101
|
Wu C, Liu H, Rong X, Liu J, Ding W, Cheng X, Xing J, Wang C. Phytochemical composition profile and space-time accumulation of secondary metabolites for Dracocephalum moldavica Linn. via UPLC-Q/TOF-MS and HPLC-DAD method. Biomed Chromatogr 2020; 34:e4865. [PMID: 32330321 DOI: 10.1002/bmc.4865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/22/2020] [Accepted: 04/22/2020] [Indexed: 11/06/2022]
Abstract
The aerial parts of Dracocephalum moldavica L. are extensively used in traditional ethnic medicines in China as a remedy for cardiovascular and cerebrovascular damage. However, the chemical composition and the accumulation of main secondary metabolites of D. moldavica in different natural environments remain unclear. This study aimed to conduct a qualitative and quantitative analysis of the main secondary metabolites to explore the quality variation of D. moldavica in markets. The evaluation of space-time accumulation of main secondary metabolites in D. moldavica was carried out during different growth periods and in different geographical locations. A total of 35 ingredients were detected and 24 identified, including 21 flavonoids, two phenolic acids and one coumarin by UPLC-QTOF-MS method. Furthermore, a simple and convenient HPLC method was successfully developed for the simultaneous determination of lutelin-7-O-glucuronide and tilianin and rosmarinic acid in D. moldavica. The results of space-time accumulation analysis showed the distinct variation of secondary metabolites of D. moldavica with the growth period and geographical location. Finally, the current study provided a meaningful and useful approach for comprehensively evaluating the quality of D. moldavica.
Collapse
Affiliation(s)
- Chao Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China.,Institute of Xinjiang Pharmaceutical Research, Urumqi, China
| | - Hanze Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Xiaojuan Rong
- Institute of Xinjiang Pharmaceutical Research, Urumqi, China
| | - Jiahao Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Wenzheng Ding
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Jianguo Xing
- Institute of Xinjiang Pharmaceutical Research, Urumqi, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China.,Institute of Xinjiang Pharmaceutical Research, Urumqi, China
| |
Collapse
|
102
|
Hu Y, Elfstrand M, Stenlid J, Durling MB, Olson Å. The conifer root rot pathogens Heterobasidion irregulare and Heterobasidion occidentale employ different strategies to infect Norway spruce. Sci Rep 2020; 10:5884. [PMID: 32246017 PMCID: PMC7125170 DOI: 10.1038/s41598-020-62521-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Heterobasidion irregulare and H. occidentale are two closely related conifer root rot pathogens in the H. annosum sensu lato (s.l.) species complex. The two species H. irregulare and H. occidentale have different host preference with pine and non-pine tree species favored, respectively. The comparison of transcriptomes of H. irregulare and H. occidentale growing in Norway spruce bark, a susceptible host non-native to North America, showed large differences in gene expression. Heterobasidion irregulare induced more genes involved in detoxification of host compounds and in production of secondary metabolites, while the transcriptome induced in H. occidentale was more oriented towards carbohydrate degradation. Along with their separated evolutionary history, the difference might be driven by their host preferences as indicated by the differentially expressed genes enriched in particular Gene Ontology terms.
Collapse
Affiliation(s)
- Yang Hu
- Zhejiang Academy of Forestry, Liuhe Road, 310023, Hangzhou, China.,Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 05, Uppsala, Sweden
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 05, Uppsala, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 05, Uppsala, Sweden
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 05, Uppsala, Sweden
| | - Åke Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 05, Uppsala, Sweden.
| |
Collapse
|
103
|
Fernández de Simón B, Sanz M, Sánchez-Gómez D, Cadahía E, Aranda I. Rising [CO 2] effect on leaf drought-induced metabolome in Pinus pinaster Aiton: Ontogenetic- and genotypic-specific response exhibit different metabolic strategies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:201-216. [PMID: 32078898 DOI: 10.1016/j.plaphy.2020.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Rising atmospheric CO2 concentrations ([CO2]) together with water deficit can influence ecological interactions of trees through an array of chemically driven changes in plant leaves. In four drought stressed Pinus pinaster genotypes, grown under two levels of atmospheric [CO2] (ambient (aCO2) and enriched (eCO2)) the metabolome of adult and juvenile needles was analyzed to know if the metabolic responses to this environmental situation could be genotype-dependent and vary according to the stage of needle ontogeny. Drought had the highest incidence, followed by needle ontogeny, being lower the eCO2 effect. The eCO2 reduced, eliminated or countered the 50 (adult needles) - 44% (juvenile) of the drought-induced changes, suggesting that CO2-enriched plants could perceived less oxidative stress under drought, and proving that together, these two abiotic factors triggered a metabolic response different from that under single factors. Genotype drought tolerance and ontogenetic stage determined the level of metabolite accumulation and the plasticity to eCO2 under drought, which was mainly reflected in antioxidant levels and tree chemical defense. At re-watering, previously water stressed plants showed both, reduced C and N metabolism, and a "drought memory effect", favoring antioxidants and osmolyte storage. This effect showed variations regarding genotype drought-tolerance, needle ontogeny and [CO2], with remarkable contribution of terpenoids. Chemical defense and drought tolerance were somehow linked, increasing chemical defense during recovery in the most drought-sensitive individuals. The better adaptation of trees to drought under eCO2, as well as their ability to recover better from water stress, are essential for the survival of forest trees.
Collapse
Affiliation(s)
- Brígida Fernández de Simón
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain.
| | - Miriam Sanz
- School of Pharmaceutical Sciences, University of São Paulo, Bl 17 05508-900, São Paulo, SP, Brazil.
| | - David Sánchez-Gómez
- Instituto Regional de Investigación, Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Centro de Investigación Agroforestal de Albadalejito (CIAF), Carretera Toledo-Cuenca, km 174, 16194, Cuenca, Spain.
| | - Estrella Cadahía
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain.
| | - Ismael Aranda
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain; Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Palma de Mallorca, Islas Baleares, Spain.
| |
Collapse
|
104
|
Aiello D, Siciliano C, Mazzotti F, Di Donna L, Risoluti R, Napoli A. Protein Extraction, Enrichment and MALDI MS and MS/MS Analysis from Bitter Orange Leaves ( Citrus aurantium). Molecules 2020; 25:E1485. [PMID: 32218285 PMCID: PMC7181213 DOI: 10.3390/molecules25071485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Citrus aurantium is a widespread tree in the Mediterranean area, and it is mainly used as rootstock for other citrus. In the present study, a vacuum infiltration centrifugation procedure, followed by solid phase extraction matrix-assisted laser desorption ionization tandem mass spectrometry (SPE MALDI MS/MS) analysis, was adopted to isolate proteins from leaves. The results of mass spectrometry (MS) profiling, combined with the top-down proteomics approach, allowed the identification of 78 proteins. The bioinformatic databases TargetP, SignalP, ChloroP, WallProtDB, and mGOASVM-Loc were used to predict the subcellular localization of the identified proteins. Among 78 identified proteins, 20 were targeted as secretory pathway proteins and 36 were predicted to be in cellular compartments including cytoplasm, nucleus, and cell membrane. The largest subcellular fraction was the secretory pathway, accounting for 25% of total proteins. Gene Ontology (GO) of Citrus sinensis was used to simplify the functional annotation of the proteins that were identified in the leaves. The Kyoto Encyclopedia of Genes and Genomes (KEGG) showed the enrichment of metabolic pathways including glutathione metabolism and biosynthesis of secondary metabolites, suggesting that the response to a range of environmental factors is the key processes in citrus leaves. Finally, the Lipase GDSL domain-containing protein GDSL esterase/lipase, which is involved in plant development and defense response, was for the first time identified and characterized in Citrus aurantium.
Collapse
Affiliation(s)
- Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy;
| | - Fabio Mazzotti
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| | - Leonardo Di Donna
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| | - Roberta Risoluti
- Department of Chemistry, Università degli Studi di Roma La Sapienza, 00185 Rome, Italy;
| | - Anna Napoli
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.A.); (F.M.); (L.D.D.)
| |
Collapse
|
105
|
Kruger EL, Keefover-Ring K, Holeski LM, Lindroth RL. To compete or defend: linking functional trait variation with life-history tradeoffs in a foundation tree species. Oecologia 2020; 192:893-907. [DOI: 10.1007/s00442-020-04622-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 02/08/2020] [Indexed: 01/09/2023]
|
106
|
Mageroy MH, Christiansen E, Långström B, Borg-Karlson AK, Solheim H, Björklund N, Zhao T, Schmidt A, Fossdal CG, Krokene P. Priming of inducible defenses protects Norway spruce against tree-killing bark beetles. PLANT, CELL & ENVIRONMENT 2020; 43:420-430. [PMID: 31677172 DOI: 10.1111/pce.13661] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Plants can form an immunological memory known as defense priming, whereby exposure to a priming stimulus enables quicker or stronger response to subsequent attack by pests and pathogens. Such priming of inducible defenses provides increased protection and reduces allocation costs of defense. Defense priming has been widely studied for short-lived model plants such as Arabidopsis, but little is known about this phenomenon in long-lived plants like spruce. We compared the effects of pretreatment with sublethal fungal inoculations or application of the phytohormone methyl jasmonate (MeJA) on the resistance of 48-year-old Norway spruce (Picea abies) trees to mass attack by a tree-killing bark beetle beginning 35 days later. Bark beetles heavily infested and killed untreated trees but largely avoided fungus-inoculated trees and MeJA-treated trees. Quantification of defensive terpenes at the time of bark beetle attack showed fungal inoculation induced 91-fold higher terpene concentrations compared with untreated trees, whereas application of MeJA did not significantly increase terpenes. These results indicate that resistance in fungus-inoculated trees is a result of direct induction of defenses, whereas resistance in MeJA-treated trees is due to defense priming. This work extends our knowledge of defense priming from model plants to an ecologically important tree species.
