101
|
Kitano K, Yoshihara N, Hakoshima T. Crystal structure of the HRDC domain of human Werner syndrome protein, WRN. J Biol Chem 2006; 282:2717-28. [PMID: 17148451 DOI: 10.1074/jbc.m610142200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Werner syndrome is a human premature aging disorder characterized by chromosomal instability. The disease is caused by the functional loss of WRN, a member of the RecQ-helicase family that plays an important role in DNA metabolic pathways. WRN contains four structurally folded domains comprising an exonuclease, a helicase, a winged-helix, and a helicase-and-ribonuclease D/C-terminal (HRDC) domain. In contrast to the accumulated knowledge pertaining to the biochemical functions of the three N-terminal domains, the function of C-terminal HRDC remains unknown. In this study, the crystal structure of the human WRN HRDC domain has been determined. The domain forms a bundle of alpha-helices similar to those of Saccharomyces cerevisiae Sgs1 and Escherichia coli RecQ. Surprisingly, the extra ten residues at each of the N and C termini of the domain were found to participate in the domain architecture by forming an extended portion of the first helix alpha1, and a novel looping motif that traverses straight along the domain surface, respectively. The motifs combine to increase the domain surface of WRN HRDC, which is larger than that of Sgs1 and E. coli. In WRN HRDC, neither of the proposed DNA-binding surfaces in Sgs1 or E. coli is conserved, and the domain was shown to lack DNA-binding ability in vitro. Moreover, the domain was shown to be thermostable and resistant to protease digestion, implying independent domain evolution in WRN. Coupled with the unique long linker region in WRN, the WRN HRDC may be adapted to play a distinct function in WRN that involves protein-protein interactions.
Collapse
Affiliation(s)
- Ken Kitano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | |
Collapse
|
102
|
Ramirez UD, Freymann DM. Analysis of protein hydration in ultrahigh-resolution structures of the SRP GTPase Ffh. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2006; 62:1520-34. [PMID: 17139088 PMCID: PMC3543702 DOI: 10.1107/s0907444906040807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 10/03/2006] [Indexed: 11/10/2022]
Abstract
Two new structures of the SRP GTPase Ffh have been determined at 1.1 A resolution and provide the basis for comparative examination of the extensive water structure of the apo conformation of these GTPases. A set of well defined water-binding positions have been identified in the active site of the two-domain ;NG' GTPase, as well as at two functionally important interfaces. The water hydrogen-bonding network accommodates alternate conformations of the protein side chains by undergoing local rearrangements and, in one case, illustrates binding of a solute molecule within the active site by displacement of water molecules without further disruption of the water-interaction network. A subset of the water positions are well defined in several lower resolution structures, including those of different nucleotide-binding states; these appear to function in maintaining the protein structure. Consistent arrangements of surface water between three different ultrahigh-resolution structures provide a framework for beginning to understand how local water structure contributes to protein-ligand and protein-protein binding in the SRP GTPases.
Collapse
|
103
|
Baker ML, Jiang W, Wedemeyer WJ, Rixon FJ, Baker D, Chiu W. Ab initio modeling of the herpesvirus VP26 core domain assessed by CryoEM density. PLoS Comput Biol 2006; 2:e146. [PMID: 17069457 PMCID: PMC1626159 DOI: 10.1371/journal.pcbi.0020146] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 09/26/2006] [Indexed: 12/22/2022] Open
Abstract
Efforts in structural biology have targeted the systematic determination of all protein structures through experimental determination or modeling. In recent years, 3-D electron cryomicroscopy (cryoEM) has assumed an increasingly important role in determining the structures of these large macromolecular assemblies to intermediate resolutions (6-10 A). While these structures provide a snapshot of the assembly and its components in well-defined functional states, the resolution limits the ability to build accurate structural models. In contrast, sequence-based modeling techniques are capable of producing relatively robust structural models for isolated proteins or domains. In this work, we developed and applied a hybrid modeling approach, utilizing cryoEM density and ab initio modeling to produce a structural model for the core domain of a herpesvirus structural protein, VP26. Specifically, this method, first tested on simulated data, utilizes the cryoEM density map as a geometrical constraint in identifying the most native-like models from a gallery of models generated by ab initio modeling. The resulting model for the core domain of VP26, based on the 8.5-A resolution herpes simplex virus type 1 (HSV-1) capsid cryoEM structure and mutational data, exhibited a novel fold. Additionally, the core domain of VP26 appeared to have a complementary interface to the known upper-domain structure of VP5, its cognate binding partner. While this new model provides for a better understanding of the assembly and interactions of VP26 in HSV-1, the approach itself may have broader applications in modeling the components of large macromolecular assemblies.
Collapse
Affiliation(s)
- Matthew L Baker
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wen Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - William J Wedemeyer
- Department of Biochemistry, Michigan State University, East Lansing, Michigan, United States of America
| | - Frazer J Rixon
- MRC Virology Unit, Institute of Virology, Glasgow, United Kingdom
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
104
|
Zaitseva J, Lu J, Olechoski KL, Lamb AL. Two crystal structures of the isochorismate pyruvate lyase from Pseudomonas aeruginosa. J Biol Chem 2006; 281:33441-9. [PMID: 16914555 DOI: 10.1074/jbc.m605470200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic systems that exploit pericyclic reaction mechanisms are rare. A recent addition to this class is the enzyme PchB, an 11.4-kDa isochorismate pyruvate lyase from Pseudomonas aeruginosa. The apo and pyruvate-bound structures of PchB reveal that the enzyme is a structural homologue of chorismate mutases in the AroQalpha class despite low sequence identity (20%). The enzyme is an intertwined dimer of three helices with connecting loops, and amino acids from each monomer participate in each of two active sites. The apo structure (2.35 A resolution) has one dimer per asymmetric unit with nitrate bound in an open active site. The loop between the first and second helices is disordered, providing a gateway for substrate entry and product exit. The pyruvate-bound structure (1.95 A resolution) has two dimers per asymmetric unit. One has two open active sites like the apo structure, and the other has two closed active sites with the loop between the first and second helices ordered for catalysis. Determining the structure of PchB is part of a larger effort to elucidate protein structures involved in siderophore biosynthesis, as these enzymes are crucial for bacterial iron uptake and virulence and have been identified as antimicrobial drug targets.
Collapse
Affiliation(s)
- Jelena Zaitseva
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | |
Collapse
|
105
|
Godoi PHC, Galhardo RS, Luche DD, Van Sluys MA, Menck CFM, Oliva G. Structure of the thiazole biosynthetic enzyme THI1 from Arabidopsis thaliana. J Biol Chem 2006; 281:30957-66. [PMID: 16912043 DOI: 10.1074/jbc.m604469200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thiamin pyrophosphate is an essential coenzyme in all organisms that depend on fermentation, respiration or photosynthesis to produce ATP. It is synthesized through two independent biosynthetic routes: one for the synthesis of 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate (pyrimidine moiety) and another for the synthesis of 4-methyl-5-(beta-hydroxyethyl) thiazole phosphate (thiazole moiety). Herein, we will describe the three-dimensional structure of THI1 protein from Arabidopsis thaliana determined by single wavelength anomalous diffraction to 1.6A resolution. The protein was produced using heterologous expression in bacteria, unexpectedly bound to 2-carboxylate-4-methyl-5-beta-(ethyl adenosine 5-diphosphate) thiazole, a potential intermediate of the thiazole biosynthesis in Eukaryotes. THI1 has a topology similar to dinucleotide binding domains and although details concerning its function are unknown, this work provides new clues about the thiazole biosynthesis in Eukaryotes.
Collapse
Affiliation(s)
- Paulo H C Godoi
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, CP 369, 13560-970, Brazil
| | | | | | | | | | | |
Collapse
|
106
|
Cuneo MJ, Changela A, Warren JJ, Beese LS, Hellinga HW. The crystal structure of a thermophilic glucose binding protein reveals adaptations that interconvert mono and di-saccharide binding sites. J Mol Biol 2006; 362:259-70. [PMID: 16904687 DOI: 10.1016/j.jmb.2006.06.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/20/2006] [Accepted: 06/27/2006] [Indexed: 11/19/2022]
Abstract
Periplasmic binding proteins (PBPs) comprise a protein superfamily that is involved in prokaryotic solute transport and chemotaxis. These proteins have been used to engineer reagentless biosensors to detect natural or non-natural ligands. There is considerable interest in obtaining very stable members of this superfamily from thermophilic bacteria to use as robust engineerable parts in biosensor development. Analysis of the recently determined genome sequence of Thermus thermophilus revealed the presence of more than 30 putative PBPs in this thermophile. One of these is annotated as a glucose binding protein (GBP) based on its genetic linkage to genes that are homologous to an ATP-binding cassette glucose transport system, although the PBP sequence is homologous to periplasmic maltose binding proteins (MBPs). Here we present the cloning, over-expression, characterization of cognate ligands, and determination of the X-ray crystal structure of this gene product. We find that it is a very stable (apo-protein Tm value is 100(+/- 2) degrees C; complexes 106(+/- 3) degrees C and 111(+/- 1) degrees C for glucose and galactose, respectively) glucose (Kd value is 0.08(+/- 0.03) microM) and galactose (Kd value is 0.94(+/- 0.04) microM) binding protein. Determination of the X-ray crystal structure revealed that this T. thermophilus glucose binding protein (ttGBP) is structurally homologous to MBPs rather than other GBPs. The di or tri-saccharide ligands in MBPs are accommodated in long relatively shallow grooves. In the ttGBP binding site, this groove is partially filled by two loops and an alpha-helix, which create a buried binding site that allows binding of only monosaccharides. Comparison of ttGBP and MBP provides a clear example of structural adaptations by which the size of ligand binding sites can be controlled in the PBP super family.
