101
|
Langseth AJ, Munji RN, Choe Y, Huynh T, Pozniak CD, Pleasure SJ. Wnts influence the timing and efficiency of oligodendrocyte precursor cell generation in the telencephalon. J Neurosci 2010; 30:13367-72. [PMID: 20926663 PMCID: PMC2954511 DOI: 10.1523/jneurosci.1934-10.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/04/2010] [Accepted: 08/15/2010] [Indexed: 11/21/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are generated from multiple progenitor domains in the telencephalon in developmental succession from ventral to dorsal. Previous studies showed that Wnt signaling inhibits the differentiation of OPCs into mature oligodendrocytes. Here we explored the hypothesis that Wnt signaling limits the generation of OPCs from neural progenitors during forebrain development. We manipulated Wnt signaling in mouse neural progenitor cultures and found that Wnt signaling influences progenitors cell autonomously to alter the production of OPCs, and that endogenous Wnt signaling in these cultures limits the efficiency of generating OPCs from neural progenitors. To examine these events in vivo, we electroporated a soluble Wnt inhibitor or a dominant-negative transcriptional regulator into embryonic mouse neocortical ventricular zone before the usual onset of OPC production and showed that decreasing Wnt signaling in cortical progenitors results in early production of OPCs. Our studies indicate that Wnt signaling influences the timing and extent of OPC production in the developing telencephalon.
Collapse
Affiliation(s)
- Abraham J. Langseth
- Programs in Neuroscience and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and
| | - Roeben N. Munji
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Youngshik Choe
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Trung Huynh
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Christine D. Pozniak
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Samuel J. Pleasure
- Programs in Neuroscience and
- Developmental Biology
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
102
|
White BD, Nathe RJ, Maris DO, Nguyen NK, Goodson JM, Moon RT, Horner PJ. Beta-catenin signaling increases in proliferating NG2+ progenitors and astrocytes during post-traumatic gliogenesis in the adult brain. Stem Cells 2010; 28:297-307. [PMID: 19960516 DOI: 10.1002/stem.268] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wnt/beta-catenin signaling can influence the proliferation and differentiation of progenitor populations in the hippocampus and subventricular zone, known germinal centers in the adult mouse brain. It is not known whether beta-catenin signaling occurs in quiescent glial progenitors in cortex or spinal cord, nor is it known whether beta-catenin is involved in the activation of glial progenitor populations after injury. Using a beta-catenin reporter mouse (BATGAL mouse), we show that beta-catenin signaling occurs in NG2 chondroitin sulfate proteoglycan+ (NG2) progenitors in the cortex, in subcallosal zone (SCZ) progenitors, and in subependymal cells surrounding the central canal. Interestingly, cells with beta-catenin signaling increased in the cortex and SCZ following traumatic brain injury (TBI) but did not following spinal cord injury. Initially after TBI, beta-catenin signaling was predominantly increased in a subset of NG2+ progenitors in the cortex. One week following injury, the majority of beta-catenin signaling appeared in reactive astrocytes but not oligodendrocytes. Bromodeoxyuridine (BrdU) paradigms and Ki-67 staining showed that the increase in beta-catenin signaling occurred in newly born cells and was sustained after cell division. Dividing cells with beta-catenin signaling were initially NG2+; however, by four days after a single injection of BrdU, they were predominantly astrocytes. Infusing animals with the mitotic inhibitor cytosine arabinoside prevented the increase of beta-catenin signaling in the cortex, confirming that the majority of beta-catenin signaling after TBI occurs in newly born cells. These data argue for manipulating the Wnt/beta-catenin pathway after TBI as a way to modify post-traumatic gliogenesis.
