101
|
Sun R, Zhang L, Wang X, Ou C, Lin N, Xu S, Qiu YY, Jiang F. Elemental sulfur-driven sulfidogenic process under highly acidic conditions for sulfate-rich acid mine drainage treatment: Performance and microbial community analysis. WATER RESEARCH 2020; 185:116230. [PMID: 32784032 DOI: 10.1016/j.watres.2020.116230] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/16/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Elemental sulfur-driven sulfidogenic process has been demonstrated to be more economical and energy-efficient than sulfate-driven sulfidogenic process when treating metal-laden wastewater. In previous studies, we observed that the polysulfide-involved indirect sulfur reduction ensured the superiority of sulfur over sulfate as the electron acceptor in the sulfidogenic process under neutral or weak-alkaline conditions. However, realizing high-rate sulfur reduction process for acid mine drainage (AMD) treatment without pH amelioration is still a great challenge because polysulfide cannot exist under acidic conditions. In this study, a laboratory-scale sulfur-packed bed reactor was therefore continuously operated with a constant sulfate concentration (~1300 mg S/L) and decreasing pH from 7.3 to 2.1. After 400 days of operation, a stable sulfide production rate (38.2 ± 7.6 mg S/L) was achieved under highly acidic conditions (pH 2.6-3.5), which is significantly higher than those reported in sulfate reduction under similar conditions. In the presence of high sulfate content, elemental sulfur reduction could dominate over sulfate reduction under neutral and acidic conditions, especially when the pH ≥ 6.5 or ≤ 3.5. The decreasing pH significantly reduced the diversity of microbial community, but did not substantially influence the abundance of functional genes associated with organic and sulfur metabolisms. The predominant sulfur-reducing genera shifted from Desulfomicrobium under neutral conditions to Desulfurella under highly acidic conditions. The high-rate sulfur reduction under acidic conditions could be attributed to the combined results of high abundance of Desulfurella and low abundance of sulfate-reducing bacteria (SRB). Accordingly, sulfur reduction process can be developed to achieve efficient and economical treatment of AMD under highly acidic conditions (pH ≤ 3.5).
Collapse
Affiliation(s)
- Rongrong Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China; School of Environment, South China Normal University, Guangzhou, China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, China
| | - Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Xiaoyi Wang
- School of Environment, South China Normal University, Guangzhou, China
| | - Chunxi Ou
- School of Environment, South China Normal University, Guangzhou, China
| | - Nini Lin
- School of Environment, South China Normal University, Guangzhou, China
| | - Shuqun Xu
- School of Environment, South China Normal University, Guangzhou, China
| | - Yan-Ying Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Feng Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, China.
| |
Collapse
|
102
|
Wang JJ, Huang BC, Li J, Jin RC. Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
103
|
Zheng Q, Zhang Y, Zhang Z, Li H, Wu A, Shi H. Experimental research on various slags as a potential adsorbent for the removal of sulfate from acid mine drainage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110880. [PMID: 32721319 DOI: 10.1016/j.jenvman.2020.110880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/19/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Acid mine drainage (AMD) containing highly concentrated sulfate in the wastewater has caused severe impacts to human health and the environment. Implementing an economical and efficient method for sulfate reduction by utilizing low-cost adsorbents presents a significant challenge. In this study, ferrous slag (FS) and carbon steel slag (CSS) obtained from a local steel factory were utilized as adsorbents to remove sulfate from AMD. The influences of adsorbent dosage, adsorption time, adsorbent particle size, pH value and initial sulfate concentration on the adsorption capacity and regeneration properties were investigated using batch adsorption experiments. The results showed that acidic conditions were beneficial to the adsorption of sulfate. Under the optimal conditions (pH of 2, dosage of 50 g/L), the adsorption capacities of FS and CSS were 225.07 mg/g and 320.57 mg/g, respectively. The pseudo-second-order and the Langmuir isotherm models described the experimental data well. The regeneration experiment revealed that the CSS was regenerated repeatedly and to a greater extent than that of FS by using alkali (1 M NaOH) as the regeneration agent. Adsorption was determined to be the dominant processes for the removal of the sulfate by CSS, but also exhibited chemical precipitation. Overall, the CSS has a higher efficiency for the removal of sulfate over FS. The results provide a new method for the removal of sulfate from aqueous solution.
Collapse
Affiliation(s)
- Qiang Zheng
- College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yongbo Zhang
- College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Zhixiang Zhang
- College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Hailong Li
- TISCO&HARSCO Technology Co., Ltd, Taiyuan, 030100, China.
| | - Aijing Wu
- College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Hong Shi
- College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
104
|
Sulfidogenesis establishment under increasing metal and nutrient concentrations: An effective approach for biotreating sulfate-rich wastewaters using an innovative structured-bed reactor (AnSTBR). ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
105
|
Lin S, Hao T, Li X, Xiao Y, Chen G. Pin-point denitrification for groundwater purification without direct chemical dosing: Demonstration of a two-chamber sulfide-driven denitrifying microbial electrochemical system. WATER RESEARCH 2020; 182:115918. [PMID: 32531495 DOI: 10.1016/j.watres.2020.115918] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The nitrate concentration in groundwater has been increasing over time due to the intensive use of nitrogen fertilizer. Current nitrate removal technologies are restricted by the high operational cost or the inevitable secondary contaminations. This study proposed a two-chamber sulfide-driven denitrifying microbial electrochemical system to denitrify nitrate in its cathode chamber. Instead of conventional organic substrates, sulfide is oxidized in the anode chamber to generate electrons for cathodic denitrification. Long-term performance of this novel system was evaluated over 200 days (100 cycles) of batch-fed operation. With the assistance of anodic microorganisms, sulfide can be directly oxidized to sulfate thus avoiding passivating the anode. Catalyzed by the cathodic microorganisms, complete denitrification was realized with neither nitrite nor nitrous oxide accumulation. Benefiting from the electroautotrophic behavior of the functional microorganisms, high electron utilization efficiencies were achieved, 80% and 85% for the anode (sulfide oxidation) and the cathode (denitrification) respectively. Both observed electrode potentials and microbial analyses revealed that cytochrome c is the crucial electron transfer mediator in the cathodic electron transfer for denitrification. Based on the analysis of planktonic and biofilm microbial samples, anodic and cathodic extracellular electron transfer bioprocesses are proposed, both the direct and mediated electron transfers involved, as were revealed by immobilized and planktonic functional microorganisms, respectively. This study demonstrates the feasibility of purifying nitrate-contaminated groundwater without sacrificing its water quality in a separate mode of treatment. This concept can be extended to a broader field, in which the water requires bio-polishing without introducing unwanted secondary pollution like the post-denitrification of wastewater effluents.
Collapse
Affiliation(s)
- Sen Lin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau.
| | - Xiling Li
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
106
|
Braga JK, de Melo Júnior OM, Rodriguez RP, Sancinetti GP. Sulfate and metals removal from acid mine drainage in a horizontal anaerobic immobilized biomass (HAIB) reactor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1436-1449. [PMID: 32812506 DOI: 10.1080/10934529.2020.1806632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The acid mine drainage (AMD) can causes negative impacts to the environment. Physico-chemical methods to treat AMD can have high operational costs. Through passive biological methods, such as anaerobic reactors, sulfate reduction, and recovery of metals are promoted. This study evaluated the performance of a horizontal anaerobic immobilized biomass (HAIB) reactor for the treatment of synthetic AMD using polyurethane foam as support material, and anaerobic sludge as inoculum. Ethanol was used as an electron donor for sulfate reduction, resulting in an influent chemical oxygen demand (COD) in the range of 500-1,500 mg/L and COD/sulfate ratio at 1. A gradual increase of sulfate and COD concentration was applied that resulted in COD removal efficiencies higher than 78%, and sulfate removal efficiencies of 80%. Higher sulfate and COD concentrations associated with higher hydraulic retention times (36 h) proved to be a better strategy for sulfate removal. The HAIB reactor was able to accommodate an increase in the SLR up to 2.25 g SO42-/L d-1 which achieved the greatest performance on the entire process. Moreover, the reactor proved a suitable alternative for reaching high levels of metal removal (86.95 for Zn, 98.79% for Fe, and 99.59% for Cu).
Collapse
Affiliation(s)
- Juliana Kawanishi Braga
- Laboratório de Biotecnologia Anaeróbia, Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas (UNIFAL-MG), Poços de Caldas, Minas Gerais, Brazil
| | - Omar Mendes de Melo Júnior
- Laboratório de Biotecnologia Anaeróbia, Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas (UNIFAL-MG), Poços de Caldas, Minas Gerais, Brazil
| | - Renata Piacentini Rodriguez
- Laboratório de Biotecnologia Anaeróbia, Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas (UNIFAL-MG), Poços de Caldas, Minas Gerais, Brazil
| | - Giselle Patricia Sancinetti
- Laboratório de Biotecnologia Anaeróbia, Instituto de Ciência e Tecnologia, Universidade Federal de Alfenas (UNIFAL-MG), Poços de Caldas, Minas Gerais, Brazil
| |
Collapse
|
107
|
Fan F, Xu R, Wang D, Meng F. Application of activated sludge for odor control in wastewater treatment plants: Approaches, advances and outlooks. WATER RESEARCH 2020; 181:115915. [PMID: 32485441 DOI: 10.1016/j.watres.2020.115915] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Odors from wastewater treatment plants (WWTPs) have attracted extensive attention and stringent environmental standards are more widely adopted to reduce odor emissions. Biological odor treatment methods have broader applications than the physical and chemical counterparts as they are environment-friendly, cost-effective and generate low secondary wastes. The aqueous activated sludge (AS) processes are among the most promising approaches for the prevention or end-of-pipe removal of odor emissions and have the potential to simultaneously treat odor and wastewater. However, AS deodorization biotechnologies in WWTPs still need to be further systematically summarized and categorized while in-depth discussions on the characteristics and underlying mechanisms of AS deodorization process are still lacking. Recently, considerable studies have been reported to elucidate the microbial metabolisms in odor control and wastewater treatment. This paper reviews the fundamentals, characteristics, advances and field experiences of three AS biotechnologies for odor treatment in WWTPs, i.e., AS recycling, microaeration in AS digester and AS diffusion. The underlying deodorization mechanisms of typical odors have been revealed through the summary of recent advances on multi-element conversions, metabolic interactions of bacteria, microscopic characterization and identification of functional microorganisms. Future research aspects to advance the emerging deodorization AS process, such as deodorization mechanisms, simultaneous odor and water treatment, synergistic treatment with other air emissions, are discussed.
