here focuses on various properties, regulatory intricacies, and developmental roles of NAC family members. Processes controlled by NACs depend majorly on their transcriptional properties. NACs can function as both activators and/or repressors. Additionally, their homo/hetero dimerization abilities can also affect DNA binding and activation properties. The active protein levels are dependent on the regulatory cascades. Because NACs regulate both development and stress responses in plants, in-depth knowledge about them has the potential to help guide future crop improvement studies.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
111
|
Song CB, Shan W, Yang YY, Tan XL, Fan ZQ, Chen JY, Lu WJ, Kuang JF. Heterodimerization of MaTCP proteins modulates the transcription of MaXTH10/11 genes during banana fruit ripening. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:613-622. [PMID: 29935343 DOI: 10.1016/j.bbagrm.2018.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
The biological processes involved in banana fruit ripening are extremely complex and modulated by a number of genes such as transcription factors (TFs). Although TFs like MADS, ERF and NAC are implicated in controlling banana ripening, little is known about other TFs such as TCP in this process. In this work, 25 MaTCPs named MaTCP1 to MaTCP25 were characterized from our previously reported transcriptomes related to banana ripening. Expression analysis revealed that these MaTCPs displayed differential expression patterns during the progression of banana ripening. Particularly, MaTCP5, MaTCP19 and MaTCP20 were ethylene-inducible and nuclear-localized, with MaTCP5 and MaTCP20 acting as transcriptional activators while MaTCP19 being a transcriptional inhibitor. Moreover, MaTCP5 and MaTCP20 promoted the transcription of MaXTH10/11 that may play a role in fruit softening during banana ripening, whereas MaTCP19 repressed their transcription, by directly binding to their promoters. Importantly, protein-protein interaction assays demonstrated that MaTCP20 physically interacts with MaTCP5 and MaTCP19 to form heterodimers in vitro and in vivo, and these protein complexes affects their transcriptional activities in regulating the target genes. Taken together, our results provide an overview of the interactions between MaTCPs in controlling the ripening-associated genes and lay a foundation for further investigation of MaTCP gene family in regulating banana fruit ripening.
Collapse
Affiliation(s)
- Chun-Bo Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiao-Li Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
112
|
Delineation of condition specific Cis- and Trans-acting elements in plant promoters under various Endo- and exogenous stimuli. BMC Genomics 2018; 19:85. [PMID: 29764390 PMCID: PMC5954277 DOI: 10.1186/s12864-018-4469-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Transcription factors (TFs) play essential roles during plant development and response to environmental stresses. However, the relationships among transcription factors, cis-acting elements and target gene expression under endo- and exogenous stimuli have not been systematically characterized. RESULTS Here, we developed a series of bioinformatics analysis methods to infer transcriptional regulation by using numerous gene expression data from abiotic stresses and hormones treatments. After filtering the expression profiles of TF-encoding genes, 291 condition specific transcription factors (CsTFs) were obtained. Differentially expressed genes were then classified into various co-expressed gene groups based on each CsTFs. In the case studies of heat stress and ABA treatment, several known and novel cis-acting elements were identified following our bioinformatics approach. Significantly, a palindromic sequence of heat-responsive elements is recognized, and also obtained from a 3D protein structure of heat-shock protein-DNA complex. Notably, overrepresented 3- and 4-mer motifs in an enriched 8-mer motif could be a core cis-element for a CsTF. In addition, the results suggest DNA binding preferences of the same CsTFs are different according to various conditions. CONCLUSIONS The overall results illustrate this study may be useful in identifying condition specific cis- and trans- regulatory elements and facilitate our understanding of the relationships among TFs, cis-acting elements and target gene expression.
Collapse
|
113
|
|
114
|
Karkute SG, Gujjar RS, Rai A, Akhtar M, Singh M, Singh B. Genome wide expression analysis of WRKY genes in tomato (Solanum lycopersicum) under drought stress. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.plgene.2017.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
115
|
Qin L, Wang L, Guo Y, Li Y, Ümüt H, Wang Y. An ERF transcription factor from Tamarix hispida, ThCRF1, can adjust osmotic potential and reactive oxygen species scavenging capability to improve salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:154-166. [PMID: 29223337 DOI: 10.1016/j.plantsci.2017.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/02/2017] [Accepted: 10/09/2017] [Indexed: 05/22/2023]
Abstract
Ethylene-Responsive Factors (ERFs) are plant-specific transcription factors (TFs) involved in multiple biological processes, especially in abiotic stress tolerance. However, the ERFs from woody halophytes that are involved in salt stress have been little studied. In the present investigation, we characterized a subfamily member of ERF TFs from Tamarix hispida, ThCRF1, which responds to salt stress. ThCRF1 is a nuclear protein that binds to the motifs including TTG, DRE and GCC-box. Transient transformation was performed to generate T. hispida overexpressing ThCRF1 and RNA interference (RNAi)-silenced ThCRF1 to analyze its function using gain- and loss-of-function methods. Overexpression of ThCRF1 in T. hispida significantly improved tolerance to salt-shock-induced stress; by contrast, RNAi-silence of ThCRF1 significantly decreased tolerance to salt-shock-induced stress. Further experiments showed that ThCRF1 induces the expression of genes including those encoding pyrroline-5-carboxylate synthetase (P5CS), trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP), superoxide dismutase (SOD) and peroxidase (POD), which lead to enhanced proline and trehalose levels and increased SOD and POD activities. These results were further confirmed by studying transgenic Arabidopsis plants overexpressing ThCRF1. Therefore, the results suggested that ThCRF1 improves tolerance to salt-shock-induced stress by enhancing trehalose and proline biosynthesis to adjust the osmotic potential, and by improving SOD and POD activities to increase reactive oxygen species scavenging capability.
