101
|
Chijiwa T, Hamai S, Tsubouchi S, Ogawa T, Deshimaru M, Oda-Ueda N, Hattori S, Kihara H, Tsunasawa S, Ohno M. Interisland mutation of a novel phospholipase A2 from Trimeresurus flavoviridis venom and evolution of Crotalinae group II phospholipases A2. J Mol Evol 2004; 57:546-54. [PMID: 14738313 DOI: 10.1007/s00239-003-2508-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Accepted: 05/20/2003] [Indexed: 10/26/2022]
Abstract
Trimeresurus flavoviridis (Crotalinae) snakes inhabit the southwestern islands of Japan: Amami-Oshima, Tokunoshima, and Okinawa. Affinity and conventional chromatographies of Amami-Oshima T. flavoviridis venom led to isolation of a novel phospholipase A2 (PLA2). This protein was highly homologous (91%) in sequence to trimucrotoxin, a neurotoxic PLA2, which had been isolated from T. mucrosquamatus (Taiwan) venom, and exhibited weak neurotoxicity. This protein was named PLA-N. Its LD50 for mice was 1.34 microg/g, which is comparable to that of trimucrotoxin. The cDNA encoding PLA-N was isolated from both the Amami-Oshima and the Tokunoshima T. flavoviridis venom-gland cDNA libraries. Screening of the Okinawa T. flavoviridis venom-gland cDNA library with PLA-N cDNA led to isolation of the cDNA encoding one amino acid-substituted PLA-N homologue, named PLA-N(O), suggesting that interisland mutation occurred and that Okinawa island was separated from a former island prior to dissociation of Amami-Oshima and Tokunoshima islands. Construction of a phylogenetic tree of Crotalinae venom group II PLA2's based on the amino acid sequences revealed that neurotoxic PLA2's including PLA-N and PLA-N(O) form an independent cluster which is distant from other PLA2 groups such as PLA2 type, basic [Asp49]PLA2 type, and [Lys49]PLA2 type. Comparison of the nucleotide sequence of PLA-N cDNA with those of the cDNAs encoding other T. flavoviridis venom PLA2's showed that they have evolved in an accelerated manner. However, when comparison was made within the cDNAs encoding Crotalinae venom neurotoxic PLA2's, their evolutionary rates appear to be reduced to a level between accelerated evolution and neutral evolution. It is likely that ancestral genes of neurotoxic PLA2's evolved in an accelerated manner until they had acquired neurotoxic function and since then they have evolved with less frequent mutation, possibly for functional conservation.
Collapse
Affiliation(s)
- Takahito Chijiwa
- Department of Applied Life Science, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Phui Yee JS, Nanling G, Afifiyan F, Donghui M, Siew Lay P, Armugam A, Jeyaseelan K. Snake postsynaptic neurotoxins: gene structure, phylogeny and applications in research and therapy. Biochimie 2004; 86:137-49. [PMID: 15016453 DOI: 10.1016/j.biochi.2003.11.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2003] [Accepted: 11/28/2003] [Indexed: 11/15/2022]
Abstract
Snake venoms are complex mixtures of biologically active polypeptides that target a variety of vital physiological functions in mammals. alpha-Neurotoxins, toxins that cause paralysis by binding to the nicotinic receptors at the postsynaptic region of the neuromuscular junction have been widely studied in terms of their structure-function relationships as well as gene structure, organization and expression. In this review, we describe the structure of alpha-neurotoxin genes and discuss their evolutionary relationships. Almost all members of neurotoxins have been found to exhibit a common evolutionary origin. The importance of alpha-neurotoxins in therapy and research has also been discussed to highlight their potential applications especially in the area of drug discovery.
Collapse
Affiliation(s)
- Joyce Siew Phui Yee
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | | | | | |
Collapse
|
103
|
Chang LS, Chung C, Liou JC, Chang CW, Yang CC. Novel neurotoxins from Taiwan banded krait (Bungarus multicinctus) venom: purification, characterization and gene organization. Toxicon 2003; 42:323-30. [PMID: 14559085 DOI: 10.1016/s0041-0101(03)00151-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two novel neurotoxins BM10-1 and BM10-2 were isolated from Bungarus multicinctus (Taiwan banded krait) venom using the combinations of chromatography on a SP-Sephadex C-25 column and a reverse phase HPLC column. BM10-1 contained 66 amino acid residues including 10 Cys residues, while BM10-2 consisted of 65 amino acid residues with 8 Cys residues. The secondary structure of both BM10-1 and BM10-2 was dominated with beta-sheet, but their gross conformation differed as evidenced by CD spectra and acrylamide quenching studies. BM10-1 inhibited carbachol-induced muscle contraction in a reversible manner and the dose for achieving 50% inhibition was approximately fourfold that of alpha-bungarotoxin. BM10-2 exhibited an irreversible but weak inhibition on carbachol-induced muscle contraction. Sequence alignment of neurotoxins with BM10-1 and BM10-2 suggested that the manner in the manifestation of their activity could be partly elucidated by the residues at toxin second loop. The genomic DNAs encoding BM10-1 and BM10-1-like protein (BM10-1L) were amplified by PCR. The two genes shared virtually identical structural organization and high degree of sequence identity with B. multicinctus neurotoxin genes. Compared to intron sequences of these genes, the protein-coding regions were highly variable. The difference between BM10-1 gene and BM10-1L gene notably arose from the third exon. These results suggest the evolution of B. multicinctus neurotoxins via the path of gene duplication.
Collapse
Affiliation(s)
- Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
104
|
|
105
|
Zhu S, Huys I, Dyason K, Verdonck F, Tytgat J. Evolutionary trace analysis of scorpion toxins specific for K-channels. Proteins 2003; 54:361-70. [PMID: 14696198 DOI: 10.1002/prot.10588] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Scorpion alpha-K(+) channel toxins are a large family of polypeptides with a similar structure but diverse pharmacological activities. Despite many structural and functional data available at present, little progress has been made in understanding the toxin's molecular basis responsible for the functional diversification. In this paper, we report the first complete cDNA sequences of toxins belonging to subfamily 6 and identify five new members, called alpha-KTx 6.6-6.10. By analyzing the rates of mutations that occurred in the corresponding cDNAs, we suggest that accelerated evolution in toxin-coding regions may be associated with the functional diversification of this subfamily. To pinpoint sites probably involved in the functional diversity of alpha-KTx family, we analyzed this family of sequences using the evolutionary trace method. This analysis highlighted one channel-binding surface common for all the members. This surface is composed of one conserved lysine residue at position 29 assisted by other residues at positions 10, 26, 27, 32, 34, and 36. Of them, the positions 29, 32, and 34 have been reported to be the most major determinants of channel specificity. Interestingly, another contrary surface was also observed at a higher evolutionary time cut-off value, which may be involved in the binding of ERG (ether-a-go-go-related gene) channel-specific toxins. The good match between the trace residues and the functional epitopes of the toxins suggested that the evolutionary trace results reported here can be applied to predict channel-binding sites of the toxins. Because, the side-chain variation in the trace positions is strongly linked with the functional alteration and channel-binding surface transfer of alpha-KTx family, we conclude that our findings should also be important for the rational design of new toxins targeting a given potassium channel with high selectivity.
Collapse
Affiliation(s)
- Shunyi Zhu
- Laboratory of Toxicology, University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
106
|
Nicolas P, Vanhoye D, Amiche M. Molecular strategies in biological evolution of antimicrobial peptides. Peptides 2003; 24:1669-80. [PMID: 15019198 DOI: 10.1016/j.peptides.2003.08.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Accepted: 08/08/2003] [Indexed: 11/24/2022]
Abstract
Gene-encoded antimicrobial peptides that protect the skin of hylid and ranin frogs against noxious microorganisms are processed from a unique family of precursor polypeptides with a unique pattern of conserved and variable regions opposite to that of conventional secreted peptides. Precursors belonging to this family, designated the preprodermaseptin, have a common N-terminal preproregion that is remarkably well conserved both within and between species, but a hypervariable C-terminal domain corresponding to antimicrobial peptides with very different lengths, sequences, charges and antimicrobial spectra. Each frog species has its own distinct panoply of 10-20 antimicrobial peptides so that the 5000 species of ranids and hylids may produce approximately 100,000 different peptide antibiotics. The strategy that these frogs have evolved to generate this enormous array of peptides includes repeated duplications of a 150 million years old ancestral gene, focal hypermutation of the antimicrobial peptide domain maybe involving a mutagenic DNA polymerase similar to Escherichia coli Pol V, and subsequent actions of positive (diversifying) selection. The hyperdivergence of skin antimicrobial peptides can be viewed as the successful evolution of a multi-drug defense system that provides frogs with maximum protection against rapidly changing microbial biota and minimizes the chance of microorganisms developing resistance to individual peptides. The impressive variations in the expression of frog skin antimicrobial peptides may be exploited for discovering new molecules and structural motifs targeting specific microorganisms for which the therapeutic armamentarium is scarce.