Collapse
Affiliation(s)
- Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, PR China
| | - Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, PR China.
| |
Collapse
|
108
|
Oztemur G, Teksoy Basaran S, Tayran Z, Sahinkaya E. Fluidized bed membrane bioreactor achieves high sulfate reduction and filtration performances at moderate temperatures. CHEMOSPHERE 2020; 252:126587. [PMID: 32443270 DOI: 10.1016/j.chemosphere.2020.126587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
The study explored the potential of an up-flow sulfate reducing fluidized-bed membrane bioreactor (SR-FMBR) for biogenic sulfide generation at room temperature together with evaluation of filtration and fouling characteristics developed under various operational conditions. The SR-FMBR was tested at different COD/sulfate (mg/mg) ratios for a total of 127 days, initially at 35 °C and then at 23 °C. SR-FMBR was able to achieve COD oxidation and sulfate reduction efficiencies up to 98%, and allowed for biogenic sulfide generation up to 600 mg/L (97% of theoretical value) at room temperature. Alkalinity was generated as a result of sulfate reduction and averaged around 1900 mgCaCO3/L in the permeate. Hence, starting the bioreactor operation at 35 °C and then decreasing it to 23 °C did not adversely affect the process performance. High filtration fluxes up to 9.3 L/m2/h (LMH) could be maintained at employed hydraulic retention times between 24 h and 6 h. Observing relatively high filtration performance was due to keeping a high fraction of biomass attached to the carrier material, which decreased the cake formation potential on the membrane surface compared to conventional MBR operation. The SR-FMBR performance may further be tested for heavy metal removal under sulfidogenic conditions for acid mine drainage treatment.
Collapse
Affiliation(s)
- Guldenur Oztemur
- Environmental and Energy Systems Engineering Program, Istanbul Medeniyet University, 34700, Istanbul, Turkey
| | - Senem Teksoy Basaran
- Environmental and Energy Systems Engineering Program, Istanbul Medeniyet University, 34700, Istanbul, Turkey; Department of Bioengineering, Istanbul Medeniyet University, 34700, Istanbul, Turkey.
| | - Zeynep Tayran
- Environmental and Energy Systems Engineering Program, Istanbul Medeniyet University, 34700, Istanbul, Turkey
| | - Erkan Sahinkaya
- Environmental and Energy Systems Engineering Program, Istanbul Medeniyet University, 34700, Istanbul, Turkey; Department of Bioengineering, Istanbul Medeniyet University, 34700, Istanbul, Turkey
| |
Collapse
|
109
|
Mahdy A, Song Y, Salama A, Qiao W, Dong R. Simultaneous H 2S mitigation and methanization enhancement of chicken manure through the introduction of the micro-aeration approach. CHEMOSPHERE 2020; 253:126687. [PMID: 32298914 DOI: 10.1016/j.chemosphere.2020.126687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The impact on H2S alleviation and methane yield enhancement after submitting the anaerobic digestion of chicken manure to a finite amount of air was investigated. The largest reduction in the H2S biogas content (58% lower) occurred when air intensity of 30 ml/g VSin was injected into the reactors. Consequently, a maximum methane yield (335 mL-g VSin-1), which was 77% higher than the control, was concurrently achieved. Slight sulfate accumulation (<330 mg L-1) was observed inside the micro-aerated digesters with higher air intensities, suggesting a suppression of sulfide inhibition. Bacterial diversity/richness was enhanced in these digesters while the relative abundance of Methanocelleus increased by 36%. The most important contributing factor to enhancement was the synergistic effect resulting from increments in the hydrolysis rate and the suppression of sulfide inhibition. The results highlighted the potential of in situ H2S mitigation with the added benefit of methane yield enhancement.
Collapse
Affiliation(s)
- Ahmed Mahdy
- College of Engineering, China Agricultural University, Beijing, 100083, China; Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511, Zagazig, Egypt
| | - Yunlong Song
- College of Engineering, China Agricultural University, Beijing, 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee, Beijing, 100083, China
| | - Ali Salama
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511, Zagazig, Egypt
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing, 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee, Beijing, 100083, China.
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee, Beijing, 100083, China
| |
Collapse
|
110
|
Li T, Guo Z, She Z, Zhao Y, Guo L, Gao M, Jin C, Ji J. Comparison of the effects of salinity on microbial community structures and functions in sequencing batch reactors with and without carriers. Bioprocess Biosyst Eng 2020; 43:2175-2188. [PMID: 32661564 DOI: 10.1007/s00449-020-02403-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
This study investigated and compared the microbial communities between a sequencing batch reactor (SBR) without carriers and a hybrid SBR with addition of carriers for the treatment of saline wastewater. The two systems were operated over 292 days with alternating aerobic/anoxic mode (temperature: 28℃, salinity: 0.0-3.0%). High removal efficiency of chemical oxygen demand (COD) and total inorganic nitrogen (TIN) was achieved in both the SBR (above 86.7 and 95.4% respectively) and hybrid SBR (above 84.4 and 94.0%) at 0.0-2.5% salinity. Further increasing salinity to 3.0% decreased TIN removal efficiency to 78.4% in the hybrid SBR. Steep decline of biodiversity and relative abundance of ammonia-oxidizing bacteria (AOB) contributed to the worse performance. More genera related to sulfide-oxidizing and sulfate-reducing bacteria were detected in the hybrid SBR than the SBR at 3.0% salinity. The abundance of halotolerant bacteria increased with the salinity increase for both reactors, summing up to 25.5% in the suspended sludge (S-sludge) from the SBR, 28.9 and 22.9% in the S-sludge and biofilm taken from the hybrid SBR, respectively. Nitrification and denitrification via nitrate was the main nitrogen removal pathway in the SBR and hybrid SBR at 0.0 and 0.5% salinity, while partial nitrification and denitrification via nitrite became the key process for nitrogen removal in the two reactors when the salinity was increased to 1.0-3.0%. Higher abundance of anaerobic ammonium-oxidizing (ANAMMOX) and sulfide-oxidizing autotrophic denitrification (SOAD) bacteria were found in the hybrid SBR at 3.0% salinity.
Collapse
Affiliation(s)
- Ting Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zixuan Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China. .,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
111
|
Hassan MM, Mohamed MH, Udoetok IA, Steiger BGK, Wilson LD. Sequestration of Sulfate Anions from Groundwater by Biopolymer-Metal Composite Materials. Polymers (Basel) 2020; 12:E1502. [PMID: 32640585 PMCID: PMC7408214 DOI: 10.3390/polym12071502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 01/23/2023] Open
Abstract
Binary (Chitosan-Cu(II), CCu) and Ternary (Chitosan-Alginate-Cu(II), CACu) composite materials were synthesized at variable composition: CCu (1:1), CACu1 (1:1:1), CACu2 (1:2:1) and CACu3 (2:1:1). Characterization was carried out via spectroscopic (FTIR, solids C-13 NMR, XPS and Raman), thermal (differential scanning calorimetry (DSC) and TGA), XRD, point of zero charge and solvent swelling techniques. The materials' characterization confirmed the successful preparation of the polymer-based composites, along with their variable physico-chemical and adsorption properties. Sulfate anion (sodium sulfate) adsorption from aqueous solution was demonstrated using C and CACu1 at pH 6.8 and 295 K, where the monolayer adsorption capacity (Qm) values were 288.1 and 371.4 mg/g, respectively, where the Sips isotherm model provided the "best-fit" for the adsorption data. Single-point sorption study on three types of groundwater samples (wells 1, 2 and 3) with variable sulfate concentration and matrix composition in the presence of composite materials reveal that CACu3 exhibited greater uptake of sulfate (Qe = 81.5 mg/g; 11.5% removal) from Well-1 and CACu2 showed the lowest sulfate uptake (Qe of 15.7 mg/g; 0.865% removal) from Well-3. Generally, for all groundwater samples, the binary composite material (CCu) exhibited attenuated sorption and removal efficiency relative to the ternary composite materials (CACu).
Collapse
Affiliation(s)
- Md. Mehadi Hassan
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
- Department of Arts and Sciences, Bangladesh Army University of Science and Technology, Saidpur 5311, Bangladesh
| | - Mohamed H. Mohamed
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
| | - Inimfon A. Udoetok
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
| | - Bernd G. K. Steiger
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada; (M.M.H.); (M.H.M.); (I.A.U.); (B.G.K.S.)
| |
Collapse
|
112
|
Abstract
Gold amalgam microelectrodes (GAMEs) have been characterized and successfully calibrated to measure >1.5 mM (30 mg L−1) sulfide in artificial wastewater (AWW) using cathodic stripping voltammetry (CSV). Microbial sulfide generation in two types of AWW was traced. Artificial wastewater type 1 (AWW1) held the potential for almost 50% conversion of sulfur compounds at a maximum rate of ~4.3 ± 0.5 µM h−1 while AWW 2 held a potential for 75–100% conversion at a rate of 165 µM h−1. In addition, the GAMEs were thoroughly examined during fabrication, maturation, and aging. An earlier described plating method was found to result in varying electrode surfaces due to excess mercury deposition and, therefore, deviating stripping signals. The limited shelf life of GAMEs has been proposed previously. This study shows the extent of electrode surface changes during amalgam formation and the wear and tear of application. As a result, suggestions to optimize fabrication and application are discussed to provide reliable measurements and proceed toward a future commercialization.
Collapse
|
113
|
Zeng Q, Hao T, Yuan Z, Chen G. Dewaterability enhancement and sulfide mitigation of CEPT sludge by electrochemical pretreatment. WATER RESEARCH 2020; 176:115727. [PMID: 32259684 DOI: 10.1016/j.watres.2020.115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/02/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Dewatering and sulfide control are the key challenges in treating chemically enhanced primary treatment (CEPT) sludge. In this study, an electrochemical pretreatment (EPT) approach with the input of 10 V/800 mA was explored for simultaneously improving the dewaterability of CEPT sludge and eliminating its sulfide production. The effects of different electrode materials (carbon and titanium) and EPT durations (from 5 to 15 min) were documented to reveal the underlying EPT mechanism. EPT with titanium electrodes (titanium-EPT) led to limited improvement in dewaterability and sulfide control. EPT with carbon electrodes (carbon-EPT) for 15 min, however, led to decreases in capillary suction time and specific resistance in filtration of over 80% and the suppression of about 99% of hydrogen sulfide (H2S(g)) production over 5 days of anaerobic storage. Analysis of the characteristics of treated CEPT sludge revealed that carbon-EPT disintegrated sludge flocs with ∼70% reduction in sludge particle sizes and release of aromatic and tyrosine protein-like substances, thus enhancing sludge dewaterability. The sulfur balance in the liquid and gaseous phases showed that most of the sulfur-containing compounds remained in the solid phase as aliphatic sulfur and sulfonic acid after carbon-EPT, thereby mitigating sulfide emission. While the pattern of sulfur distribution in sludge with titanium-EPT was dominated by sulfide, it was similar to the control sample. Reduction in bacteria associated with sulfide production (i.e., Lachnospiraceae) in CEPT sludge after carbon-EPT also contributed to sulfide elimination. This study demonstrates that EPT can be a superior option for simultaneously enhancing the dewaterability of CEPT sludge and mitigating its sulfide production.
