101
|
Ellul P, Ríos G, Atarés A, Roig LA, Serrano R, Moreno V. The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:462-469. [PMID: 12783167 DOI: 10.1007/s00122-003-1267-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Accepted: 11/29/2002] [Indexed: 05/24/2023]
Abstract
An optimised Agrobacterium-mediated gene transfer protocol was developed in order to obtain watermelon transgenic plants [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Transformation efficiencies ranged from 2.8% to 5.3%, depending on the cultivar. The method was applied to obtain genetically engineered watermelon plants expressing the Saccharomyces cerevisiae HAL1 gene related to salt tolerance. In order to enhance its constitutive expression in plants, the HAL1 gene was cloned in a pBiN19 plasmid under control of the 35S promoter with a double enhancer sequence from the cauliflower mosaic virus and the RNA4 leader sequence of the alfalfa mosaic virus. This vector was introduced into Agrobacterium tumefaciens strain LBA4404 for further inoculation of watermelon half-cotyledon explants. The introduction of both the neomycin phosphotransferase II and HAL1 genes was assessed in primary transformants (TG1) by polymerase chain reaction analysis and Southern hybridisation. The expression of the HAL1 gene was determined by Northern analysis, and the diploid level of transgenic plants was confirmed by flow cytometry. The presence of the selectable marker gene in the expected Mendelian ratios was demonstrated in TG2 progenies. The TG2 kanamycin-resistant plantlets elongated better and produced new roots and leaves in culture media supplemented with NaCl compared with the control. Salt tolerance was confirmed in a semi-hydroponic system (EC=6 dS m(-1)) on the basis of the higher growth performance of homozygous TG3 lines with respect to their respective azygous control lines without the transgene. The halotolerance observed confirmed the inheritance of the trait and supports the potential usefulness of the HAL1 gene of S. cerevisiae as a molecular tool for genetic engineering of salt-stress protection in other crop species.
Collapse
Affiliation(s)
- P Ellul
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C. Avenida de los Naranjos s/n. 46022 Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
102
|
Penna S. Building stress tolerance through over-producing trehalose in transgenic plants. TRENDS IN PLANT SCIENCE 2003; 8:355-7. [PMID: 12927963 DOI: 10.1016/s1360-1385(03)00159-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Trehalose is a rare sugar with unique abilities to protect biomolecules from environmental stresses and is present in many bacteria, fungi and some desiccation-tolerant higher plants. Increasing trehalose accumulation in crop plants could improve drought and salinity tolerance. Transgenic plants have been developed with trehalose biosynthetic genes--a recent study on the stress-inducible overexpression of the bifunctional TPSP fusion gene in transgenic rice could offer novel strategies for improving abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Suprasanna Penna
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| |
Collapse
|
103
|
Persson BL, Lagerstedt JO, Pratt JR, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet 2003; 43:225-44. [PMID: 12740714 DOI: 10.1007/s00294-003-0400-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2003] [Revised: 04/05/2003] [Accepted: 04/08/2003] [Indexed: 01/08/2023]
Abstract
Membrane transport systems active in cellular inorganic phosphate (P(i)) acquisition play a key role in maintaining cellular P(i) homeostasis, independent of whether the cell is a unicellular microorganism or is contained in the tissue of a higher eukaryotic organism. Since unicellular eukaryotes such as yeast interact directly with the nutritious environment, regulation of P(i) transport is maintained solely by transduction of nutrient signals across the plasma membrane. The individual yeast cell thus recognizes nutrients that can act as both signals and sustenance. The present review provides an overview of P(i) acquisition via the plasma membrane P(i) transporters of Saccharomyces cerevisiae and the regulation of internal P(i) stores under the prevailing P(i) status.
Collapse
Affiliation(s)
- Bengt L Persson
- Department of Chemistry and Biomedical Science, Kalmar University, P.O. Box 905, 39182, Kalmar, Sweden.
| | | | | | | | | | | | | |
Collapse
|
104
|
|
105
|
Rausell A, Kanhonou R, Yenush L, Serrano R, Ros R. The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:257-67. [PMID: 12713533 DOI: 10.1046/j.1365-313x.2003.01719.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein synthesis is very sensitive to NaCl. However, the molecular targets responsible for this sensitivity have not been described. A cDNA library of the halotolerant plant sugar beet was functionally screened in a sodium-sensitive yeast strain. We obtained a cDNA clone (BveIF1A) encoding the eukaryotic translation initiation factor eIF1A. BveIF1A was able to partially complement the yeast eIF1A-deficient strain. Overexpression of the sugar beet eIF1A specifically increased the sodium and lithium salt tolerance of yeast. This phenotype was not accompanied by changes in sodium or potassium homeostasis. Under salt stress conditions, yeast cells expressing BveIF1A presented a higher rate of amino acid incorporation into proteins than control cells. In an in vitro protein synthesis system from wheat germ, the BveIF1A recombinant protein improved translation in the presence of NaCl. Finally, transgenic Arabidopsis plants expressing BveIF1A exhibited increased tolerance to NaCl. These results suggest that the translation initiation factor eIF1A is an important determinant of sodium tolerance in yeast and plants.
Collapse
Affiliation(s)
- Antonio Rausell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Spain
| | | | | | | | | |
Collapse
|
106
|
Al Bitar F, Roosens N, Smeyers M, Vauterin M, Van Boxtel J, Jacobs M, Homblé F. Sequence analysis, transcriptional and posttranscriptional regulation of the rice vdac family. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1625:43-51. [PMID: 12527425 DOI: 10.1016/s0167-4781(02)00590-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The voltage-dependent anion-selective channel (VDAC) is a mitochondrial outer membrane ion channel. Different isoforms exist in plants but information about their specific role remains to be established. Our purpose is to find out the structural features common to three rice VDAC isoforms and to investigate their (post)transcriptional regulation in response to an osmotic stress. Two new cDNAs encoding mitochondrial VDAC from rice (Oryza sativa) were isolated, sequenced and characterized: a phylogenetic reconstruction permitted identification of orthologues in Poaceae and computer-based analyses predicted 18 transmembrane beta-strands, one amphipathic alpha-helix and two different phosphorylation motifs. The expression of three rice vdac genes was investigated. Northern blot analyses indicated that they were expressed in all plant tissues. There was a differential expression of osvdac1 and osvdac3, whereas osvdac2 was homogeneously expressed in all tissues. No change in vdac expression was observed under an osmotic stress. However, a fast-enhanced expression of vdac was observed in roots during the recovery period after stress release. This enhanced expression is not correlated to the amount of VDAC protein detected in roots suggesting a posttranscriptional regulation.
Collapse
Affiliation(s)
- Fawaz Al Bitar
- Laboratoire de Physiologie Végétale, Université Libre de Bruxelles, Campus Plaine (CP 206/2), B-1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
107
|
Salt-avoidance mechanisms in the halophyte Distichlis spicata as a promising source for improved salt resistance in crop plants. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-94-017-0211-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
108
|
Lamb TM, Mitchell AP. The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:677-86. [PMID: 12509465 PMCID: PMC151549 DOI: 10.1128/mcb.23.2.677-686.2003] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental pH changes have broad consequences for growth and differentiation. The best-understood eukaryotic pH response pathway acts through the zinc-finger transcription factor PacC of Aspergillus nidulans, which activates alkaline pH-induced genes directly. We show here that Saccharomyces cerevisiae Rim101p, the pH response regulator homologous to PacC, functions as a repressor in vivo. Chromatin immunoprecipitation assays show that Rim101p is associated in vivo with the promoters of seven Rim101p-repressed genes. A reporter gene containing deduced Rim101p binding sites is negatively regulated by Rim101p and is associated with Rim101p in vivo. Deletion mutations of the Rim101p repression targets NRG1 and SMP1 suppress rim101Delta mutant defects in ion tolerance, haploid invasive growth, and sporulation. Therefore, transcriptional repression is the main biological function of Rim101p. The Rim101p repression target Nrg1p is in turn required for repression of two alkaline pH-inducible genes, including the Na+ pump gene ENA1, which is required for ion tolerance. Thus, Nrg1p, a known transcriptional repressor, functions as an inhibitor of alkaline pH responses. Our findings stand in contrast to the well-characterized function of PacC as a direct activator of alkaline pH-induced genes yet explain many aspects of Rim101p and PacC function in other organisms.
