101
|
Galvão Ferrarini M, Ziska I, Andrade R, Julien-Laferrière A, Duchemin L, César RM, Mary A, Vinga S, Sagot MF. Totoro: Identifying Active Reactions During the Transient State for Metabolic Perturbations. Front Genet 2022; 13:815476. [PMID: 35281848 PMCID: PMC8905348 DOI: 10.3389/fgene.2022.815476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Motivation: The increasing availability of metabolomic data and their analysis are improving the understanding of cellular mechanisms and how biological systems respond to different perturbations. Currently, there is a need for novel computational methods that facilitate the analysis and integration of increasing volume of available data. Results: In this paper, we present Totoro a new constraint-based approach that integrates quantitative non-targeted metabolomic data of two different metabolic states into genome-wide metabolic models and predicts reactions that were most likely active during the transient state. We applied Totoro to real data of three different growth experiments (pulses of glucose, pyruvate, succinate) from Escherichia coli and we were able to predict known active pathways and gather new insights on the different metabolisms related to each substrate. We used both the E. coli core and the iJO1366 models to demonstrate that our approach is applicable to both smaller and larger networks. Availability:Totoro is an open source method (available at https://gitlab.inria.fr/erable/totoro) suitable for any organism with an available metabolic model. It is implemented in C++ and depends on IBM CPLEX which is freely available for academic purposes.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France.,Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Irene Ziska
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France.,INRIA Grenoble Rhône-Alpes, Villeurbanne, France
| | - Ricardo Andrade
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France.,Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo, Brazil
| | | | - Louis Duchemin
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | | | - Arnaud Mary
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France.,INRIA Grenoble Rhône-Alpes, Villeurbanne, France
| | - Susana Vinga
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France.,INRIA Grenoble Rhône-Alpes, Villeurbanne, France
| |
Collapse
|
102
|
Fan X, Zhou J, Xia J, Yan X. Genome-Scale Metabolic Model's multi-objective solving algorithm based on the inflexion point of Pareto front including maximum energy utilization and its application in A.niger DS03043. Biotechnol Bioeng 2022; 119:1539-1555. [PMID: 35274299 DOI: 10.1002/bit.28078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Abstract
The solution of genome-scale metabolic model (GSMM) directly affects the simulation accuracy of the metabolic process in digital cells. Single-objective optimization methods, such as Flux Balance Analysis (FBA) which is widely used in solving GSMM, have limitations when simulating actual biological processes, which leads to unrealistic results due to other biological constraints being ignored. A novel multi-objective Differential Evolution algorithm based on general FBA (i.e., DEFBA) is hence proposed to solve GSMM. First, in accordance with to the assumption that cells minimize resource consumption and maximize resource utilization, the maximum specific growth rate and the minimum cellular production rate of ATP, NADPH, and NADH are defined as the multi-objective functions of DEFBA. Second, FBA is used to produce the initial individuals of DEFBA by changing the upper bound of biomass reaction in GSMM. Third, mutation and selection operations help in generating new individuals in the solution space to search the Pareto front. Finally, the optimal solution is selected by analyzing the inflexion point of the Pareto front. In DEFBA, multi-objective technology and optimal solution judging technology can introduce the biological constraints into the GSMM solving method, such that the solution can be more consistent with the essential biological mechanism. DEFBA is applied to solve Aspergillus niger's GSMM. The improved results show that DEFBA can be an effective general solving algorithm for GSMM. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xingcun Fan
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jingru Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xuefeng Yan
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
103
|
Lucia A, Ferrarese E, Uygun K. Modeling energy depletion in rat livers using Nash equilibrium metabolic pathway analysis. Sci Rep 2022; 12:3496. [PMID: 35241684 PMCID: PMC8894355 DOI: 10.1038/s41598-022-06966-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
The current gold standard of Static Cold Storage (SCS), which is static cold storage on ice (about + 4 °C) in a specialized media such as the University of Wisconsin solution (UW), limits storage to few hours for vascular and metabolically active tissues such as the liver and the heart. The liver is arguably the pinnacle of metabolism in human body and therefore metabolic pathway analysis immediately becomes very relevant. In this article, a Nash Equilibrium (NE) approach, which is a first principles approach, is used to model and simulate the static cold storage and warm ischemia of a proposed model of liver cells. Simulations of energy depletion in the liver in static cold storage measured by ATP content and energy charge are presented along with comparisons to experimental data. In addition, conversion of Nash Equilibrium iterations to time are described along with an uncertainty analysis for the parameters in the model. Results in this work show that the Nash Equilibrium approach provides a good match to experimental data for energy depletion and that the uncertainty in model parameters is very small with percent variances less than 0.1%.
Collapse
Affiliation(s)
- Angelo Lucia
- Department of Chemical Engineering, University of Rhode Island, Kington, RI, 02881, USA.
| | - Emily Ferrarese
- Department of Chemical Engineering, University of Rhode Island, Kington, RI, 02881, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
104
|
Ploch T, Deussen J, Naumann U, Mitsos A, Hannemann-Tamás R. Direct single shooting for dynamic optimization of differential-algebraic equation systems with optimization criteria embedded. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2021.107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
105
|
Díaz Calvo T, Tejera N, McNamara I, Langridge GC, Wain J, Poolman M, Singh D. Genome-Scale Metabolic Modelling Approach to Understand the Metabolism of the Opportunistic Human Pathogen Staphylococcus epidermidis RP62A. Metabolites 2022; 12:metabo12020136. [PMID: 35208211 PMCID: PMC8874387 DOI: 10.3390/metabo12020136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus epidermidis is a common commensal of collagen-rich regions of the body, such as the skin, but also represents a threat to patients with medical implants (joints and heart), and to preterm babies. Far less studied than Staphylococcus aureus, the mechanisms behind this increasingly recognised pathogenicity are yet to be fully understood. Improving our knowledge of the metabolic processes that allow S. epidermidis to colonise different body sites is key to defining its pathogenic potential. Thus, we have constructed a fully curated, genome-scale metabolic model for S. epidermidis RP62A, and investigated its metabolic properties with a focus on substrate auxotrophies and its utilisation for energy and biomass production. Our results show that, although glucose is available in the medium, only a small portion of it enters the glycolytic pathways, whils most is utilised for the production of biofilm, storage and the structural components of biomass. Amino acids, proline, valine, alanine, glutamate and arginine, are preferred sources of energy and biomass production. In contrast to previous studies, we have shown that this strain has no real substrate auxotrophies, although removal of proline from the media has the highest impact on the model and the experimental growth characteristics. Further study is needed to determine the significance of proline, an abundant amino acid in collagen, in S. epidermidis colonisation.
Collapse
Affiliation(s)
- Teresa Díaz Calvo
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK;
| | - Noemi Tejera
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (N.T.); (G.C.L.); (J.W.)
| | - Iain McNamara
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK;
- Department of Orthopaedics and Trauma, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich NR4 7UY, UK
| | - Gemma C. Langridge
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (N.T.); (G.C.L.); (J.W.)
| | - John Wain
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (N.T.); (G.C.L.); (J.W.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK;
| | - Mark Poolman
- Cell System Modelling Group, Oxford Brookes University, Oxford OX3 OBP, UK;
| | - Dipali Singh
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (N.T.); (G.C.L.); (J.W.)
- Correspondence:
| |
Collapse
|
106
|
Behravan A, Hashemi A, Marashi SA. A Constraint-based modeling approach to reach an improved chemically defined minimal medium for recombinant antiEpEX-scFv production by Escherichia coli. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
107
|
|
108
|
Verma BK, Mannan AA, Zhang F, Oyarzún DA. Trade-Offs in Biosensor Optimization for Dynamic Pathway Engineering. ACS Synth Biol 2022; 11:228-240. [PMID: 34968029 DOI: 10.1021/acssynbio.1c00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent progress in synthetic biology allows the construction of dynamic control circuits for metabolic engineering. This technology promises to overcome many challenges encountered in traditional pathway engineering, thanks to its ability to self-regulate gene expression in response to bioreactor perturbations. The central components in these control circuits are metabolite biosensors that read out pathway signals and actuate enzyme expression. However, the construction of metabolite biosensors is a major bottleneck for strain design, and a key challenge is to understand the relation between biosensor dose-response curves and pathway performance. Here we employ multiobjective optimization to quantify performance trade-offs that arise in the design of metabolite biosensors. Our approach reveals strategies for tuning dose-response curves along an optimal trade-off between production flux and the cost of an increased expression burden on the host. We explore properties of control architectures built in the literature and identify their advantages and caveats in terms of performance and robustness to growth conditions and leaky promoters. We demonstrate the optimality of a control circuit for glucaric acid production in Escherichia coli, which has been shown to increase the titer by 2.5-fold as compared to static designs. Our results lay the groundwork for the automated design of control circuits for pathway engineering, with applications in the food, energy, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Babita K. Verma
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Ahmad A. Mannan
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Diego A. Oyarzún
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, U.K
- The Alan Turing Institute, London, NW1 2DB, U.K
| |
Collapse
|
109
|
Seaver SMD. Systems-level analysis of the plasticity of the maize metabolic network reveals novel hypotheses in the nitrogen-use efficiency of maize roots. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5-7. [PMID: 34986229 PMCID: PMC8730699 DOI: 10.1093/jxb/erab522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article comments on: Chowdhury NB, Schroeder WL, Sarkar D, Amiour N, Quilleré I, Hirel B, Maranas CD, Saha R. 2022. Dissecting the metabolic reprogramming of maize root under nitrogen-deficient stress conditions. Journal of Experimental Botany 73, 275–291.