Collapse
Affiliation(s)
- Melissa H Mageroy
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Erik Christiansen
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Bo Långström
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Anna-Karin Borg-Karlson
- Ecological Chemistry Group, Department of Chemistry, Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Halvor Solheim
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Niklas Björklund
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Tao Zhao
- School of Science and Technology, Örebro University, Örebro, SE-701 82, Sweden
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, 1431, Norway
| |
Collapse
|
107
|
dos Santos EC, Pirovani CP, Correa SC, Micheli F, Gramacho KP. The pathogen Moniliophthora perniciosa promotes differential proteomic modulation of cacao genotypes with contrasting resistance to witches´ broom disease. BMC PLANT BIOLOGY 2020; 20:1. [PMID: 31898482 PMCID: PMC6941324 DOI: 10.1186/s12870-019-2170-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Witches' broom disease (WBD) of cacao (Theobroma cacao L.), caused by Moniliophthora perniciosa, is the most important limiting factor for the cacao production in Brazil. Hence, the development of cacao genotypes with durable resistance is the key challenge for control the disease. Proteomic methods are often used to study the interactions between hosts and pathogens, therefore helping classical plant breeding projects on the development of resistant genotypes. The present study compared the proteomic alterations between two cacao genotypes standard for WBD resistance and susceptibility, in response to M. perniciosa infection at 72 h and 45 days post-inoculation; respectively the very early stages of the biotrophic and necrotrophic stages of the cacao x M. perniciosa interaction. RESULTS A total of 554 proteins were identified, being 246 in the susceptible Catongo and 308 in the resistant TSH1188 genotypes. The identified proteins were involved mainly in metabolism, energy, defense and oxidative stress. The resistant genotype showed more expressed proteins with more variability associated with stress and defense, while the susceptible genotype exhibited more repressed proteins. Among these proteins, stand out pathogenesis related proteins (PRs), oxidative stress regulation related proteins, and trypsin inhibitors. Interaction networks were predicted, and a complex protein-protein interaction was observed. Some proteins showed a high number of interactions, suggesting that those proteins may function as cross-talkers between these biological functions. CONCLUSIONS We present the first study reporting the proteomic alterations of resistant and susceptible genotypes in the T. cacao x M. perniciosa pathosystem. The important altered proteins identified in the present study are related to key biologic functions in resistance, such as oxidative stress, especially in the resistant genotype TSH1188, that showed a strong mechanism of detoxification. Also, the positive regulation of defense and stress proteins were more evident in this genotype. Proteins with significant roles against fungal plant pathogens, such as chitinases, trypsin inhibitors and PR 5 were also identified, and they may be good resistance markers. Finally, important biological functions, such as stress and defense, photosynthesis, oxidative stress and carbohydrate metabolism were differentially impacted with M. perniciosa infection in each genotype.
Collapse
Affiliation(s)
- Everton Cruz dos Santos
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- Stem Cell Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
| | - Stephany Cristiane Correa
- Stem Cell Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Fabienne Micheli
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- CIRAD, UMR AGAP, F-34398, Montpellier, France
| | - Karina Peres Gramacho
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- Molecular Plant Pathology Laboratory, Cocoa Research Center (CEPEC), CEPLAC, Km 22 Rod. Ilhéus-Itabuna, Ilhéus, Bahia 45600-970 Brazil
| |
Collapse
|
108
|
Engelberth J. Primed to grow: a new role for green leaf volatiles in plant stress responses. PLANT SIGNALING & BEHAVIOR 2019; 15:1701240. [PMID: 31814504 PMCID: PMC7012090 DOI: 10.1080/15592324.2019.1701240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 05/27/2023]
Abstract
Green leaf volatiles (GLV) have been well described to prime plants against biotic and abiotic stresses resulting in an accelerated and/or enhanced protective response. Since investments in priming are considered to be minor, it has been assumed that costs for plants using this mechanism are negligible. By analyzing the costs of defense priming by GLV, we found that while initially growth rates of plants were reduced within the first hours after treatment, significantly increased growth rates were found at later time points. This primed growth response in maize seedlings differs from primed defense responses in that it also affects systemic parts of the plant and suggests a metabolic component to be involved in the regulation of this process.
Collapse
Affiliation(s)
- Jurgen Engelberth
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
109
|
Rosati VC, Blomstedt CK, Møller BL, Garnett T, Gleadow R. The Interplay Between Water Limitation, Dhurrin, and Nitrate in the Low-Cyanogenic Sorghum Mutant adult cyanide deficient class 1. FRONTIERS IN PLANT SCIENCE 2019; 10:1458. [PMID: 31798611 PMCID: PMC6874135 DOI: 10.3389/fpls.2019.01458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/21/2019] [Indexed: 05/27/2023]
Abstract
Sorghum bicolor (L.) Moench produces the nitrogen-containing natural product dhurrin that provides chemical defense against herbivores and pathogens via the release of toxic hydrogen cyanide gas. Drought can increase dhurrin in shoot tissues to concentrations toxic to livestock. As dhurrin is also a remobilizable store of reduced nitrogen and plays a role in stress mitigation, reductions in dhurrin may come at a cost to plant growth and stress tolerance. Here, we investigated the response to an extended period of water limitation in a unique EMS-mutant adult cyanide deficient class 1 (acdc1) that has a low dhurrin content in the leaves of mature plants. A mutant sibling line was included to assess the impact of unknown background mutations. Plants were grown under three watering regimes using a gravimetric platform, with growth parameters and dhurrin and nitrate concentrations assessed over four successive harvests. Tissue type was an important determinant of dhurrin and nitrate concentrations, with the response to water limitation differing between above and below ground tissues. Water limitation increased dhurrin concentration in the acdc1 shoots to the same extent as in wild-type plants and no growth advantage or disadvantage between the lines was observed. Lower dhurrin concentrations in the acdc1 leaf tissue when fully watered correlated with an increase in nitrate content in the shoot and roots of the mutant. In targeted breeding efforts to down-regulate dhurrin concentration, parallel effects on the level of stored nitrates should be considered in all vegetative tissues of this important forage crop to avoid potential toxic effects.
Collapse
Affiliation(s)
- Viviana C. Rosati
- School of Biological Sciences Faculty of Science Monash University, Clayton, Victoria, Australia
| | - Cecilia K. Blomstedt
- School of Biological Sciences Faculty of Science Monash University, Clayton, Victoria, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory and VILLUM Research Centre for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trevor Garnett
- The Australian Plant Phenomics Facility, The University of Adelaide, Adelaide, Australia
| | - Ros Gleadow
- School of Biological Sciences Faculty of Science Monash University, Clayton, Victoria, Australia
| |
Collapse
|
110
|
Wilkinson SW, Magerøy MH, López Sánchez A, Smith LM, Furci L, Cotton TEA, Krokene P, Ton J. Surviving in a Hostile World: Plant Strategies to Resist Pests and Diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:505-529. [PMID: 31470772 DOI: 10.1146/annurev-phyto-082718-095959] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
As primary producers, plants are under constant pressure to defend themselves against potentially deadly pathogens and herbivores. In this review, we describe short- and long-term strategies that enable plants to cope with these stresses. Apart from internal immunological strategies that involve physiological and (epi)genetic modifications at the cellular level, plants also employ external strategies that rely on recruitment of beneficial organisms. We discuss these strategies along a gradient of increasing timescales, ranging from rapid immune responses that are initiated within seconds to (epi)genetic adaptations that occur over multiple plant generations. We cover the latest insights into the mechanistic and evolutionary underpinnings of these strategies and present explanatory models. Finally, we discuss how knowledge from short-lived model species can be translated to economically and ecologically important perennials to exploit adaptive plant strategies and mitigate future impacts of pests and diseases in an increasingly interconnected and changing world.
Collapse
Affiliation(s)
- Samuel W Wilkinson
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Melissa H Magerøy
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Ana López Sánchez
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lisa M Smith
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - Leonardo Furci
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - T E Anne Cotton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - Paal Krokene
- Department of Molecular Plant Biology, Division for Biotechnology and Plant Health, Norwegian Institute for Bioeconomy Research, 1431 Ås, Norway
| | - Jurriaan Ton
- Plant Production and Protection Institute and Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
111
|
Hagenbucher S, Eisenring M, Meissle M, Rathore KS, Romeis J. Constitutive and induced insect resistance in RNAi-mediated ultra-low gossypol cottonseed cotton. BMC PLANT BIOLOGY 2019; 19:322. [PMID: 31319793 PMCID: PMC6639952 DOI: 10.1186/s12870-019-1921-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/03/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Besides fibers, cotton plants also produce a large amount of seeds with a high oil and protein content. The use of these seeds is restricted by their high contents of the terpenoid gossypol, which is harmful to humans and livestock. Using a genetic engineering approach, "Ultra-low gossypol cottonseed" (ULGCS) plants were produced by knocking down an enzyme that catalyzes the formation of a precursor of gossypol. This was accomplished via RNAi-mediated silencing of the target gene using a seed-specific α-globulin promotor. Since gossypol is also a crucial defense mechanism against leaf-feeding herbivores, ULGCS plants might possess lower herbivore resistance than non-engineered plants. Therefore, we tested the constitutive and inducible direct insect resistance of two ULGCS cotton lines against the African cotton leafworm, Spodoptera littoralis. RESULT The herbivore was equally affected by both ULGCS lines and the control (Coker 312) line when feeding on fully expanded true leaves from undamaged plants and plants induced by jasmonic acid. When plants were induced by caterpillar-damage, however, S. littoralis larvae performed better on the ULGCS plants. Terpenoid analyses revealed that the ULGCS lines were equally inducible as the control plants. Levels of terpenoids were always lower in one of the two lines. In the case of cotyledons, caterpillars performed better on ULGCS cotton than on conventional cotton. This was likely caused by reduced levels of gossypol in ULGCS cotyledons. CONCLUSION Despite those effects, the insect resistance of ULGSC cotton can be considered as largely intact and the plants may, therefore, be an interesting alternative to conventional cotton varieties.
Collapse
Affiliation(s)
- Steffen Hagenbucher
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Michael Eisenring
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Michael Meissle
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Keerti S. Rathore
- Department of Soil and Crop Sciences, Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX USA
| | - Jörg Romeis
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| |
Collapse
|
112
|
Scott-Brown AS, Arnold SEJ, Kite GC, Farrell IW, Farman DI, Collins DW, Stevenson PC. Mechanisms in mutualisms: a chemically mediated thrips pollination strategy in common elder. PLANTA 2019; 250:367-379. [PMID: 31069523 DOI: 10.1007/s00425-019-03176-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
This study provides first evidence of a thrips species pollinating Sambucus nigra and describes how interactions are driven by plant biochemical signalling and moderated by temporal changes in floral chemistry. The concept of flower-feeding thrips as pollinating insects in temperate regions is rarely considered as they are more frequently regarded to be destructive florivores feeding on pollen and surrounding plant tissue. Combining laboratory and field-based studies we examined interactions between Sambucus nigra (elderflower) and Thrips major within their native range to ascertain the role of thrips in the pollination of this species and to determine if floral chemicals mediated flower visits. If thrips provide a pollination service to S. nigra, then this will likely manifest in traits that attract the pollinating taxa at temporally critical points in floral development. T. major were highly abundant in inflorescences of S. nigra, entering flowers when stigmas were pollen-receptive and anthers were immature. When thrips were excluded from the inflorescences, fruit-set failed. Linalool was the major component of the inflorescence headspace with peak abundance coinciding with the highest number of adult thrips visiting flowers. Thrips were absent in buds and their numbers declined again in senescing flowers inversely correlating with the concentration of cyanogenic glycosides recorded in the floral tissue. Our data show that S. nigra floral chemistry mediates the behaviour of pollen-feeding thrips by attracting adults in high numbers to the flowers at pre-anthesis stage, while producing deterrent compounds prior to fruit development. Taking an integrative approach to studying thrips behaviour and floral biology we provide a new insight into the previously ambiguously defined pollination strategies of S. nigra and provide evidence suggesting that the relationship between T. major and S. nigra is mutualistic.