Collapse
Affiliation(s)
- Teresa M Lamb
- Department of Microbiology and Institute of Cancer Research, Columbia University, New York, New York 10032, USA.
| | | |
Collapse
|
109
|
Serrano R, Ruiz A, Bernal D, Chambers JR, Ariño J. The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling. Mol Microbiol 2002; 46:1319-33. [PMID: 12453218 DOI: 10.1046/j.1365-2958.2002.03246.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The short-time transcriptional response of yeast cells to a mild increase in external pH (7.6) has been investigated using DNA microarrays. A total of 150 genes increased their mRNA level at least twofold within 45 min. Alkalinization resulted in the repression of 232 genes. The response of four upregulated genes, ENA1 (encoding a Na+-ATPase also induced by saline stress) and PHO84, PHO89 and PHO12 (encoding genes upregulated by phosphate starvation), was characterized further. The alkaline response of ENA1 was not affected by mutation of relevant genes involved in osmotic or oxidative signalling, but was decreased in calcineurin and rim101 mutants. Mapping of the ENA1 promoter revealed two pH-responsive regions. The response of the upstream region was fully abolished by the drug FK506 or mutation of CRZ1 (a transcription factor activated by calcium/calcineurin), whereas the response of the downstream region was essentially calcium independent. PHO84 and PHO12 responses were unaffected in crz1 cells, but required the presence of Pho2 and Pho4. In contrast, part of the alkali-induced expression of PHO89 was maintained in pho4 or pho2 cells, but was fully abolished in a crz1 strain or in the presence of FK506. Heterologous promoters carrying the minimal calcineurin-dependent response elements found in ENA1 or FKS2 were able to drive alkaline pH-induced expression. These results demonstrate that the transcriptional response to alkaline pH involves different signalling mechanisms, and that calcium signalling is a relevant component of this response.
Collapse
Affiliation(s)
- Raquel Serrano
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, E-08193, Barcelona, Spain
| | | | | | | | | |
Collapse
|
110
|
Hohmann S. Osmotic adaptation in yeast--control of the yeast osmolyte system. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 215:149-87. [PMID: 11952227 DOI: 10.1016/s0074-7696(02)15008-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The yeast Saccharomyces cerevisiae (baker's yeast or budding yeast) is an excellent eukaryotic model system for cellular biology with a well-explored, completely sequenced genome. Yeast cells possess robust systems for osmotic adaptation. Central to the response to high osmolarity is the HOG pathway, one of the best-explored MAP kinase pathways. This pathway controls via different transcription factors the expression of more than 150 genes. In addition, osmotic responses are also controlled by protein kinase A via a general stress response pathway and by presently unknown signaling systems. The HOG pathway partially controls expression of genes encoding enzymes in glycerol production. Glycerol is the main yeast osmolyte, and its production is essential for growth in a high osmolarity medium. Upon hypo-osmotic shock, yeast cells transiently stimulate another MAP kinase pathway, the so-called PKC pathway, which appears to orchestrate the assembly of the cell surface and the cell wall. In addition, yeast cells show signs of a regulated volume decrease by rapidly exporting glycerol through Fps1p. This unusual MIP channel is gated by osmotic changes and thereby plays a key role in controlling the intracellular osmolyte content. Yeast cells also possess two aquaporins, Aqy1p and Aqy2p. The production of both proteins is strictly regulated, suggesting that these water channels play very specific roles in yeast physiology. Aqy1p appears to be developmentally regulated. Given the strong yeast research community and the excellent tools of genetics and functional genomics available, we expect yeast to be the best-explored cellular organism for several years ahead, and osmotic responses are a focus of interest for numerous yeast researchers.
Collapse
Affiliation(s)
- Stefan Hohmann
- Department of Cell and Molecular Biology, Göteborg University, Sweden
| |
Collapse
|
111
|
Azachi M, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. PLANT PHYSIOLOGY 2002; 129:1320-9. [PMID: 12114585 PMCID: PMC166525 DOI: 10.1104/pp.001909] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2001] [Revised: 01/31/2002] [Accepted: 03/13/2002] [Indexed: 05/20/2023]
Abstract
In studies of the outstanding salt tolerance of the unicellular green alga Dunaliella salina, we isolated a cDNA for a salt-inducible mRNA encoding a protein homologous to plant beta-ketoacyl-coenzyme A (CoA) synthases (Kcs). These microsomal enzymes catalyze the condensation of malonyl-CoA with acyl-CoA, the first and rate-limiting step in fatty acid elongation. Kcs activity, localized to a D. salina microsomal fraction, increased in cells transferred from 0.5 to 3.5 M NaCl, as did the level of the kcs mRNA. The function of the kcs gene product was directly demonstrated by the condensing activity exhibited by Escherichia coli cells expressing the kcs cDNA. The effect of salinity on kcs expression in D. salina suggested the possibility that salt adaptation entailed modifications in the fatty acid composition of algal membranes. Lipid analyses indicated that microsomes, but not plasma membranes or thylakoids, from cells grown in 3.5 M NaCl contained a considerably higher ratio of C18 (mostly unsaturated) to C16 (mostly saturated) fatty acids compared with cells grown in 0.5 M salt. Thus, the salt-inducible Kcs, jointly with fatty acid desaturases, may play a role in adapting intracellular membrane compartments to function in the high internal glycerol concentrations balancing the external osmotic pressure.
Collapse
Affiliation(s)
- Malkit Azachi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
112
|
Forment J, Naranjo MA, Roldán M, Serrano R, Vicente O. Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:511-9. [PMID: 12047626 DOI: 10.1046/j.1365-313x.2002.01311.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Searching for novel targets of salt toxicity in eukaryotic cells, we have screened an Arabidopsis thaliana cDNA library to isolate genes conferring increased tolerance to salt stress when expressed in the yeast Saccharomyces cerevisiae. Here we show that expression of the 'alternating arginine-rich' (or RS) domains of two different SR-like, putative splicing proteins from Arabidopsis allows yeast cells to tolerate higher lithium and sodium concentrations. Protection against salt stress appears to require the in vivo phosphorylation of these plant polypeptides, since the yeast SR protein kinase Sky1p, which was able to phosphorylate in vitro at least one of them, also proved to be essential for the observed salt tolerance phenotype. In addition, a clone encoding the U1A protein, a previously characterised Arabidopsis splicing factor, was also isolated in the screening. No significant decrease in the intracellular concentration of lithium was observed in yeast cells incubated in the presence of LiCl upon expression of any of the Arabidopsis proteins, suggesting that their effects are not mediated by the stimulation of ion transport. In support of the general significance of these data, we also show that the expression of the RS domain of one of the SR-like proteins in transgenic Arabidopsis plants increases their tolerance to LiCl and NaCl. These results point to an important role of pre-mRNA splicing and SR-like proteins in the salt tolerance of eukaryotic cells, offering a novel route to improve this important trait in crop plants.
Collapse
Affiliation(s)
- Javier Forment
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C., Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
113
|
Abstract
The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.
Collapse
Affiliation(s)
- Stefan Hohmann
- Department of Cell and Molecular Biology/Microbiology, Göteborg University, S-405 30 Göteborg, Sweden.
| |
Collapse
|
114
|
Lee SJ, Park SY, Na JG, Kim YJ. Osmolarity hypersensitivity of hog1 deleted mutants is suppressed by mutation in KSS1 in budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 2002; 209:9-14. [PMID: 12007647 DOI: 10.1111/j.1574-6968.2002.tb11102.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
An osmosensing mechanism of Saccharomyces cerevisiae involves a mitogen-activated protein kinase (MAPK) cascade (HOG pathway). This study aimed to investigate the response of the yeast to osmotic stress. A mutant strain, in which the HOG1 gene was disrupted by TRP1, was constructed. A spontaneous mutant, named YJY45, which suppresses the osmosensitive growth phenotype of the hog1 deletion mutant, was selected and showed a secondary phenotype of temperature sensitivity on YPD containing 0.5 M NaCl at 37 degrees C. Our data indicate that the spontaneous mutation in YJY45 mutant was mapped in KSS1, which is one of the MAPK family. The mutation in KSS1 suppresses the osmolarity-hypersensitive phenotype of the hog1 deletion mutation and restores GPD1 induction.
Collapse
Affiliation(s)
- Soo-Jung Lee
- Department of Molecular Biology, Pusan National University, 609-735, South Korea
| | | | | | | |
Collapse
|
115
|
Kernaghan G, Hambling B, Fung M, Khasa D. In Vitro Selection of Boreal Ectomycorrhizal Fungi for Use in Reclamation of Saline-Alkaline Habitats. Restor Ecol 2002. [DOI: 10.1046/j.1526-100x.2002.10105.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
116
|
Masuda CA, Xavier MA, Mattos KA, Galina A, Montero-Lomeli M. Phosphoglucomutase is an in vivo lithium target in yeast. J Biol Chem 2001; 276:37794-801. [PMID: 11500487 DOI: 10.1074/jbc.m101451200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lithium is a drug frequently used in the treatment of manic depressive disorder. We have observed that the yeast Saccharomyces cerevisiae is very sensitive to lithium when growing in galactose medium. In this work we show that lithium inhibits with high affinity yeast (IC50 approximately 0.2 mm) and human (IC50 approximately 1.5 mm) phosphoglucomutase, the enzyme that catalyzes the reversible conversion of glucose 1-phosphate to glucose 6-phosphate. Lithium inhibits the rate of fermentation when yeast are grown in galactose and induces accumulation of glucose 1-phosphate and galactose 1-phosphate. Accumulation of these metabolites was also observed when a strain deleted of the two isoforms of phosphoglucomutase was incubated in galactose medium. In glucose-grown cells lithium reduces the steady state levels of UDP-glucose, resulting in a defect on trehalose and glycogen biosynthesis. Lithium acts as a competitive inhibitor of yeast phosphoglucomutase activity by competing with magnesium, a cofactor of the enzyme. High magnesium concentrations revert lithium inhibition of growth and phosphoglucomutase activity. Lithium stress causes an increase of the phosphoglucomutase activity due to an induction of transcription of the PGM2 gene, and its overexpression confers lithium tolerance in galactose medium. These results show that phosphoglucomutase is an important in vivo lithium target.