Collapse
Affiliation(s)
- Matthew J Cuneo
- The Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
107
|
Lee JC, Gutell RR, Russell R. The UAA/GAN internal loop motif: a new RNA structural element that forms a cross-strand AAA stack and long-range tertiary interactions. J Mol Biol 2006; 360:978-88. [PMID: 16828489 DOI: 10.1016/j.jmb.2006.05.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 05/24/2006] [Accepted: 05/29/2006] [Indexed: 11/19/2022]
Abstract
Analysis of aligned RNA sequences and high-resolution crystal structures has revealed a new RNA structural element, termed the UAA/GAN motif. Found in internal loops of the 23 S rRNA, as well as in RNase P RNA and group I and II introns, this six-nucleotide motif adopts a distinctive local structure that includes two base-pairs with non-canonical conformations and three conserved adenine bases, which form a cross-strand AAA stack in the minor groove. Most importantly, the motif invariably forms long-range tertiary contacts, as the AAA stack typically forms A-minor interactions and the flipped-out N nucleotide forms additional contacts that are specific to the structural context of each loop. The widespread presence of this motif and its propensity to form long-range contacts suggest that it plays a critical role in defining the architectures of structured RNAs.
Collapse
Affiliation(s)
- Jung C Lee
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712-0159, USA
| | | | | |
Collapse
|
108
|
Mowbray SL, Elfström LT, Ahlgren KM, Andersson CE, Widersten M. X-ray structure of potato epoxide hydrolase sheds light on substrate specificity in plant enzymes. Protein Sci 2006; 15:1628-37. [PMID: 16751602 PMCID: PMC2265100 DOI: 10.1110/ps.051792106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epoxide hydrolases catalyze the conversion of epoxides to diols. The known functions of such enzymes include detoxification of xenobiotics, drug metabolism, synthesis of signaling compounds, and intermediary metabolism. In plants, epoxide hydrolases are thought to participate in general defense systems. In the present study, we report the first structure of a plant epoxide hydrolase, one of the four homologous enzymes found in potato. The structure was solved by molecular replacement and refined to a resolution of 1.95 A. Analysis of the structure allows a better understanding of the observed substrate specificities and activity. Further, comparisons with mammalian and fungal epoxide hydrolase structures reported earlier show the basis of differing substrate specificities in the various epoxide hydrolase subfamilies. Most plant enzymes, like the potato epoxide hydrolase, are expected to be monomers with a preference for substrates with long lipid-like substituents of the epoxide ring. The significance of these results in the context of biological roles and industrial applications is discussed.
Collapse
Affiliation(s)
- Sherry L Mowbray
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
109
|
Focia PJ, Gawronski-Salerno J, Coon JS, Freymann DM. Structure of a GDP:AlF4 complex of the SRP GTPases Ffh and FtsY, and identification of a peripheral nucleotide interaction site. J Mol Biol 2006; 360:631-43. [PMID: 16780874 PMCID: PMC3539414 DOI: 10.1016/j.jmb.2006.05.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/07/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
The signal recognition particle (SRP) GTPases Ffh and FtsY play a central role in co-translational targeting of proteins, assembling in a GTP-dependent manner to generate the SRP targeting complex at the membrane. A suite of residues in FtsY have been identified that are essential for the hydrolysis of GTP that accompanies disengagement. We have argued previously on structural grounds that this region mediates interactions that serve to activate the complex for disengagement and term it the activation region. We report here the structure of a complex of the SRP GTPases formed in the presence of GDP:AlF4. This complex accommodates the putative transition-state analog without undergoing significant change from the structure of the ground-state complex formed in the presence of the GTP analog GMPPCP. However, small shifts that do occur within the shared catalytic chamber may be functionally important. Remarkably, an external nucleotide interaction site was identified at the activation region, revealed by an unexpected contaminating GMP molecule bound adjacent to the catalytic chamber. This site exhibits conserved sequence and structural features that suggest a direct interaction with RNA plays a role in regulating the activity of the SRP targeting complex.
Collapse
Affiliation(s)
- Pamela J Focia
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
110
|
Chiu WC, You JY, Liu JS, Hsu SK, Hsu WH, Shih CH, Hwang JK, Wang WC. Structure-stability-activity relationship in covalently cross-linked N-carbamoyl D-amino acid amidohydrolase and N-acylamino acid racemase. J Mol Biol 2006; 359:741-53. [PMID: 16650857 DOI: 10.1016/j.jmb.2006.03.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 03/27/2006] [Accepted: 03/30/2006] [Indexed: 11/24/2022]
Abstract
N-Acylamino acid racemase (NAAAR) and N-carbamoyl-D-amino-acid amidohydrolase (D-NCAase) are important biocatalysts for producing enantiopure alpha-amino acids. NAAAR forms an octameric assembly and displays induced fit movements upon substrate binding, while D-NCAase is a tetramer that does not change conformation in the presence of a ligand. To investigate the effects of introducing potentially stabilizing S-S bridges in these different multimeric enzymes, cysteine residues predicted to form inter or intra-subunit disulfide bonds were introduced by site-directed mutagenesis. Inter-subunit S-S bonds were formed in two NAAAR variants (A68C-D72C and P60C-Y100C) and two d-NCAase variants (A302C and P295C-F304C). Intra-subunit S-S bonds were formed in two additional NAAAR variants (E149C-A182C and V265C). Crystal structures of NAAARs variants show limited deviations from the wild-type overall tertiary structure. An apo A68C-D72C subunit differs from the wild-type enzyme, in which it has an ordered lid loop, resembling ligand-bound NAAAR. The structures of A222C and A302C D-NCAases are nearly identical to the wild-type enzyme. All mutants with inter-subunit bridges had increases in thermostability. Compared with the wild-type enzyme, A68C-D72C NAAAR showed similar kcat/Km ratios, whereas mutant D-NCAases demonstrated increased kcat/Km ratios at high temperatures (A302C: 4.2-fold at 65 degrees C). Furthermore, molecular dynamic simulations reveal that A302C substantially sustains the fine-tuned catalytic site as temperature increases, achieving enhanced activity.
Collapse
Affiliation(s)
- Wei-Chun Chiu
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, HsinChu, Taiwan, 30013, ROC
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Ranaivoson FM, Kauffmann B, Neiers F, Wu J, Boschi-Muller S, Panjikar S, Aubry A, Branlant G, Favier F. The X-ray Structure of the N-terminal Domain of PILB from Neisseria meningitidis Reveals a Thioredoxin-fold. J Mol Biol 2006; 358:443-54. [PMID: 16530221 DOI: 10.1016/j.jmb.2006.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 02/08/2006] [Accepted: 02/09/2006] [Indexed: 11/15/2022]
Abstract
The secreted form of the PilB protein was recently shown to be bound to the outer membrane of Neisseria gonorrhoeae and proposed to be involved in survival of the pathogen to the host's oxidative burst. PilB is composed of three domains. The central and the C-terminal domains display methionine sulfoxide reductase (Msr) A and B activities respectively, i.e. the ability to reduce specifically the S and the R enantiomers of the sulfoxide function of the methionine sulfoxides, which are easily formed upon oxidation of methionine residues. The N-terminal domain of PilB (Dom1(PILB)) of N.meningitidis, which possesses a CXXC motif, was recently shown to recycle the oxidized forms of the PilB Msr domains in vitro, as the Escherichia coli thioredoxin (Trx) 1 does. The X-ray structure of Dom1(PILB) of N.meningitidis determined here shows a Trx-fold, in agreement with the biochemical properties of Dom1(PILB). However, substantial structural differences with E.coli Trx1 exist. Dom1(PILB) displays more structural homologies with the periplasmic disulfide oxidoreductases involved in cytochrome maturation pathways in bacteria. The active site of the reduced form of Dom1(PILB) reveals a high level of stabilization of the N-terminal catalytic cysteine residue and a hydrophobic environment of the C-terminal recycling cysteine in the CXXC motif, consistent with the pK(app) values measured for Cys67 (<6) and Cys70 (9.3), respectively. Compared to cytochrome maturation disulfide oxidoreductases and to Trx1, one edge of the active site is covered by four additional residues (99)FLHE(102). The putative role of the resulting protuberance is discussed in relation to the disulfide reductase properties of Dom1(PILB).
Collapse
Affiliation(s)
- Fanomezana M Ranaivoson
- LCM3B, Equipe Biocristallographie, UMR 7036 CNRS-UHP, Faculté des Sciences et Techniques, BP 239, 54506 Vandoeuvre, France
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Kitano K, Yusa F, Hakoshima T. Structure of dimerized radixin FERM domain suggests a novel masking motif in C-terminal residues 295-304. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:340-5. [PMID: 16582480 PMCID: PMC2222584 DOI: 10.1107/s1744309106010062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 03/18/2006] [Indexed: 01/19/2023]
Abstract
ERM (ezrin/radixin/moesin) proteins bind to the cytoplasmic tail of adhesion molecules in the formation of the membrane-associated cytoskeleton. The binding site is located in the FERM (4.1 and ERM) domain, a domain that is masked in the inactive form. A conventional masking motif, strand 1 (residues 494-500 in radixin), has previously been identified in the C-terminal tail domain. Here, the crystal structure of dimerized radixin FERM domains (residues 1-310) is presented in which the binding site of one molecule is occupied by the C-terminal residues (residues 295-304, strand 2) of the other molecule. The residues contain a conserved motif that is compatible with that identified in the adhesion molecules. The residues might serve as a second masking region in the inactive form of ERM proteins.