Collapse
Affiliation(s)
- Bryan D White
- Program in Neurobiology and Behavior, University of Washington School of Medicine and Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Rivera FJ, Steffenhagen C, Kremer D, Kandasamy M, Sandner B, Couillard-Despres S, Weidner N, Küry P, Aigner L. Deciphering the oligodendrogenic program of neural progenitors: cell intrinsic and extrinsic regulators. Stem Cells Dev 2010; 19:595-606. [PMID: 19938982 DOI: 10.1089/scd.2009.0293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the developing and adult CNS, neural stem/progenitor cells (NSPCs) and oligodendroglial progenitor cells (OPCs) follow an oligodendrogenic process with the aim of myelinating axons. This process is to a high degree regulated by an oligodendrogenic program (OPr) composed of intrinsic and extrinsic factors that modulate the different steps required for NSPCs to differentiate into myelinating oligodendrocytes. Even though NSPCs and OPCs are present in the diseased CNS and have the capacity to generate oligodendrocytes, sparse remyelination of axons constitutes a major constraint in therapies toward multiple sclerosis (MS) and spinal cord injury (SCI). Lack of pro-oligodendrogenic factors and presence of anti-oligodendrogenic activities are thought to be the main reasons for this limitation. Thus, molecular and cellular strategies aiming at remyelination and at targeting such pro- and anti-oligodendrogenic mechanisms are currently under investigation. The present review summarizes the current knowledge on the OPr; it implements our own findings on mesenchymal stem cell-derived pro-oligodendroglial factors and on the role of p57/kip2 in oligodendroglial differentiation. Moreover, it describes molecular and cellular approaches for the development of future therapies toward remyelination.
Collapse
Affiliation(s)
- Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Shimizu T, Nakazawa M, Kani S, Bae YK, Shimizu T, Kageyama R, Hibi M. Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain. Development 2010; 137:1875-85. [PMID: 20431123 DOI: 10.1242/dev.047167] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Precise control of neuronal differentiation is necessary for generation of a variety of neurons in the forebrain. However, little is known about transcriptional cascades, which initiate forebrain neurogenesis. Here we show that zinc finger genes Fezf1 and Fezf2, which encode transcriptional repressors, are expressed in the early neural stem (progenitor) cells and control neurogenesis in mouse dorsal telencephalon. Fezf1- and Fezf2-deficient forebrains display upregulation of Hes5 and downregulation of neurogenin 2, which is known to be negatively regulated by Hes5. We show that FEZF1 and FEZF2 bind to and directly repress the promoter activity of Hes5. In Fezf1- and Fezf2-deficient telencephalon, the differentiation of neural stem cells into early-born cortical neurons and intermediate progenitors is impaired. Loss of Hes5 suppresses neurogenesis defects in Fezf1- and Fezf2-deficient telencephalon. Our findings reveal that Fezf1 and Fezf2 control differentiation of neural stem cells by repressing Hes5 and, in turn, by derepressing neurogenin 2 in the forebrain.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
105
|
Abstract
Cell diversity in the central nervous system (CNS) is achieved by a highly regulated process of differentiation from multipotential neural stem cells. The spatial specificity and timing control of neural differentiation is achieved by the interplay between various genetic and epigenetic regulators. Oligodendrocytes, the myelinating cell in the CNS, play an important role in brain development and neuronal function. At present, multiple signaling pathways have been implicated in regulating in oligodendrocyte differentiation, however, the integration of these pathways with transcriptional and posttranscriptional regulatory networks are not fully understood. This review will focus on exploiting epigenetic mechanisms underlying oligodendrocyte development including chromatin remodeling by histone deacetylases and gene silencing by non-coding RNAs (e.g., microRNA), and attempts to summarize the recent advance as to the genetic and epigenetic interaction in controlling oligodendroglial differentiation and myelination.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Stem Cell & Developmental Biology and Pediatrics Department; West China Second Hospital; Sichuan University; Chengdu, Sichuan China
| | - Patrizia Casaccia
- Department of Neuroscience and Genetics and Genomic Sciences; Mount Sinai School of Medicine; New York, NY USA
| | - Q. Richard Lu
- Institute of Stem Cell & Developmental Biology and Pediatrics Department; West China Second Hospital; Sichuan University; Chengdu, Sichuan China
- Departments of Developmental Biology and Molecular Biology; University of Texas Southwestern Medical Center; Dallas, TX USA
| |
Collapse
|
106
|
Shimono C, Manabe RI, Yamada T, Fukuda S, Kawai J, Furutani Y, Tsutsui K, Ikenaka K, Hayashizaki Y, Sekiguchi K. Identification and characterization of nCLP2, a novel C1q family protein expressed in the central nervous system. J Biochem 2009; 147:565-79. [DOI: 10.1093/jb/mvp203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
107
|
Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc Natl Acad Sci U S A 2009; 106:19162-7. [PMID: 19855010 DOI: 10.1073/pnas.0902834106] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the developing CNS, Notch1 and its ligand, Jagged1, regulate oligodendrocyte differentiation and myelin formation, but their role in repair of demyelinating lesions in diseases such as multiple sclerosis remains unresolved. To address this question, we generated a mouse model in which we targeted Notch1 inactivation to oligodendrocyte progenitor cells (OPCs) using Olig1Cre and a floxed Notch1 allele, Notch1(12f). During CNS development, OPC differentiation was potentiated in Olig1Cre:Notch1(12f/12f) mice. Importantly, in adults, remyelination of demyelinating lesions was also accelerated, at the expense of proliferation within the progenitor population. Experiments in vitro confirmed that Notch1 signaling was permissive for OPC expansion but inhibited differentiation and myelin formation. These studies also revealed that astrocytes exposed to TGF-beta1 restricted OPC maturation via Jagged1-Notch1 signaling. These data suggest that Notch1 signaling is one of the mechanisms regulating OPC differentiation during CNS remyelination. Thus, Notch1 may represent a potential therapeutical avenue for lesion repair in demyelinating disease.