Collapse
Affiliation(s)
- Samuel M D Seaver
- Argonne National Laboratory, Data Science and Learning Division, Argonne, IL, USA
| |
Collapse
|
110
|
Fournier P, Pellan L, Barroso-Bergadà D, Bohan DA, Candresse T, Delmotte F, Dufour MC, Lauvergeat V, Le Marrec C, Marais A, Martins G, Masneuf-Pomarède I, Rey P, Sherman D, This P, Frioux C, Labarthe S, Vacher C. The functional microbiome of grapevine throughout plant evolutionary history and lifetime. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
111
|
Beck AE, Kleiner M, Garrell AK. Elucidating Plant-Microbe-Environment Interactions Through Omics-Enabled Metabolic Modelling Using Synthetic Communities. FRONTIERS IN PLANT SCIENCE 2022; 13:910377. [PMID: 35795346 PMCID: PMC9251461 DOI: 10.3389/fpls.2022.910377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 05/10/2023]
Abstract
With a growing world population and increasing frequency of climate disturbance events, we are in dire need of methods to improve plant productivity, resilience, and resistance to both abiotic and biotic stressors, both for agriculture and conservation efforts. Microorganisms play an essential role in supporting plant growth, environmental response, and susceptibility to disease. However, understanding the specific mechanisms by which microbes interact with each other and with plants to influence plant phenotypes is a major challenge due to the complexity of natural communities, simultaneous competition and cooperation effects, signalling interactions, and environmental impacts. Synthetic communities are a major asset in reducing the complexity of these systems by simplifying to dominant components and isolating specific variables for controlled experiments, yet there still remains a large gap in our understanding of plant microbiome interactions. This perspectives article presents a brief review discussing ways in which metabolic modelling can be used in combination with synthetic communities to continue progress toward understanding the complexity of plant-microbe-environment interactions. We highlight the utility of metabolic models as applied to a community setting, identify different applications for both flux balance and elementary flux mode simulation approaches, emphasize the importance of ecological theory in guiding data interpretation, and provide ideas for how the integration of metabolic modelling techniques with big data may bridge the gap between simplified synthetic communities and the complexity of natural plant-microbe systems.
Collapse
Affiliation(s)
- Ashley E. Beck
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT, United States
- *Correspondence: Ashley E. Beck,
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Anna-Katharina Garrell
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
112
|
Narad P, Naresh G, Sengupta A. Metabolomics and flux balance analysis. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
113
|
Passi A, Tibocha-Bonilla JD, Kumar M, Tec-Campos D, Zengler K, Zuniga C. Genome-Scale Metabolic Modeling Enables In-Depth Understanding of Big Data. Metabolites 2021; 12:14. [PMID: 35050136 PMCID: PMC8778254 DOI: 10.3390/metabo12010014] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Genome-scale metabolic models (GEMs) enable the mathematical simulation of the metabolism of archaea, bacteria, and eukaryotic organisms. GEMs quantitatively define a relationship between genotype and phenotype by contextualizing different types of Big Data (e.g., genomics, metabolomics, and transcriptomics). In this review, we analyze the available Big Data useful for metabolic modeling and compile the available GEM reconstruction tools that integrate Big Data. We also discuss recent applications in industry and research that include predicting phenotypes, elucidating metabolic pathways, producing industry-relevant chemicals, identifying drug targets, and generating knowledge to better understand host-associated diseases. In addition to the up-to-date review of GEMs currently available, we assessed a plethora of tools for developing new GEMs that include macromolecular expression and dynamic resolution. Finally, we provide a perspective in emerging areas, such as annotation, data managing, and machine learning, in which GEMs will play a key role in the further utilization of Big Data.
Collapse
Affiliation(s)
- Anurag Passi
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
| | - Juan D. Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA;
| | - Manish Kumar
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
| | - Diego Tec-Campos
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
- Facultad de Ingeniería Química, Campus de Ciencias Exactas e Ingenierías, Universidad Autónoma de Yucatán, Merida 97203, Yucatan, Mexico
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0403, USA
| | - Cristal Zuniga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0760, USA; (A.P.); (M.K.); (D.T.-C.); (K.Z.)
| |
Collapse
|
114
|
Saa P, Urrutia A, Silva-Andrade C, Martín AJ, Garrido D. Modeling approaches for probing cross-feeding interactions in the human gut microbiome. Comput Struct Biotechnol J 2021; 20:79-89. [PMID: 34976313 PMCID: PMC8685919 DOI: 10.1016/j.csbj.2021.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/16/2022] Open
Abstract
Microbial communities perform emergent activities that are essentially different from those carried by their individual members. The gut microbiome and its metabolites have a significant impact on the host, contributing to homeostasis or disease. Food molecules shape this community, being fermented through cross-feeding interactions of metabolites such as lactate, acetate, and amino acids, or products derived from macromolecule degradation. Mathematical and experimental approaches have been applied to understand and predict the interactions between microorganisms in complex communities such as the gut microbiota. Rational and mechanistic understanding of microbial interactions is essential to exploit their metabolic activities and identify keystone taxa and metabolites. The latter could be used in turn to modulate or replicate the metabolic behavior of the community in different contexts. This review aims to highlight recent experimental and modeling approaches for studying cross-feeding interactions within the gut microbiome. We focus on short-chain fatty acid production and fiber fermentation, which are fundamental processes in human health and disease. Special attention is paid to modeling approaches, particularly kinetic and genome-scale stoichiometric models of metabolism, to integrate experimental data under different diet and health conditions. Finally, we discuss limitations and challenges for the broad application of these modeling approaches and their experimental verification for improving our understanding of the mechanisms of microbial interactions.
Collapse
Affiliation(s)
- Pedro Saa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860 Santiago, Chile
| | - Arles Urrutia
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Silva-Andrade
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Alberto J. Martín
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
115
|
Tourigny DS, Goldberg AP, Karr JR. Simulating single-cell metabolism using a stochastic flux-balance analysis algorithm. Biophys J 2021; 120:5231-5242. [PMID: 34757076 DOI: 10.1016/j.bpj.2021.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
Abstract
Stochasticity from gene expression in single cells is known to drive metabolic heterogeneity at the level of cellular populations, which is understood to have important consequences for issues such as microbial drug tolerance and treatment of human diseases like cancer. Despite considerable advancements in profiling the genomes, transcriptomes, and proteomes of single cells, it remains difficult to experimentally characterize their metabolism at the genome scale. Computational methods could bridge this gap toward a systems understanding of single-cell biology. To address this challenge, we developed stochastic simulation algorithm with flux-balance analysis embedded (SSA-FBA), a computational framework for simulating the stochastic dynamics of the metabolism of individual cells using genome-scale metabolic models with experimental estimates of gene expression and enzymatic reaction rate parameters. SSA-FBA extends the constraint-based modeling formalism of metabolic network modeling to the single-cell regime, enabling simulation when experimentation is intractable. We also developed an efficient implementation of SSA-FBA that leverages the topology of embedded flux-balance analysis models to significantly reduce the computational cost of simulation. As a preliminary case study, we built a reduced single-cell model of Mycoplasma pneumoniae and used SSA-FBA to illustrate the role of stochasticity on the dynamics of metabolism at the single-cell level.