Collapse
Affiliation(s)
- Ken Kitano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Fumie Yusa
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- CREST, Japan Science and Technology Agency, Japan
- Correspondence e-mail:
| |
Collapse
|
113
|
Jeong J, Berman P, Przytycka T. Fold classification based on secondary structure--how much is gained by including loop topology? BMC STRUCTURAL BIOLOGY 2006; 6:3. [PMID: 16524467 PMCID: PMC1434743 DOI: 10.1186/1472-6807-6-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 03/08/2006] [Indexed: 11/18/2022]
Abstract
Background It has been proposed that secondary structure information can be used to classify (to some extend) protein folds. Since this method utilizes very limited information about the protein structure, it is not surprising that it has a higher error rate than the approaches that use full 3D fold description. On the other hand, the comparing of 3D protein structures is computing intensive. This raises the question to what extend the error rate can be decreased with each new source of information, especially if the new information can still be used with simple alignment algorithms. We consider the question whether the information about closed loops can improve the accuracy of this approach. While the answer appears to be obvious, we had to overcome two challenges. First, how to code and to compare topological information in such a way that local alignment of strings will properly identify similar structures. Second, how to properly measure the effect of new information in a large data sample. We investigate alternative ways of computing and presenting this information. Results We used the set of beta proteins with at most 30% pairwise identity to test the approach; local alignment scores were used to build a tree of clusters which was evaluated using a new log-odd cluster scoring function. In particular, we derive a closed formula for the probability of obtaining a given score by chance.Parameters of local alignment function were optimized using a genetic algorithm. Of 81 folds that had more than one representative in our data set, log-odds scores registered significantly better clustering in 27 cases and significantly worse in 6 cases, and small differences in the remaining cases. Various notions of the significant change or average change were considered and tried, and the results were all pointing in the same direction. Conclusion We found that, on average, properly presented information about the loop topology improves noticeably the accuracy of the method but the benefits vary between fold families as measured by log-odds cluster score.
Collapse
Affiliation(s)
- Jieun Jeong
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, USA
| | - Piotr Berman
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, USA
| | - Teresa Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, USA
| |
Collapse
|
114
|
Wikoff WR, Conway JF, Tang J, Lee KK, Gan L, Cheng N, Duda RL, Hendrix RW, Steven AC, Johnson JE. Time-resolved molecular dynamics of bacteriophage HK97 capsid maturation interpreted by electron cryo-microscopy and X-ray crystallography. J Struct Biol 2006; 153:300-6. [PMID: 16427314 DOI: 10.1016/j.jsb.2005.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/18/2005] [Accepted: 11/22/2005] [Indexed: 12/01/2022]
Abstract
The bacteriophage HK97 capsid is a molecular machine that exhibits large-scale conformational rearrangements of its 420 identical protein subunits during capsid maturation. Immature empty capsids, termed Prohead II, assemble in vivo in an Escherichia coli expression system. Maturation of these particles may be induced in vitro, converting them into Head II capsids that are indistinguishable in conformation from the capsid of an infectious phage particle. One method of in vitro maturation requires acidification to drive the reaction through two expansion intermediates (EI-I, EI-II) to its penultimate particle state (EI-III), which has 86% more internal volume than Prohead II. Neutralization of EI-III produces the fully mature capsid, Head II. The three expansion intermediates and the acid expansion pathway were characterized by cryo-EM analysis and 3D reconstruction. We now report that, although large-scale structural changes are involved, the electron density maps for these intermediate states are readily interpreted in terms of quasi-atomic models based on subunit structures determined by prior crystallographic analysis of Head II. Progression through the expansion intermediate states primarily represents rigid-body rotations and translations of the subunits, accompanied by refolding of two small regions, the N-terminal arm and a beta-hairpin called the E-loop. Movies made with these pseudo-atomic coordinates and the Head II X-ray coordinates illuminate various aspects of the maturation pathway in the course of which the pattern of inter-subunit interactions is sequentially transformed while the integrity of the capsid is maintained.
Collapse
Affiliation(s)
- William R Wikoff
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Smeets A, Evrard C, Landtmeters M, Marchand C, Knoops B, Declercq JP. Crystal structures of oxidized and reduced forms of human mitochondrial thioredoxin 2. Protein Sci 2005; 14:2610-21. [PMID: 16195549 PMCID: PMC2253300 DOI: 10.1110/ps.051632905] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mammalian thioredoxin 2 is a mitochondrial isoform of highly evolutionary conserved thioredoxins. Thioredoxins are small ubiquitous protein-disulfide oxidoreductases implicated in a large variety of biological functions. In mammals, thioredoxin 2 is encoded by a nuclear gene and is targeted to mitochondria by a N-terminal mitochondrial presequence. Recently, mitochondrial thioredoxin 2 was shown to interact with components of the mitochondrial respiratory chain and to play a role in the control of mitochondrial membrane potential, regulating mitochondrial apoptosis signaling pathway. Here we report the first crystal structures of a mammalian mitochondrial thioredoxin 2. Crystal forms of reduced and oxidized human thioredoxin 2 are described at 2.0 and 1.8 A resolution. Though the folding is rather similar to that of human cytosolic/nuclear thioredoxin 1, important differences are observed during the transition between the oxidized and the reduced states of human thioredoxin 2, compared with human thioredoxin 1. In spite of the absence of the Cys residue implicated in dimer formation in human thioredoxin 1, dimerization still occurs in the crystal structure of human thioredoxin 2, mainly mediated by hydrophobic contacts, and the dimers are associated to form two-dimensional polymers. Interestingly, the structure of human thioredoxin 2 reveals possible interaction domains with human peroxiredoxin 5, a substrate protein of human thioredoxin 2 in mitochondria.
Collapse
Affiliation(s)
- Aude Smeets
- Unit of Structural Chemistry (CSTR), Université catholique de Louvain, 1 place Louis Pasteur, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
116
|
Abstract
Clustering has a wide range of applications in life sciences and over the years has been used in many areas ranging from the analysis of clinical information, phylogeny, genomics, and proteomics. The primary goal of this article is to provide an overview of the various issues involved in clustering large biological datasets, describe the merits and underlying assumptions of some of the commonly used clustering approaches, and provide insights on how to cluster datasets arising in various areas within life sciences. We also provide a brief introduction to CLUTO, a general purpose toolkit for clustering various datasets, with an emphasis on its applications to problems and analysis requirements within life sciences.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
117
|
Mas-Droux C, Biou V, Dumas R. Allosteric threonine synthase. Reorganization of the pyridoxal phosphate site upon asymmetric activation through S-adenosylmethionine binding to a novel site. J Biol Chem 2005; 281:5188-96. [PMID: 16319072 DOI: 10.1074/jbc.m509798200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Threonine synthase (TS) is a fold-type II pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the ultimate step of threonine synthesis in plants and microorganisms. Unlike the enzyme from microorganisms, plant TS is activated by S-adenosylmethionine (AdoMet). The mechanism of activation has remained unknown up to now. We report here the crystallographic structures of Arabidopsis thaliana TS in complex with PLP (aTS) and with PLP and AdoMet (aTS-AdoMet), which show with atomic detail how AdoMet activates TS. The aTS structure reveals a PLP orientation never previously observed for a type II PLP-dependent enzyme and explains the low activity of plant TS in the absence of its allosteric activator. The aTS-AdoMet structure shows that activation of the enzyme upon AdoMet binding triggers a large reorganization of active site loops in one monomer of the structural dimer and allows the displacement of PLP to its active conformation. Comparison with other TS structures shows that activation of the second monomer may be triggered by substrate binding. This structure also discloses a novel fold for two AdoMet binding sites located at the dimer interface, each site containing two AdoMet effectors bound in tandem. Moreover, aTS-AdoMet is the first structure of an enzyme that uses AdoMet as an allosteric effector.
Collapse
Affiliation(s)
- Corine Mas-Droux
- Laboratoire de Physiologie Cellulaire Végétale, Département Réponse et Dynamique Cellulaires, CNRS Commissariat à l'Energie Atomique, 38054 Grenoble, France
| | | | | |
Collapse
|
118
|
Dong G, Hutagalung AH, Fu C, Novick P, Reinisch KM. The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat Struct Mol Biol 2005; 12:1094-100. [PMID: 16249794 DOI: 10.1038/nsmb1017] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 10/11/2005] [Indexed: 01/20/2023]
Abstract
The exocyst is a large complex that is required for tethering vesicles at the final stages of the exocytic pathway in all eukaryotes. Here we present the structures of the Exo70p subunit of this complex and of the C-terminal domains of Exo84p, at 2.0-A and 2.85-A resolution, respectively. Exo70p forms a 160-A-long rod with a novel fold composed of contiguous alpha-helical bundles. The Exo84p C terminus also forms a long rod (80 A), which unexpectedly has the same fold as the Exo70p N terminus. Our structural results and our experimental observations concerning the interaction between Exo70p and other exocyst subunits or Rho3p GTPase are consistent with an architecture wherein exocyst subunits are composed of mostly helical modules strung together into long rods.