Collapse
Affiliation(s)
- Liping Qin
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Key Laboratory of Oasis Ecology, College of Resources & Environmental Sciences, Xinjiang University, Urumqi, 830046, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqiang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yong Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yan Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Halik Ümüt
- Key Laboratory of Oasis Ecology, College of Resources & Environmental Sciences, Xinjiang University, Urumqi, 830046, China
| | - Yucheng Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
116
|
Liu B, Zhao S, Wu X, Wang X, Nan Y, Wang D, Chen Q. Identification and characterization of phosphate transporter genes in potato. J Biotechnol 2017; 264:17-28. [DOI: 10.1016/j.jbiotec.2017.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|
117
|
Xing L, Di Z, Yang W, Liu J, Li M, Wang X, Cui C, Wang X, Wang X, Zhang R, Xiao J, Cao A. Overexpression of ERF1-V from Haynaldia villosa Can Enhance the Resistance of Wheat to Powdery Mildew and Increase the Tolerance to Salt and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2017; 8:1948. [PMID: 29238352 PMCID: PMC5712803 DOI: 10.3389/fpls.2017.01948] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 05/04/2023]
Abstract
The APETALA 2/Ethylene-responsive element binding factor (AP2/ERF) transcription factor gene family is widely involved in the biotic and abiotic stress regulation. Haynaldia villosa (VV, 2n = 14), a wild species of wheat, is a potential gene pool for wheat improvement. H. villosa confers high resistance to several wheat diseases and high tolerance to some abiotic stress. In this study, ERF1-V, an ethylene-responsive element-binding factor gene of the AP2/ERF transcription factor gene family from wild H. villosa, was cloned and characterized. Sequence and phylogenetic analysis showed that ERF1-V is a deduced B2 type ERF gene. ERF1-V was first identified as a Blumeria graminis f. sp. tritici (Bgt) up-regulated gene, and later found to be induced by drought, salt and cold stresses. In responses to hormones, ERF1-V was up-regulated by ethylene and abscisic acid, but down-regulated by salicylic acid and jasmonic acid. Over expression of ERF1-V in wheat could improve resistance to powdery mildew, salt and drought stress. Chlorophyll content, malondialdehyde content, superoxide dismutase and peroxidase activity were significantly differences between the recipient Yangmai158 and the transgenic plants following salt treatment. Furthermore, the expression levels of some stress responsive genes were differences after drought or salt treatments. Although ERF1-V was activated by the constitutive promoter, the agronomic traits, including flowering time, plant height, effective tiller number, spikelet number per spike and grain size, did not changed significantly. ERF1-V is a valuable gene for wheat improvement by genetic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
118
|
İnal B, Büyük İ, İlhan E, Aras S. Genome-wide analysis of Phaseolus vulgaris C2C2-YABBY transcription factors under salt stress conditions. 3 Biotech 2017; 7:302. [PMID: 28955602 DOI: 10.1007/s13205-017-0933-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to identify and characterize the C2C2-YABBY family of genes by a genome-wide scale in common bean. Various in silico approaches were used for the study and the results were confirmed through common molecular biology techniques. Quantitative real-time PCR (qPCR) analysis was performed for identified putative PvulYABBY genes in leaf and root tissues of two common bean cultivars, namely Yakutiye and Zulbiye under salt stress condition. Eight candidate PvulYABBY proteins were discovered and the length of these proteins ranged from 173 to 256 amino acids. The isoelectric points (pIs) of YABBY proteins were between 5.18 and 9.34 and ranged from acidic to alkaline, and the molecular weight of PvulYABBYs were between 18978.4 and 28916.8 Da. Three segmentally duplicated gene couples among the identified eight PvulYABBY genes were detected. These segmentally duplicated gene couples were PvulYABBY-1/PvulYABBY-3, PvulYABBY-5/PvulYABBY-7 and PvulYABBY-6/PvulYABBY-8. The predicted number of exons among the PvulYABBY genes varied from 6 to 8 exons. Additionally, all genes found included introns within ORFs. PvulYABBY-2, -4, -5 and -7 genes were targeted by miRNAs of five plant species and a total of five miRNA families (miR5660, miR1157, miR5769, miR5286 and miR8120) were detected. According to RNA-seq analysis, all genes were up- or down-regulated except for PvulYABBY-1 and PvulYABBY-6 after salt stress treatment in leaf and root tissues of common bean. According to the qPCR analysis, six out of eight genes were expressed in the leaves but only four out of eight genes were expressed in the roots and these genes exhibited tissue- and cultivar-specific expression patterns.
Collapse
|
119
|
Naseri G, Balazadeh S, Machens F, Kamranfar I, Messerschmidt K, Mueller-Roeber B. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:1742-1756. [PMID: 28531348 DOI: 10.1021/acssynbio.7b00094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.
Collapse
Affiliation(s)
| | - Salma Balazadeh
- Plant
Signalling Group, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | | | | | | | - Bernd Mueller-Roeber
- Plant
Signalling Group, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| |
Collapse
|
120
|
Boulard C, Fatihi A, Lepiniec L, Dubreucq B. Regulation and evolution of the interaction of the seed B3 transcription factors with NF-Y subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1069-1078. [PMID: 28866096 DOI: 10.1016/j.bbagrm.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
The LAFL genes (LEC2, ABI3, FUS3, LEC1) encode transcription factors that regulate different aspects of seed development, from early to late embryogenesis and accumulation of storage compounds. These transcription factors form a complex network, with members able to interact with various other players to control the switch between embryo development and seed maturation and, at a later stage in the plant life cycle, between the mature seed and germination. In this review, we first summarize our current understanding of the role of each member in the network in the light of recent advances regarding their regulation and structure/function relationships. In a second part, we discuss new insights concerning the evolution of the LAFL genes to address the more specific question of the conservation of LEAFY COTYLEDONS 2 in both dicots and monocots and the putative origin of the network. Last we examine the current major limitations to current knowledge and future prospects to improve our understanding of this regulatory network.
Collapse
Affiliation(s)
- C Boulard
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - A Fatihi
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - L Lepiniec
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France
| | - B Dubreucq
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, ERL-CNRS, Saclay Plant Sciences (SPS), Université Paris-Saclay, RD10, F-78026 Versailles, France.
| |
Collapse
|
121
|
Konda AK, Farmer R, Soren KR, P S S, Setti A. Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea. J Biomol Struct Dyn 2017; 36:2279-2291. [PMID: 28679078 DOI: 10.1080/07391102.2017.1349690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chickpea is a premier food legume crop with high nutritional quality and attains prime importance in the current era of 795 million people being undernourished worldwide. Chickpea production encounters setbacks due to various stresses and understanding the role of key transcription factors (TFs) involved in multiple stresses becomes inevitable. We have recently identified a multi-stress responsive WRKY TF in chickpea. The present study was conducted to predict the structure of WRKY TF to identify the DNA-interacting residues and decipher DNA-protein interactions. Comparative modelling approach produced 3D model of the WRKY TF with good stereochemistry, local/global quality and further revealed W19, R20, K21, and Y22 motifs within a vicinity of 5 Å to the DNA amongst R18, G23, Q24, K25, Y36, Y37, R38 and K47 and these positions were equivalent to the 2LEX WRKY domain of Arabidopsis. Molecular simulations analysis of reference protein -PDB ID 2LEX, along with Car-WRKY TF modelled structure with the DNA coordinates derived from PDB ID 2LEX and docked using HADDOCK were executed. Root Mean Square (RMS) Deviation and RMS Fluctuation values yielded consistently stable trajectories over 50 ns simulation. Strengthening the obtained results, neither radius of gyration, distance and total energy showed any signs of DNA-WRKY complex falling apart nor any significant dissociation event over 50 ns run. Therefore, the study provides first insights into the structural properties of multi-stress responsive WRKY TF-DNA complex in chickpea, enabling genome wide identification of TF binding sites and thereby deciphers their gene regulatory networks.