Collapse
Affiliation(s)
- David S Tourigny
- Irving Institute for Cancer Dynamics, Columbia University, New York, New York; School of Mathematics, University of Birmingham, Birmingham, United Kingdom.
| | - Arthur P Goldberg
- Icahn Institute for Data Science and Genomic Technology, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan R Karr
- Icahn Institute for Data Science and Genomic Technology, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
116
|
|
117
|
Panikov NS. Genome-Scale Reconstruction of Microbial Dynamic Phenotype: Successes and Challenges. Microorganisms 2021; 9:2352. [PMID: 34835477 PMCID: PMC8621822 DOI: 10.3390/microorganisms9112352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/04/2022] Open
Abstract
This review is a part of the SI 'Genome-Scale Modeling of Microorganisms in the Real World'. The goal of GEM is the accurate prediction of the phenotype from its respective genotype under specified environmental conditions. This review focuses on the dynamic phenotype; prediction of the real-life behaviors of microorganisms, such as cell proliferation, dormancy, and mortality; balanced and unbalanced growth; steady-state and transient processes; primary and secondary metabolism; stress responses; etc. Constraint-based metabolic reconstructions were successfully started two decades ago as FBA, followed by more advanced models, but this review starts from the earlier nongenomic predecessors to show that some GEMs inherited the outdated biokinetic frameworks compromising their performances. The most essential deficiencies are: (i) an inadequate account of environmental conditions, such as various degrees of nutrients limitation and other factors shaping phenotypes; (ii) a failure to simulate the adaptive changes of MMCC (MacroMolecular Cell Composition) in response to the fluctuating environment; (iii) the misinterpretation of the SGR (Specific Growth Rate) as either a fixed constant parameter of the model or independent factor affecting the conditional expression of macromolecules; (iv) neglecting stress resistance as an important objective function; and (v) inefficient experimental verification of GEM against simple growth (constant MMCC and SGR) data. Finally, we propose several ways to improve GEMs, such as replacing the outdated Monod equation with the SCM (Synthetic Chemostat Model) that establishes the quantitative relationships between primary and secondary metabolism, growth rate and stress resistance, process kinetics, and cell composition.
Collapse
Affiliation(s)
- Nicolai S Panikov
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| |
Collapse
|
118
|
Dukovski I, Bajić D, Chacón JM, Quintin M, Vila JCC, Sulheim S, Pacheco AR, Bernstein DB, Riehl WJ, Korolev KS, Sanchez A, Harcombe WR, Segrè D. A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). Nat Protoc 2021; 16:5030-5082. [PMID: 34635859 PMCID: PMC10824140 DOI: 10.1038/s41596-021-00593-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
Abstract
Genome-scale stoichiometric modeling of metabolism has become a standard systems biology tool for modeling cellular physiology and growth. Extensions of this approach are emerging as a valuable avenue for predicting, understanding and designing microbial communities. Computation of microbial ecosystems in time and space (COMETS) extends dynamic flux balance analysis to generate simulations of multiple microbial species in molecularly complex and spatially structured environments. Here we describe how to best use and apply the most recent version of COMETS, which incorporates a more accurate biophysical model of microbial biomass expansion upon growth, evolutionary dynamics and extracellular enzyme activity modules. In addition to a command-line option, COMETS includes user-friendly Python and MATLAB interfaces compatible with the well-established COBRA models and methods, as well as comprehensive documentation and tutorials. This protocol provides a detailed guideline for installing, testing and applying COMETS to different scenarios, generating simulations that take from a few minutes to several days to run, with broad applicability to microbial communities across biomes and scales.
Collapse
Affiliation(s)
- Ilija Dukovski
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Djordje Bajić
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Jeremy M Chacón
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Michael Quintin
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jean C C Vila
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Snorre Sulheim
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Alan R Pacheco
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - David B Bernstein
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - William J Riehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kirill S Korolev
- Bioinformatics Program, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Alvaro Sanchez
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - William R Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
- Department of Physics, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
119
|
Metabolic Modeling with MetaFlux. Methods Mol Biol 2021. [PMID: 34718999 DOI: 10.1007/978-1-0716-1585-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The MetaFlux software supports creating, executing, and solving quantitative metabolic flux models using flux balance analysis (FBA). MetaFlux offers four modes of operation: (1) solving mode executes an FBA model for an individual organism or for an organism community, (2) gene knockout mode executes an FBA model with one or many gene knockouts, (3) development mode assists the user in creating and improving FBA models, and (4) flux variability analysis mode generates a report of the robustness of an FBA model. MetaFlux also solves dynamic FBA (dFBA) for both individual organisms and communities of organisms. MetaFlux can be used in two different environments: on your local computer, which requires the installation of the Pathway Tools software, or through the web, which does not require installation of Pathway Tools. On your local computer, MetaFlux offers all four modes of operation, whereas the web environment provides only the solving mode.Several visualization tools are available to analyze model solutions. The Cellular Overview tool graphically shows the reaction fluxes on an organism's metabolic map once a model is solved. The Omics Dashboard provides a hierarchical approach to visualizing reaction fluxes, organized by metabolic subsystems. For a community of organisms, plotting of accumulated biomasses and metabolites can be performed using the Gnuplot tool.In this chapter, we present eight methods using MetaFlux. Five solving mode methods illustrate execution of models for individual organisms and for organism communities. One method illustrates the gene knockout mode. Two methods for the development mode illustrate steps for developing new metabolic models.
Collapse
|
120
|
Navid A. A Beginner's Guide to the COBRA Toolbox. Methods Mol Biol 2021; 2349:339-365. [PMID: 34719002 DOI: 10.1007/978-1-0716-1585-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
COBRA toolbox is one of the most popular tools for systems biology analyses using genome-scale metabolic reconstructions. The toolbox permits the use of many constraint-based analytical methods for examining characteristics of metabolism in the biosystems ranging in complexity from single cells to microbial communities and ultimately multicellular organisms. The toolbox has a number of different variants that can be used depending on a user's choice of programming language. Here, I provide a basic tutorial for beginners that plan to use the original MATLAB version of the toolbox.
Collapse
Affiliation(s)
- Ali Navid
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
121
|
Predicting Microbiome Metabolism and Interactions through Integrating Multidisciplinary Principles. mSystems 2021; 6:e0076821. [PMID: 34609169 PMCID: PMC8547421 DOI: 10.1128/msystems.00768-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In this Commentary, we will discuss some of the current trends and challenges in modeling microbiome metabolism. A focus will be the state of the art in the integration of metabolic networks, ecological and evolutionary principles, and spatiotemporal considerations, followed by envisioning integrated frameworks incorporating different principles and data to generate predictive models in the future.
Collapse
|
122
|
de Oliveira RD, Guedes MN, Matias J, Le Roux GAC. Nonlinear Predictive Control of a Bioreactor by Surrogate Model Approximation of Flux Balance Analysis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rafael D. de Oliveira
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-220, Brazil
| | - Matheus N. Guedes
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-220, Brazil
| | - José Matias
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Galo A. C. Le Roux
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-220, Brazil
| |
Collapse
|
123
|
Abstract
Dynamic flux balance models (DFBM) are used in this study to infer metabolite concentrations that are difficult to measure online. The concentrations are estimated based on few available measurements. To account for uncertainty in initial conditions the DFBM is converted into a variable structure system based on a multiparametric linear programming (mpLP) where different regions of the state space are described by correspondingly different state space models. Using this variable structure system, a special set membership-based estimation approach is proposed to estimate unmeasured concentrations from few available measurements. For unobservable concentrations, upper and lower bounds are estimated. The proposed set membership estimation was applied to batch fermentation of E. coli based on DFBM.
Collapse
|
124
|
Zeng H, Rohani R, Huang WE, Yang A. Understanding and mathematical modelling of cellular resource allocation in microorganisms: a comparative synthesis. BMC Bioinformatics 2021; 22:467. [PMID: 34583645 PMCID: PMC8479906 DOI: 10.1186/s12859-021-04382-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rising consensus that the cell can dynamically allocate its resources provides an interesting angle for discovering the governing principles of cell growth and metabolism. Extensive efforts have been made in the past decade to elucidate the relationship between resource allocation and phenotypic patterns of microorganisms. Despite these exciting developments, there is still a lack of explicit comparison between potentially competing propositions and a lack of synthesis of inter-related proposals and findings. RESULTS In this work, we have reviewed resource allocation-derived principles, hypotheses and mathematical models to recapitulate important achievements in this area. In particular, the emergence of resource allocation phenomena is deciphered by the putative tug of war between the cellular objectives, demands and the supply capability. Competing hypotheses for explaining the most-studied phenomenon arising from resource allocation, i.e. the overflow metabolism, have been re-examined towards uncovering the potential physiological root cause. The possible link between proteome fractions and the partition of the ribosomal machinery has been analysed through mathematical derivations. Finally, open questions are highlighted and an outlook on the practical applications is provided. It is the authors' intention that this review contributes to a clearer understanding of the role of resource allocation in resolving bacterial growth strategies, one of the central questions in microbiology. CONCLUSIONS We have shown the importance of resource allocation in understanding various aspects of cellular systems. Several important questions such as the physiological root cause of overflow metabolism and the correct interpretation of 'protein costs' are shown to remain open. As the understanding of the mechanisms and utility of resource application in cellular systems further develops, we anticipate that mathematical modelling tools incorporating resource allocation will facilitate the circuit-host design in synthetic biology.