Collapse
Affiliation(s)
- Gang Dong
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
119
|
Caruthers J, Zucker F, Worthey E, Myler PJ, Buckner F, Van Voorhuis W, Mehlin C, Boni E, Feist T, Luft J, Gulde S, Lauricella A, Kaluzhniy O, Anderson L, Le Trong I, Holmes MA, Earnest T, Soltis M, Hodgson KO, Hol WGJ, Merritt EA. Crystal structures and proposed structural/functional classification of three protozoan proteins from the isochorismatase superfamily. Protein Sci 2005; 14:2887-94. [PMID: 16199669 PMCID: PMC2253213 DOI: 10.1110/ps.051783005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have determined the crystal structures of three homologous proteins from the pathogenic protozoans Leishmania donovani, Leishmania major, and Trypanosoma cruzi. We propose that these proteins represent a new subfamily within the isochorismatase superfamily (CDD classification cd004310). Their overall fold and key active site residues are structurally homologous both to the biochemically well-characterized N-carbamoylsarcosine-amidohydrolase, a cysteine hydrolase, and to the phenazine biosynthesis protein PHZD (isochorismase), an aspartyl hydrolase. All three proteins are annotated as mitochondrial-associated ribonuclease Mar1, based on a previous characterization of the homologous protein from L. tarentolae. This would constitute a new enzymatic activity for this structural superfamily, but this is not strongly supported by the observed structures. In these protozoan proteins, the extended active site is formed by inter-subunit association within a tetramer, which implies a distinct evolutionary history and substrate specificity from the previously characterized members of the isochorismatase superfamily. The characterization of the active site is supported crystallographically by the presence of an unidentified ligand bound at the active site cysteine of the T. cruzi structure.
Collapse
Affiliation(s)
- Jonathan Caruthers
- Biomolecular Structure Center M/S 357742, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Okamura-Ikeda K, Hosaka H, Yoshimura M, Yamashita E, Toma S, Nakagawa A, Fujiwara K, Motokawa Y, Taniguchi H. Crystal structure of human T-protein of glycine cleavage system at 2.0 A resolution and its implication for understanding non-ketotic hyperglycinemia. J Mol Biol 2005; 351:1146-59. [PMID: 16051266 DOI: 10.1016/j.jmb.2005.06.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/18/2005] [Accepted: 06/24/2005] [Indexed: 11/24/2022]
Abstract
T-protein, a component of the glycine cleavage system, catalyzes the formation of ammonia and 5,10-methylenetetrahydrofolate from the aminomethyl moiety of glycine attached to the lipoate cofactor of H-protein. Several mutations in the human T-protein gene cause non-ketotic hyperglycinemia. To gain insights into the effect of disease-causing mutations and the catalytic mechanism at the molecular level, crystal structures of human T-protein in free form and that bound to 5-methyltetrahydrofolate (5-CH3-H4folate) have been determined at 2.0 A and 2.6 A resolution, respectively. The overall structure consists of three domains arranged in a cloverleaf-like structure with the central cavity, where 5-CH3-H4folate is bound in a kinked shape with the pteridine group deeply buried into the hydrophobic pocket and the glutamyl group pointed to the C-terminal side surface. Most of the disease-related residues cluster around the cavity, forming extensive hydrogen bonding networks. These hydrogen bonding networks are employed in holding not only the folate-binding space but also the positions and the orientations of alpha-helix G and the following loop in the middle region, which seems to play a pivotal role in the T-protein catalysis. Structural and mutational analyses demonstrated that Arg292 interacts through water molecules with the folate polyglutamate tail, and that the invariant Asp101, located close to the N10 group of 5-CH3-H4folate, might play a key role in the initiation of the catalysis by increasing the nucleophilic character of the N10 atom of the folate substrate for the nucleophilic attack on the aminomethyl lipoate intermediate. A clever mechanism of recruiting the aminomethyl lipoate arm to the reaction site seems to function as a way of avoiding the release of toxic formaldehyde.
Collapse
Affiliation(s)
- Kazuko Okamura-Ikeda
- Institute for Enzyme Research, The University of Tokushima, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Toyama H, Chen ZW, Fukumoto M, Adachi O, Matsushita K, Mathews FS. Molecular Cloning and Structural Analysis of Quinohemoprotein Alcohol Dehydrogenase ADH-IIG from Pseudomonas putida HK5. J Mol Biol 2005; 352:91-104. [PMID: 16061256 DOI: 10.1016/j.jmb.2005.06.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 06/28/2005] [Accepted: 06/28/2005] [Indexed: 11/26/2022]
Abstract
Depending on the alcohols used as growth substrates, Pseudomonas putida HK5 produces two distinct quinohemoprotein alcohol dehydrogenases, ADH-IIB and ADH-IIG, both of which contain pyrroloquinoline quinone (PQQ) and heme c as the prosthetic groups but show different substrate specificities, especially for diol substrates. Molecular cloning of the gene of ADH-IIB and its crystal structure are already reported. Here, molecular cloning of the gene, qgdA, and solution of the three-dimensional structure of ADH-IIG are reported. The enzyme consists of 718 amino acid residues including a signal sequence of 29 amino acid residues. The PQQ domain is highly homologous to other quinoproteins, especially to quinohemoproteins. The crystal structure of ADH-IIG, determined at 2.2A resolution, shows that the overall structure and the amino acid residues involved in PQQ binding are quite similar to ADH-IIB and to another quinohemoprotein ADH, qhEDH from Comamonas testosteroni. However, the lengths of the linker regions connecting the PQQ and the cytochrome domains are different from each other, leading to a significant difference in orientation of the cytochrome domain with respect to the PQQ domain. Apart from ADH-IIB and qhEDH, ADH-IIG has an extra 12-residue helix within loop 3 in the PQQ domain and an extra 3(10) helix in the C terminus of the cytochrome domain, and both helices appear parallel and linked by a hydrogen bond. The amino acid residues contacting substrate/product in the crystal structures are also different among them. In the crystal structure of ADH-IIG with 1,2-propanediol, one of the hydroxyl groups of the substrate forms a hydrogen bond with O5 of PQQ and OD1 of Asp300, and the other interacts with a water molecule and with NE2 of Trp386, the corresponding residue of which is not found in ADH-IIB and qhEDH, and might be the residue responsible for making ADH-IIG prefer diol substrates.
Collapse
Affiliation(s)
- Hirohide Toyama
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan.
| | | | | | | | | | | |
Collapse
|
122
|
Longo A, Leonard CW, Bassi GS, Berndt D, Krahn JM, Hall TMT, Weeks KM. Evolution from DNA to RNA recognition by the bI3 LAGLIDADG maturase. Nat Struct Mol Biol 2005; 12:779-87. [PMID: 16116439 DOI: 10.1038/nsmb976] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 07/19/2005] [Indexed: 11/09/2022]
Abstract
LAGLIDADG endonucleases bind across adjacent major grooves via a saddle-shaped surface and catalyze DNA cleavage. Some LAGLIDADG proteins, called maturases, facilitate splicing by group I introns, raising the issue of how a DNA-binding protein and an RNA have evolved to function together. In this report, crystallographic analysis shows that the global architecture of the bI3 maturase is unchanged from its DNA-binding homologs; in contrast, the endonuclease active site, dispensable for splicing facilitation, is efficiently compromised by a lysine residue replacing essential catalytic groups. Biochemical experiments show that the maturase binds a peripheral RNA domain 50 A from the splicing active site, exemplifying long-distance structural communication in a ribonucleoprotein complex. The bI3 maturase nucleic acid recognition saddle interacts at the RNA minor groove; thus, evolution from DNA to RNA function has been mediated by a switch from major to minor groove interaction.
Collapse
Affiliation(s)
- Antonella Longo
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | | | | | |
Collapse
|
123
|
Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell 2005; 19:405-19. [PMID: 16061186 PMCID: PMC4689305 DOI: 10.1016/j.molcel.2005.07.011] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 04/06/2005] [Accepted: 07/18/2005] [Indexed: 11/22/2022]
Abstract
Argonaute (Ago) proteins constitute a key component of the RNA-induced silencing complex (RISC). We report the crystal structure of Aquifex aeolicus Ago (Aa-Ago) together with binding and cleavage studies, which establish this eubacterial Ago as a bona fide guide DNA strand-mediated site-specific RNA endonuclease. We have generated a stereochemically robust model of the complex, where the guide DNA-mRNA duplex is positioned within a basic channel spanning the bilobal interface, such that the 5' phosphate of the guide strand can be anchored in a basic pocket, and the mRNA can be positioned for site-specific cleavage by RNase H-type divalent cation-coordinated catalytic Asp residues of the PIWI domain. Domain swap experiments involving chimeras of human Ago (hAgo1) and cleavage-competent hAgo2 reinforce the role of the PIWI domain in "slicer" activity. We propose a four-step Ago-mediated catalytic cleavage cycle model, which provides distinct perspectives into the mechanism of guide strand-mediated mRNA cleavage within the RISC.