Collapse
Affiliation(s)
- Aravind Kumar Konda
- a Division of Plant Biotechnology , ICAR-Indian Institute of Pulses Research , Kanpur , India
| | - Rohit Farmer
- b Department of Computational Biology and Bioinformatics , JIBB, SHUATS , Allahabad , India
| | - Khela Ram Soren
- a Division of Plant Biotechnology , ICAR-Indian Institute of Pulses Research , Kanpur , India
| | - Shanmugavadivel P S
- a Division of Plant Biotechnology , ICAR-Indian Institute of Pulses Research , Kanpur , India
| | - Aravind Setti
- c Department of Genetics & Biotechnology , Osmania University , Hyderabad , India
| |
Collapse
|
122
|
Aamir M, Singh VK, Meena M, Upadhyay RS, Gupta VK, Singh S. Structural and Functional Insights into WRKY3 and WRKY4 Transcription Factors to Unravel the WRKY-DNA (W-Box) Complex Interaction in Tomato ( Solanum lycopersicum L.). A Computational Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:819. [PMID: 28611792 PMCID: PMC5447077 DOI: 10.3389/fpls.2017.00819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/01/2017] [Indexed: 05/20/2023]
Abstract
The WRKY transcription factors (TFs), play crucial role in plant defense response against various abiotic and biotic stresses. The role of WRKY3 and WRKY4 genes in plant defense response against necrotrophic pathogens is well-reported. However, their functional annotation in tomato is largely unknown. In the present work, we have characterized the structural and functional attributes of the two identified tomato WRKY transcription factors, WRKY3 (SlWRKY3), and WRKY4 (SlWRKY4) using computational approaches. Arabidopsis WRKY3 (AtWRKY3: NP_178433) and WRKY4 (AtWRKY4: NP_172849) protein sequences were retrieved from TAIR database and protein BLAST was done for finding their sequential homologs in tomato. Sequence alignment, phylogenetic classification, and motif composition analysis revealed the remarkable sequential variation between, these two WRKYs. The tomato WRKY3 and WRKY4 clusters with Solanum pennellii showing the monophyletic origin and evolution from their wild homolog. The functional domain region responsible for sequence specific DNA-binding occupied in both proteins were modeled [using AtWRKY4 (PDB ID:1WJ2) and AtWRKY1 (PDBID:2AYD) as template protein structures] through homology modeling using Discovery Studio 3.0. The generated models were further evaluated for their accuracy and reliability based on qualitative and quantitative parameters. The modeled proteins were found to satisfy all the crucial energy parameters and showed acceptable Ramachandran statistics when compared to the experimentally resolved NMR solution structures and/or X-Ray diffracted crystal structures (templates). The superimposition of the functional WRKY domains from SlWRKY3 and SlWRKY4 revealed remarkable structural similarity. The sequence specific DNA binding for two WRKYs was explored through DNA-protein interaction using Hex Docking server. The interaction studies found that SlWRKY4 binds with the W-box DNA through WRKYGQK with Tyr408, Arg409, and Lys419 with the initial flanking sequences also get involved in binding. In contrast, the SlWRKY3 made interaction with RKYGQK along with the residues from zinc finger motifs. Protein-protein interactions studies were done using STRING version 10.0 to explore all the possible protein partners involved in associative functional interaction networks. The Gene ontology enrichment analysis revealed the functional dimension and characterized the identified WRKYs based on their functional annotation.
Collapse
Affiliation(s)
- Mohd Aamir
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Vinay K. Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Mukesh Meena
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Ram S. Upadhyay
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | - Vijai K. Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of TechnologyTallinn, Estonia
| | - Surendra Singh
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu UniversityVaranasi, India
| |
Collapse
|
123
|
Identification and expression analysis of the apple (Malus × domestica) basic helix-loop-helix transcription factor family. Sci Rep 2017; 7:28. [PMID: 28174429 PMCID: PMC5428380 DOI: 10.1038/s41598-017-00040-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023] Open
Abstract
Basic helix-loop-helix (bHLH) proteins, which are characterized by a conserved bHLH domain, comprise one of the largest families of transcription factors in both plants and animals, and have been shown to have a wide range of biological functions. However, there have been very few studies of bHLH proteins from perennial tree species. We describe here the identification and characterization of 175 bHLH transcription factors from apple (Malus × domestica). Phylogenetic analysis of apple bHLH (MdbHLH) genes and their Arabidopsis thaliana (Arabidopsis) orthologs indicated that they can be classified into 23 subgroups. Moreover, integrated synteny analysis suggested that the large-scale expansion of the bHLH transcription factor family occurred before the divergence of apple and Arabidopsis. An analysis of the exon/intron structure and protein domains was conducted to suggest their functional roles. Finally, we observed that MdbHLH subgroup III and IV genes displayed diverse expression profiles in various organs, as well as in response to abiotic stresses and various hormone treatments. Taken together, these data provide new information regarding the composition and diversity of the apple bHLH transcription factor family that will provide a platform for future targeted functional characterization.
Collapse
|
124
|
Genome-wide exploration of metal tolerance protein (MTP) genes in common wheat (Triticum aestivum): insights into metal homeostasis and biofortification. Biometals 2017; 30:217-235. [PMID: 28150142 DOI: 10.1007/s10534-017-9997-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 10/20/2022]
Abstract
Metal transport process in plants is a determinant of quality and quantity of the harvest. Although it is among the most important of staple crops, knowledge about genes that encode for membrane-bound metal transporters is scarce in wheat. Metal tolerance proteins (MTPs) are involved in trace metal homeostasis at the sub-cellular level, usually by providing metal efflux out of the cytosol. Here, by using various bioinformatics approaches, genes that encode for MTPs in the hexaploid wheat genome (Triticum aestivum, abbreviated as Ta) were identified and characterized. Based on the comparison with known rice MTPs, the wheat genome contained 20 MTP sequences; named as TaMTP1-8A, B and D. All TaMTPs contained a cation diffusion facilitator (CDF) family domain and most members harbored a zinc transporter dimerization domain. Based on motif, phylogeny and alignment analysis, A, B and D genomes of TaMTP3-7 sequences demonstrated higher homology compared to TaMTP1, 2 and 8. With reference to their rice orthologs, TaMTP1s and TaMTP8s belonged to Zn-CDFs, TaMTP2s to Fe/Zn-CDFs and TaMTP3-7s to Mn-CDFs. Upstream regions of TaMTP genes included diverse cis-regulatory motifs, indicating regulation by developmental stage, tissue type and stresses. A scan of the coding sequences of 20 TaMTPs against published miRNAs predicted a total of 14 potential miRNAs, mainly targeting the members of most diverged groups. Expression analysis showed that several TaMTPs were temporally and spatially regulated during the developmental time-course. In grains, MTPs were preferentially expressed in the aleurone layer, which is known as a reservoir for high concentrations of iron and zinc. The work identified and characterized metal tolerance proteins in common wheat and revealed a potential involvement of MTPs in providing a sink for trace element storage in wheat grains.
Collapse
|
125
|
Carbonero P, Iglesias-Fernández R, Vicente-Carbajosa J. The AFL subfamily of B3 transcription factors: evolution and function in angiosperm seeds. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:871-880. [PMID: 28007955 DOI: 10.1093/jxb/erw458] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Seed development follows zygotic embryogenesis; during the maturation phase reserves accumulate and desiccation tolerance is acquired. This is tightly regulated at the transcriptional level and the AFL (ABI3/FUS3/LEC2) subfamily of B3 transcription factors (TFs) play a central role. They alter hormone biosynthesis, mainly in regards to abscisic acid and gibberellins, and also regulate the expression of other TFs and/or modulate their downstream activity via protein-protein interactions. This review deals with the origin of AFL TFs, which can be traced back to non-vascular plants such as Physcomitrella patens and achieves foremost expansion in the angiosperms. In green algae, like the unicellular Chlamydomonas reinhardtii or the pluricellular Klebsormidium flaccidum, a single B3 gene and four B3 paralogous genes are annotated, respectively. However, none of them present with the structural features of the AFL subfamily, with the exception of the B3 DNA-binding domain. Phylogenetic analysis groups the AFL TFs into four Major Clusters of Ortologous Genes (MCOGs). The origin and function of these genes is discussed in view of their expression patterns and in the context of major regulatory interactions in seeds of monocotyledonous and dicotyledonous species.