Collapse
Affiliation(s)
- Hong Zeng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Reza Rohani
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|
125
|
Combining Kinetic and Constraint-Based Modelling to Better Understand Metabolism Dynamics. Processes (Basel) 2021. [DOI: 10.3390/pr9101701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To understand the phenotypic capabilities of organisms, it is useful to characterise cellular metabolism through the analysis of its pathways. Dynamic mathematical modelling of metabolic networks is of high interest as it provides the time evolution of the metabolic components. However, it also has limitations, such as the necessary mechanistic details and kinetic parameters are not always available. On the other hand, large metabolic networks exhibit a complex topological structure which can be studied rather efficiently in their stationary regime by constraint-based methods. These methods produce useful predictions on pathway operations. In this review, we present both modelling techniques and we show how they bring complementary views of metabolism. In particular, we show on a simple example how both approaches can be used in conjunction to shed some light on the dynamics of metabolic networks.
Collapse
|
126
|
Esvap E, Ulgen KO. Advances in Genome-Scale Metabolic Modeling toward Microbial Community Analysis of the Human Microbiome. ACS Synth Biol 2021; 10:2121-2137. [PMID: 34402617 DOI: 10.1021/acssynbio.1c00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A genome-scale metabolic model (GEM) represents metabolic pathways of an organism in a mathematical form and can be built using biochemistry and genome annotation data. GEMs are invaluable for understanding organisms since they analyze the metabolic capabilities and behaviors quantitatively and can predict phenotypes. The development of high-throughput data collection techniques led to an immense increase in omics data such as metagenomics, which expand our knowledge on the human microbiome, but this also created a need for systematic analysis of these data. In recent years, GEMs have also been reconstructed for microbial species, including human gut microbiota, and methods for the analysis of microbial communities have been developed to examine the interaction between the organisms or the host. The purpose of this review is to provide a comprehensive guide for the applications of GEMs in microbial community analysis. Starting with GEM repositories, automatic GEM reconstruction tools, and quality control of models, this review will give insights into microbe-microbe and microbe-host interaction predictions and optimization of microbial community models. Recent studies that utilize microbial GEMs and personalized models to infer the influence of microbiota on human diseases such as inflammatory bowel diseases (IBD) or Parkinson's disease are exemplified. Being powerful system biology tools for both species-level and community-level analysis of microbes, GEMs integrated with omics data and machine learning techniques will be indispensable for studying the microbiome and their effects on human physiology as well as for deciphering the mechanisms behind human diseases.
Collapse
Affiliation(s)
- Elif Esvap
- Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O. Ulgen
- Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
127
|
Kuriya Y, Inoue M, Yamamoto M, Murata M, Araki M. Knowledge extraction from literature and enzyme sequences complements FBA analysis in metabolic engineering. Biotechnol J 2021; 16:e2000443. [PMID: 34516717 DOI: 10.1002/biot.202000443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 11/10/2022]
Abstract
Flux balance analysis (FBA) using genome-scale metabolic model (GSM) is a useful method for improving the bio-production of useful compounds. However, FBA often does not impose important constraints such as nutrients uptakes, by-products excretions and gases (oxygen and carbon dioxide) transfers. Furthermore, important information on metabolic engineering such as enzyme amounts, activities, and characteristics caused by gene expression and enzyme sequences is basically not included in GSM. Therefore, simple FBA is often not sufficient to search for metabolic manipulation strategies that are useful for improving the production of target compounds. In this study, we proposed a method using literature and enzyme search to complement the FBA-based metabolic manipulation strategies. As a case study, this method was applied to shikimic acid production by Corynebacterium glutamicum to verify its usefulness. As unique strategies in literature-mining, overexpression of the transcriptional regulator SugR and gene disruption related to by-products productions were complemented. In the search for alternative enzyme sequences, it was suggested that those candidates are searched for from various species based on features captured by deep learning, which are not simply homologous to amino acid sequences of the base enzymes.
Collapse
Affiliation(s)
- Yuki Kuriya
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Mai Inoue
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Masaki Yamamoto
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Masahiro Murata
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Michihiro Araki
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.,Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
128
|
Chung CH, Lin DW, Eames A, Chandrasekaran S. Next-Generation Genome-Scale Metabolic Modeling through Integration of Regulatory Mechanisms. Metabolites 2021; 11:606. [PMID: 34564422 PMCID: PMC8470976 DOI: 10.3390/metabo11090606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Genome-scale metabolic models (GEMs) are powerful tools for understanding metabolism from a systems-level perspective. However, GEMs in their most basic form fail to account for cellular regulation. A diverse set of mechanisms regulate cellular metabolism, enabling organisms to respond to a wide range of conditions. This limitation of GEMs has prompted the development of new methods to integrate regulatory mechanisms, thereby enhancing the predictive capabilities and broadening the scope of GEMs. Here, we cover integrative models encompassing six types of regulatory mechanisms: transcriptional regulatory networks (TRNs), post-translational modifications (PTMs), epigenetics, protein-protein interactions and protein stability (PPIs/PS), allostery, and signaling networks. We discuss 22 integrative GEM modeling methods and how these have been used to simulate metabolic regulation during normal and pathological conditions. While these advances have been remarkable, there remains a need for comprehensive and widespread integration of regulatory constraints into GEMs. We conclude by discussing challenges in constructing GEMs with regulation and highlight areas that need to be addressed for the successful modeling of metabolic regulation. Next-generation integrative GEMs that incorporate multiple regulatory mechanisms and their crosstalk will be invaluable for discovering cell-type and disease-specific metabolic control mechanisms.
Collapse
Affiliation(s)
- Carolina H. Chung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.H.C.); (A.E.)
| | - Da-Wei Lin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Alec Eames
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.H.C.); (A.E.)
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.H.C.); (A.E.)
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Bioinformatics and Computational Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
129
|
How to Tackle Underdeterminacy in Metabolic Flux Analysis? A Tutorial and Critical Review. Processes (Basel) 2021. [DOI: 10.3390/pr9091577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Metabolic flux analysis is often (not to say almost always) faced with system underdeterminacy. Indeed, the linear algebraic system formed by the steady-state mass balance equations around the intracellular metabolites and the equality constraints related to the measurements of extracellular fluxes do not define a unique solution for the distribution of intracellular fluxes, but instead a set of solutions belonging to a convex polytope. Various methods have been proposed to tackle this underdeterminacy, including flux pathway analysis, flux balance analysis, flux variability analysis and sampling. These approaches are reviewed in this article and a toy example supports the discussion with illustrative numerical results.
Collapse
|
130
|
Sahu A, Blätke MA, Szymański JJ, Töpfer N. Advances in flux balance analysis by integrating machine learning and mechanism-based models. Comput Struct Biotechnol J 2021; 19:4626-4640. [PMID: 34471504 PMCID: PMC8382995 DOI: 10.1016/j.csbj.2021.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
The availability of multi-omics data sets and genome-scale metabolic models for various organisms provide a platform for modeling and analyzing genotype-to-phenotype relationships. Flux balance analysis is the main tool for predicting flux distributions in genome-scale metabolic models and various data-integrative approaches enable modeling context-specific network behavior. Due to its linear nature, this optimization framework is readily scalable to multi-tissue or -organ and even multi-organism models. However, both data and model size can hamper a straightforward biological interpretation of the estimated fluxes. Moreover, flux balance analysis simulates metabolism at steady-state and thus, in its most basic form, does not consider kinetics or regulatory events. The integration of flux balance analysis with complementary data analysis and modeling techniques offers the potential to overcome these challenges. In particular machine learning approaches have emerged as the tool of choice for data reduction and selection of most important variables in big data sets. Kinetic models and formal languages can be used to simulate dynamic behavior. This review article provides an overview of integrative studies that combine flux balance analysis with machine learning approaches, kinetic models, such as physiology-based pharmacokinetic models, and formal graphical modeling languages, such as Petri nets. We discuss the mathematical aspects and biological applications of these integrated approaches and outline challenges and future perspectives.