Collapse
Affiliation(s)
- Yu-Ren Yuan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Yi Pei
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York 10021
| | - Jin-Biao Ma
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Vitaly Kuryavyi
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Maria Zhadina
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York 10021
| | - Gunter Meister
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York 10021
| | - Hong-Ying Chen
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, National Cancer Institute, Argonne National Laboratory, Argonne, Illinois 60439
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York 10021
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| |
Collapse
|
124
|
Sträter N, Jasper B, Scholte M, Krebs B, Duff AP, Langley DB, Han R, Averill BA, Freeman HC, Guss JM. Crystal Structures of Recombinant Human Purple Acid Phosphatase With and Without an Inhibitory Conformation of the Repression Loop. J Mol Biol 2005; 351:233-46. [PMID: 15993892 DOI: 10.1016/j.jmb.2005.04.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 04/01/2005] [Accepted: 04/07/2005] [Indexed: 01/02/2023]
Abstract
The crystal structure of human purple acid phosphatase recombinantly expressed in Escherichia coli (rHPAP(Ec)) and Pichia pastoris (rHPAP(Pp)) has been determined in two different crystal forms, both at 2.2A resolution. In both cases, the enzyme crystallized in its oxidized (inactive) state, in which both Fe atoms in the dinuclear active site are Fe(III). The main difference between the two structures is the conformation of the enzyme "repression loop". Proteolytic cleavage of this loop in vivo or in vitro results in significant activation of the mammalian PAPs. In the crystals obtained from rHPAP(Ec), the carboxylate side-chain of Asp145 of this loop acts as a bidentate ligand that bridges the two metal atoms, in a manner analogous to a possible binding mode for a phosphate ester substrate in the enzyme-substrate complex. The carboxylate side-chain of Asp145 and the neighboring Phe146 side-chain thus block the active site, thereby inactivating the enzyme. In the crystal structure of rHPAP(Pp), the enzyme "repression loop" has an open conformation similar to that observed in other mammalian PAP structures. The present structures demonstrate that the repression loop exhibits significant conformational flexibility, and the observed alternate binding mode suggests a possible inhibitory role for this loop.
Collapse
Affiliation(s)
- Norbert Sträter
- Biotechnologisch-Biomedizinisches Zentrum, Fakultät für Chemie und Mineralogie der Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
YAKUSA is a program designed for rapid scanning of a structural database with a query protein structure. It searches for the longest common substructures called SHSPs (structural high-scoring pairs) existing between a query structure and every structure in the structural database. It makes use of protein backbone internal coordinates (alpha angles) in order to describe protein structures as sequences of symbols. The structural similarities are established in 5 steps, the first 3 being analogous to those used in BLAST: (1) building up a deterministic finite automaton describing all patterns identical or similar to those in the query structure; (2) searching for all these patterns in every structure in the database; (3) extending the patterns to longer matching substructures (i.e., SHSPs); (4) selecting compatible SHSPs for each query-database structure pair; and (5) ranking the query-database structure pairs using 3 scores based on SHSP similarity, on SHSP probabilities, and on spatial compatibility of SHSPs. Structural fragment probabilities are estimated according to a mixture transition distribution model, which is an approximation of a high-order Markov chain model. With regard to sensitivity and selectivity of the structural matches, YAKUSA compares well to the best related programs, although it is by far faster: A typical database scan takes about 40 s CPU time on a desktop personal computer. It has also been implemented on a Web server for real-time searches.
Collapse
|
126
|
Krajewski WW, Jones TA, Mowbray SL. Structure of Mycobacterium tuberculosis glutamine synthetase in complex with a transition-state mimic provides functional insights. Proc Natl Acad Sci U S A 2005; 102:10499-504. [PMID: 16027359 PMCID: PMC1180770 DOI: 10.1073/pnas.0502248102] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 06/02/2005] [Indexed: 11/18/2022] Open
Abstract
Glutamine synthetase catalyzes the ligation of glutamate and ammonia to form glutamine, with the resulting hydrolysis of ATP. The enzyme is a central component of bacterial nitrogen metabolism and is a potential drug target. Here, we report a high-yield recombinant expression system for glutamine synthetase of Mycobacterium tuberculosis together with a simple purification. The procedure allowed the structure of a complex with a phosphorylated form of the inhibitor methionine sulfoximine, magnesium, and ADP to be solved by molecular replacement and refined at 2.1-A resolution. To our knowledge, this study provides the first reported structure for a taut form of the M. tuberculosis enzyme, similar to that observed for the Salmonella enzyme earlier. The phospho compound, generated in situ by an active enzyme, mimics the phosphorylated tetrahedral adduct at the transition state. Some differences in ligand interactions of the protein with both phosphorylated compound and nucleotide are observed compared with earlier structures; a third metal ion also is found. The importance of these differences in the catalytic mechanism is discussed; the results will help guide the search for specific inhibitors of potential therapeutic interest.
Collapse
Affiliation(s)
- Wojciech W Krajewski
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
127
|
Shomura Y, Torayama I, Suh DY, Xiang T, Kita A, Sankawa U, Miki K. Crystal structure of stilbene synthase from Arachis hypogaea. Proteins 2005; 60:803-6. [PMID: 16028220 DOI: 10.1002/prot.20584] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yasuhito Shomura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
128
|
Sakai H, Wang H, Takemoto-Hori C, Kaminishi T, Yamaguchi H, Kamewari Y, Terada T, Kuramitsu S, Shirouzu M, Yokoyama S. Crystal structures of the signal transducing protein GlnK from Thermus thermophilus HB8. J Struct Biol 2005; 149:99-110. [PMID: 15629661 DOI: 10.1016/j.jsb.2004.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 07/12/2004] [Indexed: 11/27/2022]
Abstract
The Thermus thermophilus HB8 genome encodes a signal transducing PII protein, GlnK. The crystal structures of GlnK have been determined in two different space groups, P2(1)2(1)2(1) and P3(1)21. The PII protein has the T-loop, which is essential for interactions with receptor proteins. In both crystal forms, three GlnK molecules form a trimer in the asymmetric unit. In one P2(1)2(1)2(1) crystal form, the three T-loops in the trimer are disordered, while in another P2(1)2(1)2(1) crystal form, the T-loop from one molecule in the trimer is ordered. In the P3(1)21 crystal, one T-loop is ordered while the other two T-loops are disordered. The conformations of the ordered T-loops significantly differ between the two crystal forms; one makes the alpha-helix in the middle of the T-loop, while the other has an extension of the beta-hairpin. Two different conformations are captured by the crystal contacts. The observation of multiple T-loop conformations suggests that the T-loop could potentially exhibit "polysterism," which would be important for interactions with receptor proteins. The crystal structures of the nucleotide-bound forms, GlnK.ATP and GlnK.ADP, have also been determined. ATP/ADP binding within a cleft at the interface of two adjacent T. thermophilus GlnK monomers might affect the conformation of the T-loop.
Collapse
Affiliation(s)
- Hiroaki Sakai
- Protein Research Group, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Celie PHN, Klaassen RV, van Rossum-Fikkert SE, van Elk R, van Nierop P, Smit AB, Sixma TK. Crystal Structure of Acetylcholine-binding Protein from Bulinus truncatus Reveals the Conserved Structural Scaffold and Sites of Variation in Nicotinic Acetylcholine Receptors. J Biol Chem 2005; 280:26457-66. [PMID: 15899893 DOI: 10.1074/jbc.m414476200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of acetylcholine-binding protein (AChBP) from the mollusk Lymnaea stagnalis is the established model for the ligand binding domains of the ligand-gated ion channel family, which includes nicotinic acetylcholine, 5-hydroxytryptamine (5-HT3), gamma-aminobutyric acid (GABA), types A and C, and glycine receptors. Here we present the crystal structure of a remote homolog, AChBP from Bulinus truncatus, which reveals both the conserved structural scaffold and the sites of variation in this receptor family. These include rigid body movements of loops that are close to the transmembrane interface in the receptors and changes in the intermonomer contacts, which alter the pentamer stability drastically. Structural, pharmacological and mutational analysis of both AChBPs shows how 3 amino acid changes in the binding site contribute to a 5-10-fold difference in affinity for nicotinic ligands. Comparison of these structures will be valuable for improving structure-function studies of ligand-gated ion channel receptors, including signal transduction, homology modeling, and drug design.
Collapse
Affiliation(s)
- Patrick H N Celie
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
130
|
Blaise MC, Sowdhamini R, Pradhan N. Comparative analysis of different competitive antagonists interaction with NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA) ionotropic glutamate receptor. J Mol Model 2005; 11:489-502. [PMID: 15928921 DOI: 10.1007/s00894-005-0258-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 02/22/2005] [Indexed: 10/25/2022]
Abstract
The antagonist-bound conformation of the NR2A and NR2B subunits of N-methyl-D-aspartate (NMDA) ionotropic glutamate receptor are modeled using the crystal structure of the DCKA (5,7-dichloro-kynurenic acid)-bound form of the NR1 subunit ligand-binding core (S1S2). Five different competitive NMDA receptor antagonists [(1) DL-AP5; (2) DL-AP7; (3) CGP-37847; (4) CGP 39551; (5) (RS)-CPP] have been docked into both NR2A and NR2B subunits. Experimental studies report NR2A and NR2B subunits having dissimilar interactions and affinities towards the antagonists. However, the molecular mechanism of this difference remains unexplored. The distinctive features in the antagonist's interaction with these two different but closely related (approximately 80% sequence identity at this region) subunits are analyzed from the patterns of their hydrogen bonding. The regions directly involved in the antagonist binding have been classified into seven different interaction sites. Two conserved hydrophilic pockets located at both the S1 and S2 domains are found to be crucial for antagonist binding. The positively charged (Lys) residues present at the second interaction site and the invariant residue (Arg) located at the fourth interaction site are seen to influence ligand binding. The geometry of the binding pockets of NR2A and NR2B subunits have been determined from the distance between the C-alpha atoms in the residues interacting with the ligands. The binding pockets are found to be different for NR2A and NR2B. There are gross dissimilarities in competitive antagonist binding between these two subunits. The binding pocket geometry identified in this study may have the potential for future development of selective antagonists for the NR2A or NR2B subunit.