Collapse
Affiliation(s)
- Pierre Nicolas
- Laboratoire de Bioactivation des Peptides, Institut Jacques Monod, 2 Place Jussieu, 75251 Paris Cedex 05, France.
| | | | | |
Collapse
|
107
|
Zhu S, Darbon H, Dyason K, Verdonck F, Tytgat J. Evolutionary origin of inhibitor cystine knot peptides. FASEB J 2003; 17:1765-7. [PMID: 12958203 DOI: 10.1096/fj.02-1044fje] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The inhibitor cystine knot (ICK) fold is an evolutionarily conserved structural motif shared by a large group of polypeptides with diverse sequences and bioactivities. Although found in different phyla (animal, plant, and fungus), ICK peptides appear to be most prominent in venoms of cone snail and spider. Recently, two scorpion toxins activating a calcium release channel have been found to adopt an ICK fold. We have isolated and identified both cDNA and genomic clones for this family of ICK peptides from the scorpion Opistophthalmus carinatus. The gene characterized by three well-delineated exons respectively coding for three structural and functional domains in the toxin precursors illustrates the correlation between exon and module as suggested by the "exon theory of genes." Based on the analysis of precursor organization and gene structure combined with the 3-D fold and functional data, our results highlight a common evolutionary origin for ICK peptides from animals. In contrast, ICK peptides from plant and fungus might be independently evolved from another ancestor.
Collapse
Affiliation(s)
- Shunyi Zhu
- Laboratory of Toxicology, University of Leuven, Belgium
| | | | | | | | | |
Collapse
|
108
|
Vanhoye D, Bruston F, Nicolas P, Amiche M. Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2068-81. [PMID: 12709067 DOI: 10.1046/j.1432-1033.2003.03584.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dermal glands of frogs produce antimicrobial peptides that protect the skin against noxious microorganisms and assist in wound repair. The sequences of these peptides are very dissimilar, both within and between species, so that the 5000 living anuran frogs may produce approximately 100 000 different antimicrobial peptides. The antimicrobial peptides of South American hylid frogs are derived from precursors, the preprodermaseptins, whose signal peptides and intervening sequences are remarkably conserved, but their C-terminal domains are markedly diverse, resulting in mature peptides with different lengths, sequences and antimicrobial spectra. We have used the extreme conservation in the preproregion of preprodermaseptin transcripts to identify new members of this family in Australian and South American hylids. All these peptides are cationic, amphipathic and alpha-helical. They killed a broad spectrum of microorganisms and acted in synergy. 42 preprodermaseptin gene sequences from 10 species of hylid and ranin frogs were analyzed in the context of their phylogeny and biogeography and of geophysical models for the fragmentation of Gondwana to examine the strategy that these frogs have evolved to generate an enormous array of peptide antibiotics. The hyperdivergence of modern antimicrobial peptides and the number of peptides per species result from repeated duplications of a approximately 150-million-year-old ancestral gene and accelerated mutations of the mature peptide domain, probably involving a mutagenic, error-prone, DNA polymerase similar to Escherichia coli Pol V. The presence of antimicrobial peptides with such different structures and spectra of action represents the successful evolution of multidrug defense by providing frogs with maximum protection against infectious microbes and minimizing the chance of microorganisms developing resistance to individual peptides. The hypermutation of the antimicrobial domain by a targeted mutagenic polymerase that can generate many sequence changes in a few steps may have a selective survival value when frogs colonizing a new ecological niche encounter different microbial predators.
Collapse
Affiliation(s)
- Damien Vanhoye
- Laboratoire de Bioactivation des Peptides, Institut Jacques Monod, Paris, France
| | | | | | | |
Collapse
|
109
|
Castro HC, Lemos MGJ, Bon C, Zingali RB. Comparative evaluation of immunological and structural similarities of snake venom C-type lectin proteins. Toxicon 2003; 41:525-8. [PMID: 12657323 DOI: 10.1016/s0041-0101(02)00358-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Antibodies raised against denatured and native forms of bothrojaracin were used to analyze the immunological similarities compared to the structural and biological features of five C-type lectin proteins from snake venom (bothrojaracin, botrocetin, Factor IX/X binding protein (FIX/Xbp), convulxin and Bothrops jararaca lectin). Anti-denatured-bothrojaracin antibodies, which recognize mainly linear epitopes, cross-reacted with botrocetin, FIX/Xbp and convulxin, as expected for homologous proteins. On the other hand, anti-native-bothrojaracin antibodies, which mostly interact with conformational epitopes, exhibited a higher degree of selectivity. These results show that differences exist at the surface of these proteins and that they should be related to their different biological activities, while they share a common and similar scaffold.
Collapse
Affiliation(s)
- H C Castro
- Laboratório de Hemostase e Venenos, Departamento de Bioquímica Médica, ICB/CCS, Univ. Federal do Rio de Janeiro, Bloco H, 20. andar-Ilha do Fundão Cidade Universitaria, Rio de Janeiro, RJ CEP 21941-590, Brazil
| | | | | | | |
Collapse
|
110
|
Gilquin B, Bourgoin M, Ménez R, Le Du MH, Servent D, Zinn-Justin S, Ménez A. Motions and structural variability within toxins: implication for their use as scaffolds for protein engineering. Protein Sci 2003; 12:266-77. [PMID: 12538890 PMCID: PMC2312431 DOI: 10.1110/ps.0227703] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Animal toxins are small proteins built on the basis of a few disulfide bonded frameworks. Because of their high variability in sequence and biologic function, these proteins are now used as templates for protein engineering. Here we report the extensive characterization of the structure and dynamics of two toxin folds, the "three-finger" fold and the short alpha/beta scorpion fold found in snake and scorpion venoms, respectively. These two folds have a very different architecture; the short alpha/beta scorpion fold is highly compact, whereas the "three-finger" fold is a beta structure presenting large flexible loops. First, the crystal structure of the snake toxin alpha was solved at 1.8-A resolution. Then, long molecular dynamics simulations (10 ns) in water boxes of the snake toxin alpha and the scorpion charybdotoxin were performed, starting either from the crystal or the solution structure. For both proteins, the crystal structure is stabilized by more hydrogen bonds than the solution structure, and the trajectory starting from the X-ray structure is more stable than the trajectory started from the NMR structure. The trajectories started from the X-ray structure are in agreement with the experimental NMR and X-ray data about the protein dynamics. Both proteins exhibit fast motions with an amplitude correlated to their secondary structure. In contrast, slower motions are essentially only observed in toxin alpha. The regions submitted to rare motions during the simulations are those that exhibit millisecond time-scale motions. Lastly, the structural variations within each fold family are described. The localization and the amplitude of these variations suggest that the regions presenting large-scale motions should be those tolerant to large insertions or deletions.
Collapse
Affiliation(s)
- Bernard Gilquin
- Département d'Ingénierie et d'Etude des Protéines, CEA, 91191 Gif sur Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
111
|
Assakura MT, Silva CA, Mentele R, Camargo ACM, Serrano SMT. Molecular cloning and expression of structural domains of bothropasin, a P-III metalloproteinase from the venom of Bothrops jararaca. Toxicon 2003; 41:217-27. [PMID: 12565741 DOI: 10.1016/s0041-0101(02)00279-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mature P-III snake metalloproteinases are soluble venom components which belong to the Reprolysin sub family and are structurally related to the mammalian membrane-bound A Disintegrin And Metalloproteinase (ADAMs). Here we present the molecular cloning of bothropasin, a metalloproteinase with hemorrhagic and myonecrotic activities isolated from the venom of Bothrops jararaca. The full-length cDNA encoding the bothropasin precursor was cloned by immunoscreening and its authenticity was confirmed by the amino acid sequence of internal fragments obtained from an autolyzed sample of native bothropasin. The predicted bothropasin precursor is comprised of the elements of a P-III venom metalloproteinase: signal sequence, pro-, metalloproteinase, disintegrin-like and cysteine-rich domains. In the autolysis process of native bothropasin, the disintegrin-like and cysteine-rich domains remained intact while the metalloproteinase domain was cleaved at different sites. The attempts made to obtain the recombinant precursor form of bothropasin using bacterial, yeast and mammalian cell expression systems failed to produce it in an amount sufficient to analyze the activation of the zymogen. Nevertheless, the study of the expression of the individual domains of bothropasin using a bacterial system resulted in the production of recombinant pro-and disintegrin-like+cysteine-rich domains but not the metalloproteinase domain. These results along with the autolysis pattern of the native protein suggest a role for the metalloproteinase domain in the structural stability of bothropasin.