Collapse
Affiliation(s)
- Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223-Madrid, Spain
| |
Collapse
|
126
|
Wei T, Deng K, Zhang Q, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Liu Z, Chen C, Zhang Y. Modulating AtDREB1C Expression Improves Drought Tolerance in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2017; 8:52. [PMID: 28174590 PMCID: PMC5259653 DOI: 10.3389/fpls.2017.00052] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/10/2017] [Indexed: 05/20/2023]
Abstract
Dehydration responsive element binding proteins are transcription factors of the plant-specific AP2 family, many of which contribute to abiotic stress responses in several plant species. We investigated the possibility of increasing drought tolerance in the traditional Chinese medicinal herb, Salvia miltiorrhiza, through modulating the transcriptional regulation of AtDREB1C in transgenic plants under the control of a constitutive (35S) or drought-inducible (RD29A) promoter. AtDREB1C transgenic S. miltiorrhiza plants showed increased survival under severe drought conditions compared to the non-transgenic wild-type (WT) control. However, transgenic plants with constitutive overexpression of AtDREB1C showed considerable dwarfing relative to WT. Physiological tests suggested that the higher chlorophyll content, photosynthetic capacity, and superoxide dismutase, peroxidase, and catalase activity in the transgenic plants enhanced plant drought stress resistance compared to WT. Transcriptome analysis of S. miltiorrhiza following drought stress identified a number of differentially expressed genes (DEGs) between the AtDREB1C transgenic lines and WT. These DEGs are involved in photosynthesis, plant hormone signal transduction, phenylpropanoid biosynthesis, ribosome, starch and sucrose metabolism, and other metabolic pathways. The modified pathways involved in plant hormone signaling are thought to be one of the main causes of the increased drought tolerance of AtDREB1C transgenic S. miltiorrhiza plants.
Collapse
Affiliation(s)
- Tao Wei
- College of Life Sciences, Nankai UniversityTianjin, China
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Kejun Deng
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Qingxia Zhang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Yonghong Gao
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Yu Liu
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Meiling Yang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Lipeng Zhang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Xuelian Zheng
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of ChinaChengdu, China
| | - Chunguo Wang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Zhiwei Liu
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chengbin Chen
- College of Life Sciences, Nankai UniversityTianjin, China
- *Correspondence: Chengbin Chen, Yong Zhang,
| | - Yong Zhang
- School of Life Sciences and Technology, University of Electronic Science and Technology of ChinaChengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of ChinaChengdu, China
- *Correspondence: Chengbin Chen, Yong Zhang,
| |
Collapse
|
127
|
Hong C, Cheng D, Zhang G, Zhu D, Chen Y, Tan M. The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress. Biochem Biophys Res Commun 2016; 482:1504-1510. [PMID: 27956180 DOI: 10.1016/j.bbrc.2016.12.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022]
Abstract
WRKY transcription factors act as positive regulators in abiotic stress responses by activation of the cellular antioxidant systems. However, there are few reports on the response of WRKY genes to cadmium (Cd) stress. In this study, the role of maize ZmWRKY4 in regulating antioxidant enzymes in Cd stress was investigated. The results indicated that Cd induced up-regulation of the expression and the activities of ZmWRKY4 and superoxide dismutase (SOD) and ascorbate peroxidase (APX). Transient expression and RNA interference (RNAi) silencing of ZmWRKY4 in maize mesophyll protoplasts further revealed that ZmWRKY4 was required for the abscisic acid (ABA)-induced increase in expression and activity of SOD and APX. Overexpression of ZmWRKY4 in protoplasts upregulated the expression and the activities of antioxidant enzymes, whereas ABA induced increases in the expression and the activities of antioxidant enzymes were blocked by the RNAi silencing of ZmWRKY4. Bioinformatic analysis indicated that ZmSOD4 and ZmcAPX both harbored two W-boxes, binding motif for WRKY transcription factors, in their promoter region. Intriguingly, ZmWRKY4 belongs to group I WRKYs with two WRKY domains. Moreover, the synchronized expression patterns indicate that ZmWRKY4 might play a critical role in either regulating the ZmSOD4 and ZmcAPX expression or cooperating with them in response to stress and phytohormone.
Collapse
Affiliation(s)
- Changyong Hong
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Dan Cheng
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Guoqiang Zhang
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Dandan Zhu
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
128
|
Mohanta TK, Park YH, Bae H. Novel Genomic and Evolutionary Insight of WRKY Transcription Factors in Plant Lineage. Sci Rep 2016; 6:37309. [PMID: 27853303 PMCID: PMC5112548 DOI: 10.1038/srep37309] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/27/2016] [Indexed: 11/22/2022] Open
Abstract
The evolutionarily conserved WRKY transcription factor (TF) regulates different aspects of gene expression in plants, and modulates growth, development, as well as biotic and abiotic stress responses. Therefore, understanding the details regarding WRKY TFs is very important. In this study, large-scale genomic analyses of the WRKY TF gene family from 43 plant species were conducted. The results of our study revealed that WRKY TFs could be grouped and specifically classified as those belonging to the monocot or dicot plant lineage. In this study, we identified several novel WRKY TFs. To our knowledge, this is the first report on a revised grouping system of the WRKY TF gene family in plants. The different forms of novel chimeric forms of WRKY TFs in the plant genome might play a crucial role in their evolution. Tissue-specific gene expression analyses in Glycine max and Phaseolus vulgaris showed that WRKY11-1, WRKY11-2 and WRKY11-3 were ubiquitously expressed in all tissue types, and WRKY15-2 was highly expressed in the stem, root, nodule and pod tissues in G. max and P. vulgaris.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Free Major of Natural Sciences, College of Basic Studies, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yong-Hwan Park
- School of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
129
|
Zhuang J, Li MY, Wu B, Liu YJ, Xiong AS. Arg156 in the AP2-Domain Exhibits the Highest Binding Activity among the 20 Individuals to the GCC Box in BnaERF-B3-hy15, a Mutant ERF Transcription Factor from Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1603. [PMID: 27833627 PMCID: PMC5081391 DOI: 10.3389/fpls.2016.01603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/11/2016] [Indexed: 05/29/2023]
Abstract
To develop mutants of the ERF factor with more binding activities to the GCC box, we performed in vitro directed evolution by using DNA shuffling and screened mutants through yeast one-hybrid assay. Here, a series of mutants were obtained and used to reveal key amino acids that induce changes in the DNA binding activity of the BnaERF-B3 protein. With the BnaERF-B3-hy15 as the template, we produced 12 mutants which host individual mutation of potential key residues. We found that amino acid 156 is the key site, and the other 18 mutants host the 18 corresponding individual amino acid residues at site 156. Among the 20 individuals comprising WT (Gly156), Mu3 (Arg156), and 18 mutants with other 18 amino acid residues, Arg156 in the AP2-domain is the amino acid residue with the highest binding activity to the GCC box. The structure of the α-helix in the AP2-domain affects the binding activity. Other residues within AP2-domain modulated binding activity of ERF protein, suggesting that these positions are important for binding activity. Comparison of the mutant and wild-type transcription factors revealed the relationship of protein function and sequence modification. Our result provides a potential useful resource for understanding the trans-activation of ERF proteins.