Collapse
Affiliation(s)
- C A Masuda
- Departamento de Bioquimica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, C. P. 68041, Rio de Janeiro, RJ, 21941-590, Brazil
| | | | | | | | | |
Collapse
|
117
|
Park SY, Seo SB, Lee SJ, Na JG, Kim YJ. Mutation in PMR1, a Ca(2+)-ATPase in Golgi, confers salt tolerance in Saccharomyces cerevisiae by inducing expression of PMR2, an Na(+)-ATPase in plasma membrane. J Biol Chem 2001; 276:28694-9. [PMID: 11387321 DOI: 10.1074/jbc.m101185200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sodium tolerance in yeast is enhanced by continuous activation of calcineurin, a Ca(2+)/calmodulin-dependent protein phosphatase that is required for modulation of the Na(+) efflux mechanism. We isolated several salt-tolerant mutations with the treatment of ethylmethane sulfonate under high salt stress. One of the mutations was mapped in the PMR1 gene. Pmr1p, the P-type Ca(2+)-ATPase in the Golgi apparatus, regulates a cytosolic Ca(2+) level in various responses. Cytosolic Ca(2+) concentration in the pmr1 mutant is highly maintained, and thus calcineurin is activated continuously. The treatment of FK506, a specific inhibitor of calcineurin, abolishes the salt-tolerant phenotype of the pmr1 mutant. Activated calcineurin induces the expression of PMR2, encoding the P-type Na(+)-ATPase, through the specific transcription factor, Tcn1p/Crz1p. Also, expression of the PMR2::lacZ reporter gene in the pmr1 mutant was higher than that in wild type. We propose that the pmr1 mutation confers salt tolerance through continuous activation of calcineurin and that Pmr1p might act as a major Ca(2+)-ATPase under high salt stress.
Collapse
Affiliation(s)
- S Y Park
- Department of Molecular Biology, Pusan National University, Pusan 609-735, Korea
| | | | | | | | | |
Collapse
|
118
|
Vitart V, Baxter I, Doerner P, Harper JF. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:191-201. [PMID: 11532165 DOI: 10.1046/j.1365-313x.2001.01081.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The plasma membrane of plant cells is energized by an electrochemical gradient produced by P-type H+-ATPases (proton pumps). These pumps are encoded by at least 12 genes in Arabidopsis. Here we provide evidence that isoform AHA4 contributes to solute transport through the root endodermis. AHA4 is expressed most strongly in the root endodermis and flowers, as suggested by promoter-GUS reporter assays. A disruption of this pump (aha4-1) was identified as a T-DNA insertion in the middle of the gene (after VFP(574)). Truncated aha4-1 transcripts accumulate to approximately 50% of the level observed for AHA4 mRNA in wild-type plants. Plants homozygous for aha4-1 (-/-) show a subtle reduction in root and shoot growth compared with wild-type plants when grown under normal conditions. However, a mutant phenotype is very clear in plants grown under salt stress (e.g., 75 or 110 mM NaCl). In leaves of mutant plants subjected to Na stress, the ratio of Na to K increased 4-5-fold. Interestingly, the aha4-1 mutation appears to be semidominant and was only partially complemented by the introduction of additional wild-type copies of AHA4. These results are consistent with the hypothesis that aha4-1 may produce a dominant negative protein or RNA that partially disrupts the activity of other pumps or functions in the root endodermal tissue, thereby compromising the function of this cell layer in controlling ion homeostasis and nutrient transport.
Collapse
Affiliation(s)
- V Vitart
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
119
|
Amtmann A, Fischer M, Marsh EL, Stefanovic A, Sanders D, Schachtman DP. The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain. PLANT PHYSIOLOGY 2001; 126:1061-71. [PMID: 11457957 PMCID: PMC116463 DOI: 10.1104/pp.126.3.1061] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2000] [Revised: 12/11/2000] [Accepted: 04/05/2001] [Indexed: 05/18/2023]
Abstract
Salinity affects large areas of agricultural land, and all major crop species are intolerant to high levels of sodium ions. The principal route for Na(+) uptake into plant cells remains to be identified. Non-selective ion channels and high-affinity potassium transporters have emerged as potential pathways for Na(+) entry. A third candidate for Na(+) transport into plant cells is a low-affinity cation transporter represented by the wheat protein LCT1, which is known to be permeable for a wide range of cations when expressed in yeast (Saccharomyces cerevisiae). To investigate the role of LCT1 in salt tolerance we have used the yeast strain G19, which is disrupted in the genes encoding Na(+) export pumps and as a result displays salt sensitivity comparable with wheat. After transformation with LCT1, G19 cells became hypersensitive to NaCl. We show that LCT1 expression results in a strong decrease of intracellular K(+)/Na(+) ratio in G19 cells due to the combined effect of enhanced Na(+) accumulation and loss of intracellular K(+). Na(+) uptake through LCT1 was inhibited by K(+) and Ca(2+) at high concentrations and the addition of these ions rescued growth of LCT1-transformed G19 on saline medium. LCT1 was also shown to mediate the uptake of Li(+) and Cs(+). Expression of two mutant LCT1 cDNAs with N-terminal truncations resulted in decreased Ca(2+) uptake and increased Na(+) tolerance compared with expression of the full-length LCT1. Our findings strongly suggest that LCT1 represents a molecular link between Ca(2+) and Na(+) uptake into plant cells.
Collapse
Affiliation(s)
- A Amtmann
- Department of Biology, P.O. Box 373, York YO10 5YW, United Kingdom.
| | | | | | | | | | | |
Collapse
|
120
|
Iwata K, Tazawa M, Itoh T. Turgor pressure regulation and the orientation of cortical microtubules in Spirogyra cells. PLANT & CELL PHYSIOLOGY 2001; 42:594-8. [PMID: 11427678 DOI: 10.1093/pcp/pce073] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Microtubules (MTs) of cells of Spirogyra sp. were depolymerized by treatment with amiprophos-methyl (APM) for 1 h and then reorganized in 0.30 M mannitol solution. The reorganized MTs after 1.5 h incubation showed an oblique/longitudinal orientation and then became transversely oriented as the incubation was prolonged. During this incubation, the osmotic pressure of cells was measured by the plasmolysis method. The cell osmotic pressure increased with time. The calculated turgor pressure at 1.5 h was 0.11 M (mannitol equivalent) and, at 13.5 h, 0.25 M. Similar changes in MT orientation and recovery of the turgor pressure were also observed in 0.30 M sorbitol solution. These results suggest that the MT orientation may be correlated with the turgor pressure. Among fresh water algae sensitive to a saline environment, this Spirogyra was the first species shown to have a turgor regulating mechanism, although the recovery of turgor pressure was incomplete. The recovery of turgor pressure in mannitol solutions was also observed without APM treatment.
Collapse
Affiliation(s)
- K Iwata
- Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, 573-0101 Japan
| | | | | |
Collapse
|
121
|
Yale J, Bohnert HJ. Transcript expression in Saccharomyces cerevisiae at high salinity. J Biol Chem 2001; 276:15996-6007. [PMID: 11278394 DOI: 10.1074/jbc.m008209200] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcript expression of Saccharomyces cerevisiae at high salinity was determined by microarray analysis of 6144 open reading frames (ORFs). From cells grown in 1 m NaCl for 10, 30, and 90 min, changes in transcript abundance >2-fold were classified. Salinity-induced ORFs increased over time: 107 (10 min), 243 (30 min), and 354 (90 min). Up-regulated, functionally unknown ORFs increased from 17 to 149 over this period. Expression patterns were similar early, with 67% of up-regulated transcripts after 10 min identical to those at 30 min. The expression profile after 90 min revealed different up-regulated transcripts (identities of 13% and 22%, respectively). Nucleotide and amino acid metabolism exemplified the earliest responses to salinity, followed by ORFs related to intracellular transport, protein synthesis, and destination. Transcripts related to energy production were up-regulated throughout the time course with respiration-associated transcripts strongly induced at 30 min. Highly expressed at 90 min were known salinity stress-induced genes, detoxification-related responses, transporters of the major facilitator superfamily, metabolism of energy reserves, nitrogen and sulfur compounds, and lipid, fatty acid/isoprenoid biosynthesis. We chose severe stress conditions to monitor responses in essential biochemical mechanisms. In the mutant, Deltagpd1/gpd2, lacking glycerol biosynthesis, the stress response was magnified with a partially different set of up-regulated ORFs.