Collapse
Affiliation(s)
- Ankur Sahu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Mary-Ann Blätke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Jędrzej Jakub Szymański
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Nadine Töpfer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| |
Collapse
|
131
|
Emergence of diauxie as an optimal growth strategy under resource allocation constraints in cellular metabolism. Proc Natl Acad Sci U S A 2021; 118:2013836118. [PMID: 33602812 PMCID: PMC7923608 DOI: 10.1073/pnas.2013836118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Diauxie, or the sequential consumption of carbohydrates in bacteria such as Escherichia coli, has been hypothesized to be an evolutionary strategy which allows the organism to maximize its instantaneous specific growth-giving the bacterium a competitive advantage. Currently, the computational techniques used in industrial biotechnology fall short of explaining the intracellular dynamics underlying diauxic behavior. In particular, the understanding of the proteome dynamics in diauxie can be improved. We developed a robust iterative dynamic method based on expression- and thermodynamically enabled flux models to simulate the kinetic evolution of carbohydrate consumption and cellular growth. With minimal modeling assumptions, we couple kinetic uptakes, gene expression, and metabolic networks, at the genome scale, to produce dynamic simulations of cell cultures. The method successfully predicts the preferential uptake of glucose over lactose in E. coli cultures grown on a mixture of carbohydrates, a manifestation of diauxie. The simulated cellular states also show the reprogramming in the content of the proteome in response to fluctuations in the availability of carbon sources, and it captures the associated time lag during the diauxie phenotype. Our models suggest that the diauxic behavior of cells is the result of the evolutionary objective of maximization of the specific growth of the cell. We propose that genetic regulatory networks, such as the lac operon in E. coli, are the biological implementation of a robust control system to ensure optimal growth.
Collapse
|
132
|
Gomez JA, Höffner K, Barton PI. Production of biofuels from sunlight and lignocellulosic sugars using microbial consortia. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
133
|
Zhu L, Pei W, Thiele I, Mahadevan R. Integration of a physiologically-based pharmacokinetic model with a whole-body, organ-resolved genome-scale model for characterization of ethanol and acetaldehyde metabolism. PLoS Comput Biol 2021; 17:e1009110. [PMID: 34351898 PMCID: PMC8370625 DOI: 10.1371/journal.pcbi.1009110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/17/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Ethanol is one of the most widely used recreational substances in the world and due to its ubiquitous use, ethanol abuse has been the cause of over 3.3 million deaths each year. In addition to its effects, ethanol's primary metabolite, acetaldehyde, is a carcinogen that can cause symptoms of facial flushing, headaches, and nausea. How strongly ethanol or acetaldehyde affects an individual depends highly on the genetic polymorphisms of certain genes. In particular, the genetic polymorphisms of mitochondrial aldehyde dehydrogenase, ALDH2, play a large role in the metabolism of acetaldehyde. Thus, it is important to characterize how genetic variations can lead to different exposures and responses to ethanol and acetaldehyde. While the pharmacokinetics of ethanol metabolism through alcohol dehydrogenase have been thoroughly explored in previous studies, in this paper, we combined a base physiologically-based pharmacokinetic (PBPK) model with a whole-body genome-scale model (WBM) to gain further insight into the effect of other less explored processes and genetic variations on ethanol metabolism. This combined model was fit to clinical data and used to show the effect of alcohol concentrations, organ damage, ALDH2 enzyme polymorphisms, and ALDH2-inhibiting drug disulfiram on ethanol and acetaldehyde exposure. Through estimating the reaction rates of auxiliary processes with dynamic Flux Balance Analysis, The PBPK-WBM was able to navigate around a lack of kinetic constants traditionally associated with PK modelling and demonstrate the compensatory effects of the body in response to decreased liver enzyme expression. Additionally, the model demonstrated that acetaldehyde exposure increased with higher dosages of disulfiram and decreased ALDH2 efficiency, and that moderate consumption rates of ethanol could lead to unexpected accumulations in acetaldehyde. This modelling framework combines the comprehensive steady-state analyses from genome-scale models with the dynamics of traditional PK models to create a highly personalized form of PBPK modelling that can push the boundaries of precision medicine.
Collapse
Affiliation(s)
- Leo Zhu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - William Pei
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Ines Thiele
- School of Medicine, National University of Ireland at Galway, Galway, Ireland
- Discipline of Microbiology, National University of Ireland at Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
134
|
Qian Y, Lan F, Venturelli OS. Towards a deeper understanding of microbial communities: integrating experimental data with dynamic models. Curr Opin Microbiol 2021; 62:84-92. [PMID: 34098512 PMCID: PMC8286325 DOI: 10.1016/j.mib.2021.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
Microbial communities and their functions are shaped by complex networks of interactions among microbes and with their environment. While the critical roles microbial communities play in numerous environments have become increasingly appreciated, we have a very limited understanding of their interactions and how these interactions combine to generate community-level behaviors. This knowledge gap hinders our ability to predict community responses to perturbations and to design interventions that manipulate these communities to our benefit. Dynamic models are promising tools to address these questions. We review existing modeling techniques to construct dynamic models of microbial communities at different scales and suggest ways to leverage multiple types of models and data to facilitate our understanding and engineering of microbial communities.
Collapse
Affiliation(s)
- Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Freeman Lan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
135
|
Wu C, Spiller R, Dowe N, Bomble YJ, St John PC. Thermodynamic and Kinetic Modeling of Co-utilization of Glucose and Xylose for 2,3-BDO Production by Zymomonas mobilis. Front Bioeng Biotechnol 2021; 9:707749. [PMID: 34381766 PMCID: PMC8350737 DOI: 10.3389/fbioe.2021.707749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022] Open
Abstract
Prior engineering of the ethanologen Zymomonas mobilis has enabled it to metabolize xylose and to produce 2,3-butanediol (2,3-BDO) as a dominant fermentation product. When co-fermenting with xylose, glucose is preferentially utilized, even though xylose metabolism generates ATP more efficiently during 2,3-BDO production on a BDO-mol basis. To gain a deeper understanding of Z. mobilis metabolism, we first estimated the kinetic parameters of the glucose facilitator protein of Z. mobilis by fitting a kinetic uptake model, which shows that the maximum transport capacity of glucose is seven times higher than that of xylose, and glucose is six times more affinitive to the transporter than xylose. With these estimated kinetic parameters, we further compared the thermodynamic driving force and enzyme protein cost of glucose and xylose metabolism. It is found that, although 20% more ATP can be yielded stoichiometrically during xylose utilization, glucose metabolism is thermodynamically more favorable with 6% greater cumulative Gibbs free energy change, more economical with 37% less enzyme cost required at the initial stage and sustains the advantage of the thermodynamic driving force and protein cost through the fermentation process until glucose is exhausted. Glucose-6-phosphate dehydrogenase (g6pdh), glyceraldehyde-3-phosphate dehydrogenase (gapdh) and phosphoglycerate mutase (pgm) are identified as thermodynamic bottlenecks in glucose utilization pathway, as well as two more enzymes of xylose isomerase and ribulose-5-phosphate epimerase in xylose metabolism. Acetolactate synthase is found as potential engineering target for optimized protein cost supporting unit metabolic flux. Pathway analysis was then extended to the core stoichiometric matrix of Z. mobilis metabolism. Growth was simulated by dynamic flux balance analysis and the model was validated showing good agreement with experimental data. Dynamic FBA simulations suggest that a high agitation is preferable to increase 2,3-BDO productivity while a moderate agitation will benefit the 2,3-BDO titer. Taken together, this work provides thermodynamic and kinetic insights of Z. mobilis metabolism on dual substrates, and guidance of bioengineering efforts to increase hydrocarbon fuel production.
Collapse
Affiliation(s)
- Chao Wu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Ryan Spiller
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Nancy Dowe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Peter C St John
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
136
|
Nair A, Sarma SJ. The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol Res 2021; 251:126831. [PMID: 34325194 DOI: 10.1016/j.micres.2021.126831] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Organisms have cellular machinery that is focused on optimum utilization of resources to maximize growth and survival depending on various environmental and developmental factors. Catabolite repression is a strategy utilized by various species of bacteria and fungi to accommodate changes in the environment such as the depletion of resources, or an abundance of less-favored nutrient sources. Catabolite repression allows for the rapid use of certain substrates like glucose over other carbon sources. Effective handling of carbon and nitrogen catabolite repression in microorganisms is crucial to outcompete others in nutrient limiting conditions. Investigations into genes and proteins linked to preferential uptake of different nutrients under various environmental conditions can aid in identifying regulatory mechanisms that are crucial for optimum growth and survival of microorganisms. The exact time and way bacteria and fungi switch their utilization of certain nutrients is of great interest for scientific, industrial, and clinical reasons. Catabolite repression is of great significance for industrial applications that rely on microorganisms for the generation of valuable bio-products. The impact catabolite repression has on virulence of pathogenic bacteria and fungi and disease progression in hosts makes it important area of interest in medical research for the prevention of diseases and developing new treatment strategies. Regulatory networks under catabolite repression exemplify the flexibility and the tremendous diversity that is found in microorganisms and provides an impetus for newer insights into these networks.