Collapse
|
130
|
Matoušek J, Kocábek T, Patzak J, Bříza J, Siglová K, Mishra AK, Duraisamy GS, Týcová A, Ono E, Krofta K. The "putative" role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.). PLANT MOLECULAR BIOLOGY 2016; 92:263-77. [PMID: 27392499 DOI: 10.1007/s11103-016-0510-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/02/2016] [Indexed: 05/20/2023]
Abstract
Lupulin glands localized in female hop (Humulus lupulus L.) cones are valuable source of bitter acids, essential oils and polyphenols. These compounds are used in brewing industry and are important for biomedical applications. In this study we describe the potential effect of transcription factors from WRKY family in the activation of the final steps of lupulin biosynthesis. In particular, lupulin gland-specific transcription factor HlWRKY1 that shows significant similarity to AtWRKY75, has ability to activate the set of promoters driving key genes of xanthohumol and bitter acids biosynthesis such as chalcone synthase H1, valerophenone synthase, prenyltransferase 1, 1L and 2 and O-methyltransferase-1. When combined with co-factor HlWDR1 and silencing suppressor p19, HlWRKY1 is able to enhance transient expression of gus gene driven by Omt1 and Chs_H1 promoters to significant level as compared to 35S promoter of CaMV in Nicotiana. benthamiana. Transformation of hop with dual Agrobacterium vector bearing HlWRKY1/HlWDR1 led to ectopic overexpression of these transgenes and further activation of lupulin-specific genes expression in hop leaves. It was further showed that (1) HlWRKY1 is endowed with promoter autoactivation; (2) It is regulated by post-transcriptional gene silencing (PTGS) mechanism; (3) It is stimulated by kinase co-expression. Since HlWRKY1 promotes expression of lupulin-specific HlMyb3 gene therefore it can constitute a significant component in hop lupulin regulation network. Putative involvement of HlWRKY1 in the regulation of lupulin biosynthesis may suggest the original physiological function of lupulin components in hop as flower and seed protective compounds.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 438 46, Žatec, Czech Republic
| | - Jindřich Bříza
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Kristýna Siglová
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Ganesh Selvaraj Duraisamy
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Anna Týcová
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan
| | - Karel Krofta
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 438 46, Žatec, Czech Republic
| |
Collapse
|
131
|
Lehti-Shiu MD, Panchy N, Wang P, Uygun S, Shiu SH. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:3-20. [PMID: 27522016 DOI: 10.1016/j.bbagrm.2016.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Nicholas Panchy
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Peipei Wang
- Department of Plant Biology, East Lansing, MI 48824, USA
| | - Sahra Uygun
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, East Lansing, MI 48824, USA; The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
132
|
Wei T, Deng K, Liu D, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Song W, Chen C, Zhang Y. Ectopic Expression of DREB Transcription Factor, AtDREB1A, Confers Tolerance to Drought in Transgenic Salvia miltiorrhiza. PLANT & CELL PHYSIOLOGY 2016; 57:1593-609. [PMID: 27485523 DOI: 10.1093/pcp/pcw084] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 04/17/2016] [Indexed: 05/20/2023]
Abstract
Drought decreases crop productivity more than any other type of environmental stress. Transcription factors (TFs) play crucial roles in regulating plant abiotic stress responses. The Arabidopsis thaliana gene DREB1A/CBF3, encoding a stress-inducible TF, was introduced into Salvia miltiorrhiza Ectopic expression of AtDREB1A resulted in increased drought tolerance, and transgenic lines had higher relative water content and Chl content, and exhibited an increased photosynthetic rate when subjected to drought stress. AtDREB1A transgenic plants generally displayed lower malondialdehyde (MDA), but higher superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities under drought stress. In particular, plants with ectopic AtDREB1A expression under the control of the stress-induced RD29A promoter exhibited more tolerance to drought compared with p35S::AtDREB1A transgenic plants, without growth inhibition or phenotypic aberrations. Differential gene expression profiling of wild-type and pRD29A::AtDREB1A transgenic plants following drought stress revealed that the expression levels of various genes associated with the stress response, photosynthesis, signaling, carbohydrate metabolism and protein protection were substantially higher in transgenic plants. In addition, the amount of salvianolic acids and tanshinones was significantly elevated in AtDREB1A transgenic S. miltiorrhiza roots, and most of the genes in the related biosynthetic pathways were up-regulated. Together, these results demonstrated that inducing the expression of a TF can effectively regulate multiple genes in the stress response pathways and significantly improve the resistance of plants to abiotic stresses. Our results also suggest that genetic manipulation of a TF can improve production of valuable secondary metabolites by regulating genes in associated pathways.
Collapse
Affiliation(s)
- Tao Wei
- College of Life Sciences, Nankai University, Tianjin 300071, PR China School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Kejun Deng
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Dongqing Liu
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Yonghong Gao
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yu Liu
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Meiling Yang
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Lipeng Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xuelian Zheng
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Chunguo Wang
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Wenqin Song
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Chengbin Chen
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yong Zhang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| |
Collapse
|
133
|
Ji AJ, Luo HM, Xu ZC, Zhang X, Zhu YJ, Liao BS, Yao H, Song JY, Chen SL. Genome-Wide Identification of the AP2/ERF Gene Family Involved in Active Constituent Biosynthesis in. THE PLANT GENOME 2016; 9. [PMID: 27898817 DOI: 10.3835/plantgenome2015.08.0077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Tanshinones and phenolic acids are the major bioactive constituents in the traditional medicinal crop ; however, transcription factors (TFs) are seldom investigated with regard to their regulation of the biosynthesis of these compounds. Here a complete overview of the APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor family in is provided, including phylogeny, gene structure, conserved motifs, and gene expression profiles of different organs (root, stem, leaf, flower) and root tissues (periderm, phloem, xylem). In total, 170 AP2/ERF genes were identified and divided into five relatively conserved subfamilies, including AP2 (25 genes), DREB (61 genes), ethylene responsive factor (ERF; 79 genes), RAV (4 genes), and Soloist (1 gene). According to the distribution of bioactive constituents and the expression patterns of AP2/ERF genes in different organs and root tissues, the genes related to the biosynthesis of bioactive constituents were selected. On the basis of quantitative real-time polymerase chain reaction (qRT-PCR) analysis, coexpression analysis, and the prediction of -regulatory elements in the promoters, we propose that two genes ( and ) regulate tanshinone biosynthesis and two genes ( and ) participate in controlling phenolic acid biosynthesis. The genes related to tanshinone biosynthesis belong to the ERF-B3 subgroup. In contrast, the genes predicted to regulate phenolic acid biosynthesis belong to the ERF-B1 and ERF-B4 subgroups. These results provide a foundation for future functional characterization of AP2/ERF genes to enhance the biosynthesis of the bioactive compounds of .