Collapse
|
108
|
A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development. J Neurosci 2009; 29:11399-408. [PMID: 19741146 DOI: 10.1523/jneurosci.0160-09.2009] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Forward genetic screens in genetically accessible invertebrate organisms such as Drosophila melanogaster have shed light on transcription factors that specify formation of neurons in the vertebrate CNS. However, invertebrate models have, to date, been uninformative with respect to genes that specify formation of the vertebrate glial lineages. All recent insights into specification of vertebrate glia have come via monitoring the spatial and temporal expression patterns of individual transcription factors during development. In studies described here, we have taken this approach to the genome scale with an in silico screen of the Mahoney pictorial atlas of transcription factor expression in the developing CNS. From the population of 1445 known or probable transcription factors encoded in the mouse genome, we identify 12 novel transcription factors that are expressed in glial lineage progenitor cells. Entry-level screens for biological function establish one of these transcription factors, Klf15, as sufficient for genesis of precocious GFAP-positive astrocytes in spinal cord explants. Another transcription factor, Tcf4, plays an important role in maturation of oligodendrocyte progenitors.
Collapse
|
109
|
Li H, He Y, Richardson WD, Casaccia P. Two-tier transcriptional control of oligodendrocyte differentiation. Curr Opin Neurobiol 2009; 19:479-85. [PMID: 19740649 DOI: 10.1016/j.conb.2009.08.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/19/2009] [Indexed: 01/06/2023]
Abstract
Oligodendrocytes (OLs) are the myelin-forming cells of the central nervous system (CNS). They differentiate from proliferative OL precursor cells that migrate from the embryonic neuroepithelium throughout the developing CNS before associating with axons and elaborating myelin. Recent research into the regulation of OL differentiation has uncovered a two-stage mechanism of transcriptional control that combines epigenetic repression of transcriptional inhibitors with direct transcriptional activation of myelin genes. This 'two-pronged' approach creates a fail-safe system of genetic control to ensure orderly and unambiguous expression of the myelination program during development and during repair of demyelinated lesions.
Collapse
Affiliation(s)
- Huiliang Li
- Wolfson Institute for Biomedical Research, and Research Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
110
|
Feigenson K, Reid M, See J, Crenshaw EB, Grinspan JB. Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci 2009; 42:255-65. [PMID: 19619658 DOI: 10.1016/j.mcn.2009.07.010] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/24/2009] [Accepted: 07/09/2009] [Indexed: 01/06/2023] Open
Abstract
The development of oligodendrocytes, the myelinating cells of the central nervous system, is temporally and spatially controlled by local signaling factors acting as inducers or inhibitors. Dorsal spinal cord tissue has been shown to contain inhibitors of oligodendrogliogenesis, although their identity is not completely known. We have studied the actions of one family of dorsal signaling molecules, the Wnts, on oligodendrocyte development. Using tissue culture models, we have shown that canonical Wnt activity through beta-catenin activation inhibits oligodendrocyte maturation, independently of precursor proliferation, cell death, or diversion to an alternate cell fate. Mice in which Wnt/beta-catenin signaling was constitutively activated in cells of the oligodendrocyte lineage had equal numbers of oligodendrocyte precursors relative to control littermates, but delayed appearance of mature oligodendrocytes, myelin protein, and myelinated axons during development, although these differences largely disappeared by adulthood. These results indicate that activating the Wnt/beta-catenin pathway delays the development of myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Keith Feigenson
- Department of Research Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
111
|
Abstract
Balancing extrinsic and intrinsic cues plays an integral part in shaping the complex architecture of the nervous system. During development, oligodendrocyte precursor cells integrate environmental signals and coordinate the activation of the transcriptional machinery necessary for differentiation and myelination. In this issue of Genes & Development, Fancy and colleagues (pp. 1571-1585) demonstrate that canonical Wnt signaling contributes to the decision of an oligodendrocyte precursor cell to differentiate-both during development and after demyelination. These findings provide new insight into the precise spatiotemporal coordination required for oligodendrocyte development.