Collapse
Affiliation(s)
- Abhinav Nair
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Jyoti Sarma
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
137
|
Angeles-Martinez L, Hatzimanikatis V. Spatio-temporal modeling of the crowding conditions and metabolic variability in microbial communities. PLoS Comput Biol 2021; 17:e1009140. [PMID: 34292935 PMCID: PMC8297787 DOI: 10.1371/journal.pcbi.1009140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/01/2021] [Indexed: 11/22/2022] Open
Abstract
The metabolic capabilities of the species and the local environment shape the microbial interactions in a community either through the exchange of metabolic products or the competition for the resources. Cells are often arranged in close proximity to each other, creating a crowded environment that unevenly reduce the diffusion of nutrients. Herein, we investigated how the crowding conditions and metabolic variability among cells shape the dynamics of microbial communities. For this, we developed CROMICS, a spatio-temporal framework that combines techniques such as individual-based modeling, scaled particle theory, and thermodynamic flux analysis to explicitly incorporate the cell metabolism and the impact of the presence of macromolecular components on the nutrients diffusion. This framework was used to study two archetypical microbial communities (i) Escherichia coli and Salmonella enterica that cooperate with each other by exchanging metabolites, and (ii) two E. coli with different production level of extracellular polymeric substances (EPS) that compete for the same nutrients. In the mutualistic community, our results demonstrate that crowding enhanced the fitness of cooperative mutants by reducing the leakage of metabolites from the region where they are produced, avoiding the resource competition with non-cooperative cells. Moreover, we also show that E. coli EPS-secreting mutants won the competition against the non-secreting cells by creating less dense structures (i.e. increasing the spacing among the cells) that allow mutants to expand and reach regions closer to the nutrient supply point. A modest enhancement of the relative fitness of EPS-secreting cells over the non-secreting ones were found when the crowding effect was taken into account in the simulations. The emergence of cell-cell interactions and the intracellular conflicts arising from the trade-off between growth and the secretion of metabolites or EPS could provide a local competitive advantage to one species, either by supplying more cross-feeding metabolites or by creating a less dense neighborhood. Microbial communities play a key role in biogeochemical cycles, bioremediation, and human health. In crowded microbial systems such as biofilms and cellular aggregates, the close proximity between individual cells reduces the free space for the nutrients diffusion. To model the heterogeneous nature of these microbial systems, we developed CROMICS, a framework that integrates the information about the metabolic capabilities of each individual cell as well as the size and location of cells and macromolecules in the medium. The interactions among the individuals arise naturally through competition for or the exchange of metabolites. We show how the presence of mutants and a reduced diffusion in crowded environments can perturb the local availability of nutrients and therefore modify the dynamics of a microbial community. The discovered mechanisms underlying the microbial interactions in crowded systems together with the developed framework represent a valuable starting point for future studies of the interplay of human microbiome and host metabolism, the pathogen invasion, and the evaluation of antibiotic effectiveness.
Collapse
Affiliation(s)
- Liliana Angeles-Martinez
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
138
|
Ibrahim M, Raajaraam L, Raman K. Modelling microbial communities: Harnessing consortia for biotechnological applications. Comput Struct Biotechnol J 2021; 19:3892-3907. [PMID: 34584635 PMCID: PMC8441623 DOI: 10.1016/j.csbj.2021.06.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Microbes propagate and thrive in complex communities, and there are many benefits to studying and engineering microbial communities instead of single strains. Microbial communities are being increasingly leveraged in biotechnological applications, as they present significant advantages such as the division of labour and improved substrate utilisation. Nevertheless, they also present some interesting challenges to surmount for the design of efficient biotechnological processes. In this review, we discuss key principles of microbial interactions, followed by a deep dive into genome-scale metabolic models, focussing on a vast repertoire of constraint-based modelling methods that enable us to characterise and understand the metabolic capabilities of microbial communities. Complementary approaches to model microbial communities, such as those based on graph theory, are also briefly discussed. Taken together, these methods provide rich insights into the interactions between microbes and how they influence microbial community productivity. We finally overview approaches that allow us to generate and test numerous synthetic community compositions, followed by tools and methodologies that can predict effective genetic interventions to further improve the productivity of communities. With impending advancements in high-throughput omics of microbial communities, the stage is set for the rapid expansion of microbial community engineering, with a significant impact on biotechnological processes.
Collapse
Affiliation(s)
- Maziya Ibrahim
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| | - Lavanya Raajaraam
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| | - Karthik Raman
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Chennai 600 036, India
- Centre for Integrative Biology and Systems Medicine (IBSE), IIT Madras, Chennai 600 036, India
- Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai 600 036, India
| |
Collapse
|
139
|
Angeles-Martinez L, Hatzimanikatis V. The influence of the crowding assumptions in biofilm simulations. PLoS Comput Biol 2021; 17:e1009158. [PMID: 34292941 PMCID: PMC8297847 DOI: 10.1371/journal.pcbi.1009158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/07/2021] [Indexed: 12/02/2022] Open
Abstract
Microorganisms are frequently organized into crowded structures that affect the nutrients diffusion. This reduction in metabolite diffusion could modify the microbial dynamics, meaning that computational methods for studying microbial systems need accurate ways to model the crowding conditions. We previously developed a computational framework, termed CROMICS, that incorporates the effect of the (time-dependent) crowding conditions on the spatio-temporal modeling of microbial communities, and we used it to demonstrate the crowding influence on the community dynamics. To further identify scenarios where crowding should be considered in microbial modeling, we herein applied and extended CROMICS to simulate several environmental conditions that could potentially boost or dampen the crowding influence in biofilms. We explore whether the nutrient supply (rich- or low-nutrient media), the cell-packing configuration (square or hexagonal spherical cell arrangement), or the cell growing conditions (planktonic state or biofilm) modify the crowding influence on the growth of Escherichia coli. Our results indicate that the growth rate, the abundance and appearance time of different cell phenotypes as well as the amount of by-products secreted to the medium are sensitive to some extent to the local crowding conditions in all scenarios tested, except in rich-nutrient media. Crowding conditions enhance the formation of nutrient gradient in biofilms, but its effect is only appreciated when cell metabolism is controlled by the nutrient limitation. Thus, as soon as biomass (and/or any other extracellular macromolecule) accumulates in a region, and cells occupy more than 14% of the volume fraction, the crowding effect must not be underestimated, as the microbial dynamics start to deviate from the ideal/expected behaviour that assumes volumeless cells or when a homogeneous (reduced) diffusion is applied in the simulation. The modeling and simulation of the interplay between the species diversity (cell shape and metabolism) and the environmental conditions (nutrient quality, crowding conditions) can help to design effective strategies for the optimization and control of microbial systems.
Collapse
Affiliation(s)
- Liliana Angeles-Martinez
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| |
Collapse
|
140
|
Gao Q, Wang J, Ren L, Cheng Y, Lin Z, Li XG, Sun H. Investigations on the influence of energy source on time-dependent hormesis: A case study of sulfadoxine to Aliivibrio fischeri in different cultivation systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145877. [PMID: 33621878 DOI: 10.1016/j.scitotenv.2021.145877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Hormesis is a biphasic dose-response relationship featured by low-dose stimulation and high-dose inhibition. Although the hormetic phenomenon has been extensively studied over the past decades, there is little information regarding the influence of energy source on the occurrence of hormesis, especially the time-dependent one. In this study, to explore the role of cultivation system's energy source in time-dependent hormesis, the toxic dose-responses of Aliivibrio fischeri (A. fischeri) bioluminescence to Sulfadoxine (SDX) during 24 h were determined in four cultivation systems with different energy source conditions. The results indicated that the time-dependent hormetic effects were induced by SDX in all cultivation systems: SDX triggered hormetic phenomenon on the bioluminescence at each growth stage over 24 h in the cultivation systems with sufficient and insufficient energy source; due to the diauxic growth of A. fischeri under multiple energy source conditions, the hormetic effects of SDX gradually disappeared after the preferred energy source was used up. It was speculated that the inhibitory action of SDX was derived from its interaction with DHPS to impede the synthesis of proteins, and SDX bound with AC to upregulate the quorum sensing (QS) system to exhibit the stimulatory action. Comparing the time-dependent hormesis in each cultivation system, it was obtained that the energy source could impact the hourly maximum stimulatory rate, the EC50 of SDX, and the time point that hormesis occurred, which might result from the influence of energy source on the stimulatory and inhibitory actions of SDX through regulating the metabolic system (individual level) and QS system (group level) of bacteria. This study clarifies the importance of energy source for hormesis occurrence, which may further promote the development of hormesis.