Collapse
Affiliation(s)
| | - Sarah E J Arnold
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, UK
| | | | | | - Dudley I Farman
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, UK
| | | | - Philip C Stevenson
- Royal Botanic Gardens Kew, Richmond, TW9 3AB, UK
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, UK
| |
Collapse
|
113
|
Guedes LM, Aguilera N, Ferreira BG, Riquelme S, Sáez-Carrillo K, Becerra J, Pérez C, Bustos E, Isaias RMS. Spatiotemporal variation in phenolic levels in galls of calophyids on Schinus polygama (Anacardiaceae). JOURNAL OF PLANT RESEARCH 2019; 132:509-520. [PMID: 31250145 DOI: 10.1007/s10265-019-01118-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
The expression of plant secondary metabolism is strongly controlled by plant both in time and space. Although the variation of secondary metabolites, such as soluble and structural phenolics (e.g., lignins), has been largely observed in gall-inducing insects, and compared to their non-galled host organs, only a few datasets recording such variation are available. Accordingly, the relative importance of spatiotemporal variability in phenolic contents, and the influence of gall developmental stages on the original composition of host organs are poorly discussed. To address this knowledge gap, we histochemically determined the sites of polyphenol and lignin accumulation, and the polyphenol contents in three developmental stages of two calophyid galls and their correspondent host organs. Current results indicate that the compartmentalization of phenolics and lignins on Schinus polygama (Cav.) Cabrera follows a similar pattern in the two-calophyid galls, accumulating in the outer (the external tissue layers) and in the inner tissue compartments (the cell layers in contact with the gall chamber). The non-accumulation in the median compartment (median parenchyma layers of gall wall with vascular bundles, where gall inducer feeds) is important for the inducer, because its mouth apparatus enter in contact with the cells of this compartment. Also, the concentration of phenolics has opposite dynamics, decreasing in leaf galls and increasing in stem galls, in temporal scale, i.e., from maturation toward senescence. The concentration of phenolics in non-galled host organs, and in both galls indicated the extended phenotype of Calophya rubra (Blanchard) and C. mammifex Burckhardt & Basset (Hemiptera: Sternorrhyncha: Psylloidea: Calophyidae) over the same host plant metabolic potentiality.
Collapse
Affiliation(s)
- Lubia M Guedes
- Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Narciso Aguilera
- Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Bruno G Ferreira
- Departamento de Botânica, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, 21941-902, Brazil
| | - Sebastián Riquelme
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Ave. Cordillera 2634, CP 4191996, Coronel, Chile
| | - Katia Sáez-Carrillo
- Departamento de Estadística, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, CP 4030000, Concepción, Chile
| | - José Becerra
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Claudia Pérez
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Evelyn Bustos
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, CP 4030000, Concepción, Chile
| | - Rosy M S Isaias
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-090, Brazil.
| |
Collapse
|
114
|
van Boheemen LA, Bou‐Assi S, Uesugi A, Hodgins KA. Rapid growth and defence evolution following multiple introductions. Ecol Evol 2019; 9:7942-7956. [PMID: 31380062 PMCID: PMC6662289 DOI: 10.1002/ece3.5275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/23/2019] [Accepted: 05/04/2019] [Indexed: 01/02/2023] Open
Abstract
Rapid adaptation can aid invasive populations in their competitive success. Resource allocation trade-off hypotheses predict higher resource availability or the lack of natural enemies in introduced ranges allow for increased growth and reproduction, thus contributing to invasive success. Evidence for such hypotheses is however equivocal and tests among multiple ranges over productivity gradients are required to provide a better understanding of the general applicability of these theories.Using common gardens, we investigated the adaptive divergence of various constitutive and inducible defence-related traits between the native North American and introduced European and Australian ranges, while controlling for divergence due to latitudinal trait clines, individual resource budgets, and population differentiation, using >11,000 SNPs.Rapid, repeated clinal adaptation in defence-related traits was apparent despite distinct demographic histories. We also identified divergence among ranges in some defence-related traits, although differences in energy budgets among ranges may explain some, but not all, defence-related trait divergence. We do not identify a general reduction in defence in concert with an increase in growth among the multiple introduced ranges as predicted trade-off hypotheses. Synthesis: The rapid spread of invasive species is affected by a multitude of factors, likely including adaptation to climate and escape from natural enemies. Unravelling the mechanisms underlying invasives' success enhances understanding of eco-evolutionary theory and is essential to inform management strategies in the face of ongoing climate change. OPEN RESEARCH BADGES This article has been awarded Open Materials, Open Data, Preregistered Research Designs Badges. All materials and data are publicly accessible via the Open Science Framework at https://doi.org/10.6084/m9.figshare.8028875.v1, https://github.com/lotteanna/defence_adaptation,https://doi.org/10.1101/435271.
Collapse
Affiliation(s)
| | - Sarah Bou‐Assi
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Akane Uesugi
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | | |
Collapse
|
115
|
A Wheat β-Patchoulene Synthase Confers Resistance Against Herbivory in Transgenic Arabidopsis. Genes (Basel) 2019; 10:genes10060441. [PMID: 31185680 PMCID: PMC6628343 DOI: 10.3390/genes10060441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023] Open
Abstract
Terpenoids play important roles in plant defense. Although some terpene synthases have been characterized, terpenoids and their biosynthesis in wheat (Triticum aestivum L.) still remain largely unknown. Here, we describe the identification of a terpene synthase gene in wheat. It encodes a sesquiterpene synthase that catalyzes β-patchoulene formation with E,E-farnesyl diphosphate (FPP) as the substrate, thus named as TaPS. TaPS exhibits inducible expression in wheat in response to various elicitations. Particularly, alamethicin treatment strongly induces TaPS gene expression and β-patchoulene accumulation in wheat. Overexpression of TaPS in Arabidopsis successfully produces β-patchoulene, verifying the biochemical function of TaPS in planta. Furthermore, these transgenic Arabidopsis plants exhibit resistance against herbivory by repelling beet armyworm larvae feeding, thereby indicating anti-herbivory activity of β-patchoulene. The catalytic mechanism of TaPS is also explored by homology modeling and site-directed mutagenesis. Two key amino acids are identified to act in protonation and stability of intermediates and product formation. Taken together, one wheat sesquiterpene synthase is identified as β-patchoulene synthase. TaPS exhibits inducible gene expression and the sesquiterpene β-patchoulene is involved in repelling insect infestation.
Collapse
|
116
|
Pihain M, Gerhold P, Ducousso A, Prinzing A. Evolutionary response to coexistence with close relatives: increased resistance against specialist herbivores without cost for climatic-stress resistance. Ecol Lett 2019; 22:1285-1296. [PMID: 31172652 DOI: 10.1111/ele.13285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/02/2019] [Accepted: 03/08/2019] [Indexed: 01/25/2023]
Abstract
Why can hosts coexist with conspecifics or phylogenetically proximate neighbours despite sharing specialist enemies? Do the hosts evolve increased enemy resistance? If so, does this have costs in terms of climatic-stress resistance, or in such neighbourhoods, does climatic-stress select for resistances that are multifunctional against climate and enemies? We studied oak (Quercus petraea) descendants from provenances of contrasting phylogenetic neighbourhoods and climates in a 25-year-old common garden. We found that descendants from conspecific or phylogenetically proximate neighbourhoods had the toughest leaves and fewest leaf miners, but no reduction in climatic-stress resistance. Descendants from such neighbourhoods under cold or dry climates had the highest flavonol and anthocyanin levels and the thickest leaves. Overall, populations facing phylogenetically proximate neighbours can rapidly evolve herbivore resistance, without cost to climatic-stress resistance, but possibly facilitating resistance against cold and drought via multifunctional traits. Microevolution might hence facilitate ecological coexistence of close relatives and thereby macroevolutionary conservatism of niches.
Collapse
Affiliation(s)
- Mickael Pihain
- Research Unit "Ecosystèmes, Biodiversité, Evolution", University of Rennes 1 / CNRS, 35042, Rennes, France.,Institute of Ecology and Earth Sciences, University of Tartu, 51014, Tartu, Estonia
| | - Pille Gerhold
- Institute of Ecology and Earth Sciences, University of Tartu, 51014, Tartu, Estonia
| | - Alexis Ducousso
- BIOGECO, INRA, Université de Bordeaux, 33610, Cestas, France
| | - Andreas Prinzing
- Research Unit "Ecosystèmes, Biodiversité, Evolution", University of Rennes 1 / CNRS, 35042, Rennes, France
| |
Collapse
|
117
|
Ehlert M, Jagd LM, Braumann I, Dockter C, Crocoll C, Motawia MS, Møller BL, Lyngkjær MF. Deletion of biosynthetic genes, specific SNP patterns and differences in transcript accumulation cause variation in hydroxynitrile glucoside content in barley cultivars. Sci Rep 2019; 9:5730. [PMID: 30952890 PMCID: PMC6450869 DOI: 10.1038/s41598-019-41884-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/15/2019] [Indexed: 11/09/2022] Open
Abstract
Barley (Hordeum vulgare L.) produces five leucine-derived hydroxynitrile glucosides, potentially involved in alleviating pathogen and environmental stresses. These compounds include the cyanogenic glucoside epiheterodendrin. The biosynthetic genes are clustered. Total hydroxynitrile glucoside contents were previously shown to vary from zero to more than 10,000 nmoles g-1 in different barley lines. To elucidate the cause of this variation, the biosynthetic genes from the high-level producer cv. Mentor, the medium-level producer cv. Pallas, and the zero-level producer cv. Emir were investigated. In cv. Emir, a major deletion in the genome spanning most of the hydroxynitrile glucoside biosynthetic gene cluster was identified and explains the complete absence of hydroxynitrile glucosides in this cultivar. The transcript levels of the biosynthetic genes were significantly higher in the high-level producer cv. Mentor compared to the medium-level producer cv. Pallas, indicating transcriptional regulation as a contributor to the variation in hydroxynitrile glucoside levels. A correlation between distinct single nucleotide polymorphism (SNP) patterns in the biosynthetic gene cluster and the hydroxynitrile glucoside levels in 227 barley lines was identified. It is remarkable that in spite of the demonstrated presence of a multitude of SNPs and differences in transcript levels, the ratio between the five hydroxynitrile glucosides is maintained across all the analysed barley lines. This implies the involvement of a stably assembled multienzyme complex.
Collapse
Affiliation(s)
- Marcus Ehlert
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Lea Møller Jagd
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Mohammed Saddik Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Michael Foged Lyngkjær
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
118
|
Huang J, Hammerbacher A, Weinhold A, Reichelt M, Gleixner G, Behrendt T, van Dam NM, Sala A, Gershenzon J, Trumbore S, Hartmann H. Eyes on the future - evidence for trade-offs between growth, storage and defense in Norway spruce. THE NEW PHYTOLOGIST 2019; 222:144-158. [PMID: 30289558 DOI: 10.1111/nph.15522] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 05/20/2023]
Abstract
Carbon (C) allocation plays a central role in tree responses to environmental changes. Yet, fundamental questions remain about how trees allocate C to different sinks, for example, growth vs storage and defense. In order to elucidate allocation priorities, we manipulated the whole-tree C balance by modifying atmospheric CO2 concentrations [CO2 ] to create two distinct gradients of declining C availability, and compared how C was allocated among fluxes (respiration and volatile monoterpenes) and biomass C pools (total biomass, nonstructural carbohydrates (NSC) and secondary metabolites (SM)) in well-watered Norway spruce (Picea abies) saplings. Continuous isotope labelling was used to trace the fate of newly-assimilated C. Reducing [CO2 ] to 120 ppm caused an aboveground C compensation point (i.e. net C balance was zero) and resulted in decreases in growth and respiration. By contrast, soluble sugars and SM remained relatively constant in aboveground young organs and were partially maintained with a constant allocation of newly-assimilated C, even at expense of root death from C exhaustion. We conclude that spruce trees have a conservative allocation strategy under source limitation: growth and respiration can be downregulated to maintain 'operational' concentrations of NSC while investing newly-assimilated C into future survival by producing SM.