Collapse
Affiliation(s)
- Mathias-Costa Blaise
- Department of Psychopharmacology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, 560029, India
| | | | | |
Collapse
|
131
|
Rao KN, Kumaran D, Binz T, Swaminathan S. Structural analysis of the catalytic domain of tetanus neurotoxin. Toxicon 2005; 45:929-39. [PMID: 15904688 DOI: 10.1016/j.toxicon.2005.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 02/16/2005] [Accepted: 02/17/2005] [Indexed: 10/25/2022]
Abstract
Clostridium neurotoxins, comprising the tetanus neurotoxin and the seven antigenically distinct botulinum neurotoxins (BoNT/A-G), are among the known most potent bacterial protein toxins to humans. Although they have similar function, sequences and three-dimensional structures, the substrate specificity and the selectivity of peptide bond cleavage are different and unique. Tetanus and botulinum type B neurotoxins enzymatically cleave the same substrate, vesicle-associated membrane protein, at the same peptide bond though the optimum length of substrate peptide required for cleavage by them is different. Here, we present the first experimentally determined three-dimensional structure of the catalytic domain of tetanus neurotoxin and analyze its active site. The structure provides insight into the active site of tetanus toxin's proteolytic activity and the importance of the nucleophilic water and the role of the zinc ion. The probable reason for different modes of binding of vesicle-associated membrane protein to botulinum neurotoxin type B and the tetanus toxin is discussed. The structure provides a basis for designing a novel recombinant vaccine or structure-based drugs for tetanus.
Collapse
|
132
|
Merckel MC, Huiskonen JT, Bamford DH, Goldman A, Tuma R. The structure of the bacteriophage PRD1 spike sheds light on the evolution of viral capsid architecture. Mol Cell 2005; 18:161-70. [PMID: 15837420 DOI: 10.1016/j.molcel.2005.03.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 12/15/2004] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
Comparisons of bacteriophage PRD1 and adenovirus protein structures and virion architectures have been instrumental in unraveling an evolutionary relationship and have led to a proposal of a phylogeny-based virus classification. The structure of the PRD1 spike protein P5 provides further insight into the evolution of viral proteins. The crystallized P5 fragment comprises two structural domains: a globular knob and a fibrous shaft. The head folds into a ten-stranded jelly roll beta barrel, which is structurally related to the tumor necrosis factor (TNF) and the PRD1 coat protein domains. The shaft domain is a structural counterpart to the adenovirus spike shaft. The structural relationships between PRD1, TNF, and adenovirus proteins suggest that the vertex proteins may have originated from an ancestral TNF-like jelly roll coat protein via a combination of gene duplication and deletion.
Collapse
Affiliation(s)
- Michael C Merckel
- Programme on Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, Viikinkaari 1 00014, Finland
| | | | | | | | | |
Collapse
|
133
|
Sierk ML, Kleywegt GJ. Déjà vu all over again: finding and analyzing protein structure similarities. Structure 2005; 12:2103-11. [PMID: 15576025 DOI: 10.1016/j.str.2004.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 09/07/2004] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
Structure comparison is a crucial aspect of structural biology today. The field of structure comparison is developing rapidly, with the development of new algorithms, similarity scores, and statistical scores. The predicted large increase of experimental structures and structural models made possible by high-throughput efforts means that structural comparison and searching of structural databases using automated methods will become increasingly common. This Ways & Means article is meant to guide the structural biologist in the basics of structural alignment, and to provide an overview of the available software tools. The main purpose is to encourage users to gain some understanding of the strengths and limitations of structural alignment, and to take these factors into account when interpreting the results of different programs.
Collapse
Affiliation(s)
- Michael L Sierk
- Department of Biochemistry and Molecular Genetics, University of Virginia, P.O. Box 800733, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
134
|
Zhu J, Burgner JW, Harms E, Belitsky BR, Smith JL. A new arrangement of (beta/alpha)8 barrels in the synthase subunit of PLP synthase. J Biol Chem 2005; 280:27914-23. [PMID: 15911615 DOI: 10.1074/jbc.m503642200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP, vitamin B6), a cofactor in many enzymatic reactions, has two distinct biosynthetic routes, which do not coexist in any organism. Two proteins, known as PdxS and PdxT, together form a PLP synthase in plants, fungi, archaea, and some eubacteria. PLP synthase is a heteromeric glutamine amidotransferase in which PdxT produces ammonia from glutamine and PdxS combines ammonia with five- and three-carbon phosphosugars to form PLP. In the 2.2-A crystal structure, PdxS is a cylindrical dodecamer of subunits having the classic (beta/alpha)8 barrel fold. PdxS subunits form two hexameric rings with the active sites positioned on the inside. The hexamer and dodecamer forms coexist in solution. A novel phosphate-binding site is suggested by bound sulfate. The sulfate and another bound molecule, methyl pentanediol, were used to model the substrate ribulose 5-phosphate, and to propose catalytic roles for residues in the active site. The distribution of conserved surfaces in the PdxS dodecamer was used to predict a docking site for the glutaminase partner, PdxT.
Collapse
Affiliation(s)
- Jianghai Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
135
|
Suarez Covarrubias A, Larsson AM, Högbom M, Lindberg J, Bergfors T, Björkelid C, Mowbray SL, Unge T, Jones TA. Structure and Function of Carbonic Anhydrases from Mycobacterium tuberculosis. J Biol Chem 2005; 280:18782-9. [PMID: 15753099 DOI: 10.1074/jbc.m414348200] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbonic anhydrases catalyze the reversible hydration of carbon dioxide to form bicarbonate. This activity is universally required for fatty acid biosynthesis as well as for the production of a number of small molecules, pH homeostasis, and other functions. At least three different carbonic anhydrase families are known to exist, of which the alpha-class found in humans has been studied in most detail. In the present work, we describe the structures of two of the three beta-class carbonic anhydrases that have been identified in Mycobacterium tuberculosis, i.e. Rv1284 and Rv3588c. Both structures were solved by molecular replacement and then refined to resolutions of 2.0 and 1.75 A, respectively. The active site of Rv1284 is small and almost completely shielded from solvent, whereas that of Rv3588c is larger and quite open to solution. Differences in coordination of the active site metal are also observed. In Rv3588c, an aspartic acid side chain displaces a water molecule and coordinates directly to the zinc ion, thereby closing the zinc coordination sphere and breaking the salt link to a nearby arginine that is a feature of Rv1284. The two carbonic anhydrases thus exhibit both of the metal coordination geometries that have previously been observed for structures in this family. Activity studies demonstrate that Rv3588c is a completely functional carbonic anhydrase. The apparent lack of activity of Rv1284 in the present assay system is likely exacerbated by the observed depletion of zinc in the preparation.
Collapse
|
136
|
Shi D, Morizono H, Yu X, Roth L, Caldovic L, Allewell NM, Malamy MH, Tuchman M. Crystal Structure of N-Acetylornithine Transcarbamylase from Xanthomonas campestris. J Biol Chem 2005; 280:14366-9. [DOI: 10.1074/jbc.c500005200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
137
|
Ariza A, Richard DJ, White MF, Bond CS. Conformational flexibility revealed by the crystal structure of a crenarchaeal RadA. Nucleic Acids Res 2005; 33:1465-73. [PMID: 15755748 PMCID: PMC1062875 DOI: 10.1093/nar/gki288] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Homologous recombinational repair is an essential mechanism for repair of double-strand breaks in DNA. Recombinases of the RecA-fold family play a crucial role in this process, forming filaments that utilize ATP to mediate their interactions with single- and double-stranded DNA. The recombinase molecules present in the archaea (RadA) and eukaryota (Rad51) are more closely related to each other than to their bacterial counterpart (RecA) and, as a result, RadA makes a suitable model for the eukaryotic system. The crystal structure of Sulfolobus solfataricus RadA has been solved to a resolution of 3.2 Å in the absence of nucleotide analogues or DNA, revealing a narrow filamentous assembly with three molecules per helical turn. As observed in other RecA-family recombinases, each RadA molecule in the filament is linked to its neighbour via interactions of a short β-strand with the neighbouring ATPase domain. However, despite apparent flexibility between domains, comparison with other structures indicates conservation of a number of key interactions that introduce rigidity to the system, allowing allosteric control of the filament by interaction with ATP. Additional analysis reveals that the interaction specificity of the five human Rad51 paralogues can be predicted using a simple model based on the RadA structure.
Collapse
Affiliation(s)
| | - Derek J. Richard
- Centre for Biomolecular Sciences, University of St AndrewsNorth Haugh, St Andrews, KY16 9ST, UK
| | - Malcolm F. White
- Centre for Biomolecular Sciences, University of St AndrewsNorth Haugh, St Andrews, KY16 9ST, UK
| | - Charles S. Bond
- To whom correspondence should be addressed: Tel: +44 1382 348325; Fax: +44 1382 345764;
| |
Collapse
|
138
|
Park H, Adsit FG, Boyington JC. The 1.4 angstrom crystal structure of the human oxidized low density lipoprotein receptor lox-1. J Biol Chem 2005; 280:13593-9. [PMID: 15695803 DOI: 10.1074/jbc.m500768200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The lectin-like oxidized low density lipoprotein receptor-1 (Lox-1) mediates the recognition and internalization of oxidatively modified low density lipoprotein by vascular endothelial cells. This interaction results in a number of pro-atherogenic cellular responses that probably play a significant role in the pathology of atherosclerosis. The 1.4 angstrom crystal structure of the extracellular C-type lectin-like domain of human Lox-1 reveals a heart-shaped homodimer with a ridge of six basic amino acids extending diagonally across the apolar top of Lox-1, a central hydrophobic tunnel that extends through the entire molecule, and an electrostatically neutral patch of 12 charged residues that resides next to the tunnel at each opening. Based on the arrangement of critical binding residues on the Lox-1 structure, we propose a binding mode for the recognition of modified low density lipoprotein and other Lox-1 ligands.