Collapse
Affiliation(s)
- Qing Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Longfei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifei Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China
| | - Xin-Gui Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, China; Post-doctoral Research Station, College of Civil Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
141
|
Gene Expression Space Shapes the Bioprocess Trade-Offs among Titer, Yield and Productivity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Optimal gene expression is central for the development of both bacterial expression systems for heterologous protein production, and microbial cell factories for industrial metabolite production. Our goal is to fulfill industry-level overproduction demands optimally, as measured by the following key performance metrics: titer, productivity rate, and yield (TRY). Here we use a multiscale model incorporating the dynamics of (i) the cell population in the bioreactor, (ii) the substrate uptake and (iii) the interaction between the cell host and expression of the protein of interest. Our model predicts cell growth rate and cell mass distribution between enzymes of interest and host enzymes as a function of substrate uptake and the following main lab-accessible gene expression-related characteristics: promoter strength, gene copy number and ribosome binding site strength. We evaluated the differential roles of gene transcription and translation in shaping TRY trade-offs for a wide range of expression levels and the sensitivity of the TRY space to variations in substrate availability. Our results show that, at low expression levels, gene transcription mainly defined TRY, and gene translation had a limited effect; whereas, at high expression levels, TRY depended on the product of both, in agreement with experiments in the literature.
Collapse
|
142
|
Pacheco AR, Segrè D. An evolutionary algorithm for designing microbial communities via environmental modification. J R Soc Interface 2021; 18:20210348. [PMID: 34157894 PMCID: PMC8220269 DOI: 10.1098/rsif.2021.0348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite a growing understanding of how environmental composition affects microbial communities, it remains difficult to apply this knowledge to the rational design of synthetic multispecies consortia. This is because natural microbial communities can harbour thousands of different organisms and environmental substrates, making up a vast combinatorial space that precludes exhaustive experimental testing and computational prediction. Here, we present a method based on the combination of machine learning and metabolic modelling that selects optimal environmental compositions to produce target community phenotypes. In this framework, dynamic flux balance analysis is used to model the growth of a community in candidate environments. A genetic algorithm is then used to evaluate the behaviour of the community relative to a target phenotype, and subsequently adjust the environment to allow the organisms to approach this target. We apply this iterative process to thousands of in silico communities of varying sizes, showing how it can rapidly identify environments that yield desired taxonomic compositions and patterns of metabolic exchange. Moreover, this combination of approaches produces testable predictions for the assembly of experimental microbial communities with specific properties and can facilitate rational environmental design processes for complex microbiomes.
Collapse
Affiliation(s)
- Alan R Pacheco
- Graduate Program in Bioinformatics and Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Daniel Segrè
- Graduate Program in Bioinformatics and Biological Design Center, Boston University, Boston, MA 02215, USA.,Department of Biology, Boston University, Boston, MA 02215, USA.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.,Department of Physics, Boston University, Boston, MA 02215, USA
| |
Collapse
|
143
|
Dillard LR, Payne DD, Papin JA. Mechanistic models of microbial community metabolism. Mol Omics 2021; 17:365-375. [PMID: 34125127 PMCID: PMC8202304 DOI: 10.1039/d0mo00154f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/25/2021] [Indexed: 11/21/2022]
Abstract
Microbial communities affect many facets of human health and well-being. Naturally occurring bacteria, whether in nature or the human body, rarely exist in isolation. A deeper understanding of the metabolic functions of these communities is now possible with emerging computational models. In this review, we summarize frameworks for constructing mechanistic models of microbial community metabolism and discuss available algorithms for model analysis. We highlight essential decision points that greatly influence algorithm selection, as well as model analysis. Polymicrobial metabolic models can be utilized to gain insights into host-pathogen interactions, bacterial engineering, and many more translational applications.
Collapse
Affiliation(s)
- Lillian R. Dillard
- Department of Biochemistry and Molecular Genetics, University of VirginiaCharlottesvilleVA 22908USA
| | - Dawson D. Payne
- Department of Biomedical Engineering, University of VirginiaBox 800759, Health SystemCharlottesvilleVA 22908USA
| | - Jason A. Papin
- Department of Biochemistry and Molecular Genetics, University of VirginiaCharlottesvilleVA 22908USA
- Department of Biomedical Engineering, University of VirginiaBox 800759, Health SystemCharlottesvilleVA 22908USA
| |
Collapse
|
144
|
Characterization of effects of genetic variants via genome-scale metabolic modelling. Cell Mol Life Sci 2021; 78:5123-5138. [PMID: 33950314 PMCID: PMC8254712 DOI: 10.1007/s00018-021-03844-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Genome-scale metabolic networks for model plants and crops in combination with approaches from the constraint-based modelling framework have been used to predict metabolic traits and design metabolic engineering strategies for their manipulation. With the advances in technologies to generate large-scale genotyping data from natural diversity panels and other populations, genome-wide association and genomic selection have emerged as statistical approaches to determine genetic variants associated with and predictive of traits. Here, we review recent advances in constraint-based approaches that integrate genetic variants in genome-scale metabolic models to characterize their effects on reaction fluxes. Since some of these approaches have been applied in organisms other than plants, we provide a critical assessment of their applicability particularly in crops. In addition, we further dissect the inferred effects of genetic variants with respect to reaction rate constants, abundances of enzymes, and concentrations of metabolites, as main determinants of reaction fluxes and relate them with their combined effects on complex traits, like growth. Through this systematic review, we also provide a roadmap for future research to increase the predictive power of statistical approaches by coupling them with mechanistic models of metabolism.
Collapse
|
145
|
Ben Guebila M, Thiele I. Dynamic flux balance analysis of whole-body metabolism for type 1 diabetes. NATURE COMPUTATIONAL SCIENCE 2021; 1:348-361. [PMID: 38217214 DOI: 10.1038/s43588-021-00074-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/21/2021] [Indexed: 01/15/2024]
Abstract
Type 1 diabetes (T1D) mellitus is a systemic disease triggered by a local autoimmune inflammatory reaction in insulin-producing cells that induce organ-wide, long-term metabolic effects. Mathematical modeling of the whole-body regulatory bihormonal system has helped to identify therapeutic interventions but is limited to a coarse-grained representation of metabolism. To extend the depiction of T1D, we developed a whole-body model of organ-specific regulation and metabolism that highlighted chronic inflammation as a hallmark of the disease, identified processes related to neurodegenerative disorders and suggested calcium channel blockers as adjuvants for diabetes control. In addition, whole-body modeling of a patient population allowed for the assessment of between-individual variability to insulin and suggested that peripheral glucose levels are degenerate biomarkers of the internal metabolic state. Taken together, the organ-resolved, dynamic modeling approach enables modeling and simulation of metabolic disease at greater levels of coverage and precision and the generation of hypothesis from a molecular level up to the population level.
Collapse
Affiliation(s)
- Marouen Ben Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, Ireland.
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland.
- APC Microbiome, Cork, Ireland.
- Ryan Institute, National University of Ireland, Galway, Ireland.
| |
Collapse
|
146
|
Gjindali A, Herrmann HA, Schwartz JM, Johnson GN, Calzadilla PI. A Holistic Approach to Study Photosynthetic Acclimation Responses of Plants to Fluctuating Light. FRONTIERS IN PLANT SCIENCE 2021; 12:668512. [PMID: 33936157 PMCID: PMC8079764 DOI: 10.3389/fpls.2021.668512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/23/2021] [Indexed: 05/10/2023]
Abstract
Plants in natural environments receive light through sunflecks, the duration and distribution of these being highly variable across the day. Consequently, plants need to adjust their photosynthetic processes to avoid photoinhibition and maximize yield. Changes in the composition of the photosynthetic apparatus in response to sustained changes in the environment are referred to as photosynthetic acclimation, a process that involves changes in protein content and composition. Considering this definition, acclimation differs from regulation, which involves processes that alter the activity of individual proteins over short-time periods, without changing the abundance of those proteins. The interconnection and overlapping of the short- and long-term photosynthetic responses, which can occur simultaneously or/and sequentially over time, make the study of long-term acclimation to fluctuating light in plants challenging. In this review we identify short-term responses of plants to fluctuating light that could act as sensors and signals for acclimation responses, with the aim of understanding how plants integrate environmental fluctuations over time and tailor their responses accordingly. Mathematical modeling has the potential to integrate physiological processes over different timescales and to help disentangle short-term regulatory responses from long-term acclimation responses. We review existing mathematical modeling techniques for studying photosynthetic responses to fluctuating light and propose new methods for addressing the topic from a holistic point of view.