Collapse
Affiliation(s)
- Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, 0028, Pretoria, South Africa
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Gerd Gleixner
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Thomas Behrendt
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Dornburger-Str. 159, 07743, Jena, Germany
| | - Anna Sala
- Division of Biological Sciences, The University of Montana, Missoula, MT, 59812, USA
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Susan Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| |
Collapse
|
119
|
Souza PFN, Garcia-Ruiz H, Carvalho FEL. What proteomics can reveal about plant-virus interactions? Photosynthesis-related proteins on the spotlight. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2019; 31:227-248. [PMID: 31355128 PMCID: PMC6660014 DOI: 10.1007/s40626-019-00142-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant viruses are responsible for losses in worldwide production of numerous economically important food and fuel crops. As obligate cellular parasites with very small genomes, viruses rely on their hosts for replication, assembly, intra- and intercellular movement, and attraction of vectors for dispersal. Chloroplasts are photosynthesis and are the site of replication for several viruses. When viruses replicate in chloroplasts, photosynthesis, an essential process in plant physiology, is inhibited. The mechanisms underlying molecular and biochemical changes during compatible and incompatible plants-virus interactions, are only beginning to be elucidated, including changes in proteomic profiles induced by virus infections. In this review, we highlight the importance of proteomic studies to understand plant-virus interactions, especially emphasizing the changes in photosynthesis-related protein accumulation. We focus on: (a) chloroplast proteins that differentially accumulate during viral infection; (b) the significance with respect to chloroplast-virus interaction; and (c) alterations in plant's energetic metabolism and the subsequently the plant defense mechanisms to overcome viral infection.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Fabricio E L Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
120
|
Mei X, Liu Y, Huang H, Du F, Huang L, Wu J, Li Y, Zhu S, Yang M. Benzothiazole inhibits the growth of Phytophthora capsici through inducing apoptosis and suppressing stress responses and metabolic detoxification. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 154:7-16. [PMID: 30765059 DOI: 10.1016/j.pestbp.2018.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/21/2018] [Accepted: 12/10/2018] [Indexed: 05/22/2023]
Abstract
Benzothiazole (BZO) is an antimicrobial secondary metabolite volatilized by many plants and microbes. However, the mechanism of BZO against phytopathogens is still unclear. Here, we found that BZO has antimicrobial activity against the oomycete pathogen Phytophthora capsici. Transcriptome and proteome analyses demonstrated that BZO significantly suppressed the expression of genes and proteins involved in morphology, abiotic stress defense and detoxification, but induced the activity of apoptosis. Annexin V-FITC/PI staining confirmed that the process of apoptosis was significantly induced by BZO at concentration of 150 mg L-1. FITC-phalloidin actin-cytoskeleton staining combined with hyphal cell wall staining and hyphal ultrastructure studies further confirmed that BZO disrupted the cell membrane and hyphal morphology through disrupting the cytoskeleton, eventually inhibiting the growth of hyphae. These data demonstrated that BZO has multiple modes of action and may act as potential leading compound for the development of new oomycete fungicides. These results also showed that the combination of transcriptomic and proteomic approaches was a useful method for exploring the novel antifungal mechanisms of natural compounds.
Collapse
Affiliation(s)
- Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Fei Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Lanlin Huang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Jiaqing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yiwen Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Min Yang
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
121
|
Low Water Availability Increases Necrosis in Picea abies after Artificial Inoculation with Fungal Root Rot Pathogens Heterobasidion parviporum and Heterobasidion annosum. FORESTS 2019. [DOI: 10.3390/f10010055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research Highlights: Dedicated experiments to investigate how disturbances will affect Heterobasidion sp.—Norway spruce pathosystems are important, in order to develop different strategies to limit the spread of Heterobasidion annosum s.l. under the predicted climate change. Here, we report on a greenhouse experiment to evaluate the effects of water availability on the infection severity of Heterobasidion parviporum or Heterobasidion annosum, respectively, on Picea abies saplings. Background and Objectives: Changes in climatic conditions and intense logging will continue to promote H. annosum s.l. in conifer forests, increasing annual economic losses. Thus, our aim was to test if disease severity in Norway spruce was greater after infection with H. parviporum or H. annosum in low water availability conditions, compared to seedlings with high water availability. Materials and Methods: We performed inoculation studies of three-year-old saplings in a greenhouse. Saplings were treated as high (+) or low (−) water groups: High water group received double the water amount than the low water group. The necrosis observed after pathogen inoculation was measured and analyzed. Results: The seedling growth was negatively influenced in the lower water group. In addition, the water availability enhanced the necrosis length of H. parviporum in phloem and sapwood (vertical length) in the low water group. H. annosum benefited only in horizontal length in the phloem. Conclusions: Disturbances related to water availability, especially low water conditions, can have negative effects on the tree host and benefit the infection ability of the pathogens in the host.
Collapse
|
122
|
Chen BJW, Hajiboland R, Bahrami-Rad S, Moradtalab N, Anten NPR. Presence of Belowground Neighbors Activates Defense Pathways at the Expense of Growth in Tobacco Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:751. [PMID: 31263473 PMCID: PMC6584819 DOI: 10.3389/fpls.2019.00751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/22/2019] [Indexed: 05/20/2023]
Abstract
Plants can detect the presence of their neighbors belowground, often responding with changes in root growth for resource competition. Recent evidence also implies that perception of neighbors may also elicit defense responses, however, the associated metabolic activities are unclear. We investigated primary and defense-related secondary metabolisms and hormone expressions in tobaccos (Nicotiana rustica) grown either with own roots or roots of another conspecifics in hydroponic condition. The results showed that non-self root interaction significantly reduced photosynthetic activity and assimilate production, leading to a reduction of growth. Non-self interaction also modified plant phenylpropanoids metabolism, yielding higher lignin content (i.e., structural resistance) at whole plant level and higher phenolics accumulation (i.e., chemical defense) in roots. All these metabolic responses were associated with enhanced expressions of phytohormones, particularly jasmonic acid, salicylic acid and cytokinin in roots and abscisic acid in leaves, at the early stage of non-self interaction. Since the presence of neighbors often increase the probability of attacks from, e.g., pathogens and pests, this defense activation may act as an adaptation of plants to these possible upcoming attacks.
Collapse
Affiliation(s)
- Bin J. W. Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Roghieh Hajiboland
- Department of Plant Science, University of Tabriz, Tabriz, Iran
- *Correspondence: Roghieh Hajiboland,
| | | | - Narges Moradtalab
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Niels P. R. Anten
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
123
|
Escobar-Bravo R, Ruijgrok J, Kim HK, Grosser K, Van Dam NM, Klinkhamer PGL, Leiss KA. Light Intensity-Mediated Induction of Trichome-Associated Allelochemicals Increases Resistance Against Thrips in Tomato. PLANT & CELL PHYSIOLOGY 2018; 59:2462-2475. [PMID: 30124946 PMCID: PMC6290487 DOI: 10.1093/pcp/pcy166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/10/2018] [Indexed: 05/20/2023]
Abstract
In cultivated tomato (Solanum lycopersicum), increases in photosynthetically active radiation (PAR) induce type VI leaf glandular trichomes, which are important defensive structures against arthropod herbivores. Yet, how PAR affects the type VI trichome-associated leaf chemistry and its biological significance with respect to other photomorphogenic responses in this agronomically important plant species is unknown. We used the type VI trichome-deficient tomato mutant odorless-2 (od-2) and its wild type to investigate the influence of PAR on trichome-associated chemical defenses against thrips (Frankliniella occidentalis). High PAR increased thrips resistance in wild-type plants, but not in od-2. Furthermore, under high PAR, thrips preferred od-2 over the wild type. Both genotypes increased type VI trichome densities under high PAR. Wild-type plants, however, produced more trichome-associated allelochemicals, i.e. terpenes and phenolics, these being undetectable or barely altered in od-2. High PAR increased leaf number and thickness, and induced profound but similar metabolomic changes in wild-type and od-2 leaves. Enhanced PAR also increased levels of ABA in wild-type and od-2 plants, and of auxin in od-2, while the salicylic acid and jasmonate concentrations were unaltered. However, in both genotypes, high PAR induced the expression of jasmonic acid-responsive defense-related genes. Taken together, our results demonstrate that high PAR-mediated induction of trichome-associated chemical defenses plays a prominent role in tomato-thrips interactions.