Collapse
Affiliation(s)
- Marina T Assakura
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Av. Vital Brasil 1500, CEP 05503-900, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
112
|
Molles BE, Taylor P. STRUCTURE AND FUNCTION OF THE WAGLERINS, PEPTIDE TOXINS FROM THE VENOM OF WAGLER'S PIT VIPER,TROPIDOLAEMUS WAGLERI. ACTA ACUST UNITED AC 2002. [DOI: 10.1081/txr-120014406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
113
|
Chu YP, Chang LS. The organization of the genes encoding the A chains of beta-bungarotoxins: evidence for the skipping of exon. Toxicon 2002; 40:1437-43. [PMID: 12368113 DOI: 10.1016/s0041-0101(02)00160-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bungarus multicinctus (Taiwan banded krait) beta-bungarotoxins consist of two dissimilar polypeptide chains, A and B. The A chain is structurally homologous to phospholipase A(2) (PLA(2)) enzymes. The structural organization of the genes encoding A1, A2 and A8 chains are reported in this study. Their nucleotide sequences shared up to 97.5% identity. Alignment of the determined A chain genes with their cDNAs revealed that A1 chain gene organized with four exons and three introns, while A2 chain gene comprised three exons and two introns. When A2 chain is expressed, the region corresponding to the first exon of A1 chain gene is skipped instead of the inclusion of intronic sequence adjacent to the second exon. The resulting A2 chain mRNA encoded a 25 residue signal peptide, which is different from A1 chain mRNA with a 27 residue signal peptide. Nevertheless, expression of the A chain genes was partly regulated by a common mechanism as evidenced by sequence conservation of their promoter region and consensus transcriptional factor binding-sites inside this region. 5'-RACE analyses revealed that A chain mRNAs with 27 residue signal peptide represented the predominant species in the preparation of B. multicinctus venom gland mRNAs. Comparative analyses on PLA(2) genes and cDNAs suggest that this is the first report on the skipping of exon which changes the signal peptide sequence of snake venom proteins.
Collapse
Affiliation(s)
- Yuan-Ping Chu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC
| | | |
Collapse
|
114
|
Jan V, Maroun RC, Robbe-Vincent A, De Haro L, Choumet V. Toxicity evolution of Vipera aspis aspis venom: identification and molecular modeling of a novel phospholipase A(2) heterodimer neurotoxin. FEBS Lett 2002; 527:263-8. [PMID: 12220671 DOI: 10.1016/s0014-5793(02)03205-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the simultaneous presence of two phospholipase A(2) (PLA(2)) neurotoxins in the venom of Vipera aspis aspis, the first such observation. One is monomeric and identical to ammodytoxin B of Vipera ammodytes ammodytes. Its presence may result from gene flux after interbreeding between V. aspis aspis and V. ammodytes ammodytes. The second, a novel heterodimer named vaspin, is very similar to vipoxin of Vipera ammodytes meridionalis and to PLA(2)-I of Vipera aspis zinnikeri. It may result from expression of preexisting genes, the acidic subunit evolving from an ancestor common to ammodytin I2 from V. ammodytes ammodytes, which we also found in V. aspis aspis.
Collapse
Affiliation(s)
- Virginie Jan
- Unité des Venins, Institut Pasteur, 25 rue du Dr Roux, 75724 Cedex 15, Paris, France.
| | | | | | | | | |
Collapse
|
115
|
Chung C, Wu BN, Yang CC, Chang LS. Muscarinic toxin-like proteins from Taiwan banded krait (Bungarus multicinctus) venom: purification, characterization and gene organization. Biol Chem 2002; 383:1397-406. [PMID: 12437132 DOI: 10.1515/bc.2002.158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two novel proteins, BM8 and BM14, were isolated from Bungarus multicinctus (Taiwan banded krait) venom using the combination of chromatography on a SP-Sephadex C-25 column and a reverse-phase HPLC column. Both proteins contained 82 amino acid residues including 10 cysteine residues, but there were two amino acid substitutions at positions 37 and 38 (Glu37-Ala38 in BM8; Lys37-Lys38 in BM14). CD spectra and acrylamide quenching studies revealed that the gross conformation of BM8 and BM14 differed. In contrast to BM8, BM14 inhibited the binding of [3H]quinuclidinyl benzilate to the M2 muscarinic acetylcholine (mAchR) receptor subtype. Trinitrophenylation of Lys residues abolished the mAchR-binding activity of BM14, indicating that the Lys substitutions at positions 37 and 38 played a crucial role in the activity of BM14. The genomic DNA encoding the precursor of BM14 was amplified by PCR. The gene shared virtually identical structural organization with alpha-neurotoxin and cardiotoxin genes. The intron sequences of these genes shared a sequence identity up to 84%, but the protein-coding regions were highly variable. These results suggest that BM8, BM14, neurotoxins and cardiotoxins may have originated from a common ancestor, and the evolution of snake venom proteins shows a tendency to diversify their functions.
Collapse
Affiliation(s)
- Charling Chung
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
116
|
Abstract
1. Snake venoms are complex mixtures of pharmacologically active peptides and proteins. 2. These protein toxins belong to a small number of superfamilies of proteins. The present review describes structure-function relationships of three-finger toxins. 3. All toxins share a common structure of three beta-stranded loops extending from a central core. However, they bind to different receptors/acceptors and exhibit a wide variety of biological effects. 4. Thus, the structure-function relationships of this group of toxins are complicated and challenging. 5. Studies have shown that the functional sites in these "sibling" toxins are located on various segments of the molecular surface.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.
| |
Collapse
|
117
|
Poh SL, Mourier G, Thai R, Armugam A, Molgó J, Servent D, Jeyaseelan K, Ménez A. A synthetic weak neurotoxin binds with low affinity to Torpedo and chicken alpha7 nicotinic acetylcholine receptors. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4247-56. [PMID: 12199703 DOI: 10.1046/j.1432-1033.2002.03113.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Weak neurotoxins from snake venom are small proteins with five disulfide bonds, which have been shown to be poor binders of nicotinic acetylcholine receptors. We report on the cloning and sequencing of four cDNAs encoding weak neurotoxins from Naja sputatrix venom glands. The protein encoded by one of them, Wntx-5, has been synthesized by solid-phase synthesis and characterized. The physicochemical properties of the synthetic toxin (sWntx-5) agree with those anticipated for the natural toxin. We show that this toxin interacts with relatively low affinity (K(d) = 180 nm) with the muscular-type acetylcholine receptor of the electric organ of T. marmorata, and with an even weaker affinity (90 microm) with the neuronal alpha7 receptor of chicken. Electrophysiological recordings using isolated mouse hemidiaphragm and frog cutaneous pectoris nerve-muscle preparations revealed no blocking activity of sWntx-5 at microm concentrations. Our data confirm previous observations that natural weak neurotoxins from cobras have poor affinity for nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Siew Lay Poh
- Département d'Ingénierie et d'Etudes des Protéines, CEA, Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Ma D, Armugam A, Jeyaseelan K. Alpha-neurotoxin gene expression in Naja sputatrix: identification of a silencer element in the promoter region. Arch Biochem Biophys 2002; 404:98-105. [PMID: 12127074 DOI: 10.1016/s0003-9861(02)00245-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alpha-neurotoxin (alpha-NTX) from the venom of cobra, Naja sputatrix, is a highly lethal post-synaptic toxin that is responsible for the lethality caused by the venom. However, this toxin is found at low levels (3%) in the crude venom. The expression of its gene is determined by a promoter which is 90% similar to the promoter of another three-fingered toxin, cardiotoxin (CTX), which is produced in large amounts (60%) in the same venom. Functional analysis of the NTX-2 gene promoter demonstrated the presence of a silencer element of 24 nucleotides (nt -678 to -655) at its 5(') flanking region. This element has been found to play a major role in the down-regulation of NTX-2 gene expression. A point mutation on this silencer appears to attenuate its repressive property in CTX-2 gene.