Collapse
Affiliation(s)
- Armida Gjindali
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Helena A. Herrmann
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Giles N. Johnson
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Pablo I. Calzadilla
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
147
|
Aromolaran O, Aromolaran D, Isewon I, Oyelade J. Machine learning approach to gene essentiality prediction: a review. Brief Bioinform 2021; 22:6219158. [PMID: 33842944 DOI: 10.1093/bib/bbab128] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Essential genes are critical for the growth and survival of any organism. The machine learning approach complements the experimental methods to minimize the resources required for essentiality assays. Previous studies revealed the need to discover relevant features that significantly classify essential genes, improve on the generalizability of prediction models across organisms, and construct a robust gold standard as the class label for the train data to enhance prediction. Findings also show that a significant limitation of the machine learning approach is predicting conditionally essential genes. The essentiality status of a gene can change due to a specific condition of the organism. This review examines various methods applied to essential gene prediction task, their strengths, limitations and the factors responsible for effective computational prediction of essential genes. We discussed categories of features and how they contribute to the classification performance of essentiality prediction models. Five categories of features, namely, gene sequence, protein sequence, network topology, homology and gene ontology-based features, were generated for Caenorhabditis elegans to perform a comparative analysis of their essentiality prediction capacity. Gene ontology-based feature category outperformed other categories of features majorly due to its high correlation with the genes' biological functions. However, the topology feature category provided the highest discriminatory power making it more suitable for essentiality prediction. The major limiting factor of machine learning to predict essential genes conditionality is the unavailability of labeled data for interest conditions that can train a classifier. Therefore, cooperative machine learning could further exploit models that can perform well in conditional essentiality predictions. SHORT ABSTRACT Identification of essential genes is imperative because it provides an understanding of the core structure and function, accelerating drug targets' discovery, among other functions. Recent studies have applied machine learning to complement the experimental identification of essential genes. However, several factors are limiting the performance of machine learning approaches. This review aims to present the standard procedure and resources available for predicting essential genes in organisms, and also highlight the factors responsible for the current limitation in using machine learning for conditional gene essentiality prediction. The choice of features and ML technique was identified as an important factor to predict essential genes effectively.
Collapse
Affiliation(s)
- Olufemi Aromolaran
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria.,Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Damilare Aromolaran
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria.,Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Itunuoluwa Isewon
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria.,Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| | - Jelili Oyelade
- Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria.,Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
148
|
Abstract
It is generally recognized that proteins constitute the key cellular component in shaping microbial phenotypes. Due to limited cellular resources and space, optimal allocation of proteins is crucial for microbes to facilitate maximum proliferation rates while allowing a flexible response to environmental changes. To account for the growth condition-dependent proteome in the constraint-based metabolic modeling of Escherichia coli, we consolidated a coarse-grained protein allocation approach with the explicit consideration of enzymatic constraints on reaction fluxes. Besides representing physiologically relevant wild-type phenotypes and flux distributions, the resulting protein allocation model (PAM) advances the predictability of the metabolic responses to genetic perturbations. A main driver of mutant phenotypes was ascribed to inherited regulation patterns in protein distribution among metabolic enzymes. Moreover, the PAM correctly reflected metabolic responses to an augmented protein burden imposed by the heterologous expression of green fluorescent protein. In summary, we were able to model the effects of important and frequently applied metabolic engineering approaches on microbial metabolism. Therefore, we want to promote the integration of protein allocation constraints into classical constraint-based models to foster their predictive capabilities and application for strain analysis and engineering purposes. IMPORTANCE Predictive metabolic models are important, e.g., for generating biological knowledge and designing microbes with superior performance for target compound production. Yet today’s whole-cell models either show insufficient predictive capabilities or are computationally too expensive to be applied to metabolic engineering purposes. By linking the inherent genotype-phenotype relationship to a complete representation of the proteome, the PAM advances the accuracy of simulated phenotypes and intracellular flux distributions of E. coli. Being equally computationally lightweight as classical stoichiometric models and allowing for the application of established in silico tools, the PAM and related simulation approaches will foster the use of a model-driven metabolic research. Applications range from the investigation of mechanisms of microbial evolution to the determination of optimal strain design strategies in metabolic engineering, thus supporting basic scientists and engineers alike.
Collapse
|
149
|
Integration of relative metabolomics and transcriptomics time-course data in a metabolic model pinpoints effects of ribosome biogenesis defects on Arabidopsis thaliana metabolism. Sci Rep 2021; 11:4787. [PMID: 33637852 PMCID: PMC7910480 DOI: 10.1038/s41598-021-84114-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Ribosome biogenesis is tightly associated to plant metabolism due to the usage of ribosomes in the synthesis of proteins necessary to drive metabolic pathways. Given the central role of ribosome biogenesis in cell physiology, it is important to characterize the impact of different components involved in this process on plant metabolism. Double mutants of the Arabidopsis thaliana cytosolic 60S maturation factors REIL1 and REIL2 do not resume growth after shift to moderate 10 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{\circ }\hbox {C}$$\end{document}∘C chilling conditions. To gain mechanistic insights into the metabolic effects of this ribosome biogenesis defect on metabolism, we developed TC-iReMet2, a constraint-based modelling approach that integrates relative metabolomics and transcriptomics time-course data to predict differential fluxes on a genome-scale level. We employed TC-iReMet2 with metabolomics and transcriptomics data from the Arabidopsis Columbia 0 wild type and the reil1-1 reil2-1 double mutant before and after cold shift. We identified reactions and pathways that are highly altered in a mutant relative to the wild type. These pathways include the Calvin–Benson cycle, photorespiration, gluconeogenesis, and glycolysis. Our findings also indicated differential NAD(P)/NAD(P)H ratios after cold shift. TC-iReMet2 allows for mechanistic hypothesis generation and interpretation of system biology experiments related to metabolic fluxes on a genome-scale level.
Collapse
|
150
|
Modeling Growth Kinetics, Interspecies Cell Fusion, and Metabolism of a Clostridium acetobutylicum/Clostridium ljungdahlii Syntrophic Coculture. mSystems 2021; 6:6/1/e01325-20. [PMID: 33622858 PMCID: PMC8573953 DOI: 10.1128/msystems.01325-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium acetobutylicum and Clostridium ljungdahlii grown in a syntrophic culture were recently shown to fuse membranes and exchange cytosolic contents, yielding hybrid cells with significant shifts in gene expression and growth phenotypes. Here, we introduce a dynamic genome-scale metabolic modeling framework to explore how cell fusion alters the growth phenotype and panel of metabolites produced by this binary community. Computational results indicate C. ljungdahlii persists in the coculture through proteome exchange during fusing events, which endow C. ljungdahlii cells with expanded substrate utilization, and access to additional reducing equivalents from C. acetobutylicum-evolved H2 and through acquisition of C. acetobutylicum-native cofactor-reducing enzymes. Simulations predict maximum theoretical ethanol and isopropanol yields that are increased by 0.64 mmol and 0.39 mmol per mmol hexose sugar consumed, respectively, during exponential growth when cell fusion is active. This modeling effort provides a mechanistic explanation for the metabolic outcome of cellular fusion and altered homeostasis achieved in this syntrophic clostridial community.IMPORTANCE Widespread cell fusion and protein exchange between microbial organisms as observed in synthetic C. acetobutylicum/C. ljungdahlii culture is a novel observation that has not been explored in silico The mechanisms responsible for the observed cell fusion events in this culture are still unknown. In this work, we develop a modeling framework that captures the observed culture composition and metabolic phenotype, use it to offer a mechanistic explanation for how the culture achieves homeostasis, and identify C. ljungdahlii as primary beneficiary of fusion events. The implications for the events described in this study are far reaching, with potential to reshape our understanding of microbial community behavior synthetically and in nature.
Collapse
|