Collapse
Affiliation(s)
- Roc�o Escobar-Bravo
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Jasmijn Ruijgrok
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Katharina Grosser
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger-Str. 159, Jena, Germany
| | - Nicole M Van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger-Str. 159, Jena, Germany
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Kirsten A Leiss
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| |
Collapse
|
124
|
Forman V, Bjerg-Jensen N, Dyekjær JD, Møller BL, Pateraki I. Engineering of CYP76AH15 can improve activity and specificity towards forskolin biosynthesis in yeast. Microb Cell Fact 2018; 17:181. [PMID: 30453976 PMCID: PMC6240942 DOI: 10.1186/s12934-018-1027-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background Forskolin is a high-value diterpenoid produced exclusively by the Lamiaceae plant Coleus forskohlii. Today forskolin is used pharmaceutically for its adenyl-cyclase activating properties. The limited availability of pure forskolin is currently hindering its full utilization, thus a new environmentally friendly, scalable and sustainable strategy is needed for forskolin production. Recently, the entire biosynthetic pathway leading to forskolin was elucidated. The key steps of the pathway are catalyzed by cytochrome P450 enzymes (CYPs), which have been shown to be the limiting steps of the pathway. Here we study whether protein engineering of the substrate recognition sites (SRSs) of CYPs can improve their efficiency towards forskolin biosynthesis in yeast. Results As a proof of concept, we engineered the enzyme responsible for the first putative oxygenation step of the forskolin pathway: the conversion of 13R-manoyl oxide to 11-oxo-13R-manoyl oxide, catalyzed by the CYP76AH15. Four CYP76AH15 variants—engineered in the SRS regions—yielded at least a twofold increase of 11-oxo-13R-manoyl oxide when expressed in yeast cells grown in microtiter plates. The highest titers (5.6-fold increase) were observed with the variant A99I, mutated in the SRS1 region. Double or triple CYP76AH15 mutant variants resulted in additional enzymes with optimized performances. Moreover, in planta CYP76AH15 can synthesize ferruginol from miltiradiene. In this work, we showed that the mutants affecting 11-oxo-13R-manoyl oxide synthesis, do not affect ferruginol production, and vice versa. The best performing variant, A99I, was utilized to reconstruct the forskolin biosynthetic pathway in yeast cells. Although these strains showed increased 11-oxo-manoyl oxide production and higher accumulation of other pathway intermediates compared to the native CYP76AH15, lower production of forskolin was observed. Conclusions As demonstrated for CYP76AH15, site-directed mutagenesis of SRS regions of plant CYPs may be an efficient and targeted approach to increase the performance of these enzymes. Although in this work we have managed to achieve higher efficiency and specificity of the first CYP of the pathway, further work is necessary in order to increase the overall production of forskolin in yeast cells. Electronic supplementary material The online version of this article (10.1186/s12934-018-1027-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Victor Forman
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.,Evolva A/S, Copenhagen, Denmark
| | | | | | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.,bioSYNergy, Center for Synthetic Biology, 1871, Frederiksberg C, Denmark.,VILLUM, Research Center for Plant Plasticity, 1871, Frederiksberg C, Denmark
| | - Irini Pateraki
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark. .,bioSYNergy, Center for Synthetic Biology, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
125
|
de Simón BF, Cadahía E, Aranda I. Metabolic response to elevated CO 2 levels in Pinus pinaster Aiton needles in an ontogenetic and genotypic-dependent way. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:202-212. [PMID: 30216778 DOI: 10.1016/j.plaphy.2018.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Global climate changes involve elevated atmospheric [CO2], fostering the carbon allocation to tree sink tissues, partitioning it into metabolic pathways. We use metabolomics analysis in adult and juvenile needles of four Pinus pinaster genotypes exposed to two levels of growth [CO2]: ambient (400 μmol mol-1) and enriched (800 μmol mol-1), to know if the metabolic responses are genotype-dependent and vary according to the stage of needle ontogeny. The eCO2-induced changes in the needle metabolomes are more significant in secondary metabolism pathways and especially meaningful in juvenile needles. The heteroblasty has important consequences in the expression of the metabolome, and on the plasticity to CO2, determining the level of specific metabolite accumulation, showing an interdependence between adult and juvenile needles. The P. pinaster needle metabolomes also show clear quantitative differences linked to genotype, as well as regarding the metabolic response to eCO2, showing both, common and genotype-specific biochemical responses. Thus, the changes in flavonol levels are mainly genotype-independent, while those in terpenoid and free fatty acids are mainly genotype-dependent, ratifying the importance of genotype to determine the metabolic response to eCO2. To understand the adaptation mechanisms that tree species can develop to cope with eCO2 it is necessary to know the genetically distinct responses within a species to recognize the CO2-induced changes from the divergent approaches, what can facilitate knowing also the possible interrelation of the physiological and metabolic responses. That could explain the controversial effects of eCO2 on the carbon-based metabolite in conifers, at the inter- and intra-specific level.
Collapse
Affiliation(s)
- Brígida Fernández de Simón
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de La Coruña Km 7.5, 28040 Madrid, Spain.
| | - Estrella Cadahía
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de La Coruña Km 7.5, 28040 Madrid, Spain.
| | - Ismael Aranda
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, O.A., M.P. (INIA), Centro de Investigación Forestal, Carretera de La Coruña Km 7.5, 28040 Madrid, Spain; Instituto de Investigaciones Agroambientales y de Economía Del Agua (INAGEA), Palma de Mallorca, Islas Baleares, Spain.
| |
Collapse
|
126
|
Brandt S, Fachinger S, Tohge T, Fernie AR, Braun HP, Hildebrandt TM. Extended darkness induces internal turnover of glucosinolates in Arabidopsis thaliana leaves. PLoS One 2018; 13:e0202153. [PMID: 30092103 PMCID: PMC6084957 DOI: 10.1371/journal.pone.0202153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
Prolonged darkness leads to carbohydrate starvation, and as a consequence plants degrade proteins and lipids to oxidize amino acids and fatty acids as alternative substrates for mitochondrial ATP production. We investigated, whether the internal breakdown of glucosinolates, a major class of sulfur-containing secondary metabolites, might be an additional component of the carbohydrate starvation response in Arabidopsis thaliana (A. thaliana). The glucosinolate content of A. thaliana leaves was strongly reduced after seven days of darkness. We also detected a significant increase in the activity of myrosinase, the enzyme catalyzing the initial step in glucosinolate breakdown, coinciding with a strong induction of the main leaf myrosinase isoforms TGG1 and TGG2. In addition, nitrilase activity was increased suggesting a turnover via nitriles and carboxylic acids. Internal degradation of glucosinolates might also be involved in diurnal or developmental adaptations of the glucosinolate profile. We observed a diurnal rhythm for myrosinase activity in two-week-old plants. Furthermore, leaf myrosinase activity and protein abundance of TGG2 varied during plant development, whereas leaf protein abundance of TGG1 remained stable indicating regulation at the transcriptional as well as post-translational level.
Collapse
Affiliation(s)
- Saskia Brandt
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | - Sara Fachinger
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | | |
Collapse
|
127
|
Guo Q, Major IT, Howe GA. Resolution of growth-defense conflict: mechanistic insights from jasmonate signaling. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:72-81. [PMID: 29555489 DOI: 10.1016/j.pbi.2018.02.009] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 05/20/2023]
Abstract
Induced plant resistance depends on the production of specialized metabolites that repel attack by biotic aggressors and is often associated with reduced growth of vegetative tissues. Despite progress in understanding the signal transduction networks that control growth-defense tradeoffs, much remains to be learned about how growth rate is coordinated with changes in metabolism during growth-to-defense transitions. Here, we highlight recent advances in jasmonate research to suggest how a major branch of plant immunity is dynamically regulated to calibrate growth-defense balance with shifts in carbon availability. We review evidence that diminished growth, as an integral facet of induced resistance, may optimize the temporal and spatial expression of defense compounds without compromising other critical roles of central metabolism. New insights into the evolution of jasmonate signaling further suggest that opposing selective pressures associated with too much or too little defense may have shaped the emergence of a modular jasmonate pathway that integrates primary and specialized metabolism through the control of repressor-transcription factor complexes. A better understanding of the mechanistic basis of growth-defense balance has important implications for boosting plant productivity, including insights into how these tradeoffs may be uncoupled for agricultural improvement.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Energy-Plant Research Laboratory, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Ian T Major
- Department of Energy-Plant Research Laboratory, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
128
|
Pearse IS, Paul R, Ode PJ. Variation in Plant Defense Suppresses Herbivore Performance. Curr Biol 2018; 28:1981-1986.e2. [DOI: 10.1016/j.cub.2018.04.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/12/2018] [Accepted: 04/19/2018] [Indexed: 10/14/2022]
|
129
|
Bjarnholt N, Neilson EHJ, Crocoll C, Jørgensen K, Motawia MS, Olsen CE, Dixon DP, Edwards R, Møller BL. Glutathione transferases catalyze recycling of auto-toxic cyanogenic glucosides in sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1109-1125. [PMID: 29659075 DOI: 10.1111/tpj.13923] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/13/2018] [Accepted: 03/13/2018] [Indexed: 05/20/2023]
Abstract
Cyanogenic glucosides are nitrogen-containing specialized metabolites that provide chemical defense against herbivores and pathogens via the release of toxic hydrogen cyanide. It has been suggested that cyanogenic glucosides are also a store of nitrogen that can be remobilized for general metabolism via a previously unknown pathway. Here we reveal a recycling pathway for the cyanogenic glucoside dhurrin in sorghum (Sorghum bicolor) that avoids hydrogen cyanide formation. As demonstrated in vitro, the pathway proceeds via spontaneous formation of a dhurrin-derived glutathione conjugate, which undergoes reductive cleavage by glutathione transferases of the plant-specific lambda class (GSTLs) to produce p-hydroxyphenyl acetonitrile. This is further metabolized to p-hydroxyphenylacetic acid and free ammonia by nitrilases, and then glucosylated to form p-glucosyloxyphenylacetic acid. Two of the four GSTLs in sorghum exhibited high stereospecific catalytic activity towards the glutathione conjugate, and form a subclade in a phylogenetic tree of GSTLs in higher plants. The expression of the corresponding two GSTLs co-localized with expression of the genes encoding the p-hydroxyphenyl acetonitrile-metabolizing nitrilases at the cellular level. The elucidation of this pathway places GSTs as key players in a remarkable scheme for metabolic plasticity allowing plants to reverse the resource flow between general and specialized metabolism in actively growing tissue.
Collapse
Affiliation(s)
- Nanna Bjarnholt
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Elizabeth H J Neilson
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Mohammed Saddik Motawia
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Carl Erik Olsen
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - David P Dixon
- Center for Bioactive Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Robert Edwards
- Center for Bioactive Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Birger Lindberg Møller
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| |
Collapse
|
130
|
Blomstedt CK, Rosati VC, Lindberg Møller B, Gleadow R. Counting the costs: nitrogen partitioning in Sorghum mutants. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:705-718. [PMID: 32291046 DOI: 10.1071/fp17227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/14/2018] [Indexed: 05/27/2023]
Abstract
Long-standing growth/defence theories state that the production of defence compounds come at a direct cost to primary metabolism when resources are limited. However, such trade-offs are inherently difficult to quantify. We compared the growth and nitrogen partitioning in wild type Sorghum bicolor (L.) Moench, which contains the cyanogenic glucoside dhurrin, with unique mutants that vary in dhurrin production. The totally cyanide deficient 1 (tcd1) mutants do not synthesise dhurrin at all whereas mutants from the adult cyanide deficient class 1 (acdc1) have decreasing concentrations as plants age. Sorghum lines were grown at three different concentrations of nitrogen. Growth, chemical analysis, physiological measurements and expression of key genes in biosynthesis and turnover were determined for leaves, stems and roots at four developmental stages. Nitrogen supply, ontogeny, tissue type and genotype were all important determinants of tissue nitrate and dhurrin concentration and turnover. The higher growth of acdc1 plants strongly supports a growth/defence trade-off. By contrast, tcd1 plants had slower growth early in development, suggesting that dhurrin synthesis and turnover may be beneficial for early seedling growth rather than being a cost. The relatively small trade-off between nitrate and dhurrin suggests these may be independently regulated.