Collapse
|
134
|
Gao Z, Miao X, Zhang X, Wu G, Guo Y, Wang M, Li B, Li X, Gao Y, Hu S, Sun J, Cui J, Meng C, Li Y. Comparative fatty acid transcriptomic test and iTRAQ-based proteomic analysis in Haematococcus pluvialis upon salicylic acid (SA) and jasmonic acid (JA) inductions. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
135
|
He Y, Mao S, Gao Y, Zhu L, Wu D, Cui Y, Li J, Qian W. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus. PLoS One 2016; 11:e0157558. [PMID: 27322342 PMCID: PMC4913915 DOI: 10.1371/journal.pone.0157558] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/01/2016] [Indexed: 11/25/2022] Open
Abstract
WRKY transcription factors play important roles in responses to environmental stress stimuli. Using a genome-wide domain analysis, we identified 287 WRKY genes with 343 WRKY domains in the sequenced genome of Brassica napus, 139 in the A sub-genome and 148 in the C sub-genome. These genes were classified into eight groups based on phylogenetic analysis. In the 343 WRKY domains, a total of 26 members showed divergence in the WRKY domain, and 21 belonged to group I. This finding suggested that WRKY genes in group I are more active and variable compared with genes in other groups. Using genome-wide identification and analysis of the WRKY gene family in Brassica napus, we observed genome duplication, chromosomal/segmental duplications and tandem duplication. All of these duplications contributed to the expansion of the WRKY gene family. The duplicate segments that were detected indicated that genome duplication events occurred in the two diploid progenitors B. rapa and B. olearecea before they combined to form B. napus. Analysis of the public microarray database and EST database for B. napus indicated that 74 WRKY genes were induced or preferentially expressed under stress conditions. According to the public QTL data, we identified 77 WRKY genes in 31 QTL regions related to various stress tolerance. We further evaluated the expression of 26 BnaWRKY genes under multiple stresses by qRT-PCR. Most of the genes were induced by low temperature, salinity and drought stress, indicating that the WRKYs play important roles in B. napus stress responses. Further, three BnaWRKY genes were strongly responsive to the three multiple stresses simultaneously, which suggests that these 3 WRKY may have multi-functional roles in stress tolerance and can potentially be used in breeding new rapeseed cultivars. We also found six tandem repeat pairs exhibiting similar expression profiles under the various stress conditions, and three pairs were mapped in the stress related QTL regions, indicating tandem duplicate WRKYs in the adaptive responses to environmental stimuli during the evolution process. Our results provide a framework for future studies regarding the function of WRKY genes in response to stress in B. napus.
Collapse
Affiliation(s)
- Yajun He
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Shaoshuai Mao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Yulong Gao
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi 653100, China
| | - Liying Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Daoming Wu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Yixin Cui
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- * E-mail:
| |
Collapse
|
136
|
Ondati E, Lingling D, Yaning G, Chaoyou P, Hengling W, Meizhen S, Shuli F, Shuxun Y. GhNAC18, a novel cotton (Gossypium hirsutum L.) NAC gene, is involved in leaf senescence and diverse stress responses. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2016.15224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
137
|
Feng BH, Han YC, Xiao YY, Kuang JF, Fan ZQ, Chen JY, Lu WJ. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2263-75. [PMID: 26889012 PMCID: PMC4809287 DOI: 10.1093/jxb/erw032] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The DNA binding with one finger (Dof) proteins, a family of plant-specific transcription factors, are involved in a variety of plant biological processes. However, little information is available on their involvement in fruit ripening. We have characterized 25 MaDof genes from banana fruit (Musa acuminata), designated as MaDof1-MaDof25 Gene expression analysis in fruit subjected to different ripening conditions revealed that MaDofs were differentially expressed during different stages of ripening. MaDof10, 23, 24, and 25 were ethylene-inducible and nuclear-localized, and their transcript levels increased during fruit ripening. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analyses demonstrated a physical interaction between MaDof23 and MaERF9, a potential regulator of fruit ripening reported in a previous study. We determined that MaDof23 is a transcriptional repressor, whereas MaERF9 is a transcriptional activator. We suggest that they might act antagonistically in regulating 10 ripening-related genes, including MaEXP1/2/3/5, MaXET7, MaPG1, MaPME3, MaPL2, MaCAT, and MaPDC, which are associated with cell wall degradation and aroma formation. Taken together, our findings provide new insight into the transcriptional regulation network controlling banana fruit ripening.
Collapse
Affiliation(s)
- Bi-hong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China College of Agriculture, GuangXi University, Nanning 530004, PR China
| | - Yan-chao Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yun-yi Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhong-qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
138
|
Dinesh DC, Villalobos LIAC, Abel S. Structural Biology of Nuclear Auxin Action. TRENDS IN PLANT SCIENCE 2016; 21:302-316. [PMID: 26651917 DOI: 10.1016/j.tplants.2015.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/23/2015] [Indexed: 05/23/2023]
Abstract
Auxin coordinates plant development largely via hierarchical control of gene expression. During the past decades, the study of early auxin genes paired with the power of Arabidopsis genetics have unraveled key nuclear components and molecular interactions that perceive the hormone and activate primary response genes. Recent research in the realm of structural biology allowed unprecedented insight into: (i) the recognition of auxin-responsive DNA elements by auxin transcription factors; (ii) the inactivation of those auxin response factors by early auxin-inducible repressors; and (iii) the activation of target genes by auxin-triggered repressor degradation. The biophysical studies reviewed here provide an impetus for elucidating the molecular determinants of the intricate interactions between core components of the nuclear auxin response module.
Collapse
Affiliation(s)
- Dhurvas Chandrasekaran Dinesh
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Luz Irina A Calderón Villalobos
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany; Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany; Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
139
|
Wang Y, Lu W, Deng D. Bioinformatic landscapes for plant transcription factor system research. PLANTA 2016; 243:297-304. [PMID: 26719053 DOI: 10.1007/s00425-015-2453-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
Diverse bioinformatic resources have been developed for plant transcription factor (TF) research. This review presents the bioinformatic resources and methodologies for the elucidation of plant TF-mediated biological events. Such information is helpful to dissect the transcriptional regulatory systems in the three reference plants Arabidopsis , rice, and maize and translation to other plants. Transcription factors (TFs) orchestrate diverse biological programs by the modulation of spatiotemporal patterns of gene expression via binding cis-regulatory elements. Advanced sequencing platforms accompanied by emerging bioinformatic tools revolutionize the scope and extent of TF research. The system-level integration of bioinformatic resources is beneficial to the decoding of TF-involved networks. Herein, we first briefly introduce general and specialized databases for TF research in three reference plants Arabidopsis, rice, and maize. Then, as proof of concept, we identified and characterized heat shock transcription factor (HSF) members through the TF databases. Finally, we present how the integration of bioinformatic resources at -omics layers can aid the dissection of TF-mediated pathways. We also suggest ways forward to improve the bioinformatic resources of plant TFs. Leveraging these bioinformatic resources and methodologies opens new avenues for the elucidation of transcriptional regulatory systems in the three model systems and translation to other plants.
Collapse
Affiliation(s)
- Yijun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Wenjie Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Dexiang Deng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
140
|
Yu LX, Liu X, Boge W, Liu XP. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:956. [PMID: 27446182 PMCID: PMC4923157 DOI: 10.3389/fpls.2016.00956] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/15/2016] [Indexed: 05/04/2023]
Abstract
Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses.