Collapse
Affiliation(s)
- J Yale
- Department of Biochemistry, University of Arizona, Biosciences West, Tucson, Arizona 856721-0088, USA
| | | |
Collapse
|
122
|
Glover CV. On the physiological role of casein kinase II in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 59:95-133. [PMID: 9427841 DOI: 10.1016/s0079-6603(08)61030-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Casein kinase II (CKII) is a highly conserved serine/threonine protein kinase that is ubiquitous in eukaryotic organisms. This review summarizes available data on CKII of the budding yeast Saccharomyces cerevisiae, with a view toward defining the possible physiological role of the enzyme. Saccharomyces cerevisiae CKII is composed of two catalytic and two regulatory subunits encoded by the CKA1, CKA2, CKB1, and CKB2 genes, respectively. Analysis of null and conditional alleles of these genes identifies a requirement for CKII in at least four biological processes: flocculation (which may reflect an effect on gene expression), cell cycle progression, cell polarity, and ion homeostasis. Consistent with this, isolation of multicopy suppressors of conditional cka mutations has identified three genes that have a known or potential role in either the cell cycle or cell polarity: CDC37, which is required for cell cycle progression in both G1 and G2/M; ZDS1 and 2, which appear to have a function in cell polarity; and SUN2, which encodes a protein of the regulatory component of the 26S protease. The identity and properties of known CKII substrates in S. cerevisiae are also reviewed, and advantage is taken of the complete genomic sequence to predict globally the substrates of CKII in this organism. Although the combined data do not yield a definitive picture of the physiological role of CKII, it is proposed that CKII serves a signal transduction function in sensing and/or communicating information about the ionic status of the cell to the cell cycle machinery.
Collapse
Affiliation(s)
- C V Glover
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| |
Collapse
|
123
|
Bellí G, Garí E, Aldea M, Herrero E. Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Mol Microbiol 2001; 39:1022-35. [PMID: 11251821 DOI: 10.1046/j.1365-2958.2001.02297.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Moderate hyperosmotic stress on Saccharomyces cerevisiae cells produces a temporary delay at the G1 stage of the cell cycle. This is accompanied by transitory downregulation of CLN1, CLN2 and CLB5 transcript levels, although not of CLN3, which codes for the most upstream activator of the G1/S transition. Osmotic shock to cells synchronized in early G1, when Cln3 is the only cyclin present, causes a delay in cell cycle resumption. This points to Cln3 as being a key cell cycle target for osmotic stress. We have observed that osmotic shock causes downregulation of the kinase activity of Cln3-Cdc28 complexes. This is concomitant with a temporary accumulation of Cln3 protein as a result of increased stability. The effects of the osmotic stress in G1 are not suppressed in CLN3-1 cells with increased kinase activity, as the Cln3-Cdc28 activity in this mutant is still affected by the shock. Although Hog1 is not required for the observed cell cycle arrest in hyperosmotic conditions, it is necessary to resume the cell cycle at KCl concentrations higher than 0.4 M.
Collapse
Affiliation(s)
- G Bellí
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Rovira Roure 44, 25198 Lleida, Spain
| | | | | | | |
Collapse
|
124
|
Goossens A, de La Fuente N, Forment J, Serrano R, Portillo F. Regulation of yeast H(+)-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol 2000; 20:7654-61. [PMID: 11003661 PMCID: PMC86331 DOI: 10.1128/mcb.20.20.7654-7661.2000] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of electrical membrane potential is a fundamental property of living cells. This biophysical parameter determines nutrient uptake, intracellular potassium and turgor, uptake of toxic cations, and stress responses. In fungi and plants, an important determinant of membrane potential is the electrogenic proton-pumping ATPase, but the systems that modulate its activity remain largely unknown. We have characterized two genes from Saccharomyces cerevisiae, PTK2 and HRK1 (YOR267c), that encode protein kinases implicated in activation of the yeast plasma membrane H(+)-ATPase (Pma1) in response to glucose metabolism. These kinases mediate, directly or indirectly, an increase in affinity of Pma1 for ATP, which probably involves Ser-899 phosphorylation. Ptk2 has the strongest effect on Pma1, and ptk2 mutants exhibit a pleiotropic phenotype of tolerance to toxic cations, including sodium, lithium, manganese, tetramethylammonium, hygromycin B, and norspermidine. A plausible interpretation is that ptk2 mutants have a decreased membrane potential and that diverse cation transporters are voltage dependent. Accordingly, ptk2 mutants exhibited reduced uptake of lithium and methylammonium. Ptk2 and Hrk1 belong to a subgroup of yeast protein kinases dedicated to the regulation of plasma membrane transporters, which include Npr1 (regulator of Gap1 and Tat2 amino acid transporters) and Hal4 and Hal5 (regulators of Trk1 and Trk2 potassium transporters).
Collapse
Affiliation(s)
- A Goossens
- Instituto de Biologia Molecular y Celular de Plantas, Universidad Politecnica de Valencia-C.S.I.C., 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
125
|
Darley CP, van Wuytswinkel OC, van der Woude K, Mager WH, de Boer AH. Arabidopsis thaliana and Saccharomyces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na+/H+ exchangers. Biochem J 2000; 351:241-9. [PMID: 10998367 PMCID: PMC1221355 DOI: 10.1042/0264-6021:3510241] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sodium at high millimolar levels in the cytoplasm is toxic to plant and yeast cells. Sequestration of Na(+) ions into the vacuole is one mechanism to confer Na(+)-tolerance on these organisms. In the present study we provide direct evidence that the Arabidopsis thaliana At-NHX1 gene and the yeast NHX1 gene encode low-affinity electroneutral Na(+)/H(+) exchangers. We took advantage of the ability of heterologously expressed At-NHX1 to functionally complement the yeast nhx1-null mutant. Experiments on vacuolar vesicles isolated from yeast expressing At-NHX1 or NHX1 provided direct evidence for pH-gradient-energized Na(+) accumulation into the vacuole. A major difference between NHX1 and At-NHX1 is the presence of a cleavable N-terminal signal peptide (SP) in the former gene. Fusion of the SP to At-NHX1 resulted in an increase in the magnitude of Na(+)/H(+) exchange, indicating a role for the SP in protein targeting or regulation. Another distinguishing feature between the plant and yeast antiporters is their sensitivity to the diuretic compound amiloride. Whereas At-NHX1 was completely inhibited by amiloride, NHX1 activity was reduced by only 20-40%. These results show that yeast as a heterologous expression system provides a convenient model to analyse structural and regulatory features of plant Na(+)/H(+) antiporters.
Collapse
Affiliation(s)
- C P Darley
- Department of Developmental Genetics, Vrije Universiteit, BioCentrum Amsterdam, De Boelelaan 1087, Amsterdam, 1081 HV, The Netherlands
| | | | | | | | | |
Collapse
|
126
|
Albert A, Martínez-Ripoll M, Espinosa-Ruiz A, Yenush L, Culiáñez-Macià FA, Serrano R. The X-ray structure of the FMN-binding protein AtHal3 provides the structural basis for the activity of a regulatory subunit involved in signal transduction. Structure 2000; 8:961-9. [PMID: 10986463 DOI: 10.1016/s0969-2126(00)00187-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The Arabidopsis thaliana HAL3 gene product encodes for an FMN-binding protein (AtHal3) that is related to plant growth and salt and osmotic tolerance. AtHal3 shows sequence homology to ScHal3, a regulatory subunit of the Saccharomyces cerevisae serine/threonine phosphatase PPz1. It has been proposed that AtHal3 and ScHal3 have similar roles in cellular physiology, as Arabidopsis transgenic plants that overexpress AtHal3 and yeast cells that overexpress ScHal3 display similar phenotypes of improved salt tolerance. The enzymatic activity of AtHal3 has not been investigated. However, the AtHal3 sequence is homologous to that of EpiD, a flavoprotein from Staphylococcus epidermidis that recognizes a peptidic substrate and subsequently catalyzes the alpha, beta-dehydrogenation of its C-terminal cysteine residue. RESULTS The X-ray structure of AtHal3 at 2 A resolution reveals that the biological unit is a trimer. Each protomer adopts an alpha/beta Rossmann fold consisting of a six-stranded parallel beta sheet flanked by two layers of alpha helices. The FMN-binding site of AtHal3 contains all the structural requirements of the flavoenzymes that catalyze dehydrogenation reactions. Comparison of the amino acid sequences of AtHal3, ScHal3 and EpiD reveals that a significant number of residues involved in trimer formation, the active site, and FMN binding are conserved. This observation suggests that ScHal3 and EpiD might also be trimers, having a similar structure and function to AtHal3. CONCLUSIONS Structural comparisons of AtHal3 with other FMN-binding proteins show that AtHal3 defines a new subgroup of this protein family that is involved in signal transduction. Analysis of the structure of AtHal3 indicates that this protein is designed to interact with another cellular component and to subsequently catalyze the alpha,beta-dehydrogenation of a peptidyl cysteine. Structural data from AtHal3, together with physiological and biochemical information from ScHal3 and EpiD, allow us to propose a model for the recognition and regulation of AtHal3/ScHal3 cellular partners.