Collapse
Affiliation(s)
- HaJeung Park
- Biomolecular Crystallography Group, Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
139
|
Wilson CGM, Kajander T, Regan L. The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold. FEBS J 2005; 272:166-79. [PMID: 15634341 DOI: 10.1111/j.1432-1033.2004.04397.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There are several different families of repeat proteins. In each, a distinct structural motif is repeated in tandem to generate an elongated structure. The nonglobular, extended structures that result are particularly well suited to present a large surface area and to function as interaction domains. Many repeat proteins have been demonstrated experimentally to fold and function as independent domains. In tetratricopeptide (TPR) repeats, the repeat unit is a helix-turn-helix motif. The majority of TPR motifs occur as three to over 12 tandem repeats in different proteins. The majority of TPR structures in the Protein Data Bank are of isolated domains. Here we present the high-resolution structure of NlpI, the first structure of a complete TPR-containing protein. We show that in this instance the TPR motifs do not fold and function as an independent domain, but are fully integrated into the three-dimensional structure of a globular protein. The NlpI structure is also the first TPR structure from a prokaryote. It is of particular interest because it is a membrane-associated protein, and mutations in it alter septation and virulence.
Collapse
Affiliation(s)
- Christopher G M Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
140
|
Oberholzer AE, Bumann M, Schneider P, Bächler C, Siebold C, Baumann U, Erni B. Crystal Structure of the Phosphoenolpyruvate-binding Enzyme I-Domain from the Thermoanaerobacter tengcongensis PEP: Sugar Phosphotransferase System (PTS). J Mol Biol 2005; 346:521-32. [PMID: 15670601 DOI: 10.1016/j.jmb.2004.11.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 11/29/2004] [Accepted: 11/30/2004] [Indexed: 11/21/2022]
Abstract
Enzyme I (EI), the first component of the phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS), consists of an N-terminal protein-binding domain (EIN) and a C-terminal PEP-binding domain (EIC). EI transfers phosphate from PEP by double displacement via a histidine residue on EIN to the general phosphoryl carrier protein HPr. Here, we report the 1.82A crystal structure of the homodimeric EIC domain from Thermoanaerobacter tengcongensis, a saccharolytic eubacterium that grows optimally at 75 degrees C. EIC folds into a (betaalpha)(8) barrel with three large helical insertions between beta2/alpha2, beta3/alpha3 and beta6/alpha6. The large amphipathic dimer interface buries 3750A(2) of accessible surface area per monomer. A comparison with pyruvate phosphate dikinase (PPDK) reveals that the active-site residues in the empty PEP-binding site of EIC and in the liganded PEP-binding site of PPDK have almost identical conformations, pointing to a rigid structure of the active site. In silico models of EIC in complex with the Z and E-isomers of chloro-PEP provide a rational explanation for their difference as substrates and inhibitors of EI. The EIC domain exhibits 54% amino acid sequence identity with Escherichia coli and 60% with Bacillus subtilis EIC, has the same amino acid composition but contains additional salt-bridges and a more complex salt-bridge network than the homology model of E.coli EIC. The easy crystallization of EIC suggests that T.tengcongensis can serve as source for stable homologs of mesophilic proteins that are too labile for crystallization.
Collapse
Affiliation(s)
- Anselm Erich Oberholzer
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
141
|
Osawa T, Matsubara Y, Muramatsu T, Kimura M, Kakuta Y. Crystal Structure of the Alginate (Poly α-l-guluronate) Lyase from Corynebacterium sp. at 1.2Å Resolution. J Mol Biol 2005; 345:1111-8. [PMID: 15644208 DOI: 10.1016/j.jmb.2004.10.081] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 10/23/2004] [Accepted: 10/28/2004] [Indexed: 11/23/2022]
Abstract
The crystal structure of alginate (poly alpha-l-guluronate) lyase from Corynebacterium sp. (ALY-1) was determined at 1.2A resolution using the MAD method and bromide ions. The structure of ALY-1 is abundant in beta-strands and has a deep cleft, similar to the jellyroll beta-sandwich found in 1,3-1,4-beta-glucanase. The structure suggests that alginate molecules may penetrate into the cleft to interact with the catalytic site of ALY-1. The reported crystal structure of another type of alginate lyase, A1-III, differs from that of ALY-1 in that it consists almost entirely of alpha-helical structure. Nevertheless, the putative catalytic residues in both enzymes are positioned in space in nearly identical arrangements. This finding suggests that both alginate lyases may have evolved through convergent evolution.
Collapse
Affiliation(s)
- Takuo Osawa
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
142
|
Multiple Alignment of Protein Structures in Three Dimensions. LECTURE NOTES IN COMPUTER SCIENCE 2005. [DOI: 10.1007/11560500_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
143
|
Amor JC, Swails J, Zhu X, Roy CR, Nagai H, Ingmundson A, Cheng X, Kahn RA. The Structure of RalF, an ADP-ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site. J Biol Chem 2005; 280:1392-400. [PMID: 15520000 DOI: 10.1074/jbc.m410820200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Legionella pneumophila protein RalF is secreted into host cytosol via the Dot/Icm type IV transporter where it acts to recruit ADP-ribosylation factor (Arf) to pathogen-containing phagosomes in the establishment of a replicative organelle. The presence in RalF of the Sec7 domain, present in all Arf guanine nucleotide exchange factors, has suggested that recruitment of Arf is an early step in pathogenesis. We have determined the crystal structure of RalF and of the isolated Sec7 domain and found that RalF is made up of two domains. The Sec7 domain is homologous to mammalian Sec7 domains. The C-terminal domain forms a cap over the active site in the Sec7 domain and contains a conserved folding motif, previously observed in adaptor subunits of vesicle coat complexes. The importance of the capping domain and of the glutamate in the "glutamic finger," conserved in all Sec7 domains, to RalF functions was examined using three different assays. These data highlight the functional importance of domains other than Sec7 in Arf guanine nucleotide exchange factors to biological activities and suggest novel mechanisms of regulation of those activities.
Collapse
Affiliation(s)
- J Carlos Amor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Sakurai S, Kitano K, Yamaguchi H, Hamada K, Okada K, Fukuda K, Uchida M, Ohtsuka E, Morioka H, Hakoshima T. Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J 2004; 24:683-93. [PMID: 15616578 PMCID: PMC549611 DOI: 10.1038/sj.emboj.7600519] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 11/23/2004] [Indexed: 11/09/2022] Open
Abstract
Flap endonuclease-1 (FEN1) is a key enzyme for maintaining genomic stability and replication. Proliferating cell nuclear antigen (PCNA) binds FEN1 and stimulates its endonuclease activity. The structural basis of the FEN1-PCNA interaction was revealed by the crystal structure of the complex between human FEN1 and PCNA. The main interface involves the C-terminal tail of FEN1, which forms two beta-strands connected by a short helix, the betaA-alphaA-betaB motif, participating in beta-beta and hydrophobic interactions with PCNA. These interactions are similar to those previously observed for the p21CIP1/WAF1 peptide. However, this structure involving the full-length enzyme has revealed additional interfaces that are involved in the core domain. The interactions at the interfaces maintain the enzyme in an inactive 'locked-down' orientation and might be utilized in rapid DNA-tracking by preserving the central hole of PCNA for sliding along the DNA. A hinge region present between the core domain and the C-terminal tail of FEN1 would play a role in switching the FEN1 orientation from an inactive to an active orientation.
Collapse
Affiliation(s)
- Shigeru Sakurai
- Structural Biology Laboratory, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Ken Kitano
- Structural Biology Laboratory, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Hiroto Yamaguchi
- CREST, Japan Science and Technology Agency, Takayama, Ikoma, Nara, Japan
| | - Keisuke Hamada
- Structural Biology Laboratory, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Kengo Okada
- Structural Biology Laboratory, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Kotaro Fukuda
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Makiyo Uchida
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Eiko Ohtsuka
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hiroshi Morioka
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
- Graduate School of Pharmaceutical Sciences, Hokkaido University, N12, W6, Kita-ku, Sapporo 060-0812, Japan. Tel.: +81 11 706 3751; Fax: +81 11 706 4989; E-mail:
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, Japan
- CREST, Japan Science and Technology Agency, Takayama, Ikoma, Nara, Japan
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan. Tel.: +81 743 72 5570; Fax: +81 743 72 5579; E-mail:
| |
Collapse
|
145
|
Lindberg J, Pyring D, Löwgren S, Rosenquist A, Zuccarello G, Kvarnström I, Zhang H, Vrang L, Classon B, Hallberg A, Samuelsson B, Unge T. Symmetric fluoro-substituted diol-based HIV protease inhibitors. Ortho-fluorinated and meta-fluorinated P1/P1'-benzyloxy side groups significantly improve the antiviral activity and preserve binding efficacy. ACTA ACUST UNITED AC 2004; 271:4594-602. [PMID: 15560801 DOI: 10.1111/j.1432-1033.2004.04431.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV-1 protease is a pivotal enzyme in the later stages of the viral life cycle which is responsible for the processing and maturation of the virus particle into an infectious virion. As such, HIV-1 protease has become an important target for the treatment of AIDS, and efficient drugs have been developed. However, negative side effects and fast emerging resistance to the current drugs have necessitated the development of novel chemical entities in order to exploit different pharmacokinetic properties as well as new interaction patterns. We have used X-ray crystallography to decipher the structure-activity relationship of fluoro-substitution as a strategy to improve the antiviral activity and the protease inhibition of C2-symmetric diol-based inhibitors. In total we present six protease-inhibitor complexes at 1.8-2.3 A resolution, which have been structurally characterized with respect to their antiviral and inhibitory activities, in order to evaluate the effects of different fluoro-substitutions. These C2-symmetric inhibitors comprise mono- and difluoro-substituted benzyloxy side groups in P1/P1' and indanoleamine side groups in P2/P2'. The ortho- and meta-fluorinated P1/P1'-benzyloxy side groups proved to have the most cytopathogenic effects compared with the nonsubstituted analog and related C2-symmetric diol-based inhibitors. The different fluoro-substitutions are well accommodated in the protease S1/S1' subsites, as observed by an increase in favorable Van der Waals contacts and surface area buried by the inhibitors. These data will be used in the development of potent inhibitors with different pharmacokinetic profiles towards resistant protease mutants.