Collapse
Affiliation(s)
- Sheila S Rosenberg
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
112
|
Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, Hu T, Taketo MM, van Es JH, Clevers H, Hsieh J, Bassel-Duby R, Olson EN, Lu QR. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 2009; 12:829-38. [PMID: 19503085 PMCID: PMC2701973 DOI: 10.1038/nn.2333] [Citation(s) in RCA: 466] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/06/2009] [Indexed: 12/21/2022]
Abstract
Oligodendrocyte development is regulated by the interaction of repressors and activators in a complex transcriptional network. We found that two histone-modifying enzymes, HDAC1 and HDAC2, were required for oligodendrocyte formation. Genetic deletion of both Hdac1 and Hdac2 in oligodendrocyte lineage cells resulted in stabilization and nuclear translocation of beta-catenin, which negatively regulates oligodendrocyte development by repressing Olig2 expression. We further identified the oligodendrocyte-restricted transcription factor TCF7L2/TCF4 as a bipartite co-effector of beta-catenin for regulating oligodendrocyte differentiation. Targeted disruption of Tcf7l2 in mice led to severe defects in oligodendrocyte maturation, whereas expression of its dominant-repressive form promoted precocious oligodendrocyte specification in developing chick neural tube. Transcriptional co-repressors HDAC1 and HDAC2 compete with beta-catenin for TCF7L2 interaction to regulate downstream genes involved in oligodendrocyte differentiation. Thus, crosstalk between HDAC1/2 and the canonical Wnt signaling pathway mediated by TCF7L2 serves as a regulatory mechanism for oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Feng Ye
- Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, P.R. China
| | - Ying Chen
- Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - ThaoNguyen Hoang
- Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rusty L. Montgomery
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xian-hui Zhao
- Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hong Bu
- Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, P.R. China
| | - Tom Hu
- Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Makoto M. Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Johan H. van Es
- Hubrecht Institute, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Jenny Hsieh
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Q. Richard Lu
- Department of Developmental Biology and Kent Waldrep Foundation Center for Basic Neuroscience Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- West China Women's & Children's Hospital, Sichuan University, P.R. China
| |
Collapse
|
113
|
Li H, Richardson WD. Genetics meets epigenetics: HDACs and Wnt signaling in myelin development and regeneration. Nat Neurosci 2009; 12:815-7. [PMID: 19554044 DOI: 10.1038/nn0709-815] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
114
|
Fancy SPJ, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJM, Rowitch DH. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 2009; 23:1571-85. [PMID: 19515974 DOI: 10.1101/gad.1806309] [Citation(s) in RCA: 495] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The progressive loss of CNS myelin in patients with multiple sclerosis (MS) has been proposed to result from the combined effects of damage to oligodendrocytes and failure of remyelination. A common feature of demyelinated lesions is the presence of oligodendrocyte precursors (OLPs) blocked at a premyelinating stage. However, the mechanistic basis for inhibition of myelin repair is incompletely understood. To identify novel regulators of OLP differentiation, potentially dysregulated during repair, we performed a genome-wide screen of 1040 transcription factor-encoding genes expressed in remyelinating rodent lesions. We report that approximately 50 transcription factor-encoding genes show dynamic expression during repair and that expression of the Wnt pathway mediator Tcf4 (aka Tcf7l2) within OLPs is specific to lesioned-but not normal-adult white matter. We report that beta-catenin signaling is active during oligodendrocyte development and remyelination in vivo. Moreover, we observed similar regulation of Tcf4 in the developing human CNS and lesions of MS. Data mining revealed elevated levels of Wnt pathway mRNA transcripts and proteins within MS lesions, indicating activation of the pathway in this pathological context. We show that dysregulation of Wnt-beta-catenin signaling in OLPs results in profound delay of both developmental myelination and remyelination, based on (1) conditional activation of beta-catenin in the oligodendrocyte lineage in vivo and (2) findings from APC(Min) mice, which lack one functional copy of the endogenous Wnt pathway inhibitor APC. Together, our findings indicate that dysregulated Wnt-beta-catenin signaling inhibits myelination/remyelination in the mammalian CNS. Evidence of Wnt pathway activity in human MS lesions suggests that its dysregulation might contribute to inefficient myelin repair in human neurological disorders.