Collapse
Affiliation(s)
- Cecilia K Blomstedt
- School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia
| | - Viviana C Rosati
- School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory and VILLUM Research Centre for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Ros Gleadow
- School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia
| |
Collapse
|
131
|
Robakowski P, Bielinis E, Sendall K. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy. JOURNAL OF PLANT RESEARCH 2018; 131:505-523. [PMID: 29417301 PMCID: PMC5916994 DOI: 10.1007/s10265-018-1009-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/04/2018] [Indexed: 06/08/2023]
Abstract
This study addressed whether competition under different light environments was reflected by changes in leaf absorbed light energy partitioning, photosynthetic efficiency, relative growth rate and biomass allocation in invasive and native competitors. Additionally, a potential allelopathic effect of mulching with invasive Prunus serotina leaves on native Quercus petraea growth and photosynthesis was tested. The effect of light environment on leaf absorbed light energy partitioning and photosynthetic characteristics was more pronounced than the effects of interspecific competition and allelopathy. The quantum yield of PSII of invasive P. serotina increased in the presence of a competitor, indicating a higher plasticity in energy partitioning for the invasive over the native Q. petraea, giving it a competitive advantage. The most striking difference between the two study species was the higher crown-level net CO2 assimilation rates (Acrown) of P. serotina compared with Q. petraea. At the juvenile life stage, higher relative growth rate and higher biomass allocation to foliage allowed P. serotina to absorb and use light energy for photosynthesis more efficiently than Q. petraea. Species-specific strategies of growth, biomass allocation, light energy partitioning and photosynthetic efficiency varied with the light environment and gave an advantage to the invader over its native competitor in competition for light. However, higher biomass allocation to roots in Q. petraea allows for greater belowground competition for water and nutrients as compared to P. serotina. This niche differentiation may compensate for the lower aboveground competitiveness of the native species and explain its ability to co-occur with the invasive competitor in natural forest settings.
Collapse
Affiliation(s)
- Piotr Robakowski
- Department of Forestry, Poznan University of Life Sciences, Wojska Polskiego 71E St., 60-625, Poznan, Poland.
| | - Ernest Bielinis
- Department of Forestry, Poznan University of Life Sciences, Wojska Polskiego 71E St., 60-625, Poznan, Poland
- Unit of Forestry and Forest Ecology, Department of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, PL Lodzki 2, 10-727, Olsztyn, Poland
| | - Kerrie Sendall
- Department of Biology, Georgia Southern University, P.O. Box 8042, Statesboro, GA, 30460, USA
| |
Collapse
|
132
|
Heraud P, Cowan MF, Marzec KM, Møller BL, Blomstedt CK, Gleadow R. Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells. Sci Rep 2018; 8:2691. [PMID: 29426935 PMCID: PMC5807435 DOI: 10.1038/s41598-018-20928-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/23/2018] [Indexed: 01/11/2023] Open
Abstract
Localisation of metabolites in sorghum coleoptiles using Raman hyperspectral imaging analysis was compared in wild type plants and mutants that lack cyanogenic glucosides. This novel method allows high spatial resolution in situ localization by detecting functional groups associated with cyanogenic glucosides using vibrational spectroscopy. Raman hyperspectral imaging revealed that dhurrin was found mainly surrounding epidermal, cortical and vascular tissue, with the greatest amount in cortical tissue. Numerous "hotspots" demonstrated dhurrin to be located within both cell walls and cytoplasm adpressed towards the plasmamembrane and not in the vacuole as previously reported. The high concentration of dhurrin in the outer cortical and epidermal cell layers is consistent with its role in defence against herbivory. This demonstrates the ability of Raman hyperspectral imaging to locate cyanogenic glucosides in intact tissues, avoiding possible perturbations and imprecision that may accompany methods that rely on bulk tissue extraction methods, such as protoplast isolation.
Collapse
Affiliation(s)
- Philip Heraud
- Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Rd, Clayton, Vic., 3800, Australia
- Centre for Biospectroscopy, School of Chemistry, Monash University, Wellington Rd, Clayton, Vic., 3800, Australia
| | - Max F Cowan
- School of Biological Sciences, Faculty of Science, Monash University, Wellington Rd, Clayton, Vic., 3800, Australia
| | - Katarzyna Maria Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
- Center for Medical Genomics (OMICRON), Jagiellonian University, Kopernika 7C, 31-034, Krakow, Poland
| | - Birger Lindberg Møller
- Centre for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Cecilia K Blomstedt
- School of Biological Sciences, Faculty of Science, Monash University, Wellington Rd, Clayton, Vic., 3800, Australia
| | - Ros Gleadow
- School of Biological Sciences, Faculty of Science, Monash University, Wellington Rd, Clayton, Vic., 3800, Australia.
| |
Collapse
|
133
|
Pérez-López U, Sgherri C, Miranda-Apodaca J, Micaelli F, Lacuesta M, Mena-Petite A, Quartacci MF, Muñoz-Rueda A. Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO 2. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:233-241. [PMID: 29253801 DOI: 10.1016/j.plaphy.2017.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 05/18/2023]
Abstract
The present study was focused on lettuce, a widely consumed leafy vegetable for the large number of healthy phenolic compounds. Two differently-pigmented lettuce cultivars, i.e. an acyanic-green leaf cv. and an anthocyanic-red one, were grown under high light intensity or elevated CO2 or both in order to evaluate how environmental conditions may affect the production of secondary phenolic metabolites and, thus, lettuce quality. Mild light stress imposed for a short time under ambient or elevated CO2 concentration increased phenolics compounds as well as antioxidant capacity in both lettuce cvs, indicating how the cultivation practice could enhance the health-promoting benefits of lettuce. The phenolic profile depended on pigmentation and the anthocyanic-red cv. always maintained a higher phenolic amount as well as antioxidant capacity than the acyanic-green one. In particular, quercetin, quercetin-3-O-glucuronide, kaempferol, quercitrin and rutin accumulated under high light or high CO2 in the anthocyanic-red cv., whereas cyanidin derivatives were responsive to mild light stress, both at ambient and elevated CO2. In both cvs total free and conjugated phenolic acids maintained higher values under all altered environmental conditions, whereas luteolin reached significant amounts when both stresses were administered together, indicating, in this last case, that the enzymatic regulation of the flavonoid synthesis could be differently affected, the synthesis of flavones being favored.
Collapse
Affiliation(s)
- Usue Pérez-López
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, E-48080 Bilbao, Spain.
| | - Cristina Sgherri
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Jon Miranda-Apodaca
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, E-48080 Bilbao, Spain
| | - Francesco Micaelli
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Maite Lacuesta
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad del País Vasco, UPV/EHU, Paseo de la Universidad 7, E-01006 Vitoria-Gasteiz, Spain
| | - Amaia Mena-Petite
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, E-48080 Bilbao, Spain
| | - Mike Frank Quartacci
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, I-56124 Pisa, Italy; Interdepartmental Research Center Nutraceuticals and Food for Health, Università di Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Alberto Muñoz-Rueda
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, E-48080 Bilbao, Spain
| |
Collapse
|
134
|
Veresoglou SD, Wang D, Andrade-Linares DR, Hempel S, Rillig MC. Fungal Decision to Exploit or Explore Depends on Growth Rate. MICROBIAL ECOLOGY 2018; 75:289-292. [PMID: 28791465 DOI: 10.1007/s00248-017-1053-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/31/2017] [Indexed: 05/28/2023]
Affiliation(s)
- Stavros D Veresoglou
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany.
| | - Dongwei Wang
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Diana R Andrade-Linares
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Stefan Hempel
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| |
Collapse
|
135
|
Sørensen M, Neilson EHJ, Møller BL. Oximes: Unrecognized Chameleons in General and Specialized Plant Metabolism. MOLECULAR PLANT 2018; 11:95-117. [PMID: 29275165 DOI: 10.1016/j.molp.2017.12.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 05/19/2023]
Abstract
Oximes (R1R2C=NOH) are nitrogen-containing chemical constituents that are formed in species representing all kingdoms of life. In plants, oximes are positioned at important metabolic bifurcation points between general and specialized metabolism. The majority of plant oximes are amino acid-derived metabolites formed by the action of a cytochrome P450 from the CYP79 family. Auxin, cyanogenic glucosides, glucosinolates, and a number of other bioactive specialized metabolites including volatiles are produced from oximes. Oximes with the E configuration have high biological activity compared with Z-oximes. Oximes or their derivatives have been demonstrated or proposed to play roles in growth regulation, plant defense, pollinator attraction, and plant communication with the surrounding environment. In addition, oxime-derived products may serve as quenchers of reactive oxygen species and storage compounds for reduced nitrogen that may be released on demand by the activation of endogenous turnover pathways. As highly bioactive molecules, chemically synthesized oximes have found versatile uses in many sectors of society, especially in the agro- and medical sectors. This review provides an update on the structural diversity, occurrence, and biosynthesis of oximes in plants and discusses their role as key players in plant general and specialized metabolism.
Collapse
Affiliation(s)
- Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark
| | - Elizabeth H J Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; VILLUM Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
136
|
Bøgeskov Schmidt F, Heskes AM, Thinagaran D, Lindberg Møller B, Jørgensen K, Boughton BA. Mass Spectrometry Based Imaging of Labile Glucosides in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:892. [PMID: 30002667 PMCID: PMC6031732 DOI: 10.3389/fpls.2018.00892] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/07/2018] [Indexed: 05/19/2023]
Abstract
Mass spectrometry based imaging is a powerful tool to investigate the spatial distribution of a broad range of metabolites across a variety of sample types. The recent developments in instrumentation and computing capabilities have increased the mass range, sensitivity and resolution and rendered sample preparation the limiting step for further improvements. Sample preparation involves sectioning and mounting followed by selection and application of matrix. In plant tissues, labile small molecules and specialized metabolites are subject to degradation upon mechanical disruption of plant tissues. In this study, the benefits of cryo-sectioning, stabilization of fragile tissues and optimal application of the matrix to improve the results from MALDI mass spectrometry imaging (MSI) is investigated with hydroxynitrile glucosides as the main experimental system. Denatured albumin proved an excellent agent for stabilizing fragile tissues such as Lotus japonicus leaves. In stem cross sections of Manihot esculenta, maintaining the samples frozen throughout the sectioning process and preparation of the samples by freeze drying enhanced the obtained signal intensity by twofold to fourfold. Deposition of the matrix by sublimation improved the spatial information obtained compared to spray. The imaging demonstrated that the cyanogenic glucosides (CNglcs) were localized in the vascular tissues in old stems of M. esculenta and in the periderm and vascular tissues of tubers. In MALDI mass spectrometry, the imaged compounds are solely identified by their m/z ratio. L. japonicus MG20 and the mutant cyd1 that is devoid of hydroxynitrile glucosides were used as negative controls to verify the assignment of the observed masses to linamarin, lotaustralin, and linamarin acid.
Collapse
Affiliation(s)
- Frederik Bøgeskov Schmidt
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
| | - Allison M. Heskes
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dinaiz Thinagaran
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Birger Lindberg Møller,
| | - Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
- Center for Synthetic Biology, University of Copenhagen, Copenhagen, Denmark
| | - Berin A. Boughton
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
137
|
Diaz-Vivancos P, Bernal-Vicente A, Cantabella D, Petri C, Hernández JA. Metabolomics and Biochemical Approaches Link Salicylic Acid Biosynthesis to Cyanogenesis in Peach Plants. PLANT & CELL PHYSIOLOGY 2017; 58:2057-2066. [PMID: 29036663 DOI: 10.1093/pcp/pcx135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/05/2017] [Indexed: 05/10/2023]
Abstract
Despite the long-established importance of salicylic acid (SA) in plant stress responses and other biological processes, its biosynthetic pathways have not been fully characterized. The proposed synthesis of SA originates from chorismate by two distinct pathways: the isochorismate and phenylalanine (Phe) ammonia-lyase (PAL) pathways. Cyanogenesis is the process related to the release of hydrogen cyanide from endogenous cyanogenic glycosides (CNglcs), and it has been linked to plant plasticity improvement. To date, however, no relationship has been suggested between the two pathways. In this work, by metabolomics and biochemical approaches (including the use of [13C]-labeled compounds), we provide strong evidences showing that CNglcs turnover is involved, at least in part, in SA biosynthesis in peach plants under control and stress conditions. The main CNglcs in peach are prunasin and amygdalin, with mandelonitrile (MD), synthesized from phenylalanine, controlling their turnover. In peach plants MD is the intermediary molecule of the suggested new SA biosynthetic pathway and CNglcs turnover, regulating the biosynthesis of both amygdalin and SA. MD-treated peach plants displayed increased SA levels via benzoic acid (one of the SA precursors within the PAL pathway). MD also provided partial protection against Plum pox virus infection in peach seedlings. Thus, we propose a third pathway, an alternative to the PAL pathway, for SA synthesis in peach plants.