Collapse
Affiliation(s)
- A Albert
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química Física 'Rocasolano', Consejo Superior de Investigaciones Científicas, Serrano 119, E-28006, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
127
|
Navarre C, Goffeau A. Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J 2000; 19:2515-24. [PMID: 10835350 PMCID: PMC212770 DOI: 10.1093/emboj/19.11.2515] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Yeast plasma membranes contain a small 55 amino acid hydrophobic polypeptide, Pmp3p, which has high sequence similarity to a novel family of plant polypeptides that are overexpressed under high salt concentration or low temperature treatment. The PMP3 gene is not essential under normal growth conditions. However, its deletion increases the plasma membrane potential and confers sensitivity to cytotoxic cations, such as Na(+) and hygromycin B. Interestingly, the disruption of PMP3 exacerbates the NaCl sensitivity phenotype of a mutant strain lacking the Pmr2p/Enap Na(+)-ATPases and the Nha1p Na(+)/H(+) antiporter, and suppresses the potassium dependency of a strain lacking the K(+) transporters, Trk1p and Trk2p. All these phenotypes could be reversed by the addition of high Ca(2+) concentration to the medium. These genetic interactions indicate that the major effect of the PMP3 deletion is a hyperpolarization of the plasma membrane potential that probably promotes a non-specific influx of monovalent cations. Expression of plant RCI2A in yeast could substitute for the loss of Pmp3p, indicating a common role for Pmp3p and the plant homologue.
Collapse
Affiliation(s)
- C Navarre
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Croix du Sud 2-20, 1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
128
|
Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. ACTA ACUST UNITED AC 2000; 51:463-499. [PMID: 15012199 DOI: 10.1146/annurev.arplant.51.1.463] [Citation(s) in RCA: 1687] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant responses to salinity stress are reviewed with emphasis on molecular mechanisms of signal transduction and on the physiological consequences of altered gene expression that affect biochemical reactions downstream of stress sensing. We make extensive use of comparisons with model organisms, halophytic plants, and yeast, which provide a paradigm for many responses to salinity exhibited by stress-sensitive plants. Among biochemical responses, we emphasize osmolyte biosynthesis and function, water flux control, and membrane transport of ions for maintenance and re-establishment of homeostasis. The advances in understanding the effectiveness of stress responses, and distinctions between pathology and adaptive advantage, are increasingly based on transgenic plant and mutant analyses, in particular the analysis of Arabidopsis mutants defective in elements of stress signal transduction pathways. We summarize evidence for plant stress signaling systems, some of which have components analogous to those that regulate osmotic stress responses of yeast. There is evidence also of signaling cascades that are not known to exist in the unicellular eukaryote, some that presumably function in intercellular coordination or regulation of effector genes in a cell-/tissue-specific context required for tolerance of plants. A complex set of stress-responsive transcription factors is emerging. The imminent availability of genomic DNA sequences and global and cell-specific transcript expression data, combined with determinant identification based on gain- and loss-of-function molecular genetics, will provide the infrastructure for functional physiological dissection of salt tolerance determinants in an organismal context. Furthermore, protein interaction analysis and evaluation of allelism, additivity, and epistasis allow determination of ordered relationships between stress signaling components. Finally, genetic activation and suppression screens will lead inevitably to an understanding of the interrelationships of the multiple signaling systems that control stress-adaptive responses in plants.
Collapse
Affiliation(s)
- Paul M. Hasegawa
- Center for Plant Environmental Stress Physiology, 1165 Horticulture Building, Purdue University, West Lafayette, Indiana 47907-1165; e-mail: , Departments of 1 Plant Sciences and 2Biochemistry, University of Arizona, Tucson, Arizona 85721; e-mail:
| | | | | | | |
Collapse
|
129
|
Gisbert C, Rus AM, Bolarín MC, López-Coronado JM, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V. The yeast HAL1 gene improves salt tolerance of transgenic tomato. PLANT PHYSIOLOGY 2000; 123:393-402. [PMID: 10806256 PMCID: PMC59013 DOI: 10.1104/pp.123.1.393] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/1999] [Accepted: 12/31/1999] [Indexed: 05/20/2023]
Abstract
Overexpression of the HAL1 gene in yeast has a positive effect on salt tolerance by maintaining a high internal K(+) concentration and decreasing intracellular Na(+) during salt stress. In the present work, the yeast gene HAL1 was introduced into tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens-mediated transformation. A sample of primary transformants was self-pollinated, and progeny from both transformed and non-transformed plants (controls) were evaluated for salt tolerance in vitro and in vivo. Results from different tests indicated a higher level of salt tolerance in the progeny of two different transgenic plants bearing four copies or one copy of the HAL1 gene. In addition, measurement of the intracellular K(+) to Na(+) ratios showed that transgenic lines were able to retain more K(+) than the control under salt stress. Although plants and yeast cannot be compared in an absolute sense, these results indicate that the mechanism controlling the positive effect of the HAL1 gene on salt tolerance may be similar in transgenic plants and yeast.
Collapse
Affiliation(s)
- C Gisbert
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Morsomme P, Boutry M. The plant plasma membrane H(+)-ATPase: structure, function and regulation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:1-16. [PMID: 10748244 DOI: 10.1016/s0005-2736(00)00128-0] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The proton-pumping ATPase (H(+)-ATPase) of the plant plasma membrane generates the proton motive force across the plasma membrane that is necessary to activate most of the ion and metabolite transport. In recent years, important progress has been made concerning the identification and organization of H(+)-ATPase genes, their expression, and also the kinetics and regulation of individual H(+)-ATPase isoforms. At the gene level, it is now clear that H(+)-ATPase is encoded by a family of approximately 10 genes. Expression, monitored by in situ techniques, has revealed a specific distribution pattern for each gene; however, this seems to differ between species. In the near future, we can expect regulatory aspects of gene expression to be elucidated. Already the expression of individual plant H(+)-ATPases in yeast has shown them to have distinct enzymatic properties. It has also allowed regulatory aspects of this enzyme to be studied through random and site-directed mutagenesis, notably its carboxy-terminal region. Studies performed with both plant and yeast material have converged towards deciphering the way phosphorylation and binding of regulatory 14-3-3 proteins intervene in the modification of H(+)-ATPase activity. The production of high quantities of individual functional H(+)-ATPases in yeast constitutes an important step towards crystallization studies to derive structural information. Understanding the specific roles of H(+)-ATPase isoforms in whole plant physiology is another challenge that has been approached recently through the phenotypic analysis of the first transgenic plants in which the expression of single H(+)-ATPases has been up- or down-regulated. In conclusion, the progress made recently concerning the H(+)-ATPase family, at both the gene and protein level, has come to a point where we can now expect a more integrated investigation of the expression, function and regulation of individual H(+)-ATPases in the whole plant context.
Collapse
Affiliation(s)
- P Morsomme
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Croix du Sud, 2-20, 1348, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
131
|
Rep M, Krantz M, Thevelein JM, Hohmann S. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem 2000; 275:8290-300. [PMID: 10722658 DOI: 10.1074/jbc.275.12.8290] [Citation(s) in RCA: 419] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the transcriptional response to osmotic shock in the yeast Saccharomyces cerevisiae. The mRNA level of 186 genes increased at least 3-fold after a shift to NaCl or sorbitol, whereas that of more than 100 genes was at least 1.5-fold diminished. Many induced genes encode proteins that presumably contribute to protection against different types of damage or encode enzymes in glycerol, trehalose, and glycogen metabolism. Several genes, which encode poorly expressed isoforms of enzymes in carbohydrate metabolism, were induced. The high osmolarity glycerol (HOG) pathway is required for full induction of many but not all genes. The recently characterized Hot1p transcription factor is required for normal expression of a subset of the HOG pathway-dependent responses. Stimulated expression of the genes that required the general stress-response transcription factors Msn2p and Msn4p was also reduced in a hog1 mutant, suggesting that Msn2p/Msn4p might be regulated by the HOG pathway. The expression of genes that are known to be controlled by the mating pheromone response pathway was stimulated by osmotic shock specifically in a hog1 mutant. Inappropriate activation of the mating response may contribute to the growth defect of a hog1 mutant in high osmolarity medium.