Collapse
Affiliation(s)
- Donghui Ma
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
119
|
Chang LS, Chung C, Wu BN, Yang CC. Characterization and gene organization of Taiwan banded krait (Bungarus multicinctus) gamma-bungarotoxin. JOURNAL OF PROTEIN CHEMISTRY 2002; 21:223-9. [PMID: 12168693 DOI: 10.1023/a:1019760401692] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
gamma-Bungarotoxin was isolated from Bungarus multicinctus (Taiwan banded krait) venom using a combination of chromatography on a SP-Sephadex C-25 column and a reverse-phase high-performance liquid chromatography column. Circular dichroism (CD) measurement revealed that its secondary structure was dominant with beta-sheet structure as is that of snake venom alpha-neurotoxins and cardiotoxins. gamma-Bungarotoxin exhibits activity on inhibiting the binding of [3H]quinuclidinyl benzilate to the M2 muscarinic acetylcholine receptor subtype, and competes weakly with radioiodinated alpha-bungarotoxin for binding to the Torpedo nicotinic acetylcholine receptor. Moreover, the toxin inhibits collagen-induced platelet aggregation, with an IC50 of approximately 200 nM. The genomic DNA encoding the gamma-bungarotoxin precursor is amplified by polymerase chain reaction (PCR). The gene is organized with three exons separated by two introns, and shares virtually identical overall organization with those reported for alpha-neurotoxin and cardiotoxin genes, including similar intron insertions. The intron sequences of these genes share sequence identity up to 85%, but the exon sequences are highly variable. These observations suggest that gamma-bungarotoxin, alpha-neurotoxins, and cardiotoxins originate from a common ancestor, and the evolution of these genes shows a tendency to diversify the functions of snake venom proteins.
Collapse
Affiliation(s)
- Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
120
|
Tsai IH, Chen YH, Wang YM, Tu MC, Tu AT. Purification, sequencing, and phylogenetic analyses of novel Lys-49 phospholipases A(2) from the venoms of rattlesnakes and other pit vipers. Arch Biochem Biophys 2001; 394:236-44. [PMID: 11594738 DOI: 10.1006/abbi.2001.2524] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Basic phospholipase A(2) homologs with Lys49 substitution at the essential Ca(2+)-binding site are present in the venom of pit vipers under many genera. However, they have not been found in rattlesnake venoms before. We have now screened for this protein in the venom of rattlesnakes and other less studied pit vipers. By gel filtration chromatography and RP-HPLC, Lys49-phospholipase-like proteins were purified from the venoms of two rattlers, Crotalus atrox and Crotalus m. molossus, and five nonrattlers, Porthidium nummifer, Porthidium godmani, Bothriechis schlegelii, Trimeresurus puniceus, and Trimeresurus albolabris. Their N-terminal amino acid sequences were shown to be characteristic for this phospholipase subfamily. The purified basic proteins from rattlesnakes caused myonecrosis and edema in experimental animals. We have also cloned the cDNAs and solved the complete sequences of four novel Lys49-phospholipases from the venom glands of C. atrox, P. godmani, B. schlegelii, and Deinagkistrodon acutus (hundred-pace). Phylogenetic analyses based on the amino acid sequences of 28 Lys49-phospholipases separate the pitviper of the New World from those of the Old World, and the arboreal Asiatic species from the terrestrial Asiatic species. The implications of the phylogeny tree to the systematics of pit vipers, and structure-function relationship of the Lys49-phospholipases are discussed.
Collapse
Affiliation(s)
- I H Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
121
|
Chang L, Chung C, Huang HB, Lin S. Purification and Characterization of a Chymotrypsin Inhibitor from the Venom of Ophiophagus hannah (King Cobra). Biochem Biophys Res Commun 2001; 283:862-7. [PMID: 11350064 DOI: 10.1006/bbrc.2001.4878] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A chymotrypsin inhibitor from the venom of Ophiophagus hannah was isolated by a combination of ion-exchange chromatography and reverse phase HPLC. Amino acid sequence analysis revealed that this protein consists of 58 amino acids, six of these being cysteine residues and is highly homologous to Kunitz-type protease inhibitors. ESI-mass spectrum showed that the protein had a mass of 6493, which is in agreement with that predicted from its primary structure. In contrast to P1 Leu, Met, Phe, Trp, and Tyr appearing in other chymotrypsin inhibitors, a P1 Asn in the novel inhibitor may cause a weak binding (Ki = 3.52 microM) with chymotrypsin. Phylogenetic analysis suggests that the functional variations of the chymotrypsin inhibitor and other Kunitz-type inhibitors probably distinguish from dendrotoxins by accelerated evolution.
Collapse
Affiliation(s)
- L Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| | | | | | | |
Collapse
|
122
|
Abstract
The hemoglobin molecule of the commercially important brine shrimp Artemia sp. has been used extensively as a model for the study of molecular evolution. It consists of nine globin domains joined by short linker sequences, and these domains are believed to have originated through a series of duplications from an original globin gene. In addition, in Artemia, two different polymers of hemoglobin, called C and T, are found which differ by 11.7% at the amino acid level and are believed to have diverged about 60 MYA. This provides a set of data of 18 globin domain sequences that have evolved in the same organism. The pattern of amino acid substitution between these two polymers is unusual, with pairs of equivalent domains displaying differences of up to 2.7-fold in total amino acid substitution. Such differences would reflect a similar range of molecular-clock rates in what appear to be duplicate, structurally equivalent domains. In order to provide a reference outgroup, we sequenced the cDNA for a nine-domain hemoglobin (P) from another genus of brine shrimp, Parartemia zietziana, which differs morphologically and ecologically from Artemia and is endemic to Australia. Parartemia produces only one hundredth the amount of hemoglobin that Artemia produces and does not upregulate production in response to low oxygen partial pressure. Comparison of the globin domains at the amino acid and DNA levels suggests that the Artemia globin T gene has accumulated substitutions differently from the Parartemia P and Artemia C globin genes. We discuss the questions of accelerated evolution after duplication and possible functions for the Parartemia globin.
Collapse
Affiliation(s)
- M Coleman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
123
|
Soares AM, Andrião-Escarso SH, Bortoleto RK, Rodrigues-Simioni L, Arni RK, Ward RJ, Gutiérrez JM, Giglio JR. Dissociation of Enzymatic and Pharmacological Properties of Piratoxins-I and -III, Two Myotoxic Phospholipases A2 from Bothrops pirajai Snake Venom. Arch Biochem Biophys 2001; 387:188-96. [PMID: 11370840 DOI: 10.1006/abbi.2000.2244] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Piratoxins (PrTX) I and III are phospholipases A2 (PLA2s) or PLA2 homologue myotoxins isolated from Bothrops pirajai snake venom, which also induce myonecrosis, bactericidal activity against Escherichia coli, disruption of artificial membranes, and edema. PrTX-III is a catalytically active hemolytic and anticoagulant Asp49 PLA2, while PrTX-I is a Lys49 PLA2 homologue, which is catalytically inactive on artificial substrates, but promotes blockade of neuromuscular transmission. Chemical modifications of His, Lys, Tyr, and Trp residues of PrTX-I and PrTX-III were performed, together with cleavage of the N-terminal octapeptide by CNBr and inhibition by heparin and EDTA. The lethality, bactericidal activity, myotoxicity, neuromuscular effect, edema inducing effect, catalytic and anticoagulant activities, and the liposome-disruptive activity of the modified toxins were evaluated. A complex pattern of functional differences between the modified and native toxins was observed. However, in general, chemical modifications that significantly affected the diverse pharmacological effects of the toxins did not influence catalytic or membrane disrupting activities. Analysis of structural changes by circular dichroism spectroscopy demonstrated significant changes in the secondary structure only in the case of N-terminal octapeptide cleavage. These data indicate that PrTX-I and PrTX-III possess regions other than the catalytic site, which determine their toxic and pharmacological activities.
Collapse
Affiliation(s)
- A M Soares
- Departamento de Bioquímica e Immunologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Conticello SG, Gilad Y, Avidan N, Ben-Asher E, Levy Z, Fainzilber M. Mechanisms for evolving hypervariability: the case of conopeptides. Mol Biol Evol 2001; 18:120-31. [PMID: 11158371 DOI: 10.1093/oxfordjournals.molbev.a003786] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hypervariability is a prominent feature of large gene families that mediate interactions between organisms, such as venom-derived toxins or immunoglobulins. In order to study mechanisms for evolution of hypervariability, we examined an EST-generated assemblage of 170 distinct conopeptide sequences from the venoms of five species of marine Conus snails. These sequences were assigned to eight gene families, defined by conserved elements in the signal domain and untranslated regions. Order-of-magnitude differences were observed in the expression levels of individual conopeptides, with five to seven transcripts typically comprising over 50% of the sequenced clones in a given species. The conopeptide precursor alignments revealed four striking features peculiar to the mature peptide domain: (1) an accelerated rate of nucleotide substitution, (2) a bias for transversions over transitions in nucleotide substitutions, (3) a position-specific conservation of cysteine codons within the hypervariable region, and (4) a preponderance of nonsynonymous substitutions over synonymous substitutions. We propose that the first three observations argue for a mutator mechanism targeted to mature domains in conopeptide genes, combining a protective activity specific for cysteine codons and a mutagenic polymerase that exhibits transversion bias, such as DNA polymerase V. The high D:(n)/D:(s) ratio is consistent with positive or diversifying selection, and further analyses by intraspecific/interspecific gene tree contingency tests weakly support recent diversifying selection in the evolution of conopeptides. Since only the most highly expressed transcripts segregate in gene trees according to the feeding specificity of the species, diversifying selection might be acting primarily on these sequences. The combination of a targeted mutator mechanism to generate high variability with the subsequent action of diversifying selection on highly expressed variants might explain both the hypervariability of conopeptides and the large number of unique sequences per species.