Collapse
Affiliation(s)
- Stephen P J Fancy
- Institute for Regeneration Medicine, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Peru RL, Mandrycky N, Nait-Oumesmar B, Lu QR. Paving the axonal highway: from stem cells to myelin repair. ACTA ACUST UNITED AC 2009; 4:304-18. [PMID: 18759012 DOI: 10.1007/s12015-008-9043-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS), a demyelinating disorder of the central nervous system (CNS), remains among the most prominent and devastating diseases in contemporary neurology. Despite remarkable advances in anti-inflammatory therapies, the inefficiency or failure of myelin-forming oligodendrocytes to remyelinate axons and preserve axonal integrity remains a major impediment for the repair of MS lesions. To this end, the enhancement of remyelination through endogenous and exogenous repair mechanisms and the prevention of axonal degeneration are critical objectives for myelin repair therapies. Thus, recent advances in uncovering myelinating cell sources and the intrinsic and extrinsic factors that govern neural progenitor differentiation and myelination may pave a way to novel strategies for myelin regeneration. The scope of this review is to discuss the potential sources of stem/progenitor cells for CNS remyelination and the molecular mechanisms underlying oligodendrocyte myelination.
Collapse
Affiliation(s)
- Raniero L Peru
- Department of Developmental Biology and Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | | | | | | |
Collapse
|
116
|
Kim S, Kim SH, Kim H, Chung AY, Cha YI, Kim CH, Huh TL, Park HC. Frizzled 8a function is required for oligodendrocyte development in the zebrafish spinal cord. Dev Dyn 2008; 237:3324-31. [DOI: 10.1002/dvdy.21739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
117
|
Kessaris N, Pringle N, Richardson WD. Specification of CNS glia from neural stem cells in the embryonic neuroepithelium. Philos Trans R Soc Lond B Biol Sci 2008; 363:71-85. [PMID: 17282992 PMCID: PMC2605487 DOI: 10.1098/rstb.2006.2013] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
All the neurons and glial cells of the central nervous system are generated from the neuroepithelial cells in the walls of the embryonic neural tube, the 'embryonic neural stem cells'. The stem cells seem to be equivalent to the so-called 'radial glial cells', which for many years had been regarded as a specialized type of glial cell. These radial cells generate different classes of neurons in a position-dependent manner. They then switch to producing glial cells (oligodendrocytes and astrocytes). It is not known what drives the neuron-glial switch, although downregulation of pro-neural basic helix-loop-helix transcription factors is one important step. This drives the stem cells from a neurogenic towards a gliogenic mode. The stem cells then choose between developing as oligodendrocytes or astrocytes, of which there might be intrinsically different subclasses. This review focuses on the different extracellular signals and intracellular responses that influence glial generation and the choice between oligodendrocyte and astrocyte fates.
Collapse
Affiliation(s)
| | | | - William D Richardson
- Wolfson Institute for Biomedical Research and Department of Biology, University College LondonGower Street, London WC1E 6BT, UK
| |
Collapse
|
118
|
Biancheri R, Zara F, Bruno C, Rossi A, Bordo L, Gazzerro E, Sotgia F, Pedemonte M, Scapolan S, Bado M, Uziel G, Bugiani M, Lamba LD, Costa V, Schenone A, Rozemuller AJM, Tortori-Donati P, Lisanti MP, van der Knaap MS, Minetti C. Phenotypic characterization of hypomyelination and congenital cataract. Ann Neurol 2007; 62:121-7. [PMID: 17683097 DOI: 10.1002/ana.21175] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To define the clinical and laboratory findings in a novel autosomal recessive white matter disorder called hypomyelination and congenital cataract, recently found to be caused by a deficiency of a membrane protein, hyccin, encoded by the DRCTNNB1A gene located on chromosome 7p21.3-p15.3. METHODS We performed neurological examination, neurophysiological, neuroimaging, and neuropathological studies on sural nerve biopsy in 10 hypomyelination and congenital cataract patients from 5 unrelated families. RESULTS The clinical picture was characterized by bilateral congenital cataract, developmental delay, and slowly progressive neurological impairment with spasticity, cerebellar ataxia, and mild-to-moderate mental retardation. Neurophysiological studies showed a slightly to markedly slowed motor nerve conduction velocity in 9 of 10 patients, and multimodal evoked potentials indicated increased central conduction times. Neuroimaging studies demonstrated a diffuse supratentorial hypomyelination, with in some patients, additional areas of more prominent signal change in the frontal region. Sural nerve biopsy showed a slight-to-severe reduction in myelinated fiber density, with several axons surrounded by a thin myelin sheath or devoid of myelin. INTERPRETATION Hypomyelination and congenital cataract is a novel autosomal recessive white matter disorder characterized by the unique association of congenital cataract and hypomyelination of the central and peripheral nervous system.