Collapse
Affiliation(s)
- M Rep
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, Kardinaal Mercierlaan 92, B-3001 Leuven-Heverlee, Flanders, Belgium
| | | | | | | |
Collapse
|
132
|
Albert A, Yenush L, Gil-Mascarell MR, Rodriguez PL, Patel S, Martínez-Ripoll M, Blundell TL, Serrano R. X-ray structure of yeast Hal2p, a major target of lithium and sodium toxicity, and identification of framework interactions determining cation sensitivity. J Mol Biol 2000; 295:927-38. [PMID: 10656801 DOI: 10.1006/jmbi.1999.3408] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The product of the yeast HAL2 gene (Hal2p) is an in vivo target of sodium and lithium toxicity and its overexpression improves salt tolerance in yeast and plants. Hal2p is a metabolic phosphatase which catalyses the hydrolysis of 3'-phosphoadenosine-5'-phosphate (PAP) to AMP. It is, the prototype of an evolutionarily conserved family of PAP phosphatases and the engineering of sodium insensitive enzymes of this group may contribute to the generation of salt-tolerant crops. We have solved the crystal structure of Hal2p in complex with magnesium, lithium and the two products of PAP hydrolysis, AMP and Pi, at 1.6 A resolution. A functional screening of random mutations of the HAL2 gene in growing yeast generated forms of the enzyme with reduced cation sensitivity. Analysis of these mutants defined a salt bridge (Glu238 ellipsis Arg152) and a hydrophobic bond (Va170 ellipsis Trp293) as important framework interactions determining cation sensitivity. Hal2p belongs to a larger superfamily of lithium-sensitive phosphatases which includes inositol monophosphatase. The hydrophobic interaction mutated in Hal2p is conserved in this superfamily and its disruption in human inositol monophosphatase also resulted in reduced cation sensitivity.
Collapse
Affiliation(s)
- A Albert
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Serrano 119, Madrid, E-28006, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
Plants experience a wide array of environmental stimuli, not all of which are favorable, and, unlike animals, are unable to move away from stressful environments. They therefore require a mechanism with which to recognize and respond to abiotic stresses of many different types. Frequently this mechanism involves intracellular calcium. Stress-induced changes in the cytosolic concentration of Ca2+ ([Ca2+]cyt) occur as a result of influx of Ca2+ from outside the cell, or release of Ca2+ from intracellular stores. These alterations in [Ca2+]cyt constitute a signal that is transduced via calmodulin, calcium-dependent protein kinases, and other Ca(2+)-controlled proteins to effect a wide array of downstream responses involved in the protection of the plant and adjustment to the new environmental conditions. Ca2+ signaling has been implicated in plant responses to a number of abiotic stresses including low temperature, osmotic stress, heat, oxidative stress, anoxia, and mechanical perturbation, which are reviewed in this article.
Collapse
Affiliation(s)
- H Knight
- Department of Plant Sciences, University of Oxford, United Kingdom.
| |
Collapse
|
134
|
Felix CF, Moreira CC, Oliveira MS, Sola-Penna M, Meyer-Fernandes JR, Scofano HM, Ferreira-Pereira A. Protection against thermal denaturation by trehalose on the plasma membrane H+-ATPase from yeast. Synergetic effect between trehalose and phospholipid environment. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:660-4. [PMID: 10561610 DOI: 10.1046/j.1432-1327.1999.00916.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Yeast cells have had to develop mechanisms in order to protect themselves from chemical and physical agents of the environment to which they are exposed. One of these physical agents is thermal variation. Some yeast cells are known to accumulate high concentrations of trehalose when submitted to heat shock. In this work, we have studied the effect of trehalose on the protection against thermal inactivation of purified plasma membrane H+-ATPase from Schizosaccharomyces pombe, in the solubilized and in the reconstituted state. We observed that after 1 min of incubation at 51 degrees C in the presence of 1 M trehalose, about 50% of soluble enzyme remains active. In the same conditions, but in the absence of trehalose, the activity was completely abolished. The t0.5 for the enzyme inactivation increased from 10 to 50 s after reconstitution into asolectin liposomes. Curiously, in the presence of 1 M trehalose, the t0.5 for inactivation of the reconstituted enzyme was further increased to higher than 300 s, regardless of whether trehalose was added inside or outside the liposome. Additionally, the concentration that confers 50% for the protection by trehalose (K0.5) decreased from 0.5 M, in the solubilized state, to 0.04 M in the reconstituted state, suggesting a synergetic effect between sugar and lipids. Gel electrophoresis revealed that the pattern of H+-ATPase cleavage by trypsin changed when 1 M trehalose was present in the buffer. It is suggested that both in a soluble and in a phospholipid environment, accumulation of trehalose leads to a more heat-stable conformation of the enzyme, probably an E2-like form.
Collapse
Affiliation(s)
- C F Felix
- Departamento de Bioquímica Médica, ICB/CCS/UFRJ, Rio de Janeiro, RJ,Brazil
| | | | | | | | | | | | | |
Collapse
|
135
|
Nass R, Rao R. The yeast endosomal Na+/H+ exchanger, Nhx1, confers osmotolerance following acute hypertonic shock. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3221-3228. [PMID: 10589731 DOI: 10.1099/00221287-145-11-3221] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osmotolerance in yeast is regulated by at least two distinct mechanisms. The acquired response occurs following long-term exposure to hypertonic medium and requires the induction of the HOG-MAP (high-osmolarity glycerol mitogen-activated protein) kinase cascade to increase levels of the osmolyte glycerol. The acute response occurs following sudden exposure to high osmotica and appears to be dependent on normal vacuole function. In this study it is reported that the yeast endosomal/prevacuolar Na+/H+ exchanger Nhx1 contributes to osmotolerance following sudden exposure to hyperosmotic media. Vacuolar shrinkage and recovery in response to osmotic shock was altered in the (delta)nhx1 null mutant. Our results also show that the osmotolerance conferred by Nhx1 contributes to the postdiauxic/stationary-phase resistance to osmotic stress and allows for the continued growth of cells until the acquired osmotolerance response can occur.
Collapse
Affiliation(s)
- Richard Nass
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore MD 21205, USA1
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore MD 21205, USA1
| |
Collapse
|
136
|
de Nadal E, Calero F, Ramos J, Ariño J. Biochemical and genetic analyses of the role of yeast casein kinase 2 in salt tolerance. J Bacteriol 1999; 181:6456-62. [PMID: 10515937 PMCID: PMC103782 DOI: 10.1128/jb.181.20.6456-6462.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1999] [Accepted: 08/06/1999] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae cells lacking the regulatory subunit of casein kinase 2 (CK-2), encoded by the gene CKB1, display a phenotype of hypersensitivity to Na(+) and Li(+) cations. The sensitivity of a strain lacking ckb1 is higher than that of a calcineurin mutant and similar to that of a strain lacking HAL3, the regulatory subunit of the Ppz1 protein phosphatase. Genetic analysis indicated that Ckb1 participates in regulatory pathways different from that of Ppz1 or calcineurin. Deletion of CKB1 increased the salt sensitivity of a strain lacking Ena1 ATPase, the major determinant for sodium efflux, suggesting that the function of the kinase is not mediated by Ena1. Consistently, ckb1 mutants did not show an altered cation efflux. The function of Ckb1 was independent of the TRK system, which is responsible for discrimination of potassium and sodium entry, and in the absence of the kinase regulatory subunit, the influx of sodium was essentially normal. Therefore, the salt sensitivity of a ckb1 mutant cannot be attributed to defects in the fluxes of sodium. In fact, in these cells, both the intracellular content and the cytoplasm/vacuole ratio for sodium were similar to those features of wild-type cells. The possible causes for the salt sensitivity phenotype of casein kinase mutants are discussed in the light of these findings.
Collapse
Affiliation(s)
- E de Nadal
- Departamento Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | | | | | | |
Collapse
|
137
|
Nishikawa T, Aiba H, Mizuno T. The cta3+ gene that encodes a cation-transporting P-type ATPase is induced by salt stress under control of the Wis1-Sty1 MAPKK-MAPK cascade in fission yeast. FEBS Lett 1999; 455:183-7. [PMID: 10428498 DOI: 10.1016/s0014-5793(99)00876-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In Schizosaccharomyces pombe, the Wis1-Sty1 MAP (mitogen-activated protein) kinase signaling cascade is known to play a major role in cellular adaptation to adverse external stimuli, including osmotic stress, oxidative stress, nutrient deprivation, DNA-damaging agents, and heat stress. Nonetheless, it is not known whether or not this particular MAPK cascade is also involved in response to the most common stress, salinity. In this study, we provide evidence that the Wis1-Sty1 MAP cascade is implicated in salt stress response through regulating expression of a salinity-inducible gene. The downstream target gene thus identified is the cta3+ gene, which encodes a cation-transporting P-type ATPase. The salt stress-responsive nature of cta3+ expression was characterized extensively. It was found that not only the Sty1 MAP kinase but also the Atf1 transcription factor is crucial for the inducible expression of cta3+. As far as we know, this is the first instance that the stress-activated Wis1-Sty1 MAPK cascade plays a role in salt stress response in S. pombe.