Collapse
Affiliation(s)
- S G Conticello
- Laboratory of Molecular Neurobiology, Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
125
|
Abstract
Animals acquire toxicity either by metabolic synthesis of toxins (secondary metabolites), by expression of toxin genes or by the uptake, storage and sequestration of toxins produced by other organisms, i.e., microbes, plants or other animals. Variability of toxin structure and function is high. Peptide toxins in particular, although relying on a limited number of structural frameworks, often exhibit considerable structural hypervariability. An accelerated rate of evolution in the toxin gene structure (conserved introns, but high substitution rates in the exons) leads to the functional diversity of these peptides or proteins. The selective forces which may drive toxin evolution are unknown. Venomousness or the possession of toxins can be essential for survival, but the advantage of toxin biosynthesis may also be of minor importance or has been lost during evolution.
Collapse
Affiliation(s)
- D Mebs
- Zentrum der Rechtsmedizin, University of Frankfurt, Kennedyallee 104, D-60596 Frankfurt, Germany.
| |
Collapse
|
126
|
Abstract
Animal toxins comprise a diverse array of proteins that have a variety of biochemical and pharmacological functions. A large number of animal toxins are encoded by multigene families. From studies of several toxin multigene families at the gene level the picture is emerging that most have been functionally diversified by gene duplication and adaptive evolution. The number of pharmacological activities in most toxin multigene families results from their adaptive evolution. The molecular evolution of animal toxins has been analysed in some multigene families, at both the intraspecies and interspecies levels. In most toxin multigene families, the rate of non-synonymous to synonymous substitutions (dN/dS) is higher than one. Thus natural selection has acted to diversify coding sequences and consequently the toxin functions. The selection pressure for the rapid adaptive evolution of animal toxins is the need for quick immobilization of the prey in classical predator and prey interactions. Currently available evidence for adaptive evolution in animal toxin multigene families will be considered in this review.
Collapse
Affiliation(s)
- D Kordis
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | | |
Collapse
|
127
|
Tsai IH, Wang YM, Au LC, Ko TP, Chen YH, Chu YF. Phospholipases A2 from Callosellasma rhodostoma venom gland cloning and sequencing of 10 of the cDNAs, three-dimensional modelling and chemical modification of the major isozyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6684-91. [PMID: 11054123 DOI: 10.1046/j.1432-1327.2000.01766.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Callosellasma rhodostoma (Malayan pitviper) is a monotypic Asian pitviper of medical importance. Three acidic phospholipases A2 (PLA2s) and one basic PLA2-homolog were purified from its venom while 10 cDNAs encoding distinct PLA2s were cloned from venom glands of a Thailand specimen of this species. Complete amino-acid sequences of the purified PLA2s were successfully deduced from their cDNA sequences. Among the six un-translated PLA2 cDNAs, two apparently result from recombination of its Lys49-PLA2 gene with its Asp49-PLA2 genes. The acidic PLA2s inhibit platelet-aggregation, while the noncatalytic PLA2-homolog induces local edema. This basic PLA2-homolog contains both Asp49 and other, unusual substitutions unique for the venom Lys49-PLA2 subtype (e.g. Leu5, Trp6, Asn28 and Arg34). Three-dimensional modelling of the basic protein revealed a heparin-binding region, and an abnormal calcium-binding pocket, which may explain its low catalytic activity. Oxidation of up to six of its Met residues or coinjection with heparin reduced its edema-inducing activity but methylation of its active site His48 did not. The distinct Arg/Lys-rich and Met-rich region at positions 10-36 of the PLA2 homolog presumably are involved in its heparin-binding and the cell membrane-interference leading to edema and myotoxicity.
Collapse
Affiliation(s)
- I H Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
128
|
Valentin E, Lambeau G. Increasing molecular diversity of secreted phospholipases A(2) and their receptors and binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:59-70. [PMID: 11080677 DOI: 10.1016/s1388-1981(00)00110-4] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secreted phospholipases A(2) (sPLA(2)s) form a large family of structurally related enzymes which are widespread in nature. Snake venoms are known for decades to contain a tremendous molecular diversity of sPLA(2)s which can exert a myriad of toxic and pharmacological effects. Recent studies indicate that mammalian cells also express a variety of sPLA(2)s with ten distinct members identified so far, in addition to the various other intracellular PLA(2)s. Furthermore, scanning of nucleic acid databases fueled by the different genome projects indicates that several sPLA(2)s are also present in invertebrate animals like Drosophila melanogaster as well as in plants. All of these sPLA(2)s catalyze the hydrolysis of glycerophospholipids at the sn-2 position to release free fatty acids and lysophospholipids, and thus could be important for the biosynthesis of biologically active lipid mediators. However, the recent identification of a variety of membrane and soluble proteins that bind to sPLA(2)s suggests that the sPLA(2) enzymes could also function as high affinity ligands. So far, most of the binding data have been accumulated with venom sPLA(2)s and group IB and IIA mammalian sPLA(2)s. Collectively, venom sPLA(2)s have been shown to bind to membrane and soluble mammalian proteins of the C-type lectin superfamily (M-type sPLA(2) receptor and lung surfactant proteins), to pentraxin and reticulocalbin proteins, to factor Xa and to N-type receptors. Venom sPLA(2)s also associate with three distinct types of sPLA(2) inhibitors purified from snake serum that belong to the C-type lectin superfamily, to the three-finger protein superfamily and to proteins containing leucine-rich repeats. On the other hand, mammalian group IB and IIA sPLA(2)s can bind to the M-type receptor, and group IIA sPLA(2)s can associate with lung surfactant proteins, factor Xa and proteoglycans including glypican and decorin, a mammalian protein containing a leucine-rich repeat.
Collapse
Affiliation(s)
- E Valentin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, 660 route des Lucioles, Sophia Antipolis, 06560, Valbonne, France
| | | |
Collapse
|
129
|
Wu PF, Chang LS. Genetic organization of A chain and B chain of beta-bungarotoxin from Taiwan banded krait (Bungarus multicinctus). A chain genes and B chain genes do not share a common origin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4668-75. [PMID: 10903499 DOI: 10.1046/j.1432-1327.2000.01518.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
beta-Bungarotoxin, the main presynaptic neurotoxin purified from the venom of Bungarus multicinctus, consists of two dissimilar polypeptide chains, the A chain and the B chain, cross-linked by an interchain disulfide bond. In this study, A and B chain genes isolated from the liver of B. multicinctus encoded the A and B chain precursors, respectively. Analyses of the coding regions of the A and B chain genes revealed that both consist of three exons and two introns. The sequences of all exon/intron junctions agree with the GT/AG rule. However, sequence alignment and phylogenetic analysis did not support that the evolution of A and B chain genes are closely related. Comparative analysis of A chain genes with Viperinae and Crotalinae phospholipase A2 genes indicated that genetic divergence of the A chain and phospholipase A2s was in accordance with their family. Moreover, evolutionary divergence of the intron and exon regions of the A chain, as observed for phospholipase A2 genes, was not consistent. Noticeably, the transcription of A and B chain genes may be regulated under different transcription factors as revealed by analyses of their promoter sequences. In terms of the finding that A and B chains are encoded separately by different genes, this strongly supports the view that the intact beta-bungarotoxin molecules should be derived from the pairing of A and B chains after their mRNAs are translated.