Collapse
Affiliation(s)
- Roberta Biancheri
- Muscular and Neurodegenerative Disease Unit, G. Gaslini Institute and University of Genova, Genova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
He Y, Dupree J, Wang J, Sandoval J, Li J, Liu H, Shi Y, Nave KA, Casaccia-Bonnefil P. The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuron 2007; 55:217-30. [PMID: 17640524 PMCID: PMC2034312 DOI: 10.1016/j.neuron.2007.06.029] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 05/24/2007] [Accepted: 06/21/2007] [Indexed: 11/17/2022]
Abstract
The progression of progenitors to oligodendrocytes requires proliferative arrest and the activation of a transcriptional program of differentiation. While regulation of cell cycle exit has been extensively characterized, the molecular mechanisms responsible for the initiation of differentiation remain ill-defined. Here, we identify the transcription factor Yin Yang 1 (YY1) as a critical regulator of oligodendrocyte progenitor differentiation. Conditional ablation of yy1 in the oligodendrocyte lineage in vivo induces a phenotype characterized by defective myelination, ataxia, and tremor. At the cellular level, lack of yy1 arrests differentiation of oligodendrocyte progenitors after they exit from the cell cycle. At the molecular level, YY1 acts as a lineage-specific repressor of transcriptional inhibitors of myelin gene expression (Tcf4 and Id4), by recruiting histone deacetylase-1 to their promoters during oligodendrocyte differentiation. Thus, we identify YY1 as an essential component of the transcriptional network regulating the transition of oligodendrocyte progenitors from cell cycle exit to differentiation.
Collapse
Affiliation(s)
- Ye He
- Department of Neuroscience and Cell Biology, R. Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Zara F, Biancheri R, Bruno C, Bordo L, Assereto S, Gazzerro E, Sotgia F, Wang XB, Gianotti S, Stringara S, Pedemonte M, Uziel G, Rossi A, Schenone A, Tortori-Donati P, van der Knaap MS, Lisanti MP, Minetti C. Deficiency of hyccin, a newly identified membrane protein, causes hypomyelination and congenital cataract. Nat Genet 2006; 38:1111-3. [PMID: 16951682 DOI: 10.1038/ng1870] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 08/01/2006] [Indexed: 11/08/2022]
Abstract
We describe a new autosomal recessive white matter disorder ('hypomyelination and congenital cataract') characterized by hypomyelination of the central and peripheral nervous system, progressive neurological impairment and congenital cataract. We identified mutations in five affected families, resulting in a deficiency of hyccin, a newly identified 521-amino acid membrane protein. Our study highlights the essential role of hyccin in central and peripheral myelination.
Collapse
Affiliation(s)
- Federico Zara
- Muscular and Neurodegenerative Disease Unit, G. Gaslini Institute and University of Genova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
Olig1 and Olig2 encode basic helix-loop-helix (bHLH) transcription factors that are expressed in both the developing and mature vertebrate central nervous system. While numerous studies have established critical functions for Olig genes during the formation of motor neurons and oligodendrocytes of the ventral neural tube, their roles at later stages of development and in adulthood have remained relatively obscure. Recent studies, however, reveal that in the fetal dorsal spinal cord and neural progenitor cells of the adult brain, Olig expression continues to mark, and may regulate, the formation of oligodendroglia. Studies of Olig expression in human brain tumors and repair of demyelinating lesions suggest the possibility of additional functions in a variety of neurological diseases.