Collapse
Affiliation(s)
- Qian Zeng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Guangzhou, China
| |
Collapse
|
114
|
The Evaluation of Simultaneous COD and Sulfate Removal at High COD/SO42− Ratio and Haloalkaline Condition. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
115
|
Xu Z, Chen X, Li H, Wan D, Wan J. Combined heterotrophic and autotrophic system for advanced denitrification of municipal secondary effluent in full-scale plant and bacterial community analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:136981. [PMID: 32092802 DOI: 10.1016/j.scitotenv.2020.136981] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/15/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Total nitrogen (TN) removal is the major technical challenge for wastewater treatment plants to meet the more stringent discharge standard. In this study, lab- (0.05 m3/d), pilot- (1000 m3/d) and full-scale (10,000 m3/d) combined heterotrophic and autotrophic denitrification reactors (HARs) were designed and operated to treat municipal secondary effluent. During the 110-day stable operation, the effluent TN was reduced below 2.5 mg/L without secondary pollution causing by the excessive addition of organics, close to Class IV of Environmental Quality Standards for Surface Water. The bacterial richness and diversity increased with the expansion of reactor scale. Denitrifying bacteria (DB) dominated in all reactors, however, Thiomonas (12.42%), Methylotenera (6.35%), Thiobacillus (20.62%), Methyloverstatilis (5.44%) and Thauera (8.21%) were the main genera in lab-, pilot- and full-scale reactors respectively. The denitrification efficiency temporarily deteriorated at the later stage, and redundancy analysis (RDA) indicated the obviously increased sulfate reducing bacteria (SRB) and sulfide were main contributors. Sludge supplement rapidly recovered the reactors performance in five days. This study suggests that HARs could be a promising technique for advanced denitrification of the municipal secondary effluent.
Collapse
Affiliation(s)
- Zicong Xu
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Xiaolei Chen
- ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Haisong Li
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Junfeng Wan
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
116
|
Anoxic Microbial Community Robustness Under Variation of Hydraulic Retention Time and Availability of Endogenous Electron Donors. Appl Biochem Biotechnol 2020; 192:443-454. [DOI: 10.1007/s12010-020-03327-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
|
117
|
Yu X, Sun J, Li G, Huang Y, Li Y, Xia D, Jiang F. Integration of •SO 4--based AOP mediated by reusable iron particles and a sulfidogenic process to degrade and detoxify Orange II. WATER RESEARCH 2020; 174:115622. [PMID: 32145554 DOI: 10.1016/j.watres.2020.115622] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/26/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The sulfate radical (•SO4-)-based advanced oxidation processes (AOPs) for the degradation of refractory organic pollutants consume a large amount of persulfate activators and often generate toxic organic by-products. In this study, we proposed a novel iron-cycling process integrating •SO4--based AOP mediated by reusable iron particles and a sulfidogenic process to degrade and detoxify Orange II completely. The rusted waste iron particles (Fe0@FexOy), which contained FeII/FeIII oxides (FexOy) on the shell and zero-valent iron (Fe0) in the core, efficiently activated persulfate to produce •SO4- and hydroxyl radicals (•OH) to degrade over 95% of Orange II within 120 min. Both •SO4- and •OH destructed Orange II through a sequence of electron transfer, electrophilic addition and hydrogen abstraction reactions to generate several organic by-products (e.g., aromatic amines and phenol), which were more toxic than the untreated Orange II. The AOP-generated organic by-products were further mineralized and detoxified in a sulfidogenic bioreactor with sewage treatment together. In a 170-d trial, the organic carbon removal efficiency was up to 90%. The inhibition of the bioreactor effluents on the growth of Chlorella pyrenoidosa became negligible, due to the complete degradation and mineralization of toxic AOP-generated by-products by aromatic-degrading bacteria (e.g., Clostridium and Dechloromonas) and other bacteria. The sulfidogenic process also well recovered the used Fe0@FexOy particles through the reduction of surface FeIII back into FeII by hydrogen sulfide formed and iron-reducing bacteria (e.g., Sulfurospirillum and Paracoccus). The regenerated Fe0@FexOy particles had more reactive surface FeII sites and exhibited much better reactivity in activating persulfate in at least 20 reuse cycles. The findings demonstrate that the integrated process is a promising solution to the remediation of toxic and refractory organic pollutants because it reduces the chemical cost of persulfate activation and also completely detoxifies the toxic by-products.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China
| | - Jianliang Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guibiao Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yi Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Feng Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
118
|
Moreno-Andrade I, Moreno G, Quijano G. Theoretical framework for the estimation of H 2S concentration in biogas produced from complex sulfur-rich substrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15959-15966. [PMID: 30903467 DOI: 10.1007/s11356-019-04846-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
A theoretical framework was developed and validated for the estimation of H2S concentration in biogas produced from complex sulfur-rich effluents. The modeling approach was based on easy-to-obtain data such as biological biogas potential (BBP), chemical oxygen demand, and total sulfur content. Considering the few data required, the model fitted well the experimental H2S concentrations obtained from BBP tests and continuous bioreactors reported in the literature. The model supported a correlation coefficient (R2) of 0.989 over the experimental data, obtaining average and maximum errors of ~ 25 and ~ 35%, respectively. The theoretical framework yielded good estimations for a wide range of experimental H2S concentrations (0.2 to 4.5% in biogas). This modeling approach is, therefore, a useful tool towards anticipating the H2S concentration in biogas produced from sulfur-rich substrates and deciding whether the installation of a desulfurization technology is required or not.
Collapse
Affiliation(s)
- Iván Moreno-Andrade
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Gloria Moreno
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Guillermo Quijano
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
119
|
Xu YN, Chen Y. Advances in heavy metal removal by sulfate-reducing bacteria. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1797-1827. [PMID: 32666937 DOI: 10.2166/wst.2020.227] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Industrial development has led to generation of large volumes of wastewater containing heavy metals, which need to be removed before the wastewater is released into the environment. Chemical and electrochemical methods are traditionally applied to treat this type of wastewater. These conventional methods have several shortcomings, such as secondary pollution and cost. Bioprocesses are gradually gaining popularity because of their high selectivities, low costs, and reduced environmental pollution. Removal of heavy metals by sulfate-reducing bacteria (SRB) is an economical and effective alternative to conventional methods. The limitations of and advances in SRB activity have not been comprehensively reviewed. In this paper, recent advances from laboratory studies in heavy metal removal by SRB were reported. Firstly, the mechanism of heavy metal removal by SRB is introduced. Then, the factors affecting microbial activity and metal removal efficiency are elucidated and discussed in detail. In addition, recent advances in selection of an electron donor, enhancement of SRB activity, and improvement of SRB tolerance to heavy metals are reviewed. Furthermore, key points for future studies of the SRB process are proposed.
Collapse
Affiliation(s)
- Ya-Nan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China E-mail:
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
120
|
Suárez JI, Aybar M, Nancucheo I, Poch B, Martínez P, Rittmann BE, Schwarz A. Influence of operating conditions on sulfate reduction from real mining process water by membrane biofilm reactors. CHEMOSPHERE 2020; 244:125508. [PMID: 31812042 DOI: 10.1016/j.chemosphere.2019.125508] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Two H2-based membrane biofilm reactor (H2-MBfR) systems, differing in membrane type, were tested for sulfate reduction from a real mining-process water having low alkalinity and high concentrations of dissolved sulfate and calcium. Maximum sulfate reductions were 99%, with an optimum pH range between 8 and 8.5, which minimized any toxic effect of unionized hydrogen sulfide (H2S) on sulfate-reducing bacteria (SRB) and calcite scaling on the fibers and in the biofilm. Although several strategies for control of pH and gas back-diffusion were applied, it was not possible to sustain a high degree of sulfate reduction over the long-term. The most likely cause was precipitation of calcite inside the biofilm and on the surface of fibers, which was shown by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) analysis. Another possible cause was a decline in pH, leading to inhibition by H2S. A H2/CO2 mixture in the gas supply was able to temporarily recover the effectiveness of the reactors and stabilize the pH. Biomolecular analysis showed that the biofilm was comprised of 15-20% SRB, but a great variety of autotrophic and heterotrophic genera, including sulfur-oxidizing bacteria, were present. Results also suggest that the MBfR system can be optimized by improving H2 mass transfer using fibers of higher gas permeability and by feeding a H2/CO2 mixture that is automatically adjusted for pH control.
Collapse
Affiliation(s)
- José Ignacio Suárez
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Marcelo Aybar
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Iván Nancucheo
- Faculty of Engineering and Technology, Universidad San Sebastián, Lientur 1457, Concepción, 4030000, Chile
| | - Benjamín Poch
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | | | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, United States
| | - Alex Schwarz
- Department of Civil Engineering, Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile.
| |
Collapse
|
121
|
Li X, Xiong Y, Duan M, Wan H, Li J, Zhang C, Qin S, Fang S, Zhang R. Investigation on the Adsorption-Interaction Mechanism of Pb(II) at Surface of Silk Fibroin Protein-Derived Hybrid Nanoflower Adsorbent. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1241. [PMID: 32182957 PMCID: PMC7085063 DOI: 10.3390/ma13051241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
For further the understanding of the adsorption mechanism of heavy metal ions on the surface of protein-inorganic hybrid nanoflowers, a novel protein-derived hybrid nanoflower was prepared to investigate the adsorption behavior and reveal the function of organic and inorganic parts on the surface of nanoflowers in the adsorption process in this study. Silk fibroin (SF)-derived and copper-based protein-inorganic hybrid nanoflowers of SF@Cu-NFs were prepared through self-assembly. The product was characterized and applied to adsorption of heavy metal ion of Pb(II). With Chinese peony flower-like morphology, the prepared SF@Cu-NFs showed ordered three-dimensional structure and exhibited excellent efficiency for Pb(II) removal. On one hand, the adsorption performance of SF@Cu-HNFs for Pb(II) removal was evaluated through systematical thermodynamic and adsorption kinetics investigation. The good fittings of Langmuir and pseudo-second-order models indicated the monolayer adsorption and high capacity of about 2000 mg g-1 of Pb(II) on SF@Cu-NFs. Meanwhile, the negative values of Δ r G m ( T ) θ and Δ r H m θ proved the spontaneous and exothermic process of Pb(II) adsorption. On the other hand, the adsorption mechanism of SF@Cu-HNFs for Pb(II) removal was revealed with respect to its individual organic and inorganic component. Organic SF protein was designated as responsible 'stamen' adsorption site for fast adsorption of Pb(II), which was originated from multiple coordinative interaction by numerous amide groups; inorganic Cu3(PO4)2 crystal was designated as responsible 'petal' adsorption site for slow adsorption of Pb(II), which was restricted from weak coordinative interaction by strong ion bond of Cu(II). With only about 10% weight content, SF protein was proven to play a key factor for SF@Cu-HNFs formation and have a significant effect on Pb(II) treatment. By fabricating SF@Cu-HNFs hybrid nanoflowers derived from SF protein, this work not only successfully provides insights on its adsorption performance and interaction mechanism for Pb(II) removal, but also provides a new idea for the preparation of adsorption materials for heavy metal ions in environmental sewage in the future.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; (X.L.); (J.L.); (C.Z.); (S.Q.); (S.F.)
| | - Yan Xiong
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; (X.L.); (J.L.); (C.Z.); (S.Q.); (S.F.)
| | - Ming Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; (X.L.); (J.L.); (C.Z.); (S.Q.); (S.F.)