Collapse
|
141
|
Huang X, Li K, Xu X, Yao Z, Jin C, Zhang S. Genome-wide analysis of WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and patterns under drought stress. BMC Genomics 2015; 16:1104. [PMID: 26704366 PMCID: PMC4691019 DOI: 10.1186/s12864-015-2233-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 11/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background WRKY transcription factors (TFs) constitute one of the largest protein families in higher plants, and its members contain one or two conserved WRKY domains, about 60 amino acid residues with the WRKYGQK sequence followed by a C2H2 or C2HC zinc finger motif. WRKY proteins play significant roles in plant development, and in responses to biotic and abiotic stresses. Pear (Pyrus bretschneideri) is one of the most important fruit crops in the world and is frequently threatened by abiotic stress, such as drought, affecting growth, development and productivity. Although the pear genome sequence has been released, little is known about the WRKY TFs in pear, especially in respond to drought stress at the genome-wide level. Results We identified a total of 103 WRKY TFs in the pear genome. Based on the structural features of WRKY proteins and topology of the phylogenetic tree, the pear WRKY (PbWRKY) family was classified into seven groups (Groups 1, 2a–e, and 3). The microsyteny analysis indicated that 33 (32 %) PbWRKY genes were tandemly duplicated and 57 genes (55.3 %) were segmentally duplicated. RNA-seq experiment data and quantitative real-time reverse transcription PCR revealed that PbWRKY genes in different groups were induced by drought stress, and Group 2a and 3 were mainly involved in the biological pathways in response to drought stress. Furthermore, adaptive evolution analysis detected a significant positive selection for Pbr001425 in Group 3, and its expression pattern differed from that of other members in this group. The present study provides a solid foundation for further functional dissection and molecular evolution of WRKY TFs in pear, especially for improving the water-deficient resistance of pear through manipulation of the PbWRKYs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2233-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaosan Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kongqing Li
- College of Rural Development, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaoyong Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Zhenghong Yao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Cong Jin
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
142
|
Zhao D, Ferguson AA, Jiang N. What makes up plant genomes: The vanishing line between transposable elements and genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:366-80. [PMID: 26709091 DOI: 10.1016/j.bbagrm.2015.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023]
Abstract
The ultimate source of evolution is mutation. As the largest component in plant genomes, transposable elements (TEs) create numerous types of mutations that cannot be mimicked by other genetic mechanisms. When TEs insert into genomic sequences, they influence the expression of nearby genes as well as genes unlinked to the insertion. TEs can duplicate, mobilize, and recombine normal genes or gene fragments, with the potential to generate new genes or modify the structure of existing genes. TEs also donate their transposase coding regions for cellular functions in a process called TE domestication. Despite the host defense against TE activity, a subset of TEs survived and thrived through discreet selection of transposition activity, target site, element size, and the internal sequence. Finally, TEs have established strategies to reduce the efficacy of host defense system by increasing the cost of silencing TEs. This review discusses the recent progress in the area of plant TEs with a focus on the interaction between TEs and genes.
Collapse
Affiliation(s)
- Dongyan Zhao
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA
| | - Ann A Ferguson
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA
| | - Ning Jiang
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824, USA.
| |
Collapse
|
143
|
Djemal R, Khoudi H. Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum). PROTOPLASMA 2015; 252:1461-73. [PMID: 25687296 DOI: 10.1007/s00709-015-0775-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/29/2015] [Indexed: 05/27/2023]
Abstract
Over the last decade, APETALA2/Ethylene Responsive Factor (AP2/ERF) proteins have become the subject of intensive research activity due to their involvement in a variety of biological processes. This research led to the identification of AP2/ERF genes in many species; however, little is known about these genes in durum wheat, one of the most important cereal crops in the world. In this study, a new member of the AP2/ERF transcription factor family, designated TdSHN1, was isolated from durum wheat using thermal asymetric interlaced PCR (TAIL-PCR) method. Protein sequence analysis showed that TdSHN1 contained an AP2/ERF domain of 63 amino acids and a putative nuclear localization signal (NLS). Phylogenetic analysis showed that TdSHN1 belongs to a group Va protein in the ERF subfamily which contains the Arabidopsis ERF proteins (SHN1, SHN2, and SHN3). Expression of TdSHN1 was strongly induced by salt, drought, abscisic acid (ABA), and cold. In planta, TdSHN1 protein was able to activate the transcription of GUS reporter gene driven by the GCC box and DRE element sequences. In addition, TdSHN1 was targeted to the nucleus when transiently expressed in tobacco epidermal cells. In transgenic yeast, overexpression of TdSHN1 increased tolerance to multiple abiotic stresses. Taken together, the results showed that TdSHN1 encodes an abiotic stress-inducible, transcription factor which confers abiotic stress tolerance in yeast. TdSHN1 is therefore a promising candidate for improvement of biotic and abiotic stress tolerance in wheat as well as other crops.
Collapse
Affiliation(s)
- Rania Djemal
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, University of Sfax, B.P' 1177, Route Sidi Mansour Km 6, 3018, Sfax, Tunisia
| | - Habib Khoudi
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, University of Sfax, B.P' 1177, Route Sidi Mansour Km 6, 3018, Sfax, Tunisia.
| |
Collapse
|
144
|
Motion GB, Howden AJM, Huitema E, Jones S. DNA-binding protein prediction using plant specific support vector machines: validation and application of a new genome annotation tool. Nucleic Acids Res 2015; 43:e158. [PMID: 26304539 PMCID: PMC4678848 DOI: 10.1093/nar/gkv805] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/28/2015] [Indexed: 11/26/2022] Open
Abstract
There are currently 151 plants with draft genomes available but levels of functional annotation for putative protein products are low. Therefore, accurate computational predictions are essential to annotate genomes in the first instance, and to provide focus for the more costly and time consuming functional assays that follow. DNA-binding proteins are an important class of proteins that require annotation, but current computational methods are not applicable for genome wide predictions in plant species. Here, we explore the use of species and lineage specific models for the prediction of DNA-binding proteins in plants. We show that a species specific support vector machine model based on Arabidopsis sequence data is more accurate (accuracy 81%) than a generic model (74%), and based on this we develop a plant specific model for predicting DNA-binding proteins. We apply this model to the tomato proteome and demonstrate its ability to perform accurate high-throughput prediction of DNA-binding proteins. In doing so, we have annotated 36 currently uncharacterised proteins by assigning a putative DNA-binding function. Our model is publically available and we propose it be used in combination with existing tools to help increase annotation levels of DNA-binding proteins encoded in plant genomes.
Collapse
Affiliation(s)
- Graham B Motion
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Andrew J M Howden
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Edgar Huitema
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Susan Jones
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
145
|
Fan K, Shen H, Bibi N, Li F, Yuan S, Wang M, Wang X. Molecular evolution and species-specific expansion of the NAP members in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:673-687. [PMID: 25737328 DOI: 10.1111/jipb.12344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/28/2015] [Indexed: 06/04/2023]
Abstract
The NAP (NAC-Like, Activated by AP3 /PI) subfamily is one of the important plant-specific transcription factors, and controls many vital biological processes in plants. In the current study, 197 NAP proteins were identified from 31 vascular plants, but no NAP members were found in eight non-vascular plants. All NAP proteins were phylogenetically classified into two groups (NAP I and NAP II), and the origin time of the NAP I group might be relatively later than that of the NAP II group. Furthermore, species-specific gene duplications, caused by segmental duplication events, resulted in the expansion of the NAP subfamily after species-divergence. Different groups have different expansion rates, and the NAP group preference was found during the expansion in plants. Moreover, the expansion of NAP proteins may be related to the gain and loss of introns. Besides, functional divergence was limited after the gene duplication. Abscisic acid (ABA) might play an important role in leaf senescence, which is regulated by NAP subfamily. These results could lay an important foundation for expansion and evolutionary analysis of NAP subfamily in plants.