Collapse
Affiliation(s)
- P F Wu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Taiwan
| | | |
Collapse
|
130
|
Andrião-Escarso SH, Soares AM, Rodrigues VM, Angulo Y, Díaz C, Lomonte B, Gutiérrez JM, Giglio JR. Myotoxic phospholipases A(2) in bothrops snake venoms: effect of chemical modifications on the enzymatic and pharmacological properties of bothropstoxins from Bothrops jararacussu. Biochimie 2000; 82:755-63. [PMID: 11018293 DOI: 10.1016/s0300-9084(00)01150-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Venoms from eight Bothrops spp. were fractionated by ion-exchange chromatography on CM-Sepharose at pH 8.0 for the purification of myotoxins. Chromatographic profiles showed differences regarding myotoxic components among these venoms. B. alternatus, B. atrox and B. jararaca venoms did not show the major basic myotoxic fractions identified in the other venoms. Polyacrylamide gel electrophoresis for basic proteins also showed distinct patterns for these toxins. In vivo, all the isolated myotoxins induced release of creatine kinase due to necrosis of muscle fibers, accompanied by polymorphonuclear cell infiltration, and edema in the mouse paw. In addition, the toxins showed cytotoxic and liposome-disrupting activities in vitro. B. jararacussu bothropstoxins-I (BthTX-I) and II (BthTX-II) were submitted to chemical modifications of: His, by 4-bromophenacyl bromide (BPB) or photooxidation by Rose Bengal (RB); Tyr, by 2-nitrobenzenesulphonyl fluoride (NBSF); and Trp, by o-nitrophenylsulphenyl chloride (NPSC). The myotoxic and cytotoxic activities of BthTX-I, a Lys49 PLA(2) homologue, after modification by BPB, RB, NBSF and NPSC, were reduced to 50%, 20%, 75%, 65% and 13%, 0.5%, 76%, 58%, respectively. However, the edema-inducing and liposome-disrupting activities were not significantly reduced by the above modifications. BPB-treated BthTX-II, an Asp49 PLA(2) homologue, lost most of its catalytic, indirect hemolytic, anticoagulant, myotoxic and cytotoxic activities. The edema-inducing and liposome-disrupting activities were reduced to 50% and 80%, respectively. Lethality caused by BthTX-I and -II was strongly reduced after treatment with BPB or RB, but only partially with NBSF or NPSC. BthTX-I and -II, both native or modified, migrated similarly in a charge-shift electrophoresis. Antibodies raised against BthTX-I or -II, B. asper Basp-II and the C-terminal 115-129 peptide from Basp-II did not show significant differences in their cross-reactivity with the modified toxins, except with RB photooxidized toxins.
Collapse
Affiliation(s)
- S H Andrião-Escarso
- Departamento de Bioquímica, Faculdade de Medicina, Universidade de São Paulo, 14049-900, SP, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Germain N, Mérienne K, Zinn-Justin S, Boulain JC, Ducancel F, Ménez A. Molecular and structural basis of the specificity of a neutralizing acetylcholine receptor-mimicking antibody, using combined mutational and molecular modeling analyses. J Biol Chem 2000; 275:21578-86. [PMID: 10748046 DOI: 10.1074/jbc.m001794200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antagonist activity of short-chain toxins from snake venoms toward the nicotinic acetylcholine receptor (nAChR) is neutralized upon binding to a toxin-specific monoclonal antibody called Malpha2-3 (1). To establish the molecular basis of this specificity, we predicted from both mutational analyses and docking procedures the structure of the Malpha2-3-toxin complex. From knowledge of the functional paratope and epitope, and using a double-mutation cycle procedure, we gathered evidence that Asp(31) in complementarity determining region 1H is close to, and perhaps interacts with, Arg(33) in the antigen. The use of this pair of proximate residues during the selection procedure yielded three models based on docking calculations. The selected models predicted the proximity of Tyr(49) and/or Tyr(50) in the antibody to Lys(47) in the toxin. This was experimentally confirmed using another round of double-mutation cycles. The two models finally selected were submitted to energy minimization in a CHARMM22 force field, and were characterized by a root mean square deviation of 7.0 +/- 2.9 A. Both models display most features of antibody-antigen structures. Since Malpha2-3 also partially mimics some binding properties of nAChR, these structural features not only explain its fine specificity of recognition, but may also further clarify how toxins bind to nAChR.
Collapse
Affiliation(s)
- N Germain
- Department d'Ingenierie et d'Etudes des Proteins, Commissariat à l'Energie Atomique, Saclay, Gif-sur-Yvette Cedex 91191, France
| | | | | | | | | | | |
Collapse
|
132
|
Murayama N, Michel GH, Yanoshita R, Samejima Y, Saguchi K, Ohi H, Fujita Y, Higuchi S. cDNA cloning of bradykinin-potentiating peptides-C-type natriuretic peptide precursor, and characterization of the novel peptide Leu3-blomhotin from the venom of Agkistrodon blomhoffi. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4075-80. [PMID: 10866809 DOI: 10.1046/j.1432-1327.2000.01443.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cDNA clone, 1.8 kb long, was isolated from a venom gland cDNA library of Agkistrodon blomhoffi that encodes a large plurifunctional precursor composed of 263 amino-acid residues. Nucleotide sequence analysis of this clone revealed that sequences which code for blomhotin and a novel peptide Leu3-blomhotin are located in the N-terminal region of the precursor polypeptide, followed by four tandemly aligned sequences which code for three types of bradykinin-potentiating peptide. In the C-terminal region, the sequence for the C-type natriuretic peptide was located along with a preceding processing signal. The deduced amino-acid sequences for the four bradykinin-potentiating peptides coincided exactly with previously known sequences for potentiator B, potentiator C and potentiator E. The actual Leu3-blomhotin peptide was subsequently isolated from the venom of A. blomhoffi and characterized. Leu3-blomhotin possesses contractile activity in isolated rat stomach fundus smooth muscle in the same manner as blomhotin. Furthermore, it was shown that blomhotin and Leu3-blomhotin retained activity to inhibit the angiotensin-converting enzyme.
Collapse
Affiliation(s)
- N Murayama
- School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Ricciardi A, le Du MH, Khayati M, Dajas F, Boulain JC, Menez A, Ducancel F. Do structural deviations between toxins adopting the same fold reflect functional differences? J Biol Chem 2000; 275:18302-10. [PMID: 10849442 DOI: 10.1074/jbc.275.24.18302] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three-finger proteins form a structurally related family of compounds that exhibit a great variety of biological properties. To address the question of the prediction of functional areas on their surfaces, we tentatively conferred the acetylcholinesterase inhibitory activity of fasciculins on a short-chain curaremimetic toxin. For this purpose, we assimilated the three-dimensional structure of fasciculin 2 with the one of toxin alpha. This comparison revealed that the tips of the first and second loops, together with the C terminus residue, deviated most. A first recombinant fasciculin/toxin alpha chimera was designed by transferring loop 1 in its entirety together with the tip of loop 2 of fasciculin 2 into the toxin alpha scaffold. A second chimera (rChII) was obtained by adding the point Asn-61 --> Tyr substitution. Comparison of functional and structural properties of both chimeras show that rChII can accommodate the imposed modifications and displays nearly all the acetylcholinesterase-blocking activities of fasciculins. The three-dimensional structure of rChII demonstrates that rChII adopts a typical three-fingered fold with structural features of both parent toxins. Taken together, these results emphasize the great structural flexibility and functional adaptability of that fold and confirm that structural deviations between fasciculins and short-chain neurotoxins do indeed reflect functional diversity.
Collapse
Affiliation(s)
- A Ricciardi
- Instituto de Investigaciones Biologicas, Clemente Estable, Montevideo, Uruguay 11600, France
| | | | | | | | | | | | | |
Collapse
|
134
|
Gong N, Armugam A, Jeyaseelan K. Molecular cloning, characterization and evolution of the gene encoding a new group of short-chain alpha-neurotoxins in an Australian elapid, Pseudonaja textilis. FEBS Lett 2000; 473:303-10. [PMID: 10818230 DOI: 10.1016/s0014-5793(00)01549-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The structure and organization of five genes responsible for the synthesis of six isoforms of short-chain alpha-neurotoxins in Pseudonaja textilis venom are reported in this paper. This also forms the first report which describes the synthesis of two neurotoxin mRNA variants from one of these genes (Pt-sntx1) as a result of alternative splicing. Each gene consists of three exons which are separated by two introns and each has a functional promoter. The promoter activity was confirmed by both CAT assay and Real-Time PCR. A transcription initiation site, two putative TATA boxes, one CCAAT box and the transcription factor binding consensus sites for AP-1, GATA-2, c/EBPb were identified in the 5' non-coding region of each gene. Phylogenetic analysis showed that these five genes from P. textilis constituted a distinct group which has evolved by gene duplication followed by accelerated evolution from an ancestral gene.