Collapse
Affiliation(s)
- Pedro Diaz-Vivancos
- Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain
| | - Agustina Bernal-Vicente
- Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain
| | - Daniel Cantabella
- Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain
| | - Cesar Petri
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain
| | - José Antonio Hernández
- Biotechnology of Fruit Trees Group, Department Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia, Spain
| |
Collapse
|
138
|
Paudel JR, Davidson C, Song J, Maxim I, Aharoni A, Tai HH. Pathogen and Pest Responses Are Altered Due to RNAi-Mediated Knockdown of GLYCOALKALOID METABOLISM 4 in Solanum tuberosum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:876-885. [PMID: 28786312 DOI: 10.1094/mpmi-02-17-0033-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are major secondary metabolites constitutively produced in cultivated potato Solanum tuberosum, and α-solanine and α-chaconine are the most abundant SGAs. SGAs are toxic to humans at high levels but their role in plant protection against pests and pathogens is yet to be established. In this study, levels of SGAs in potato were reduced by RNA interference (RNAi)-mediated silencing of GLYCOALKALOID METABOLISM 4 (GAME4)-a gene encoding cytochrome P450, involved in an oxidation step in the conversion of cholesterol to SGA aglycones. Two GAME4 RNAi lines, T8 and T9, were used to investigate the effects of manipulation of the SGA biosynthetic pathway in potato. Growth and development of an insect pest, Colorado potato beetle (CPB), were affected in these lines. While no effect on CPB leaf consumption or weight gain was observed, early instar larval death and accelerated development of the insect was found while feeding on leaves of GAME4 RNAi lines. Modulation of SGA biosynthetic pathway in GAME4 RNAi plants was associated with a larger alteration to the metabolite profile, including increased levels of one or both the steroidal saponins or phytoecdysteroids, which could affect insect mortality as well as development time. Colonization by Verticillium dahliae on GAME4 RNAi plants was also tested. There were increased pathogen levels in the T8 GAME4 RNAi line but not in the T9. Metabolite differences between T8 and T9 were found and may have contributed to differences in V. dahliae infection. Drought responses created by osmotic stress were not affected by modulation of SGA biosynthetic pathway in potato.
Collapse
Affiliation(s)
- Jamuna Risal Paudel
- 1 Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, Fredericton, NB, Canada
| | - Charlotte Davidson
- 1 Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, Fredericton, NB, Canada
| | - Jun Song
- 2 Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS, Canada
| | | | - Asaph Aharoni
- 4 Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Helen H Tai
- 1 Agriculture and Agri-Food Canada, Fredericton Research and Development Centre, Fredericton, NB, Canada
| |
Collapse
|
139
|
Biosynthesis and regulation of cyanogenic glycoside production in forage plants. Appl Microbiol Biotechnol 2017; 102:9-16. [DOI: 10.1007/s00253-017-8559-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/26/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
|
140
|
Williams L, Rodriguez-Saona C, Castle del Conte SC. Methyl jasmonate induction of cotton: a field test of the 'attract and reward' strategy of conservation biological control. AOB PLANTS 2017; 9:plx032. [PMID: 28894566 PMCID: PMC5585857 DOI: 10.1093/aobpla/plx032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Natural or synthetic elicitors can affect plant physiology by stimulating direct and indirect defence responses to herbivores. For example, increased production of plant secondary metabolites, a direct response, can negatively affect herbivore survival, development and fecundity. Indirect responses include increased emission of plant volatiles that influence herbivore and natural enemy behaviour, and production of extrafloral nectar that serves as a food source for natural enemies after their arrival on induced plants. Therefore, the use of elicitors has potential for the study of basic aspects of tritrophic interactions, as well as application in biorational pest control, i.e. an 'attract and reward' strategy. We conducted a field study to investigate the effects of methyl jasmonate, an elicitor of plant defence responses, on three trophic levels: the plant, herbivores and natural enemies. We made exogenous applications of methyl jasmonate to transgenic cotton and measured volatile emission, extrafloral nectar production and plant performance (yield). We also assessed insect abundance, insect performance, and parasitism and predation of brown stink bug, Euschistus servus, eggs in methyl jasmonate-treated and untreated control plots. Application of methyl jasmonate increased emission of volatiles, in particular, (+)-limonene and (3E)-4,8-dimethyl-1,3,7-nonatriene, and production of extrafloral nectar, but not yield, compared with the control treatment. Despite increased volatile and extrafloral nectar production, methyl jasmonate application did not affect plant bug performance, or mortality of E. servus egg masses, and only marginally influenced insect abundance. Mortality of E. servus eggs varied over the course of the study. Overall, methyl jasmonate treatment affected cotton plant-induced responses, but not the insects that inhabit the plants. Our results were probably influenced by reduced natural enemy colonization of cotton from adjacent non-crop habitats, and subsequent low within-field population recruitment. Much remains to be learned about the effects of exogenous application of plant-produced 'enhancers' on the behaviour of natural enemies before crop physiology can be manipulated to enhance pest control.
Collapse
Affiliation(s)
- Livy Williams
- USDA-ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA
| | - Cesar Rodriguez-Saona
- Rutgers University, Philip E. Marucci Blueberry and Cranberry Research Center, 125a Lake Oswego, Chatsworth, NJ 08019, USA
| | | |
Collapse
|
141
|
Bulgari R, Morgutti S, Cocetta G, Negrini N, Farris S, Calcante A, Spinardi A, Ferrari E, Mignani I, Oberti R, Ferrante A. Evaluation of Borage Extracts As Potential Biostimulant Using a Phenomic, Agronomic, Physiological, and Biochemical Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:935. [PMID: 28638392 PMCID: PMC5461430 DOI: 10.3389/fpls.2017.00935] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/19/2017] [Indexed: 05/02/2023]
Abstract
Biostimulants are substances able to improve water and nutrient use efficiency and counteract stress factors by enhancing primary and secondary metabolism. Premise of the work was to exploit raw extracts from leaves (LE) or flowers (FE) of Borago officinalis L., to enhance yield and quality of Lactuca sativa 'Longifolia,' and to set up a protocol to assess their effects. To this aim, an integrated study on agronomic, physiological and biochemical aspects, including also a phenomic approach, has been adopted. Extracts were diluted to 1 or 10 mL L-1, sprayed onto lettuce plants at the middle of the growing cycle and 1 day before harvest. Control plants were treated with water. Non-destructive analyses were conducted to assess the effect of extracts on biomass with an innovative imaging technique, and on leaf photosynthetic efficiency (chlorophyll a fluorescence and leaf gas exchanges). At harvest, the levels of ethylene, photosynthetic pigments, nitrate, and primary (sucrose and total sugars) and secondary (total phenols and flavonoids) metabolites, including the activity and levels of phenylalanine ammonia lyase (PAL) were assessed. Moreover, a preliminary study of the effects during postharvest was performed. Borage extracts enhanced the primary metabolism by increasing leaf pigments and photosynthetic activity. Plant fresh weight increased upon treatments with 10 mL L-1 doses, as correctly estimated by multi-view angles images. Chlorophyll a fluorescence data showed that FEs were able to increase the number of active reaction centers per cross section; a similar trend was observed for the performance index. Ethylene was three-fold lower in FEs treatments. Nitrate and sugar levels did not change in response to the different treatments. Total flavonoids and phenols, as well as the total protein levels, the in vitro PAL specific activity, and the levels of PAL-like polypeptides were increased by all borage extracts, with particular regard to FEs. FEs also proved efficient in preventing degradation and inducing an increase in photosynthetic pigments during storage. In conclusion, borage extracts, with particular regard to the flower ones, appear to indeed exert biostimulant effects on lettuce; future work will be required to further investigate on their efficacy in different conditions and/or species.
Collapse
Affiliation(s)
- Roberta Bulgari
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, Università degli Studi di MilanoMilan, Italy
| | - Silvia Morgutti
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, Università degli Studi di MilanoMilan, Italy
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, Università degli Studi di MilanoMilan, Italy
| | - Noemi Negrini
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, Università degli Studi di MilanoMilan, Italy
| | - Stefano Farris
- Department of Food, Environmental and Nutritional SciencesUniversità degli Studi di Milano, Milan, Italy
| | - Aldo Calcante
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, Università degli Studi di MilanoMilan, Italy
| | - Anna Spinardi
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, Università degli Studi di MilanoMilan, Italy
| | - Enrico Ferrari
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, Università degli Studi di MilanoMilan, Italy
| | - Ilaria Mignani
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, Università degli Studi di MilanoMilan, Italy
| | - Roberto Oberti
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, Università degli Studi di MilanoMilan, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy, Università degli Studi di MilanoMilan, Italy
| |
Collapse
|
142
|
Varela ALN, Komatsu S, Wang X, Silva RG, Souza PFN, Lobo AKM, Vasconcelos IM, Silveira JA, Oliveira JT. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea ( Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV). J Proteomics 2017; 163:76-91. [DOI: 10.1016/j.jprot.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022]
|
143
|
Mansfeld BN, Colle M, Kang Y, Jones AD, Grumet R. Transcriptomic and metabolomic analyses of cucumber fruit peels reveal a developmental increase in terpenoid glycosides associated with age-related resistance to Phytophthora capsici. HORTICULTURE RESEARCH 2017; 4:17022. [PMID: 28580151 PMCID: PMC5442961 DOI: 10.1038/hortres.2017.22] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 05/04/2023]
Abstract
The oomycete, Phytophthora capsici, infects cucumber (Cucumis sativus L.) fruit. An age-related resistance (ARR) to this pathogen was previously observed in fruit of cultivar 'Vlaspik' and shown to be associated with the peel. Young fruits are highly susceptible, but develop resistance at ~10-12 days post pollination (dpp). Peels from resistant (16 dpp) versus susceptible (8 dpp) age fruit are enriched with genes associated with defense, and methanolic extracts from resistant age peels inhibit pathogen growth. Here we compared developing fruits from 'Vlaspik' with those of 'Gy14', a line that does not exhibit ARR. Transcriptomic analysis of peels of the two lines at 8 and 16 dpp identified 80 genes that were developmentally upregulated in resistant 'Vlaspik' 16 dpp versus 8 dpp, but not in susceptible 'Gy14' at 16 dpp. A large number of these genes are annotated to be associated with defense and/or specialized metabolism, including four putative resistance (R) genes, and numerous genes involved in flavonoid and terpenoid synthesis and decoration. Untargeted metabolomic analysis was performed on extracts from 8 and 16 dpp 'Vlaspik' and 'Gy14' fruit peels using Ultra-Performance Liquid Chromatography and Quadrupole Time-of-Flight Mass Spectrometry. Multivariate analysis of the metabolomes identified 113 ions uniquely abundant in resistant 'Vlaspik' 16 dpp peel extracts. The most abundant compounds in this group had relative mass defects consistent with terpenoid glycosides. Two of the three most abundant ions were annotated as glycosylated nor-terpenoid esters. Together, these analyses reveal potential mechanisms by which ARR to P. capsici may be conferred.