Collapse
Affiliation(s)
- T Nishikawa
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | |
Collapse
|
138
|
Abstract
In this work we report the isolation and characterization of three genes induced by different stress conditions in the yeast Saccharomyces cerevisiae. These genes, named GRE1, GRE2 and GRE3, were identified by the differential display technique using total RNAs obtained from yeast grown under hyperosmotic conditions. Northern analysis of RNA obtained from different growth conditions shows that their corresponding transcripts accumulate not only in response to osmotic stress but also to ionic, oxidative and heat stress. Analysis of the deduced amino acid sequences indicated that GRE1, GRE2 and GRE3 correspond to ORFs YPL223C, YOL151W and YHR104W, respectively. Additionally, it suggested that GRE1 encodes a hydrophilic polypeptide that it is not homologous to any known protein but has features resembling the late embryogenesis abundant (LEA) proteins characterized in higher plants; GRE2 encodes a putative reductase with similarity to plant dihydroflavonol-4-reductases; and GRE3 codifies for a keto-aldose reductase highly related to fungal xylose-reductases. The three genes are induced in the late growth phases in agreement with the presence of PDS elements in their promoter regions. The three of them are under the control of the HOG pathway, even though GRE1 and GRE2 promoter regions do not present the consensus core STRE sequence. In addition, GRE1 and GRE3 are regulated negatively by the cAMP-PKA transduction pathway and positively by the transcriptional factors Msn2p and Msn4p. Gene disruptions of the GRE genes did not show a phenotype in any of the tested stress conditions.
Collapse
Affiliation(s)
- A Garay-Arroyo
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, México.
| | | |
Collapse
|
139
|
Mulet JM, Leube MP, Kron SJ, Rios G, Fink GR, Serrano R. A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol Cell Biol 1999; 19:3328-37. [PMID: 10207057 PMCID: PMC84126 DOI: 10.1128/mcb.19.5.3328] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of intracellular ion concentrations is a fundamental property of living cells. Although many ion transporters have been identified, the systems that modulate their activity remain largely unknown. We have characterized two partially redundant genes from Saccharomyces cerevisiae, HAL4/SAT4 and HAL5, that encode homologous protein kinases implicated in the regulation of cation uptake. Overexpression of these genes increases the tolerance of yeast cells to sodium and lithium, whereas gene disruptions result in greater cation sensitivity. These phenotypic effects of the mutations correlate with changes in cation uptake and are dependent on a functional Trk1-Trk2 potassium transport system. In addition, hal4 hal5 and trk1 trk2 mutants exhibit similar phenotypes: (i) they are deficient in potassium uptake; (ii) their growth is sensitive to a variety of toxic cations, including lithium, sodium, calcium, tetramethylammonium, hygromycin B, and low pH; and (iii) they exhibit increased uptake of methylammonium, an indicator of membrane potential. These results suggest that the Hal4 and Hal5 protein kinases activate the Trk1-Trk2 potassium transporter, increasing the influx of potassium and decreasing the membrane potential. The resulting loss in electrical driving force reduces the uptake of toxic cations and improves salt tolerance. Our data support a role for regulation of membrane potential in adaptation to salt stress that is mediated by the Hal4 and Hal5 kinases.
Collapse
Affiliation(s)
- J M Mulet
- Instituto de Biologia Molecular y Celular de Plantas, Universidad Politecnica de Valencia-C.S.I.C., 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
140
|
Racher KI, Voegele RT, Marshall EV, Culham DE, Wood JM, Jung H, Bacon M, Cairns MT, Ferguson SM, Liang WJ, Henderson PJ, White G, Hallett FR. Purification and reconstitution of an osmosensor: transporter ProP of Escherichia coli senses and responds to osmotic shifts. Biochemistry 1999; 38:1676-84. [PMID: 10026245 DOI: 10.1021/bi981279n] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ProP protein of Escherichia coli is an osmoregulatory H+-compatible solute cotransporter. ProP is activated by an osmotic upshift in both whole cells and membrane vesicles. We are using biochemical and biophysical techniques to explore the osmosensory and catalytic mechanisms of ProP. We now report the purification and reconstitution of the active transporter. Protein purification was facilitated by the addition of six histidine (His) codons to the 3' end of proP. The recombinant gene was overexpressed from the E. coli galP promoter, and ProP-(His)6 was shown to be functionally equivalent to wild-type ProP by enzymatic assay of whole cells. ProP-(His)6, purified by Ni2+ (NTA) affinity chromatography, cross-reacted with antibodies raised against the ProP protein. ProP-(His)6 was reconstituted into Triton X-100 destabilized liposomes prepared with E. coli phospholipid. The reconstituted transporter mediated proline accumulation only if (1) a membrane potential was generated by valinomycin-mediated K+ efflux and (2) the proteoliposomes were subjected to an osmotic upshift (0.6 M sucrose). Activity was also stimulated by DeltapH. Pure ProP acts, in the proteoliposome environment, as sensor, transducer, and respondent to a hyperosmotic shift. It is the first such osmosensor to be isolated.
Collapse
Affiliation(s)
- K I Racher
- Department of Physics, University of Guelph, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Lopez F, Leube M, Gil-Mascarell R, Navarro-Aviñó JP, Serrano R. The yeast inositol monophosphatase is a lithium- and sodium-sensitive enzyme encoded by a non-essential gene pair. Mol Microbiol 1999; 31:1255-64. [PMID: 10096091 DOI: 10.1046/j.1365-2958.1999.01267.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inositol monophosphatases (IMPases) are lithium-sensitive enzymes that participate in the inositol cycle of calcium signalling and in inositol biosynthesis. Two open reading frames (YHR046c and YDR287w) with homology to animal and plant IMPases are present in the yeast genome. The two recombinant purified proteins were shown to catalyse inositol-1-phosphate hydrolysis sensitive to lithium and sodium. A double gene disruption had no apparent growth defect and was not auxotroph for inositol. Therefore, lithium effects in yeast cannot be explained by inhibition of IMPases and inositol depletion, as suggested for animal systems. Overexpression of yeast IMPases increased lithium and sodium tolerance and reduced the intracellular accumulation of lithium. This phenotype was blocked by a null mutation in the cation-extrusion ATPase encoded by the ENA1/PMR2A gene, but it was not affected by inositol supplementation. As overexpression of IMPases increased intracellular free Ca2+, it is suggested that yeast IMPases are limiting for the optimal operation of the inositol cycle of calcium signalling, which modulates the Ena1 cation-extrusion ATPase.
Collapse
Affiliation(s)
- F Lopez
- Instituto de Biología Molecular y Celular de Plantas, Universidad de Valencia-CSIC, Spain
| | | | | | | | | |
Collapse
|
142
|
Gil-Mascarell R, López-Coronado JM, Bellés JM, Serrano R, Rodríguez PL. The Arabidopsis HAL2-like gene family includes a novel sodium-sensitive phosphatase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:373-383. [PMID: 10205895 DOI: 10.1046/j.1365-313x.1999.00385.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The yeast HAL2 gene encodes a lithium- and sodium-sensitive phosphatase that hydrolyses 3'-phosphoadenosine-5'-phosphate (PAP). Salt toxicity in yeast results from Hal2 inhibition and accumulation of PAP, which inhibits sulphate assimilation and RNA processing. We have investigated whether the model plant Arabidopsis thaliana contains sodium-sensitive PAP phosphatases. The Arabidopsis HAL2-like gene family is composed of three members: AtAHL and AtSAL2, characterized in the present work, and the previously identified AtSAL1. The AtAHL and AtSAL2 cDNAs complement the auxotrophy for methionine of the yeast hal2 mutant and the recombinant proteins catalyse the conversion of PAP to AMP in a Mg(2+)-dependent reaction sensitive to inhibition by Ca2+ and Li+. The PAP phosphatase activity of AtAHL is sensitive to physiological concentrations of Na+, whereas the activities of AtSAL1 and AtSAL2 are not. Another important difference is that AtAHL is very specific for PAP while AtSAL1 and AtSAL2 also act as inositol polyphosphate 1-phosphatases. AtAHL constitutes a novel type of sodium-sensitive PAP phosphatase which could act co-ordinately with plant sulphotransferases and serve as target of salt toxicity in plants.