Collapse
Affiliation(s)
- Keith L Ligon
- Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
122
|
Naruse M, Nakahira E, Miyata T, Hitoshi S, Ikenaka K, Bansal R. Induction of oligodendrocyte progenitors in dorsal forebrain by intraventricular microinjection of FGF-2. Dev Biol 2006; 297:262-73. [PMID: 16782086 DOI: 10.1016/j.ydbio.2006.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 05/11/2006] [Accepted: 05/15/2006] [Indexed: 01/15/2023]
Abstract
During embryonic development, oligodendrocyte progenitors (OLPs) originate from the ventral forebrain under the regulation of Sonic hedgehog (Shh). Shh controls the expression of transcription factor Olig2, which is strongly implicated in OLP generation. Studies of mice deficient in Shh expression suggest, however, that an alternative pathway for OLP generation may exist. The generation of OLPs in dorsal forebrain has been suggested since treatment of dorsal-neural progenitor cells in culture with fibroblast growth factor (FGF-2) results in OLP induction. To ask if dorsal induction of OLPs in embryonic forebrain can occur in vivo and if FGF-2 could initiate an alternative pathway of regulation, we used in utero microinjection of FGF-2 into the lateral ventricles of mouse fetal forebrain. A single injection of FGF-2 at E13.5 resulted in the expression of the OLP markers Olig2 and PDGFRalpha mRNA in dorsal forebrain ventricular and intermediate zones. However, FGF-2 did not induce dorsal expression of Shh, Patched1 or Nkx2.1, and co-injection of FGF-2 and a Shh inhibitor did not attenuate the induction of Olig2 and PDGFRalpha, suggesting that Shh signaling was not involved in this FGF-2-mediated dorsal induction. These results demonstrate that the dorsal embryonic forebrain in vivo has the potential to generate OLPs in the presence of normal positional cues and that this can be driven by FGF-2 independent of Shh signaling.
Collapse
Affiliation(s)
- Masae Naruse
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies, Hayama, Miura, Kanagawa 240-0193, Japan
| | | | | | | | | | | |
Collapse
|
123
|
Kim DW, Park SW, Jeon GS, Seo JH, Golden JA, Cho SS. The multiple dorsoventral origins and migratory pathway of tectal oligodendrocytes in the developing chick. Brain Res 2006; 1076:16-24. [PMID: 16473333 DOI: 10.1016/j.brainres.2006.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 12/24/2005] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
Oligodendrocytes have been considered to originate in a restricted ventricular zone of the ventral neural tube and to migrate and mature in their final targets. However, recent studies indicate that oligodendrocytes arise from multiple distinct dorsoventral origins. In this study, we investigate oligodendrocyte lineage cells in the embryonic optic tectum of chick, which develops from the dorsal region of the neural tube and invasion of optic tract. Oligodendrocyte precursor cells (OPCs) first appeared bilaterally on either side of the floor plate at E5. With further development, OPCs increased and spread laterally and dorsally to populate the optic tectum. At E7, OPCs appeared in another site along the ventral midline of the third ventricle, just dorsal to the optic chiasm. To examine the migration routes of these ventrally derived OPCs, we used DiI tracing in the organic culture and retinal denervation. Our results reveal that OPCs dispersed bilaterally along the optic tract and then migrated to the optic tectum in the stratum opticum (SO). In addition to these extrinsic OPCs, OPCs intrinsic to the tectal ventricle zone were identified at E14 using a combination of immunohistochemistry and retroviral mediated lineage tracing studies. These data support stage-specific dorsoventral origins and distribution of oligodendrocytes populating the optic tectum.
Collapse
Affiliation(s)
- Dong Woon Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
124
|
Abstract
Oligodendrocyte precursors first arise in a restricted ventral part of the embryonic spinal cord and migrate laterally and dorsally from there. Later, secondary sources develop in the dorsal cord. Normally, the ventrally-derived precursors compete with and suppress their dorsal counterparts. There are also ventral and dorsal sources in the forebrain, but here the more dorsal precursors prevail and the ventral-most lineage is eliminated during postnatal life. How do the different populations compete and what is the outcome of the competition? Do different embryonic origins signify different functional subgroups of oligodendrocyte?
Collapse
Affiliation(s)
- William D Richardson
- Wolfson Institute for Biomedical Research and Department of Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
125
|
Schweigreiter R, Roots BI, Bandtlow CE, Gould RM. Understanding Myelination Through Studying Its Evolution. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 73:219-73. [PMID: 16737906 DOI: 10.1016/s0074-7742(06)73007-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rüdiger Schweigreiter
- Medical University Innsbruck, Biocenter Innsbruck, Division of Neurobiochemistry, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|