Collapse
Affiliation(s)
- Ben N Mansfeld
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Marivi Colle
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Yunyan Kang
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
144
|
Del Cueto J, Ionescu IA, Pičmanová M, Gericke O, Motawia MS, Olsen CE, Campoy JA, Dicenta F, Møller BL, Sánchez-Pérez R. Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering. FRONTIERS IN PLANT SCIENCE 2017; 8:800. [PMID: 28579996 PMCID: PMC5437698 DOI: 10.3389/fpls.2017.00800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/28/2017] [Indexed: 05/07/2023]
Abstract
Almond and sweet cherry are two economically important species of the Prunus genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption. In this study, we investigated the potential role within prunasin and amygdalin and some of its derivatives in endodormancy release of these two Prunus species. The content of prunasin and of endogenous prunasin turnover products in the course of flower development was examined in five almond cultivars - differing from very early to extra-late in flowering time - and in one sweet early cherry cultivar. In all cultivars, prunasin began to accumulate in the flower buds shortly after dormancy release and the levels dropped again just before flowering time. In almond and sweet cherry, the turnover of prunasin coincided with increased levels of prunasin amide whereas prunasin anitrile pentoside and β-D-glucose-1-benzoate were abundant in almond and cherry flower buds at certain developmental stages. These findings indicate a role for the turnover of cyanogenic glucosides in controlling flower development in Prunus species.
Collapse
Affiliation(s)
- Jorge Del Cueto
- Department of Plant Breeding, CEBAS-CSICMurcia, Spain
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Irina A. Ionescu
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Martina Pičmanová
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Oliver Gericke
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Mohammed S. Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Carl E. Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - José A. Campoy
- UMR 1332 BFP, INRA, University of BordeauxVillenave d’Ornon, France
| | | | - Birger L. Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| | - Raquel Sánchez-Pérez
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
- VILLUM Research Center for Plant Plasticity, University of CopenhagenFrederiksberg, Denmark
| |
Collapse
|
145
|
Sheppard-Brennand H, Poore AGB, Dworjanyn SA. A Waterborne Pursuit-Deterrent Signal Deployed by a Sea Urchin. Am Nat 2017; 189:700-708. [PMID: 28514632 DOI: 10.1086/691437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Selection by consumers has led to the evolution of a vast array of defenses in animals and plants. These defenses include physical structures, behaviors, and chemical signals that mediate interactions with predators. Some of the strangest defensive structures in nature are the globiferous pedicellariae of the echinoderms. These are small venomous appendages with jaws and teeth that cover the test of many sea urchins and sea stars. In this study, we report a unique use of these defensive structures by the collector sea urchin Tripneustes gratilla. In both the laboratory and the field, globiferous pedicellariae were unpalatable to fish consumers. When subject to simulated predator attack, sea urchins released a cloud of pedicellaria heads into the water column. Flume experiments established the presence of a waterborne cue associated with this release of pedicellariae that is deterrent to predatory fish. These novel results add to our understanding of how the ecosystem-shaping sea urchin T. gratilla is able to reach high densities in many reef habitats, with subsequent impacts on algal cover.
Collapse
|
146
|
Huang J, Hammerbacher A, Forkelová L, Hartmann H. Release of resource constraints allows greater carbon allocation to secondary metabolites and storage in winter wheat. PLANT, CELL & ENVIRONMENT 2017; 40:672-685. [PMID: 28010041 DOI: 10.1111/pce.12885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/12/2016] [Indexed: 05/29/2023]
Abstract
The atmospheric CO2 concentration ([CO2 ]) is rapidly increasing, and this may have substantial impact on how plants allocate metabolic resources. A thorough understanding of allocation priorities can be achieved by modifying [CO2 ] over a large gradient, including low [CO2 ], thereby altering plant carbon (C) availability. Such information is of critical importance for understanding plant responses to global environmental change. We quantified the percentage of daytime whole-plant net assimilation (A) allocated to night-time respiration (R), structural growth (SG), nonstructural carbohydrates (NSC) and secondary metabolites (SMs) during 8 weeks of vegetative growth in winter wheat (Triticum aestivum) growing at low, ambient and elevated [CO2 ] (170, 390 and 680 ppm). R/A remained relatively constant over a large gradient of [CO2 ]. However, with increasing C availability, the fraction of assimilation allocated to biomass (SG + NSC + SMs), in particular NSC and SMs, increased. At low [CO2 ], biomass and NSC increased in leaves but decreased in stems and roots, which may help plants achieve a functional equilibrium, that is, overcome the most severe resource limitation. These results reveal that increasing C availability from rising [CO2 ] releases allocation constraints, thereby allowing greater investment into long-term survival in the form of NSC and SMs.
Collapse
Affiliation(s)
- Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Lenka Forkelová
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| |
Collapse
|
147
|
Regulation of miR163 and its targets in defense against Pseudomonas syringae in Arabidopsis thaliana. Sci Rep 2017; 7:46433. [PMID: 28401908 PMCID: PMC5388894 DOI: 10.1038/srep46433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
Small RNAs are important regulators for a variety of biological processes, including leaf development, flowering-time, embryogenesis and defense responses. miR163 is a non-conserved miRNA and its locus has evolved recently through inverted duplication of its target genes to which they belong to the SABATH family of related small-molecule methyltransferases (MTs). In Arabidopsis thaliana, previous study demonstrated that miR163 accumulation was induced by alamethicin treatment, suggesting its roles in defense response pathways. Enhanced resistance against Pseudomonas syringae pv. tomato (Pst) was observed in the mir163 mutant, whereas transgenic lines overexpressing miR163 showed increase sensitivity to Pst, suggesting that miR163 is a negative regulator of defense response. Elevated level of miR163 and its targets in A. thaliana were observed upon Pst treatment, suggesting a modulating relationship between miR163 and its targets. In addition, miR163 and histone deacetylase were found to act cooperatively in mediating defense against Pst. Transgenic plants overexpressing miR163-resistant targets suggested their different contributions in defense. Results from this study revealed that the stress-inducible miR163 and its targets act in concert to modulate defense responses against bacterial pathogen in A. thaliana.
Collapse
|
148
|
de Vries J, Evers JB, Poelman EH. Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration. TRENDS IN PLANT SCIENCE 2017; 22:329-337. [PMID: 28089490 DOI: 10.1016/j.tplants.2016.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 05/08/2023]
Abstract
Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate and balance growth and defence, the complex dynamics in plant-plant competition and plant-herbivore interactions needs to be considered. Induced growth-defence responses affect plant competition and herbivore colonisation in space and time, which has consequences for the adaptive value of these responses. Assessing these complex interactions strongly benefits from advanced modelling tools that can model multitrophic interactions in space and time. Such an exercise will allow a critical re-evaluation why and how plants integrate defence and competition for light.
Collapse
Affiliation(s)
- Jorad de Vries
- Wageningen University, Laboratory of Entomology, Wageningen, The Netherlands; Wageningen University, Centre for Crop System Analysis, Wageningen, The Netherlands.
| | - Jochem B Evers
- Wageningen University, Centre for Crop System Analysis, Wageningen, The Netherlands
| | - Erik H Poelman
- Wageningen University, Laboratory of Entomology, Wageningen, The Netherlands
| |
Collapse
|
149
|
Vazquez-Albacete D, Montefiori M, Kol S, Motawia MS, Møller BL, Olsen L, Nørholm MHH. The CYP79A1 catalyzed conversion of tyrosine to (E)-p-hydroxyphenylacetaldoxime unravelled using an improved method for homology modeling. PHYTOCHEMISTRY 2017; 135:8-17. [PMID: 28088302 DOI: 10.1016/j.phytochem.2016.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/01/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
The vast diversity and membrane-bound nature of plant P450s makes it challenging to study the structural characteristics of this class of enzymes especially with respect to accurate intermolecular enzyme-substrate interactions. To address this problem we here apply a modified hybrid structure strategy for homology modeling of plant P450s. This allows for structural elucidation based on conserved motifs in the protein sequence and secondary structure predictions. We modeled the well-studied Sorghum bicolor cytochrome P450 CYP79A1 catalyzing the first step in the biosynthesis of the cyanogenic glucoside dhurrin. Docking experiments identified key regions of the active site involved in binding of the substrate and facilitating catalysis. Arginine 152 and threonine 534 were identified as key residues interacting with the substrate. The model was validated experimentally using site-directed mutagenesis. The new CYP79A1 model provides detailed insights into the mechanism of the initial steps in cyanogenic glycoside biosynthesis. The approach could guide functional characterization of other membrane-bound P450s and provide structural guidelines for elucidation of key structure-function relationships of other plant P450s.
Collapse
Affiliation(s)
- Dario Vazquez-Albacete
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Marco Montefiori
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Stefan Kol
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Mohammed Saddik Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology bioSYNergy, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark; Center for Synthetic Biology bioSYNergy, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark
| | - Lars Olsen
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Morten H H Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Center for Synthetic Biology bioSYNergy, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
150
|
Nomura T. Function and application of a non-ester-hydrolyzing carboxylesterase discovered in tulip. Biosci Biotechnol Biochem 2017; 81:81-94. [DOI: 10.1080/09168451.2016.1240608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Plants have evolved secondary metabolite biosynthetic pathways of immense rich diversity. The genes encoding enzymes for secondary metabolite biosynthesis have evolved through gene duplication followed by neofunctionalization, thereby generating functional diversity. Emerging evidence demonstrates that some of those enzymes catalyze reactions entirely different from those usually catalyzed by other members of the same family; e.g. transacylation catalyzed by an enzyme similar to a hydrolytic enzyme. Tuliposide-converting enzyme (TCE), which we recently discovered from tulip, catalyzes the conversion of major defensive secondary metabolites, tuliposides, to antimicrobial tulipalins. The TCEs belong to the carboxylesterase family in the α/β-hydrolase fold superfamily, and specifically catalyze intramolecular transesterification, but not hydrolysis. This non-ester-hydrolyzing carboxylesterase is an example of an enzyme showing catalytic properties that are unpredictable from its primary structure. This review describes the biochemical and physiological aspects of tulipalin biogenesis, and the diverse functions of plant carboxylesterases in the α/β-hydrolase fold superfamily.
Collapse
Affiliation(s)
- Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| |
Collapse
|