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China;
| | - Jun Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; (X.L.); (J.L.); (C.Z.); (S.Q.); (S.F.)
| | - Can Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; (X.L.); (J.L.); (C.Z.); (S.Q.); (S.F.)
| | - Sha Qin
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; (X.L.); (J.L.); (C.Z.); (S.Q.); (S.F.)
| | - Shenwen Fang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; (X.L.); (J.L.); (C.Z.); (S.Q.); (S.F.)
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, AIBN, The University of Queensland, St Lucia, QLD 4072, Australia;
| |
Collapse
|
122
|
Cao J, Sun Q, Zhao D, Xu M, Shen Q, Wang D, Wang Y, Ding S. A critical review of the appearance of black-odorous waterbodies in China and treatment methods. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121511. [PMID: 31706745 DOI: 10.1016/j.jhazmat.2019.121511] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Black-odorous rivers and lakes are a serious environmental problem and are frequently reported in China. Despite this, there have been no comprehensive in-depth reviews of black-odorous water formation mechanisms, contributing factors and potential treatment technologies. Elements such as S, C and N play an important role in the biogeochemical cycle of black-odorous waterbodies, with water blackening caused by metal sulfides such as iron sulfide (FeS) and manganese sulfide (MnS). Volatile substances such as volatile organic sulfur compounds (VOSCs) are the main contributors of odor. Microorganisms such as sulfate reducing bacteria (SRB), Bacteroidetes and Proteobacteria play important roles in blackening and odor formation processes. Effectiveness of the commonly used treatments methods for black-odorous waterbodies, such as artificial aeration, sediment dredging, microbial enhanced technologies and constructed wetlands, varies significantly under different conditions. In contrast, bio-ecological engineering technologies exhibit comprehensive, long-lasting and economical treatment effects. The causes and mechanisms of black-odorous water formation require further investigation, as well as the optimal application conditions and mechanisms of treatment technologies. This study comprehensively reviews 1) the characteristics and current distribution of black-odorous waterbodies; 2) the compounds contributing to black-odorous phenomenon; 3) black-odorous waterbody production mechanisms; 4) treatment technologies for black-odorous waterbodies. Further studies on the mechanisms of blackening and odor formation are required, with treatment application conditions and mechanisms also requiring further clarification. In addition, the long-term ecological restoration of black-odorous rivers immediately after remediation is key issue that is easily overlooked but merits further investigation and development.
Collapse
Affiliation(s)
- Jingxin Cao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Donghua Zhao
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Qiushi Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dan Wang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing Easysensor Environmental Technology Co., Ltd., Nanjing 210018, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
123
|
Sun R, Li Y, Lin N, Ou C, Wang X, Zhang L, Jiang F. Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis. ENVIRONMENT INTERNATIONAL 2020; 136:105457. [PMID: 31926438 DOI: 10.1016/j.envint.2019.105457] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
A novel sulfidogenic acid mine drainage (AMD) treatment system with a sulfur reduction process was developed. During the 220-d operation, >99.9% of 380-mg/L ferric, 150-mg/L aluminum, 110-mg/L zinc, 20-mg/L copper and 2.5-mg/L lead ions, and 42.6-44.4% of 100-mg/L manganese ions in the synthetic AMD were step-by-step removed in the developed system with three pre-posed metal precipitators and a sulfur reduction reactor. Among them, zinc, copper and lead ions were removed by the biogenic hydrogen sulfide that produced through elemental sulfur reduction; while ferric, aluminum and manganese ions were removed by the alkali precipitation. Compared with the reported sulfate reduction reactors, the sulfur reduction reactor significantly reduced the chemical cost by 25.6-78.9% for sulfide production, and maintained a high sulfide production rate (1.12 g S2-/L-d). The pH level in the sulfidogenic reactor driven by sulfur-reducing bacteria posed a significant effect on the sulfide production rate. Under a nearly neutral condition (pH 7.0-7.5), elemental sulfur dissolved into polysulfide to increase the bioavailability of S0. At acidic conditions (pH < 6.0), polysulfide formation was limited and sulfate reduction became dominant. Therefore, maintaining the sulfidogenic reactor driven by sulfur-reducing bacteria at neutral condition is essential to realize high-rate and low-cost AMD treatment. Moreover, the escape of residual hydrogen sulfide from the system was eliminated by employing a 17% recirculation from effluent to the sulfidogenic reactor.
Collapse
Affiliation(s)
- Rongrong Sun
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Li
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Nini Lin
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Chunxi Ou
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiaoyi Wang
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
124
|
Study on the Effectiveness of Sulfate-Reducing Bacteria Combined with Coal Gangue in Repairing Acid Mine Drainage Containing Fe and Mn. ENERGIES 2020. [DOI: 10.3390/en13040995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In view of the characteristics of the high content of SO42−, Fe2+ and Mn2+ in acid mine drainage (AMD) and low pH value, based on adsorption and biological methods, coal gangue was combined with sulfate-reducing bacteria (SRB). On this basis, four dynamic columns, including Column 1 (SRB combined with spontaneous combustion gangue from the Gaode coal mine), Column 2 (SRB combined with spontaneous combustion gangue from Haizhou), Column 3 (SRB combined with gangue from Haizhou), and Column 4 (SRB combined with gangue from Shanxi), were constructed. The efficacy of four columns was compared by the inflow of AMD with different pollution load. Results showed that the repair effect of four columns was: Column 3 > Column 2 > Column 1 > Column 4. In the second stage of the experiment, the repair effect of Column 3 was the best. The average effluent pH value and oxidation reduction potential (ORP) value were 9.09 and –262.83 mV, the highest removal percentages of chemical oxygen demand (COD) and SO42− were 84.41% and 72.73%, and the average removal percentages of Fe2+, Mn2+ were 98.70% and 79.97%, respectively. At the end of the experiment, when deionized water was injected, the fixed effect of AMD in the four columns was stable and no secondary release appeared.
Collapse
|
125
|
Fang W, Gu M, Liang D, Chen GH, Wang S. Generation of zero valent sulfur from dissimilatory sulfate reduction under methanogenic conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121197. [PMID: 31541951 DOI: 10.1016/j.jhazmat.2019.121197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/30/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Dissimilatory sulfate reduction mediated by sulfate-reducing microorganisms (SRMs) has a pivotal role in the sulfur cycle, from which the generation of zero valent sulfur (ZVS) represents a novel pathway. Nonetheless, information on ZVS production from the dissimilatory sulfate reduction remains scarce. This study successfully showed the ZVS production from the dissimilatory sulfate reduction both in a bioreactor and batch experiments under the methanogenic condition. The ZVS was produced in the form of polysulfide and largely located at extracellular sites. In the bioreactor, interestingly, ZVS could be generated first from partial sulfide oxidation mediated by sulfide-oxidizing bacteria (e.g., Thiobacillus) and later from the dissimilatory sulfate reduction in SRMs when changing the reactor operation from anoxic to obligate anaerobic and black condition. In batch experiments, increasing sulfate concentration was shown to enhance ZVS production. Based on these results, together with thermodynamic calculations, a scenario was proposed for the ZVS production from dissimilatory sulfate reduction, in which SRMs might utilize sulfate-to-ZVS as an alternative pathway to sulfate-to-sulfide to increase the thermodynamic favorability and alleviate the inhibitive effects of sulfide. This study expands our understanding of the SRMs-mediated dissimilatory sulfate reduction and may have important implications in environmental bioremediation.
Collapse
Affiliation(s)
- Wenwen Fang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiomics Research Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Manfei Gu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiomics Research Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Dongqing Liang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiomics Research Center, Sun Yat-Sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
| |
Collapse
|
126
|
Sampaio GF, Dos Santos AM, da Costa PR, Rodriguez RP, Sancinetti GP. High rate of biological removal of sulfate, organic matter, and metals in UASB reactor to treat synthetic acid mine drainage and cheese whey wastewater as carbon source. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:245-254. [PMID: 31472092 DOI: 10.1002/wer.1235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/19/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The anaerobic biological treatment of sulfate-rich effluents, such as acid mine drainage (AMD), is mediated by sulfate-reducing bacteria (SRB). This process involves the reduction of sulfates in the presence of an electron donor. Complex carbon compounds can be used as electron donors. In the present study, was used an upflow anaerobic sludge blanket (UASB) reactor to co-treat a low-pH synthetic AMD and cheese whey wastewater (CWW). Were observed higher sulfate and COD removal rates (1,114 ± 88 and 1,214 ± 128 mg L-1 day-1 , respectively) at higher sulfate and applied COD loading rates (1,500 mg L-1 day-1 ). The overall pH of the effluent remained above 6.4 without any bicarbonate supplementation. Almost 100% of the Fe, Zn, and Cu was removed and the presence of metals improved the process. The use of a single reactor to treat AMD and CWW is promising. PRACTITIONER POINTS: Wastewater cheese whey was electron donor for treating acid mine drainage in an UASB reactor. Metals additions in the system indicated an increased removal of COD. About 99% of the metals were removed with the treatment.