Collapse
Affiliation(s)
- N Gong
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, 10 Medical Drive, 119260, Singapore, Singapore
| | | | | |
Collapse
|
135
|
Chijiwa T, Deshimaru M, Nobuhisa I, Nakai M, Ogawa T, Oda N, Nakashima K, Fukumaki Y, Shimohigashi Y, Hattori S, Ohno M. Regional evolution of venom-gland phospholipase A2 isoenzymes of Trimeresurus flavoviridis snakes in the southwestern islands of Japan. Biochem J 2000; 347:491-9. [PMID: 10749679 PMCID: PMC1220982 DOI: 10.1042/0264-6021:3470491] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Conventional chromatographic analysis showed that phospholipase A(2) (PLA(2)) isoenzymes of the venom of Trimeresurus flavoviridis (Habu snake) of Okinawa island are profoundly different in composition from those of T. flavoviridis of Amami-Oshima and Tokunoshima islands. The most striking feature was that myotoxic [Lys(49)]PLA(2) isoenzymes, called BPI and BPII, which are expressed abundantly in the venoms of Amami-Oshima and Tokunoshima T. flavoviridis, are missing from the venom of Okinawa T. flavoviridis. Northern blot analysis of Okinawa T. flavoviridis venom-gland mRNA species showed the absence of BPI and BPII mRNA species. Analysis by single-stranded conformational polymorphism-PCR of venom-gland mRNA species of T. flavoviridis from three islands, with reference to five DNA species each encoding different PLA(2) isoenzymes from Tokunoshima T. flavoviridis venom gland, also suggested that BPI and BPII mRNA species are not expressed in Okinawa T. flavoviridis venom gland. In contrast, genomic Southern blot analysis with a variety of probes showed that only the bands corresponding to the upstream and downstream regions of the genes for BPI and/or BPII can be detected in Okinawa T. flavoviridis. These results suggested that the genes for BPI and BPII in Okinawa T. flavoviridis genome had been inactivated to form pseudogenes. Differently from Amami-Oshima and Tokunoshima T. flavovirdis genomic DNAs, PCR amplification of the segments of BPI and BPII genes between the 5' moiety of second exon and the middle portion of second intron failed for Okinawa T. flavoviridis genomic DNAs. In sequence analysis of the two segments involving polymorphism between BPI and BPII genes, which are located in first exon and third exon, respectively, only one base was detected at the polymorphic positions for pseudogene in Okinawa T. flavoviridis genome. Based on these facts, it became evident for pseudogene that the upstream region of BPI gene down to the 5' moiety of second exon and the downstream region of BPII gene starting from the middle portion of second intron are in a linked form with a possible insertion. Such observations suggest that venom-gland genes for PLA(2) isoenzymes in T. flavoviridis snakes isolated for one to two million years have evolved independently. Their evolution is regional and seems, from several lines of consideration and observation, to be adaptive to the environment.
Collapse
Affiliation(s)
- T Chijiwa
- Department of Chemistry, Faculty of Science, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Le Du MH, Ricciardi A, Khayati M, Ménez R, Boulain JC, Ménez A, Ducancel F. Stability of a structural scaffold upon activity transfer: X-ray structure of a three fingers chimeric protein. J Mol Biol 2000; 296:1017-26. [PMID: 10686100 DOI: 10.1006/jmbi.2000.3510] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fasciculin 2 and toxin alpha proteins belong to the same structural family of three-fingered snake toxins. They act on different targets, but in each case the binding region involves residues from loops I and II. The superimposition of the two structures suggests that these functional regions correspond to structurally distinct zones. Loop I, half of loop II and the C-terminal residue of fasciculin 2 were therefore transferred into the toxin alpha. The inhibition constant of the resulting chimera is only 15-fold lower than that of fasciculin 2, and as expected the potency of binding to the toxin alpha target has been lost. In order to understand the structure-function relationship between the chimera and its "parent" molecules, we solved its structure by X-ray crystallography. The protein crystallized in space group P3(1)21 with a=b=58.5 A, and c=62.3 A. The crystal structure was solved by molecular replacement and refined to 2.1 A resolution. The structure belongs to the three-fingered snake toxin family with a core of four disulphide bridges from which emerge the three loops I, II and III. Superimposition of the chimera on fasciculin 2 or toxin alpha revealed an overall fold intermediate between those of the two parent molecules. The regions corresponding to toxin alpha and to fasciculin 2 retained their respective geometries. In addition, the chimera protein displayed a structural behaviour similar to that of fasciculin 2, i.e. dimerization in the crystal structure of fasciculin 2, and the geometry of the region that binds to acetylcholinesterase. In conclusion, this structure shows that the chimera retains the general structural characteristics of three-fingered toxins, and the structural specificity of the transferred function.
Collapse
Affiliation(s)
- M H Le Du
- Département d'Ingénierie et d'Etude des Protéines, CE Saclay, Gif-sur-Yvette Cedex, 91191, France.
| | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
Data of large-scale DNA sequencing are relevant to some of the most fundamental issues in evolutionary biology: suboptimality, homology, hierarchy, ancestry, novelties, the role of natural selection, and the relative importance of directional versus stabilizing selection. Already, these data provided the best available evidence for some evolutionary phenomena, and in several cases led to refinement of old concepts. Still, the Darwinian evolutionary paradigm will successfully accommodate comparative genomics.
Collapse
Affiliation(s)
- A S Kondrashov
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, 20894, USA.
| |
Collapse
|
138
|
Valentin E, Ghomashchi F, Gelb MH, Lazdunski M, Lambeau G. On the diversity of secreted phospholipases A(2). Cloning, tissue distribution, and functional expression of two novel mouse group II enzymes. J Biol Chem 1999; 274:31195-202. [PMID: 10531313 DOI: 10.1074/jbc.274.44.31195] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over the last decade, an expanding diversity of secreted phospholipases A(2) (sPLA(2)s) has been identified in mammals. Here, we report the cloning in mice of three additional sPLA(2)s called mouse group IIE (mGIIE), IIF (mGIIF), and X (mGX) sPLA(2)s, thus giving rise to eight distinct sPLA(2)s in this species. Both mGIIE and mGIIF sPLA(2)s contain the typical cysteines of group II sPLA(2)s, but have relatively low levels of identity (less than 51%) with other mouse sPLA(2)s, indicating that these enzymes are novel group II sPLA(2)s. However, a unique feature of mGIIF sPLA(2) is the presence of a C-terminal extension of 23 amino acids containing a single cysteine. mGX sPLA(2) has 72% identity with the previously cloned human group X (hGX) sPLA(2) and displays similar structural features, making it likely that mGX sPLA(2) is the ortholog of hGX sPLA(2). Genes for mGIIE and mGIIF sPLA(2)s are located on chromosome 4, and that of mGX sPLA(2) on chromosome 16. Northern and dot blot experiments with 22 tissues indicate that all eight mouse sPLA(2)s have different tissue distributions, suggesting specific functions for each. mGIIE sPLA(2) is highly expressed in uterus, and at lower levels in various other tissues. mGIIF sPLA(2) is strongly expressed during embryogenesis and in adult testis. mGX sPLA(2) is mostly expressed in adult testis and stomach. When the cDNAs for the eight mouse sPLA(2)s were transiently transfected in COS cells, sPLA(2) activity was found to accumulate in cell medium, indicating that each enzyme is secreted and catalytically active. Using COS cell medium as a source of enzymes, pH rate profile and phospholipid headgroup specificity of the novel sPLA(2)s were analyzed and compared with the other mouse sPLA(2)s.
Collapse
Affiliation(s)
- E Valentin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UPR 411, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | | | | | |
Collapse
|
139
|
Miwa JM, Ibanez-Tallon I, Crabtree GW, Sánchez R, Sali A, Role LW, Heintz N. lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron 1999; 23:105-14. [PMID: 10402197 DOI: 10.1016/s0896-6273(00)80757-6] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Elapid snake venom neurotoxins exert their effects through high-affinity interactions with specific neurotransmitter receptors. A novel murine gene, lynx1, is highly expressed in the brain and contains the cysteine-rich motif characteristic of this class of neurotoxins. Primary sequence and gene structure analyses reveal an evolutionary relationship between lynx1 and the Ly-6/neurotoxin gene family. lynx1 is expressed in large projection neurons in the hippocampus, cortex, and cerebellum. In cerebellar neurons, lynx1 protein is localized to a specific subdomain including the soma and proximal dendrites. lynx1 binding to brain sections correlates with the distribution of nAChRs, and application of lynx1 to Xenopus oocytes expressing nAChRs results in an increase in acetylcholine-evoked macroscopic currents. These results identify lynx1 as a novel protein modulator for nAChRs in vitro, which could have important implications in the regulation of cholinergic function in vivo.