Collapse
Affiliation(s)
- Jimmy Lindberg
- Department of Cell and Molecular Biology, BMC, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Horn WT, Convery MA, Stonehouse NJ, Adams CJ, Liljas L, Phillips SEV, Stockley PG. The crystal structure of a high affinity RNA stem-loop complexed with the bacteriophage MS2 capsid: further challenges in the modeling of ligand-RNA interactions. RNA (NEW YORK, N.Y.) 2004; 10:1776-1782. [PMID: 15496523 PMCID: PMC1370665 DOI: 10.1261/rna.7710304] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 08/16/2004] [Indexed: 05/24/2023]
Abstract
We have determined the structure to 2.8 A of an RNA aptamer (F5), containing 2'-deoxy-2-aminopurine (2AP) at the -10 position, complexed with MS2 coat protein by soaking the RNA into precrystallised MS2 capsids. The -10 position of the RNA is an important determinant of binding affinity for coat protein. Adenine at this position in other RNA stem-loops makes three hydrogen bonds to protein functional groups. Substituting 2AP for the -10 adenine in the F5 aptamer yields an RNA with the highest yet reported affinity for coat protein. The refined X-ray structure shows that the 2AP base makes an additional hydrogen bond to the protein compared to adenine that is presumably the principal origin of the increased affinity. There are also slight changes in phosphate backbone positions compared to unmodified F5 that probably also contribute to affinity. Such phosphate movements are common in structures of RNAs bound to the MS2 T = 3 protein shell and highlight problems for de novo design of RNA binding ligands.
Collapse
Affiliation(s)
- Wilf T Horn
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
147
|
Blaise MC, Sowdhamini R, Rao MRP, Pradhan N. Evolutionary trace analysis of ionotropic glutamate receptor sequences and modeling the interactions of agonists with different NMDA receptor subunits. J Mol Model 2004; 10:305-16. [PMID: 15597199 DOI: 10.1007/s00894-004-0196-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 06/03/2004] [Indexed: 11/26/2022]
Abstract
The ionotropic N-methyl- d-aspartate (NMDA) receptor is of importance in neuronal development, functioning, and degeneration in the mammalian central nervous system. The functional NMDA receptor is a heterotetramer comprising two NR1 and two NR2 or NR3 subunits. We have carried out evolutionary trace (ET) analysis of forty ionotropic glutamate receptor (IGRs) sequences to identify and characterize the residues forming the binding socket. We have also modeled the ligand binding core (S1S2) of NMDA receptor subunits using the recently available crystal structure of NR1 subunit ligand binding core which shares approximately 40% homology with other NMDA receptor subunits. A short molecular dynamics simulation of the glycine-bound form of wild-type and double-mutated (D481N; K483Q) NR1 subunit structure shows considerable RMSD at the hinge region of S1S2 segment, where pore forming transmembrane helices are located in the native receptor. It is suggested that the disruption of domain closure could affect ion-channel activation and thereby lead to perturbations in normal animal behavior. In conclusion, we identified the amino acids that form the ligand-binding pocket in many ionotropic glutamate receptors and studied their hydrogen bonded and nonbonded interaction patterns. Finally, the disruption in the S1S2 domain conformation (of NR1 subunit- crystal structure) has been studied with a short molecular dynamics simulation and correlated with some experimental observations. [figure: see text]. The figure shows the binding mechanism of glutamate with NR2B subunit of the NMDA receptor. Glutamate is shown in cpk, hydrogen bonds in dotted lines and amino acids in blue. The amino acids shown here are within a 4-A radius of the ligand (glutamate).
Collapse
Affiliation(s)
- Mathias-Costa Blaise
- Department of Psychopharmacology, National Institute of Mental Health and Neuro Sciences (NIMHANS), 560029, Bangalore, India
| | | | | | | |
Collapse
|
148
|
Middleton CL, Parker JL, Richard DJ, White MF, Bond CS. Substrate recognition and catalysis by the Holliday junction resolving enzyme Hje. Nucleic Acids Res 2004; 32:5442-51. [PMID: 15479781 PMCID: PMC524281 DOI: 10.1093/nar/gkh869] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Two archaeal Holliday junction resolving enzymes, Holliday junction cleavage (Hjc) and Holliday junction endonuclease (Hje), have been characterized. Both are members of a nuclease superfamily that includes the type II restriction enzymes, although their DNA cleaving activity is highly specific for four-way junction structure and not nucleic acid sequence. Despite 28% sequence identity, Hje and Hjc cleave junctions with distinct cutting patterns--they cut different strands of a four-way junction, at different distances from the junction centre. We report the high-resolution crystal structure of Hje from Sulfolobus solfataricus. The structure provides a basis to explain the differences in substrate specificity of Hje and Hjc, which result from changes in dimer organization, and suggests a viral origin for the Hje gene. Structural and biochemical data support the modelling of an Hje:DNA junction complex, highlighting a flexible loop that interacts intimately with the junction centre. A highly conserved serine residue on this loop is shown to be essential for the enzyme's activity, suggesting a novel variation of the nuclease active site. The loop may act as a conformational switch, ensuring that the active site is completed only on binding a four-way junction, thus explaining the exquisite specificity of these enzymes.
Collapse
Affiliation(s)
- Claire L Middleton
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | |
Collapse
|
149
|
Sandgren M, Berglund GI, Shaw A, Ståhlberg J, Kenne L, Desmet T, Mitchinson C. Crystal Complex Structures Reveal How Substrate is Bound in the −4 to the +2 Binding Sites of Humicola grisea Cel12A. J Mol Biol 2004; 342:1505-17. [PMID: 15364577 DOI: 10.1016/j.jmb.2004.07.098] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/19/2004] [Accepted: 07/30/2004] [Indexed: 11/27/2022]
Abstract
As part of an ongoing enzyme discovery program to investigate the properties and catalytic mechanism of glycoside hydrolase family 12 (GH 12) endoglucanases, a GH family that contains several cellulases that are of interest in industrial applications, we have solved four new crystal structures of wild-type Humicola grisea Cel12A in complexes formed by soaking with cellobiose, cellotetraose, cellopentaose, and a thio-linked cellotetraose derivative (G2SG2). These complex structures allow mapping of the non-covalent interactions between the enzyme and the glucosyl chain bound in subsites -4 to +2 of the enzyme, and shed light on the mechanism and function of GH 12 cellulases. The unhydrolysed cellopentaose and the G2SG2 cello-oligomers span the active site of the catalytically active H.grisea Cel12A enzyme, with the pyranoside bound in subsite -1 displaying a S31 skew boat conformation. After soaking in cellotetraose, the cello-oligomer that is found bound in site -4 to -1 contains a beta-1,3-linkage between the two cellobiose units in the oligomer, which is believed to have been formed by a transglycosylation reaction that has occurred during the ligand soak of the protein crystals. The close fit of this ligand and the binding sites occupied suggest a novel mixed beta-glucanase activity for this enzyme.
Collapse
Affiliation(s)
- Mats Sandgren
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
150
|
Wang H, Takemoto CH, Murayama K, Sakai H, Tatsuguchi A, Terada T, Shirouzu M, Kuramitsu S, Yokoyama S. Crystal structure of ribosomal protein L27 from Thermus thermophilus HB8. Protein Sci 2004; 13:2806-10. [PMID: 15340170 PMCID: PMC2286543 DOI: 10.1110/ps.04864904] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ribosomal protein L27 is located near the peptidyltransferase center at the interface of ribosomal subunits, and is important for ribosomal assembly and function. We report the crystal structure of ribosomal protein L27 from Thermus thermophilus HB8, which was determined by the multiwavelength anomalous dispersion method and refined to an R-factor of 19.7% (R(free) = 23.6%) at 2.8 A resolution. The overall fold is an all beta-sheet hybrid. It consists of two sets of four-stranded beta-sheets formed around a well-defined hydrophobic core, with a highly positive charge on the protein surface. The structure of ribosomal protein L27 from T. thermophilus HB8 in the RNA-free form is investigated, and its functional roles in the ribosomal subunit are discussed.
Collapse
Affiliation(s)
- Hongfei Wang
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|