Collapse
Affiliation(s)
| | | | - Patricia R da Costa
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de Alfenas (UNIFAL), Poços de Caldas, Brazil
| | - Renata P Rodriguez
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de Alfenas (UNIFAL), Poços de Caldas, Brazil
| | - Giselle P Sancinetti
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de Alfenas (UNIFAL), Poços de Caldas, Brazil
| |
Collapse
|
127
|
Biswal BK, Wang B, Tang CJ, Chen GH, Wu D. Elucidating the effect of mixing technologies on dynamics of microbial communities and their correlations with granular sludge properties in a high-rate sulfidogenic anaerobic bioreactor for saline wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 297:122397. [PMID: 31757610 DOI: 10.1016/j.biortech.2019.122397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
In this study, three lab-scale anaerobic sulfidogenic bioreactors were operated independently using three different mixing modes (hydraulic, mechanical and pneumatic). One-way ANOVA test indicated various performance parameters (e.g. sulfate reduction and sulfide production) and granular sludge properties (e.g. EPS and particle size) statistically different in three mixing modes. Principal component analysis (PCA) and OTUs-based network demonstrated bacterial composition greatly varied among the three mixing modes. The phylum Proteobacteria was predominant among the bacterial communities, and the genus Desulfobacter (35.1% in hydraulic, 31.1% in mechanical and 27.4% in pneumatic sample) was the most dominant SRB. The PCA/Pearson's correlation analysis confirmed SRB had significant positive relationship with sludge properties (e.g. particle size). PICRUSt data highlighted that bacterial communities contained diverse predicted functions including sulfur metabolism enzymes (sulfite reductase and adenylylsulfate reductase). The findings of this research could be helpful for selection of an appropriate mixing technology for anaerobic sulfidogenic or similar bioprocess.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bo Wang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chong-Jian Tang
- Department of Environmental Engineering, and National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
128
|
Huang H, Biswal BK, Chen GH, Wu D. Sulfidogenic anaerobic digestion of sulfate-laden waste activated sludge: Evaluation on reactor performance and dynamics of microbial community. BIORESOURCE TECHNOLOGY 2020; 297:122396. [PMID: 31748132 DOI: 10.1016/j.biortech.2019.122396] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the impact of sludge retention times (SRTs: 40, 20, 10 and 5 days) on performance of the sulfidogenic anaerobic digestion (SAD) reactor treating sulfate-laden waste activated sludge and dynamics of sulfate reducing bacteria (SRB). The findings showed that sulfide production, volatile sludge removal efficiency, ammonia release and methane yield decreased by 33.7%, 66.4%, 21.3% and 68.7%, respectively when SRT was shortened from 40 to 5 d. Significant enrichment of hydrolyzers/fermenters (genera Mesotoga and Sulfurovum) was observed at longer SRT (40 d), but shorter SRT (5 d) favors enrichment of diverse SRB (genera Desulfomicrobium and Desulfovibrio). PICRUSt data revealed bacterial communities possessed diverse predicted functions including sulfur metabolism enzymes (e.g. sulfate adenylyltransferase), and their abundance was higher at shorter SRT. Statistical analysis (PCA) confirmed positive relationships between SRB and SAD performance. The findings of this research could be useful for design and optimization of sulfidogenic-based anaerobic digestion process.
Collapse
Affiliation(s)
- Hao Huang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
129
|
Zan F, Hao T. Sulfate in anaerobic co-digester accelerates methane production from food waste and waste activated sludge. BIORESOURCE TECHNOLOGY 2020; 298:122536. [PMID: 31835199 DOI: 10.1016/j.biortech.2019.122536] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The presence of sulfate in food waste (FW) and waste activated sludge (WAS) threatens the anaerobic co-digestion for methane production. In this study, methane production from the anaerobic co-digestion of FW and WAS at sulfate concentrations of 50, 100, and 400 mg S/L was not affected, but instead deteriorated at 200 and 300 mg S/L. However, a model-based kinetic analysis reveals that sulfate can significantly promote the conversion of rapidly biodegradable substrates by up to 93%. From a point of thermodynamic view, the presence of sulfate can stimulate sulfate-reducing bacteria acting as acetogens to convert propionate to acetate, providing an alternative metabolic pathway for methanogenesis. In the anaerobic co-digestion, regulation of sulfate can be a potential strategy to improve the efficiency of methane production. However, more research is needed to optimize the sulfate concentration and substrate types in the anaerobic co-digester.
Collapse
Affiliation(s)
- Feixiang Zan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| |
Collapse
|
130
|
Chen F, Li ZL, Lv M, Huang C, Liang B, Yuan Y, Lin XQ, Gao XY, Wang AJ. Recirculation ratio regulates denitrifying sulfide removal and elemental sulfur recovery by altering sludge characteristics and microbial community composition in an EGSB reactor. ENVIRONMENTAL RESEARCH 2020; 181:108905. [PMID: 31767354 DOI: 10.1016/j.envres.2019.108905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Expanded granular sludge blanket (EGSB) is regarded as a promising reactor to carry out denitrifying sulfide removal (DSR) and elemental sulfur (S0) recovery. Although the recirculation ratio is an essential parameter for EGSB reactors, how it impacts the DSR process remains poorly understood. Here, three lab-scale DSR-EGSB reactors were established with the different recirculation ratios (3:1, 6:1 and 9:1) to evaluate the corresponding variations in pollutant removal, S0 recovery, anaerobic granular sludge (AGS) characteristics and microbial community composition. It was found that an intermediate recirculation ratio (6:1) could facilitate long-term reactor stability. Adequate recirculation ratio could enhance S0 recovery, but an excessive recirculation ratio (9:1) was likely to cause AGS fragmentation and biomass loss. The S0 desorbed more from sludge at higher recirculation ratios, probably due to the enhanced hydraulic disturbance caused by the increased recirculation ratios. At the low recirculation ratio (3:1), S0 accumulation as inorganic suspended solids in AGS led to a decrease in VSS/TSS ratio and mass transfer efficiency. Although typical denitrifying and sulfide-oxidizing bacteria (e.g., Azoarcus, Thauera and Arcobacter) were predominant in all conditions, facultative and heterotrophic functional bacteria (e.g., Azoarcus and Thauera) were more adaptable to higher recirculation ratios than autotrophs (e.g., Arcobacter, Thiobacillus and Vulcanibacillus), which was conducive to the formation of bacterial aggregates to response to the increased recirculation ratio. The study revealed recirculation ratio regulation significantly impacted the DSR-EGSB reactor performance by altering AGS characteristics and microbial community composition, which provides a novel strategy to improve DSR performance and S0 recovery.
Collapse
Affiliation(s)
- Fan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Miao Lv
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Cong Huang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ye Yuan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xiao-Qiu Lin
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiang-Yu Gao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
131
|
Gupta A, Sar P. Characterization and application of an anaerobic, iron and sulfate reducing bacterial culture in enhanced bioremediation of acid mine drainage impacted soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:464-482. [PMID: 31971065 DOI: 10.1080/10934529.2019.1709362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Development of an appropriate bioremediation strategy for acid mine drainage (AMD) impacted environment is imperative for sustainable mining but remained critically challenged due to the paucity of knowledge on desired microbiological factors and their nutrient requirements. The present study was conducted to utilize the potential of an anaerobic, acid-tolerant, Fe3+ and SO42- reducing microbial consortium for in situ remediation of highly acidic (pH 3.21), SO42- rich (6285 mg/L) mine drainage impacted soil (AIS). A microbial consortium enriched from AMD system and composed of Clostridiales and Bacillales members was characterized and tested for in situ application through microcosms. A combination of bioaugmentation (enriched consortium) and biostimulation (cellulose) allowed 97% reduction in dissolved sulfate and rise in pH up to 7.5. 16S rRNA gene-based amplicon sequencing confirmed that although the bioaugmented community could survive in AIS, availability of carbon source was necessary for superior iron- and sulfate- reduction. Quantitative PCR of dsrB gene confirmed the role of carbon source in boosting the SO42- reduction activities of sulfate reducers. This study demonstrated that native AIS harbored limited catabolic activities required for the remediation but addition of catabolically active microbial populations along with necessary carbon and energy source facilitate the bioremediation of AIS.
Collapse
Affiliation(s)
- Abhishek Gupta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
132
|
Dynamic Experimental Study on Treatment of Acid Mine Drainage by Bacteria Supported in Natural Minerals. ENERGIES 2020. [DOI: 10.3390/en13020439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to solve the problem of pollution of acid mine drainage (AMD), such as low pH value and being rich in SO42−, Fe and Mn pollution ions, etc., immobilized particles were prepared by using sugar cane-refining waste (bagasse), a natural composite mineral (called medical stone in China) and sulfate-reducing bacteria (SRB) as substrate materials, based on microbial immobilization technology. Medical stone is a kind of composite mineral with absorbability, non-toxicity and biological activity. The adsorption capacity of medical stone is different according to its geographic origins. Two dynamic columns were constructed with Column 1 filled by Fuxin’s medical stone-enhanced SRB immobilized particles, and Column 2 filled by Dengfeng’s medical stone-enhanced SRB immobilized particles as fillers. The treatment effect on AMD with SRB-immobilized particles enhanced by medical stone from different areas was compared. Results showed that Column 2 had better treatment effect on AMD. The average effluent pH value of Column 2 was 6.98, the average oxidation reduction potential (ORP) value was −70.17 mV, the average removal percentages of SO42−, Fe2+ and Mn2+ were 70.13%, 83.82% and 59.43%, respectively, and the average chemical oxygen demand (COD) emission was 555.48 mg/L.
Collapse
|
133
|
Wang HG, Huang H, Liu RL, Mao YP, Biswal BK, Chen GH, Wu D. Investigation on polyphosphate accumulation in the sulfur transformation-centric EBPR (SEBPR) process for treatment of high-temperature saline wastewater. WATER RESEARCH 2019; 167:115138. [PMID: 31585382 DOI: 10.1016/j.watres.2019.115138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/10/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the polyphosphates accumulation rate in a novel sulfur transformation-centric enhanced biological phosphorus removal (SEBPR) process. The SEBPR system was continuously operated over 120 days in a sequencing batch reactor (SBR) that alternated between the anaerobic mode and the anoxic mode of operation (temperature: 30 °C and salinity: 6000 mg/L Cl-). In addition to the SBR, batch experiments were carried out to test the effect of two different sulfate concentrations on the system performance and sulfur-phosphorus transformations. The key intercellular polymers of polyphosphates and polysulfur (poly-S) were identified by employing advanced microscopes. Metagenomic analysis was performed to characterize the diversity of microbes and their functions enriched in the SEBPR system. Finally, several molecular techniques including flow cytometry cell sorting and 16S DNA high-throughput sequencing were applied to identify the phosphorus-accumulating organisms (PAOs). The amounts of P release and P uptake in the SEBPR increased gradually to nearly 18 ± 6.4 mg P/L and 26.5 ± 6.7 mg P/L respectively, yielding a net P removal efficiency of 84 ± 25%. Batch tests indicated no polyhydroxyalkanate (PHA) synthesis, but P uptake was observed and it was correlated with the intracellular poly-S consumption, suggesting that the poly-S could act as an intracellular energy source for P uptake and polyphosphates formation. Moreover, CLSM and TEM micrographs clearly showed the presence of intercellular polyphosphates and poly-S respectively. Metagenomic analysis revealed that Proteobacteria (36.5%), Bacteroidetes (23.3%), Thermotogae (7.1%), Chloroflexi (4.5%) and Firmicutes (2.3%) were the dominant phyla in Bacteria. The conventional PAO of Candidatus Accumulibacter was found at a low abundance of 0.32% only; and an uncultured genus close to Rhodobacteraceae at the family level is speculated to be the putative sulfur PAO (SPAO). Finally, this research suggests that poly-S considerably impacts on polyphosphates accumulation in the SEBPR system when no PHAs are formed.