Collapse
Affiliation(s)
- Kai Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hao Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Noreen Bibi
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Feng Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shuna Yuan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ming Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xuede Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
146
|
Yang X, Deng C, Zhang Y, Cheng Y, Huo Q, Xue L. The WRKY transcription factor genes in eggplant (Solanum melongena L.) and Turkey Berry (Solanum torvum Sw.). Int J Mol Sci 2015; 16:7608-26. [PMID: 25853261 PMCID: PMC4425038 DOI: 10.3390/ijms16047608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/02/2015] [Accepted: 03/10/2015] [Indexed: 11/16/2022] Open
Abstract
WRKY transcription factors, which play critical roles in stress responses, have not been characterized in eggplant or its wild relative, turkey berry. The recent availability of RNA-sequencing data provides the opportunity to examine WRKY genes from a global perspective. We identified 50 and 62 WRKY genes in eggplant (SmelWRKYs) and turkey berry (StorWRKYs), respectively, all of which could be classified into three groups (I–III) based on the WRKY protein structure. The SmelWRKYs and StorWRKYs contain ~76% and ~95% of the number of WRKYs found in other sequenced asterid species, respectively. Positive selection analysis revealed that different selection constraints could have affected the evolution of these groups. Positively-selected sites were found in Groups IIc and III. Branch-specific selection pressure analysis indicated that most WRKY domains from SmelWRKYs and StorWRKYs are conserved and have evolved at low rates since their divergence. Comparison to homologous WRKY genes in Arabidopsis revealed several potential pathogen resistance-related SmelWRKYs and StorWRKYs, providing possible candidate genetic resources for improving stress tolerance in eggplant and probably other Solanaceae plants. To our knowledge, this is the first report of a genome-wide analyses of the SmelWRKYs and StorWRKYs.
Collapse
Affiliation(s)
- Xu Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Cao Deng
- DNA Stories Bioinformatics Services Co., Ltd., Chengdu 610000, China.
| | - Yu Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Yufu Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Qiuyue Huo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Linbao Xue
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
147
|
WRKY proteins: signaling and regulation of expression during abiotic stress responses. ScientificWorldJournal 2015; 2015:807560. [PMID: 25879071 PMCID: PMC4387944 DOI: 10.1155/2015/807560] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/03/2015] [Accepted: 03/07/2015] [Indexed: 02/03/2023] Open
Abstract
WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.
Collapse
|
148
|
Chen J, Chen B, Zhang D. Transcript profiling of Populus tomentosa genes in normal, tension, and opposite wood by RNA-seq. BMC Genomics 2015; 16:164. [PMID: 25886950 PMCID: PMC4372042 DOI: 10.1186/s12864-015-1390-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/24/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Wood formation affects the chemical and physical properties of wood, and thus affects its utility as a building material or a feedstock for biofuels, pulp and paper. To obtain genome-wide insights on the transcriptome changes and regulatory networks in wood formation, we used high-throughput RNA sequencing to characterize cDNA libraries of mature xylem from tension wood (TW), opposite wood (OW), and normal wood (NW), in the industrial tree species Populus tomentosa. RESULTS Our sequencing generated 140,978,316 (TW), 128,972,228 (OW), and 117,672,362 (NW) reads, corresponding to 10,127 (TW), 10,129 (OW), and 10,129 (NW) unique genes. Of these, 361 genes were differentially transcribed between TW and OW (log2FC ≥ 1 or ≤ -1, FDR < 0.05), 2,658 differed between OW and NW, and 2,417 differed between TW and NW. This indicates that NW differs significantly from the wood in branches; GO term analysis also indicated that OW experienced more transcriptome remodeling. The differentially expressed genes included 97 encoding transcription factors (TFs), 40 involved in hormone signal transduction, 33 in lignin biosynthesis, 21 in flavonoid biosynthesis, and 43 in cell wall metabolism, including cellulose synthase, sucrose synthase, and COBRA. More than half of the differentially expressed TF showed more than 4-fold lower transcript levels in NW compared with TW or OW, indicating that TF abundances differed dramatically in different wood types and may have important roles in the formation of reaction wood. In addition, transcripts of most of the genes involved in lignin biosynthesis were more abundant in OW compared with TW, consistent with the higher lignin content of OW. We constructed two transcriptomic networks for the regulation of lignin and cellulose biosynthesis, including TFs, based on the co-expression patterns of different genes. Lastly, we used reverse transcription quantitative PCR to validate the differentially expressed genes identified. CONCLUSIONS Here, we identified the global patterns and differences in gene expression among TW, OW, and NW, and constructed two transcriptomic regulatory networks involved in TW formation in P. tomentosa. We also identified candidate genes for molecular breeding of wood quality, and provided a starting point to decipher the molecular mechanisms of wood formation in Populus.
Collapse
Affiliation(s)
- Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| | - Beibei Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, P. R. China.
| |
Collapse
|
149
|
Hoen DR, Bureau TE. Discovery of novel genes derived from transposable elements using integrative genomic analysis. Mol Biol Evol 2015; 32:1487-506. [PMID: 25713212 DOI: 10.1093/molbev/msv042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complex eukaryotes contain millions of transposable elements (TEs), comprising large fractions of their nuclear genomes. TEs consist of structural, regulatory, and coding sequences that are ordinarily associated with transposition, but that occasionally confer on the organism a selective advantage and may thereby become exapted. Exapted transposable element genes (ETEs) are known to play critical roles in diverse systems, from vertebrate adaptive immunity to plant development. Yet despite their evident importance, most ETEs have been identified fortuitously and few systematic searches have been conducted, suggesting that additional ETEs may await discovery. To explore this possibility, we develop a comprehensive systematic approach to searching for ETEs. We use TE-specific conserved domains to identify with high precision genes derived from TEs and screen them for signatures of exaptation based on their similarities to reference sets of known ETEs, conventional (non-TE) genes, and TE genes across diverse genetic attributes including repetitiveness, conservation of genomic location and sequence, and levels of expression and repressive small RNAs. Applying this approach in the model plant Arabidopsis thaliana, we discover a surprisingly large number of novel high confidence ETEs. Intriguingly, unlike known plant ETEs, several of the novel ETE families form tandemly arrayed gene clusters, whereas others are relatively young. Our results not only identify novel TE-derived genes that may have practical applications but also challenge the notion that TE exaptation is merely a relic of ancient life, instead suggesting that it may continue to fundamentally drive evolution.
Collapse
Affiliation(s)
- Douglas R Hoen
- Department of Biology, McGill University, Montréal, QC, Canada
| | - Thomas E Bureau
- Department of Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
150
|
Joly-Lopez Z, Bureau TE. Diversity and evolution of transposable elements in Arabidopsis. Chromosome Res 2015; 22:203-16. [PMID: 24801342 DOI: 10.1007/s10577-014-9418-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Transposable elements are mobile genetic elements that have successfully populated eukaryotic genomes and show diversity in their structure and transposition mechanisms. Although first viewed solely as selfish, transposable elements are now known as important vectors to drive the adaptation and evolution of their host genome. Transposable elements can affect host gene structures, gene copy number, gene expression, and even as a source for novel genes. For example, a number of transposable element sequences have been co-opted to contribute to evolutionary innovation, such as the mammalian placenta and the vertebrate immune system. In plants, the need to adapt rapidly to changing environmental conditions is essential and is reflected, as will be discussed, by genome plasticity and an abundance of diverse, active transposon families. This review focuses on transposable elements in plants, particularly those that have beneficial effects on the host. We also emphasize the importance of having proper tools to annotate and classify transposons to better understand their biology.
Collapse
Affiliation(s)
- Zoé Joly-Lopez
- Department of Biology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|