Collapse
Affiliation(s)
- J M Miwa
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Afifiyan F, Armugam A, Tan CH, Gopalakrishnakone P, Jeyaseelan K. Postsynaptic α-Neurotoxin Gene of the Spitting Cobra, Naja naja sputatrix: Structure, Organization, and Phylogenetic Analysis. Genome Res 1999. [DOI: 10.1101/gr.9.3.259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The venom of the spitting cobra, Naja naja sputatrixcontains highly potent α-neurotoxins (NTXs) in addition to phospholipase A2 (PLA2) and cardiotoxin (CTX). In this study, we report the complete characterization of three genes that are responsible for the synthesis of three isoforms of α-NTX in the venom of a single spitting cobra. DNA amplification by long-distance polymerase chain reaction (LD-PCR) and genome walking have provided information on the gene structure including their promoter and 5′ and 3′ UTRs. Each NTX isoform is ∼4 kb in size and contains three exons and two introns. The sequence homology among these isoforms was found to be 99%. Two possible transcription sites were identified by primer extension analysis and they corresponded to the adenine (A) nucleotide at positions +1 and −45. The promoter also contains two TATA boxes and a CCAAT box. Putative binding sites for transcriptional factors AP-2 and GATA are also present. The high percentage of similarity observed among the NTX gene isoforms of N. n. sputatrix as well as with the α-NTX and κ-NTX genes from other land snakes suggests that the NTX gene has probably evolved from a common ancestral gene.[The genomic DNA sequences reported in this paper have been submitted to GenBank databases under accession nos. AF096999 to AF097001.]
Collapse
|
141
|
Tamiya T, Ohno S, Nishimura E, Fujimi TJ, Tsuchiya T. Complete nucleotide sequences of cDNAs encoding long chain alpha-neurotoxins from sea krait, Laticauda semifasciata. Toxicon 1999; 37:181-5. [PMID: 9920490 DOI: 10.1016/s0041-0101(98)00181-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This paper presents the nucleotide sequences of the cDNAs encoding two long chain alpha-neurotoxins from Laticauda semifasciata venom gland. The deduced amino acid sequences are Ls-III and its iso-neurotoxin.
Collapse
Affiliation(s)
- T Tamiya
- Department of Chemistry, Faculty of Science and Technology, Sophia University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
142
|
Kordis D, Bdolah A, Gubensek F. Positive Darwinian selection in Vipera palaestinae phospholipase A2 genes is unexpectedly limited to the third exon. Biochem Biophys Res Commun 1998; 251:613-9. [PMID: 9792822 DOI: 10.1006/bbrc.1998.9528] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The venom of Vipera palaestinae contains a two-component toxin, consisting of an acidic phospholipase A2 (PLA2) and a basic protein. Here we report the cloning and sequence analysis of the complete V. palaestinae PLA2 genes. Since in all Viperidae PLA2 multigene families the 5' and 3' flanking regions are highly conserved, we designed oligonucleotide primers that allow amplification of the whole PLA2 multigene family in a single step. The structural organization of both genes is the same as in the Vipera ammodytes PLA2 multigene family, there being five exons separated by four introns. Comparison of V. palaestinae PLA2 genes with other Viperidae PLA2 genes has shown that the structural organization of the genes and the nucleotide sequence of all introns and flanking regions are highly conserved, whereas the third exon clearly shows a higher number of amino acid replacements, an indication of positive Darwinian selection. The positive Darwinian selection is surprisingly limited to the third exon, in contrast to other Viperidae PLA2 genes, where it is present in all mature protein coding exons.
Collapse
Affiliation(s)
- D Kordis
- Department of Biochemistry and Molecular Biology, Jozef Stefan Institute, Ljubljana, Slovenia.
| | | | | |
Collapse
|
143
|
Boisbouvier J, Albrand JP, Blackledge M, Jaquinod M, Schweitz H, Lazdunski M, Marion D. A structural homologue of colipase in black mamba venom revealed by NMR floating disulphide bridge analysis. J Mol Biol 1998; 283:205-19. [PMID: 9761684 DOI: 10.1006/jmbi.1998.2057] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of mamba intestinal toxin 1 (MIT1), isolated from Dendroaspis polylepis polylepis venom, has been determined. This molecule is a cysteine-rich polypeptide exhibiting no recognised family membership. Resistance to MIT1 to classical specific endoproteases produced contradictory NMR and biochemical information concerning disulphide-bridge topology. We have used distance restraints allowing ambiguous partners between S atoms in combination with NMR-derived structural information, to correctly determine the disulphide-bridge topology. The resultant solution structure of MIT1, determined to a resolution of 0.5 A, reveals an unexpectedly similar global fold with respect to colipase, a protein involved in fatty acid digestion. Colipase exhibits an analogous resistance to endoprotease activity, indicating for the first time the possible topological origins of this biochemical property. The biochemical and structural homology permitted us to propose a mechanically related digestive function for MIT1 and provides novel information concerning snake venom protein evolution.
Collapse
Affiliation(s)
- J Boisbouvier
- Institut de Biologie Structurale Jean-Pierre Ebel (CEA-CNRS), 41 Av. des Martyrs, 38027 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
144
|
Gasparini S, Danse JM, Lecoq A, Pinkasfeld S, Zinn-Justin S, Young LC, de Medeiros CC, Rowan EG, Harvey AL, Ménez A. Delineation of the functional site of alpha-dendrotoxin. The functional topographies of dendrotoxins are different but share a conserved core with those of other Kv1 potassium channel-blocking toxins. J Biol Chem 1998; 273:25393-403. [PMID: 9738007 DOI: 10.1074/jbc.273.39.25393] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified the residues that are important for the binding of alpha-dendrotoxin (alphaDTX) to Kv1 potassium channels on rat brain synaptosomal membranes, using a mutational approach based on site-directed mutagenesis and chemical synthesis. Twenty-six of its 59 residues were individually substituted by alanine. Substitutions of Lys5 and Leu9 decreased affinity more than 1000-fold, and substitutions of Arg3, Arg4, Leu6, and Ile8 by 5-30-fold. Substitution of Lys5 by norleucine or ornithine also greatly altered the binding properties of alphaDTX. All of these analogs displayed similar circular dichroism spectra as compared with the wild-type alphaDTX, indicating that none of these substitutions affect the overall conformation of the toxin. Substitutions of Ser38 and Arg46 also reduced the affinity of the toxin but, in addition, modified its dichroic properties, suggesting that these two residues play a structural role. The other residues were excluded from the recognition site because their substitutions caused no significant affinity change. Thus, the functional site of alphaDTX includes six major binding residues, all located in its N-terminal region, with Lys5 and Leu9 being the most important. Comparison of the functional site of alphaDTX with that of DTX-K, another dendrotoxin (Smith, L. A., Reid, P. F., Wang, F. C., Parcej, D. N., Schmidt, J. J., Olson, M. A., and Dolly, J. O. (1997) Biochemistry 36, 7690-7696), reveals that they only share the predominant lysine and probably a leucine residue; the additional functional residues differ from one toxin to the other. Comparison of the functional site of alphaDTX with those of structurally unrelated potassium channel-blocking toxins from venomous invertebrates revealed the common presence of a protruding key lysine with a close important hydrophobic residue (Leu, Tyr, or Phe) and few additional residues. Therefore, irrespective of their phylogenetic origin, all of these toxins may have undergone a functional convergence. The functional site of alphaDTX is topographically unrelated to the "antiprotease site" of the structurally analogous bovine pancreatic trypsin inhibitor.
Collapse
Affiliation(s)
- S Gasparini
- Département d'Ingéniérie et d'Etudes des Protéines, CEA Saclay, 91191 Gif sur Yvette Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Lachumanan R, Armugam A, Tan CH, Jeyaseelan K. Structure and organization of the cardiotoxin genes in Naja naja sputatrix. FEBS Lett 1998; 433:119-24. [PMID: 9738945 DOI: 10.1016/s0014-5793(98)00894-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the genomic structure, organization and the presence of multiple isoforms of the gene encoding cardiotoxins (CTX) of Naja naja sputatrix. The cardiotoxin gene consists of six CTX isoforms, each (2.2 kb) having three exons and two introns. Two possible transcription initiation sites as well as consensus TATA boxes and transcription factor binding motifs, AP-2, NFIL-6/C/EBP, NF-kappaB and PuF have been identified in the 5'-region of the gene. The CTX gene isoforms show nucleotide variations at specific segments in exon 2 and exon 3, which correspond to the functional domains in the three-finger loop structure of the cardiotoxin molecule. The diverse functions of cardiotoxins together with our findings suggest that the cardiotoxin gene isoforms may have evolved under adaptive pressure through a positive Darwinian selection process.
Collapse
Affiliation(s)
- R Lachumanan
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|