Collapse
Affiliation(s)
- Hai-Guang Wang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Huang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ru-Long Liu
- Department of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Yan-Ping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, FYT Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, FYT Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
134
|
Shende AG, Tiwari CS, Bhoyar TH, Vidyasagar D, Umare SS. BWO nano-octahedron coupled with layered g-C3N4: An efficient visible light active photocatalyst for degradation of cationic/anionic dyes, and N2 reduction. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
135
|
Yuan Y, Bian A, Chen F, Xu X, Huang C, Chen C, Liu W, Cheng H, Chen T, Ding C, Li Z, Wang A. Continuous sulfur biotransformation in an anaerobic-anoxic sequential batch reactor involving sulfate reduction and denitrifying sulfide oxidization. CHEMOSPHERE 2019; 234:568-578. [PMID: 31229718 DOI: 10.1016/j.chemosphere.2019.06.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
The pathways and intermediates of continuous sulfur biotransformation in an anaerobic and anoxic sequential batch reactor (AA-SBR) involving sulfate reduction (SR) and denitrifying sulfide oxidization (DSO) were investigated. In the anoxic phase, DSO occurred in two sequential steps, the oxidation of sulfide (S2-) to elemental sulfur (S0) and the oxidation of S0 to sulfate (SO42-). The oxidation rate of S2- to S0 was 3.31 times faster than that of S0 to SO42-, resulting in the accumulation of S0 as a desired intermediate under S2--S/NO3--N ratio (molar ratio) of 0.9:1. Although, approximately 60% of generated S0 suspended in the effluent, about 40% of S0 retained in the sludge, which could be further oxidized or reduced in anoxic or anaerobic phase. In anoxic, S0 was subsequently oxidized to SO42- under S2--S/NO3--N ratio of 0.5:1. In anaerobic, S0 coexist with SO42- (in fresh wastewater) were simultaneously reduced to S2-, and the reduction rate of SO42- to S2- was 3.17 times faster than that of S0 to S2-, resulting in a higher production of S0 in subsequent anoxic phase. Microbial community analysis indicated that SO42-/S0-reducing bacteria (e.g. Desulfomicrobium and Desulfuromonas) and S2-/S0-oxidizing bacteria (e.g. Paracoccus and Thermothrix) co-participated in continuous sulfur biotransformation in the AA-SBR. A conceptual model was established to describe these main processes and key intermediates. The research offers a new insight into the reaction processes optimization for S0 recovery and simultaneous removal of SO42- and NO3- in an AA-SBR.
Collapse
Affiliation(s)
- Ye Yuan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Aiqin Bian
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Fan Chen
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Cong Huang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenzong Liu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haoyi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Cheng Ding
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Zhaoxia Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
136
|
Yun YM, Lee E, Kim K, Han JI. Sulfate reducing bacteria-based wastewater treatment system integrated with sulfide fuel cell for simultaneous wastewater treatment and electricity generation. CHEMOSPHERE 2019; 233:570-578. [PMID: 31195262 DOI: 10.1016/j.chemosphere.2019.05.206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/05/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to design a sulfate-reducing bacteria (SRB)-based wastewater treatment system (SWTS) integrated with a sulfide fuel cell (SFC) as an alternative to the energy-intensive aerobic wastewater treatment process. The result showed that the COD/sulfate ratio and hydraulic retention time (HRT) were two important parameters in a SWTS. The highest COD and sulfate removal efficiency rates were at a HRT of 4 h at a COD/sulfate ratio of 0.67, reaching 83 ± 0.2% and 84 ± 0.4% with sulfate removal rates of 4.087 ± 32 mg SO42-/d, respectively. A microbial analysis revealed that the dominance of nine OTUs belonging to SRB closely affected the high sulfate removal efficiency in the SWTS. At the HRT of 8 h, voltage of 0.02 V and a power density level of 130 mW/m2 were obtained with sulfide removal efficiency of 99 ± 0.5%. These results overall demonstrate that SRB can serve as a green and effective route for wastewater treatment.
Collapse
Affiliation(s)
- Yeo-Myeong Yun
- Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Eunjin Lee
- Kori Nuclear Power Plant #1, Chemical Engineering Team, Korea Hydro and Nuclear Power Co., Ltd, 96-1 Gilcheon-gil, Jangan-eup, Gijang-gun, Busan, 46036, Republic of Korea
| | - Kwiyong Kim
- Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, IA, 50011, United States
| | - Jong-In Han
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
137
|
Jia Y, Zhang H, Khanal SK, Yin L, Lu H. Insights into pharmaceuticals removal in an anaerobic sulfate-reducing bacteria sludge system. WATER RESEARCH 2019; 161:191-201. [PMID: 31195335 DOI: 10.1016/j.watres.2019.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
In this study, we examined eight typical and widely detected pharmaceuticals (PhAs) removal in an anaerobic sulfate-reducing bacteria (SRB) sludge system (five antibiotics: sulfadiazine (SD), sulfamethoxazole (SMX), trimethoprim (TMP), ciprofloxacin (CIP) and enoxacin (ENO), and three nonsteroidal anti-inflammatory drugs (NSAIDs): ibuprofen (IBU), ketoprofen (KET) and diclofenac (DIC)). The results showed that the SRB sludge had the higher removal efficacy (20 to 90%) for antibiotics (SD, SMX, TMP, CIP and ENO) than NSAIDs (<20%) via adsorption and biodegradation under different operating conditions. Based on a series of batch studies, fluoroquinolone antibiotics (CIP and ENO) were instantly (<15 min) removed (∼98%) via adsorption on SRB sludge with adsorption coefficient (Kd) as high as 25.3 ± 1.8 L/g-suspended solids (SS). And thermodynamics results indicated that the adsorption of CIP and ENO on SRB sludge was spontaneous (Gibbs free energy change (ΔG°) <0 kJ/mol), exothermic (enthalpy change (ΔH°) <0 kJ/mol), and the adsorption process involved both physisorption and chemisorption (absolute value of ΔH° = 20 to 80 kJ/mol). Three widely prescribed antibiotics (SMX, TMP and CIP) were further investigated for their possible biodegradation pathways along with functional enzymes involved through a series of batch experiments. The biotransformation intermediates indicated that biotransformations of SMX and CIP in SRB sludge system could be initiated from the cleavage of isoxazole and piperazinyl rings catalyzed by sulfite reductase (SR) and cytochrome P450 (CYP450) enzymes, respectively. TMP was likely biotransformed via O-demethylation and N-acetylation coupled with hydroxylation reactions with CYP450 enzymes as the main functional enzymes. This study provided new insight into PhAs removal in SRB sludge system, and has significant potential of implementing sulfur-mediated biological process for the treatment of PhAs containing wastewater.
Collapse
Affiliation(s)
- Yanyan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, USA
| | - Linwan Yin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China.
| |
Collapse
|
138
|
Liu Y, Gu M, Yin Q, Wu G. Inhibition mitigation and ecological mechanism of mesophilic methanogenesis triggered by supplement of ferroferric oxide in sulfate-containing systems. BIORESOURCE TECHNOLOGY 2019; 288:121546. [PMID: 31152955 DOI: 10.1016/j.biortech.2019.121546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Methanogenesis can be inhibited by volatile fatty acids (VFAs) accumulation and sulfate during anaerobic wastewater treatment. In this study, effects of ferroferric oxide (Fe3O4) on VFAs degradation and methanogenesis in sulfate-containing environment were investigated. Methanogenesis in reactors with or without sulfate were both favored through the addition of Fe3O4. In reactors without sulfate, the dosage of Fe3O4 increased the maximum methane production rate by 21.7% accompanied with faster acetate and propionate degradation. Metagenomic analysis showed that Fe3O4 mainly promoted electron exchange between Mesotoga, Syntrophobacter, Smithella and Methanosaeta without altering the syntrophic patterns. However, in the sulfate-containing reactor with low methanogenic efficiency, syntrophic ethanol users and Methanosaeta were replaced by sulfate-reducing bacteria and Methanosarcina, respectively. The supplement of Fe3O4 re-enriched the syntrophic partners inhibited by sulfate and rebuilt a new syntrophic interaction with high efficiency similar to that in sulfate-free environment, leading to better methanogenic performance in sulfate-containing environment.
Collapse
Affiliation(s)
- Yu Liu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Mengqi Gu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Qidong Yin
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Guangxue Wu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
139
|
Jin Z, Zhao Z, Zhang Y. Potential of direct interspecies electron transfer in synergetic enhancement of methanogenesis and sulfate removal in an up-flow anaerobic sludge blanket reactor with magnetite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 677:299-306. [PMID: 31059873 DOI: 10.1016/j.scitotenv.2019.04.372] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic digestion (AD) has been widely applied in the treatment of industrial wastewater containing oxidized sulfur compounds. However, the production of hydrogen sulfide usually limits the syntrophic metabolism proceeded by interspecies hydrogen transfer (IHT), due to its corrosive and toxic properties. The current study was in an attempt to establish direct interspecies electron transfer (DIET) to resist the toxic inhibition from hydrogen sulfide and keep syntrophic metabolism stable. The results showed that, in the presence of magnetite, the methane production was improved about 3-10 folds at each ratio of COD/SO42-, while the enhancement of methanogenesis had almost no negative effect on sulfate reduction. With magnetite, the sludge conductance increased about 3 folds, but the concentration of c-type cytochromes decreased, suggesting that the potential DIET via both electrically conductive pili and outer surface c-type cytochromes was established. Microbial community revealed that, Veillonella species, the Fe(III)-reducing genus capable of reducing sulfate to hydrogen sulfide, were specially enriched with magnetite. Together with the relatively higher abundance of Methanothrix and Methanosarcina species, the novel DIET between Fe(III)/sulfate-reducing genus and methanogens was inferred to be responsible for the synergetic enhancement of methanogenesis and sulfate removal.