Collapse
Affiliation(s)
- R Gil-Mascarell
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | | | | | |
Collapse
|
143
|
Nelson, Koukoumanos, Bohnert. Myo-inositol-dependent sodium uptake in ice plant. PLANT PHYSIOLOGY 1999; 119:165-72. [PMID: 9880357 PMCID: PMC32215 DOI: 10.1104/pp.119.1.165] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/1998] [Accepted: 09/08/1998] [Indexed: 05/18/2023]
Abstract
In salt-stressed ice plants (Mesembryanthemum crystallinum), sodium accumulates to high concentrations in vacuoles, and polyols (myo-inositol, D-ononitol, and D-pinitol) accumulate in the cytosol. Polyol synthesis is regulated by NaCl and involves induction and repression of gene expression (D.E. Nelson, B. Shen, and H.J. Bohnert [1998] Plant Cell 10: 753-764). In the study reported here we found increased phloem transport of myo-inositol and reciprocal increased transport of sodium and inositol to leaves under stress. To determine the relationship between increased translocation and sodium uptake, we analyzed the effects of exogenous application of myo-inositol: The NaCl-inducible ice plant myo-inositol 1-phosphate synthase is repressed in roots, and sodium uptake from root to shoot increases without stimulating growth. Sodium uptake and transport through the xylem was coupled to a 10-fold increase of myo-inositol and ononitol in the xylem. Seedlings of the ice plant are not salt-tolerant, and yet the addition of exogenous myo-inositol conferred upon them patterns of gene expression and polyol accumulation observed in mature, salt-tolerant plants. Sodium uptake and transport through the xylem was enhanced in the presence of myo-inositol. The results indicate an interdependence of sodium uptake and alterations in the distribution of myo-inositol. We hypothesize that myo-inositol could serve not only as a substrate for the production of compatible solutes but also as a leaf-to-root signal that promotes sodium uptake.
Collapse
Affiliation(s)
- Nelson
- Department of Biochemistry (D.E.N., M.K., H.J.B.)
| | | | | |
Collapse
|
144
|
Proft M, Serrano R. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol Cell Biol 1999; 19:537-46. [PMID: 9858577 PMCID: PMC83911 DOI: 10.1128/mcb.19.1.537] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast ENA1/PMR2A gene encodes a cation extrusion ATPase in Saccharomyces cerevisiae which is essential for survival under salt stress conditions. One important mechanism of ENA1 transcriptional regulation is based on repression under normal growth conditions, which is relieved by either osmotic induction or glucose starvation. Analysis of the ENA1 promoter revealed a Mig1p-binding motif (-533 to -544) which was characterized as an upstream repressing sequence (URSMIG-ENA1) regulated by carbon source. Its function was abolished in a mig1 mig2 double-deletion strain as well as in either ssn6 or tup1 single mutants. A second URS at -502 to -513 is responsible for transcriptional repression regulated by osmotic stress and is similar to mammalian cyclic AMP response elements (CREs) that are recognized by CREB proteins. This URSCRE-ENA1 element requires for its repression function the yeast CREB homolog Sko1p (Acr1p) as well as the integrity of the Ssn6p-Tup1p corepressor complex. When targeted to the GAL1 promoter by fusing with the Gal4p DNA-binding domain, Sko1p acts as an Ssn6/Tup1p-dependent repressor regulated by osmotic stress. A glutathione S-transferase-Sko1 fusion protein binds specifically to the URSCRE-ENA1 element. Furthermore, a hog1 mitogen-activated protein kinase deletion strain could not counteract repression on URSCRE-ENA1 during osmotic shock. The loss of SKO1 completely restored ENA1 expression in a hog1 mutant and partially suppressed the osmotic stress sensitivity, qualifying Sko1p as a downstream effector of the HOG pathway. Our results indicate that different signalling pathways (HOG osmotic pathway and glucose repression pathway) use distinct promoter elements of ENA1 (URSCRE-ENA1 and URSMIG-ENA1) via specific transcriptional repressors (Sko1p and Mig1/2p) and via the general Ssn6p-Tup1p complex. The physiological importance of the relief from repression during salt stress was also demonstrated by the increased tolerance of sko1 or ssn6 mutants to Na+ or Li+ stress.
Collapse
Affiliation(s)
- M Proft
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, 46022 Valencia, Spain.
| | | |
Collapse
|
145
|
Gustin MC, Albertyn J, Alexander M, Davenport K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62:1264-300. [PMID: 9841672 PMCID: PMC98946 DOI: 10.1128/mmbr.62.4.1264-1300.1998] [Citation(s) in RCA: 703] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.
Collapse
Affiliation(s)
- M C Gustin
- Department of Biochemistry and Cell Biology Rice University, Houston, Texas 77251-1892, USA.
| | | | | | | |
Collapse
|
146
|
Scheffler IE, de la Cruz BJ, Prieto S. Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Int J Biochem Cell Biol 1998; 30:1175-93. [PMID: 9839444 DOI: 10.1016/s1357-2725(98)00086-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The phenomenon of glucose repression in yeast is concerned with the repression of a large number of genes when glucose is an abundant carbon source and almost all of the energy requirements of the cell can be satisfied from glycolysis. Prominent among the repressed genes are those encoding mitochondrial proteins required for respiration and oxidative phosphorylation. Past studies have characterized a pathway by which a signal generated from extracellular glucose is transmitted to the nucleus. The ultimate outcome is the repression of transcription of numerous genes, but also the induction of a limited number of others. The emphasis has been almost exclusively on transcriptional control mechanisms. A discovery made originally with the transcript of the SDH2 gene prompted an investigation of post-transcriptional mechanisms, and more specifically a study of the turnover rate of this mRNA in the absence and presence of glucose. SDH2 mRNA has a very short half-life in medium with glucose (YPD) and a significantly longer half-life in medium with glycerol (YPG). Experimental evidence and recent progress in understanding of (1) mRNA turnover in yeast and (2) initiation of translation on the 5' untranslated region of mRNAs, lead to a working hypothesis with the following major features: the carbon source, via a signaling pathway involving kinase/phosphatase activities, controls the rate of initiation, and thus influences a competition between eukaryotic initiation factors (prominently eIF4E, eIF4G, eIF3) binding to the capped mRNA and a decapping activity (DCP1) which is one of the rate limiting activities in the turnover of such mRNAs.
Collapse
Affiliation(s)
- I E Scheffler
- Department of Biology, University of California, San Diego, La Jolla 92093 0322, USA.
| | | | | |
Collapse
|
147
|
Thomé-Oritz PE, Peña A, Ramírez J. Monovalent cation fluxes and physiological changes ofDebaryomyces hansenii grown at high concentrations of KCl and NaCl. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(199811)14:15<1355::aid-yea331>3.0.co;2-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
148
|
Nass R, Rao R. Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast. Implications for vacuole biogenesis. J Biol Chem 1998; 273:21054-60. [PMID: 9694857 DOI: 10.1074/jbc.273.33.21054] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na+/H+ exchangers catalyze the electrically silent countertransport of Na+ and H+, controlling the transmembrane movement of salt, water, and acid-base equivalents, and are therefore critical for Na+ tolerance, cell volume control, and pH regulation. In contrast to numerous well studied plasma membrane isoforms (NHE1-4), much less is known about intracellular Na+/H+ exchangers, and thus far no vertebrate isoform has been shown to have an exclusively endosomal distribution. In this context, we show that the yeast NHE homologue, Nhx1 (Nass, R., Cunningham, K. W., and Rao, R. (1997) J. Biol. Chem. 272, 26145-26152), localizes uniquely to prevacuolar compartments, equivalent to late endosomes of animal cells. In living yeast, we show that these compartments closely abut the vacuolar membrane in a striking bipolar distribution, suggesting that vacuole biogenesis occurs at distinct sites. Nhx1 is the founding member of a newly emergent cluster of exchanger homologues, from yeasts, worms, and humans that may share a common intracellular localization. By compartmentalizing Na+, intracellular exchangers play an important role in halotolerance; furthermore, we hypothesize that salt and water movement into vesicles may regulate vesicle volume and pH and thus contribute to vacuole biogenesis.
Collapse
Affiliation(s)
- R Nass
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
149
|
Nelson DE, Shen B, Bohnert HJ. Salinity tolerance--mechanisms, models and the metabolic engineering of complex traits. GENETIC ENGINEERING 1998; 20:153-76. [PMID: 9666560 DOI: 10.1007/978-1-4899-1739-3_9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- D E Nelson
- Department of Biochemistry, University of Arizona, Tucson 85721-0088, USA
| | | | | |
Collapse
|
150
|
Hare PD, Cress WA, Van Staden J. Dissecting the roles of osmolyte accumulation during stress. PLANT, CELL AND ENVIRONMENT 1998; 21:535-553. [PMID: 0 DOI: 10.1046/j.1365-3040.1998.00309.x] [Citation(s) in RCA: 497] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|