Collapse
Affiliation(s)
- Zhen Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
140
|
Guo G, Ekama GA, Wang Y, Dai J, Biswal BK, Chen G, Wu D. Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2019; 285:121303. [PMID: 30952535 DOI: 10.1016/j.biortech.2019.03.142] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Recently an innovative sulfur conversion-associated enhanced biological phosphorus removal (S-EBPR) process has been developed for treating sulfate-rich wastewater. This process has successfully integrated sulfur (S), carbon (C), nitrogen (N) and P cycles for simultaneous metabolism or removal of C, N and P; moreover this new process relies on the synergy among the slow-growing sulfate-reducing bacteria and sulfur-oxidizing bacteria, hence generating little excess sludge. To elucidate this new process, researchers have investigated the microorganisms proliferated in the system, identified the biochemical pathways and assessed the impact of operational and environmental factors on process performance as well as trials on process optimization. This paper for the first time reviews the recent advances that have been achieved, particularly relating to the areas of S-EBPR microbiology and biochemistry, as well as the effects of environmental factors (e.g., electron donors/acceptors, pH, temperature, etc.). Moreover, future directions for researches and applications are proposed.
Collapse
Affiliation(s)
- Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China; Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Ji Dai
- Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Basanta Kumar Biswal
- Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China
| | - Di Wu
- Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
141
|
Zhang D, Cui L, Madani RMA, Wang H, Zhu H, Liang J. Effect of nitrite and nitrate on sulfate reducing ammonium oxidation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:634-643. [PMID: 31661442 DOI: 10.2166/wst.2019.277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of nitrite and nitrate on the integration of ammonium oxidization and sulfate reduction were investigated in a self-designed reactor with an effective volume of 5 L. An experimental study indicated that the ammonium oxidization and sulfate reduction efficiencies were increased in the presence of nitrite and nitrate. Studies showed that a decreasing proportion of N/S in the presence of NO2 - at 30 mg·L-1 would lead to high removal efficiencies of NH4 +-N and SO4 2--S of up to 78.13% and 46.72%, respectively. On the other hand, NO3 - was produced at approximately 26.89 mg·L-1. Proteobacteria, Chloroflexi, Bacteroidetes, Chlorobi, Acidobacteria, Planctomycetes and Nitrospirae were detected in the anaerobic cycle growth reactor. Proteobacteria was identified as the dominant functional bacteria removing nitrogen in the reactor. The nitritation reaction could promote the sulfate-reducing ammonium oxidation (SRAO) process. NH4 + was converted to NO2 and other intermediates, for which the electron acceptor was SO4 2-. These results showed that nitrogen was converted by the nitrification process, the denitrification process, and the traditional anammox process simultaneously with the SRAO process. The sulfur-based autotrophic denitration and denitrification in the reactor were caused by the influent nitrite and nitrate.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Chemical & Environmental Engineering, School of Science, Shenyang University of Technology, Shenyang 110870, China E-mail:
| | - Li Cui
- Department of Chemical & Environmental Engineering, School of Science, Shenyang University of Technology, Shenyang 110870, China E-mail:
| | - Rayan M A Madani
- Department of Chemical & Environmental Engineering, School of Science, Shenyang University of Technology, Shenyang 110870, China E-mail:
| | - Hui Wang
- Department of Chemical & Environmental Engineering, School of Science, Shenyang University of Technology, Shenyang 110870, China E-mail:
| | - Hao Zhu
- Department of Chemical & Environmental Engineering, School of Science, Shenyang University of Technology, Shenyang 110870, China E-mail:
| | - Jiyan Liang
- Department of Chemical & Environmental Engineering, School of Science, Shenyang University of Technology, Shenyang 110870, China E-mail:
| |
Collapse
|
142
|
Oberoi AS, Jia Y, Zhang H, Khanal SK, Lu H. Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7234-7264. [PMID: 31244081 DOI: 10.1021/acs.est.9b01131] [Citation(s) in RCA: 451] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Antibiotics, the most frequently prescribed drugs of modern medicine, are extensively used for both human and veterinary applications. Antibiotics from different wastewater sources (e.g., municipal, hospitals, animal production, and pharmaceutical industries) ultimately are discharged into wastewater treatment plants. Sorption and biodegradation are the two major removal pathways of antibiotics during biological wastewater treatment processes. This review provides the fundamental insights into sorption mechanisms and biodegradation pathways of different classes of antibiotics with diverse physical-chemical attributes. Important factors affecting sorption and biodegradation behavior of antibiotics are also highlighted. Furthermore, this review also sheds light on the critical role of extracellular polymeric substances on antibiotics adsorption and their removal in engineered biological wastewater treatment systems. Despite major advancements, engineered biological wastewater treatment systems are only moderately effective (48-77%) in the removal of antibiotics. In this review, we systematically summarize the behavior and removal of different antibiotics in various biological treatment systems with discussion on their removal efficiency, removal mechanisms, critical bioreactor operating conditions affecting antibiotics removal, and recent innovative advancements. Besides, relevant background information including antibiotics classification, physical-chemical properties, and their occurrence in the environment from different sources is also briefly covered. This review aims to advance our understanding of the fate of various classes of antibiotics in engineered biological wastewater treatment systems and outlines future research directions.
Collapse
Affiliation(s)
| | - Yanyan Jia
- Department of Civil and Environmental Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong
| | | | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Ma̅noa , 1955 East-West Road , Honolulu , Hawaii 96822 , United States
| | | |
Collapse
|
143
|
Sun J, Yang J, Liu Y, Guo M, Wen Q, Sun W, Yao J, Li Y, Jiang F. Magnetically-mediated regeneration and reuse of core-shell Fe 0@Fe III granules for in-situ hydrogen sulfide control in the river sediments. WATER RESEARCH 2019; 157:621-629. [PMID: 31004978 DOI: 10.1016/j.watres.2019.03.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
A novel iron-cycling process based on core-shell iron granules, which contained zero-valent iron (Fe0) in the core and maghemite (γ-Fe2O3) on the shell (Fe0@FeIII granules), was proposed to in-situ control hydrogen sulfide in the sediments of the polluted urban rivers. The Fe0@FeIII granules added in the top sediment layer removed 97% of sulfide generated by sulfate-reducing bacteria in the sediments, and the sulfide removal capacity of virgin granules was 163 mg S/g Fe (114 mg S/g granule). The Fe0@FeIII granules removed the formed sulfide through the abiotic sulfide oxidation and precipitation, and they also stimulated the microbial iron reduction, which competitively consumed wastewater-derived organics and partially inhibited the sulfate reduction in the sediments. The used Fe0@FeIII granules were easily regenerated through magnetic separation from sediments and air exposure for 12 h, which enhanced the sulfide removal capacities of the regenerated granules by 12%-22%, compared to the virgin granules. During the air exposure, ferrous products (i.e., iron sulfide and surface-associated FeII) on the granule shell were completely oxidized to poorly ordered FeIII hydroxides (γ-FeOOH and amorphous FeOOH) having larger specific surface areas and higher reactivity to sulfide than γ-Fe2O3 on the virgin granules. Meanwhile, the Fe0 in the core was also partially oxidized through the indirect electron transfer, which was facilitated by the electrically conductive iron oxide minerals (Fe3O4 and Fe2O3) and the microbial electron carriers (e.g., Geobacter). The oxidation of Fe0 core contributed additional FeIII hydroxides to the sulfide control. The Fe0@FeIII granules were reused for four times in a 293-day trial, and their overall sulfide removal capacity was at least 920 mg S/g Fe. The proposed iron-cycling process can be a chemical-saving, energy-saving and cost-effective approach for the hydrogen sulfide control in the sediments of polluted urban rivers, as well as lakes, aquaculture ponds and marine.
Collapse
Affiliation(s)
- Jianliang Sun
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Jierui Yang
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Yueping Liu
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Mengli Guo
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Qiaoyun Wen
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Weijun Sun
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Jianxin Yao
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Yu Li
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Feng Jiang
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
144
|
Johnson NW, Pastor J, Swain EB. Cumulative Sulfate Loads Shift Porewater to Sulfidic Conditions in Freshwater Wetland Sediment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1231-1244. [PMID: 30901093 PMCID: PMC6852076 DOI: 10.1002/etc.4410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/26/2018] [Accepted: 03/07/2019] [Indexed: 05/27/2023]
Abstract
It is well established that sulfide can be toxic to rooted aquatic plants. However, a detailed description of the effects of cumulative sulfate loads on sulfide and iron (Fe) porewater geochemistry, plant exposure, and ecological response is lacking. Over 4 yr, we experimentally manipulated sulfate loads to self-perpetuating wild rice (Zizania palustris) populations and monitored increases in the ratio of sulfur (S) to Fe in sediment across a range of sulfide loading rates driven by overlying water sulfate. Because natural settings are complicated by ongoing Fe and S loads from surface and groundwater, this experimental setting provides a tractable system to describe the impacts of increased S loading on Fe-S porewater geochemistry. In the experimental mesocosms, the rate of sulfide accumulation in bulk sediment increased linearly with overlying water sulfate concentration up to 300 µg-SO4 cm-3 . Seedling survival at the beginning of the annual life cycle and seed mass and maturation at the end of the annual life cycle all decreased at porewater sulfide concentrations between 0.4 and 0.7 µg cm-3 . Changes to porewater sulfide, plant emergence, and plant nutrient uptake during seed production were closely related to the ratio of S to Fe in sediment. A mass balance analysis showed that porewater sulfide remained a small and relatively transient phase compared to sulfate in the overlying water and Fe in the sediment solid phase. The results illuminate the evolution of the geochemical setting and timescales over which 4 yr of cumulative sulfate loading resulted in a wholesale shift from Fe-dominated to sulfide-dominated porewater chemistry. This shift was accompanied by detrimental effects to, and eventual extirpation of, self-perpetuating wild rice populations. Environ Toxicol Chem 2019;38:1231-1244. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Nathan W. Johnson
- Department of Civil EngineeringUniversity of Minnesota DuluthDuluthMinnesotaUSA
| | - John Pastor
- Department of BiologyUniversity of Minnesota DuluthDuluthMinnesotaUSA
| | | |
Collapse
|
145
|
Zeng D, Yin Q, Du Q, Wu G. System performance and microbial community in ethanol-fed anaerobic reactors acclimated with different organic carbon to sulfate ratios. BIORESOURCE TECHNOLOGY 2019; 278:34-42. [PMID: 30669029 DOI: 10.1016/j.biortech.2019.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Sulfate influences the organics removal and methanogenic performance during anaerobic wastewater treatment. System performance, microbial community and metabolic pathways in ethanol-fed anaerobic reactors were investigated under different COD/SO42- ratios (2, 1 and 0.67) and control without sulfate addition. The sulfate removal percentages declined (99%, 60% and 49%) with decreasing COD/SO42- ratios, and methanogenesis was completely inhibited. Acetate accumulated to 903-734 mg/L, though propionate was constantly lower than 30 mg/L. Without sulfate, acetate and propionate did not accumulate, despite the extended time for propionate degradation. Incomplete oxidizing sulfate reducing bacteria (Desulfobulbus and Desulfomicrobium) and hydrolysis-acidification genera (Treponema and Bacteroidales) predominated but could not degrade acetate. Desulfobulbus was the key genus for propionate degradation through the pyruvate & propanoate metabolism pathway. Pseudomonas and Desulfobulbus, possessing genes encoding Type IV pili and cytochrome c6 OmcF, respectively, potentially participated in the direct interspecies electron transfer in sulfate-rich conditions.
Collapse
Affiliation(s)
- Danfei Zeng
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qing Du
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
146
|
Sun J, Hong Y, Guo J, Yang J, Huang D, Lin Z, Jiang F. Arsenite removal without thioarsenite formation in a sulfidogenic system driven by sulfur reducing bacteria under acidic conditions. WATER RESEARCH 2019; 151:362-370. [PMID: 30616048 DOI: 10.1016/j.watres.2018.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Sulfidogenic process using sulfate-reducing bacteria (SRB) has been used to remove arsenite from the arsenic-contaminated waters through the precipitation of arsenite with sulfide. However, excessive sulfide production and significant pH increase induced by sulfate reduction result in the formation of the mobile thioarsenite by-products and the inefficiency and instability of arsenite removal, especially when the arsenite level fluctuates. In this study, we proposed a novel sulfidogenic process driven by sulfur reducing bacteria (S0RB) for the arsenite removal under acidic conditions. In a long term experiment, efficient sulfide production (0.42 ± 0.2 kg S/m3-d) was achieved without changing the acidic condition (pH around 4.3) in a sulfur reduction bio-reactor. With the acidic sulfide-containing effluents from the bio-reactor, over 99% of arsenite (10 mg As/L) in the arsenic-contaminated water was precipitated without the formation of soluble thioarsenite by-products, even in the presence of excessive sulfide. Maintaining the acidic condition (pH around 4.3) of the sulfide-containing effluent was essential to ensure the efficient arsenite precipitation and minimize the formation of thioarsenite by-products when the arsenite to sulfide molar ratios ranged from 0.1 to 0.46. An acid-tolerant S0RB, Desulfurella, was found to be responsible for the efficient dissimilatory sulfur reduction under acidic conditions without changing the solution pH significantly. The microbial sulfur reduction may proceed through the direct electron transfer between the S0RB and sulfur particles, and also through the indirect electron transport mediated by electron carriers. The findings of this study demonstrate that the proposed sulfidogenic process driven by S0RB working under acidic conditions can be a promising alternative to the SRB-based process for arsenite removal from the arsenic-contaminated waters.
Collapse
Affiliation(s)
- Jianliang Sun
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Yaowu Hong
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Jiahua Guo
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Jierui Yang
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Duanyi Huang
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Zichao Lin
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Feng Jiang
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
147
|
Qian Z, Tianwei H, Mackey HR, van Loosdrecht MCM, Guanghao C. Recent advances in dissimilatory sulfate reduction: From metabolic study to application. WATER RESEARCH 2019; 150:162-181. [PMID: 30508713 DOI: 10.1016/j.watres.2018.11.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 05/24/2023]
Abstract
Sulfate-reducing bacteria (SRB) are a group of diverse anaerobic microorganisms omnipresent in natural habitats and engineered environments that use sulfur compounds as the electron acceptor for energy metabolism. Dissimilatory sulfate reduction (DSR)-based techniques mediated by SRB have been utilized in many sulfate-containing wastewater treatment systems worldwide, particularly for acid mine drainage, groundwater, sewage and industrial wastewater remediation. However, DSR processes are often operated suboptimally and disturbances are common in practical application. To improve the efficiency and robustness of SRB-based processes, it is necessary to study SRB metabolism and operational conditions. In this review, the mechanisms of DSR processes are reviewed and discussed focusing on intracellular and extracellular electron transfer with different electron donors (hydrogen, organics, methane and electrodes). Based on the understanding of the metabolism of SRB, responses of SRB to environmental stress (pH-, temperature-, and salinity-related stress) are summarized at the species and community levels. Application in these stressed conditions is discussed and future research is proposed. The feasibility of recovering energy and resources such as biohydrogen, hydrocarbons, polyhydroxyalkanoates, magnetite and metal sulfides through the use of SRB were investigated but some long-standing questions remain unanswered. Linking the existing scientific understanding and observations to practical application is the challenge as always for promotion of SRB-based techniques.
Collapse
Affiliation(s)
- Zeng Qian
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Tianwei
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Chen Guanghao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
148
|
Hauduc H, Wadhawan T, Johnson B, Bott C, Ward M, Takács I. Incorporating sulfur reactions and interactions with iron and phosphorus into a general plant-wide model. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:26-34. [PMID: 30816859 DOI: 10.2166/wst.2018.482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sulfur causes many adverse effects in wastewater treatment and sewer collection systems, such as corrosion, odours, increased oxygen demand, and precipitate formation. Several of these are often controlled by chemical addition, which will impact the subsequent wastewater treatment processes. Furthermore, the iron reactions, resulting from coagulant addition for chemical P removal, interact with the sulfur cycle, particularly in the digester with precipitate formation and phosphorus release. Despite its importance, there is no integrated sulfur and iron model for whole plant process optimization/design that could be readily used in practice. After a detailed literature review of chemical and biokinetic sulfur and iron reactions, a plant-wide model is upgraded with relevant reactions to predict the sulfur cycle and iron cycle in sewer collection systems, wastewater and sludge treatment. The developed model is applied on different case studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Imre Takács
- Dynamita SARL, 7 LD Eoupe, Nyons, France E-mail:
| |
Collapse
|
149
|
Rodriguez-Sanchez A, Leyva-Diaz JC, Muñoz-Palazon B, Poyatos JM, Gonzalez-Lopez J. Influence of salinity cycles in bioreactor performance and microbial community structure of membrane-based tidal-like variable salinity wastewater treatment systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:514-527. [PMID: 30406593 DOI: 10.1007/s11356-018-3608-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
A membrane bioreactor and two hybrid moving bed bioreactor-membrane bioreactors were operated for the treatment of variable salinity wastewater, changing in cycles of 6-h wastewater base salinity and 6-h maximum salinity (4.5 and 8.5 mS cm-1 electric conductivity, which relate to 2.4 and 4.8 g L-1 NaCl, respectively), under different hydraulic retention times (6, 9.5, and 12 h) and total solids concentrations (2500 and 3500 mg L-1). The evaluation of the performance of the systems showed that COD removal performance was unaffected by salinity conditions, while BOD5 and TN removals were significantly higher in the low-salinity scenario. The microbial community structure showed differences with respect to salinity conditions for Eukarya, suggesting their higher sensitivity for salinity with respect to Prokarya, which were similar at both salinity scenarios. Nevertheless, the intra-OTU distribution of consistently represented OTUs of Eukarya and Prokarya was affected by the different salinity maximums. Multivariate redundancy analyses showed that several genera such as Amphiplicatus (0.01-5.90%), Parvibaculum (0.27-1.19%), Thiothrix (0.30-1.19%), Rhodanobacter (2.81-5.85%), Blastocatella (0.21-2.01%), and Nitrobacter (0.80-0.99%) were positively correlated with BOD5 and TN removal, and the ecological roles of these were proposed. All these genera were substantially more represented under low-salinity conditions (10-500% higher relative abundance), demonstrating that they might be of importance for the treatment of variable salinity wastewater. Evaluation of Eukarya OTUs showed that many of them lack a consistent taxonomic classification, which highlights the lack of knowledge of the diversity and ecological role of Eukaryotes in saline wastewater treatment processes. The results obtained will be of interest for future design and operation of salinity wastewater treatment systems particularly because little is known on the effect of variable salinity conditions in wastewater treatment.
Collapse
Affiliation(s)
- Alejandro Rodriguez-Sanchez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain.
- Department of Civil Engineering, University of Granada, Campus of Fuentenueva, 18071, Granada, Spain.
| | - Juan Carlos Leyva-Diaz
- Department of Chemical Engineering and Environmental Technology, University of Oviedo, Campus del Cristo, 33006, Oviedo, Spain
| | - Barbara Muñoz-Palazon
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| | - Jose Manuel Poyatos
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
- Department of Civil Engineering, University of Granada, Campus of Fuentenueva, 18071, Granada, Spain
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071, Granada, Spain
| |
Collapse
|
150
|
Pinto PX, Al-Abed SR, McKernan J. Comparison of the efficiency of chitinous and ligneous substrates in metal and sulfate removal from mining-influenced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 227:321-328. [PMID: 30199728 PMCID: PMC6157260 DOI: 10.1016/j.jenvman.2018.08.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 05/19/2023]
Abstract
Mining-influenced water (MIW) remediation is challenging, not only due to its acidity and high metal content, but also due to its presence in remotely located mine sites with difficult surrounding environments. An alternative to common remediation technologies, is the use of sulfate-reducing bacteria (SRB) to achieve simultaneous sulfate reduction and metal removal in on-site anaerobic passive systems. In these systems, the organic carbon source (substrate) selection is critical to obtaining the desired effluent water quality and a reasonable treated volume. In this study, we evaluated the use of two different substrates: a chitinous product obtained from crushed crab shells, and a more traditional ligneous substrate. We put the substrates, both with and without water pretreatment consisting of aeration and pH adjustment, in anaerobic experimental columns. The treatment with the chitinous substrate was more effective in removing metals (Al, Cu, Fe, Cd, Mn, Zn) and sulfate for a longer period (458 days) than the ligneous substrate (78 days) before suffering Zn breakthrough. The reactors fed with pretreated water had longer operational periods and lower metals and sulfate concentrations in the effluent than those with untreated influent water. Zn was consistently removed to levels <0.3 mg/L for 513 days in the chitinous substrate columns, while levels <0.3 mg/L were maintained for only 140 days in the ligneous substrate pretreated column. The highest sulfate removal rates achieved in this study were in the range of 5-6 mol/m3/d for the chitinous substrate and 1-2 mol/m3/d for the ligneous substrate. Overall, the chitinous substrate proved to be more efficient in the removal of all the aforementioned metals and for sulfate when compared to the ligneous substrate. This could be the determinant when selecting a substrate for passive systems treating acidic MIW, particularly when Zn and Mn removal is necessary.
Collapse
Affiliation(s)
- Patricio X Pinto
- Pegasus Technical Services, Inc., 46 E. Hollister St., Cincinnati, OH, 45219, United States
| | - Souhail R Al-Abed
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, United States.
| | - John McKernan
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, United States
| |
Collapse
|