101
|
Bhatia V, Mula RVR, Falzon M. Parathyroid hormone-related protein regulates integrin α6 and β4 levels via transcriptional and post-translational pathways. Exp Cell Res 2013; 319:1419-30. [PMID: 23499737 DOI: 10.1016/j.yexcr.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/07/2013] [Accepted: 03/02/2013] [Indexed: 11/28/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) enhances prostate cancer (CaP) growth and metastasis in vivo. PTHrP also increases cell survival and migration, and upregulates pro-invasive integrin α6β4 expression. We used the human CaP cell lines C4-2 and PC-3 as model systems to study the mechanisms via which PTHrP regulates α6β4 levels. We report that PTHrP regulates α6 and β4 levels via a transcriptional pathway; β4 regulation involves the NF-κB pathway. PTHrP also regulates β4 levels at the post-translational level. PTHrP inhibits caspase-3 and -7 activities. Post-translational regulation of β4 by PTHrP is mediated via attenuation of its proteolytic cleavage by these caspases. Since α6 dimerizes with β4, increased β4 levels result in elevated α6 levels. Suppressing β4 using siRNA attenuates the effect of caspase inhibition on apoptosis and cell migration. These results provide evidence of a link between PTHrP, integrin α6β4 levels as a function of caspase activity, and cell survival and migration. Targeting PTHrP in CaP cancer, thereby reversing the effect on caspase activity and α6β4 levels, may thus prove therapeutically beneficial.
Collapse
Affiliation(s)
- Vandanajay Bhatia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | | | | |
Collapse
|
102
|
Bhardwaj V, Cascone T, Cortez MA, Amini A, Evans J, Komaki RU, Heymach JV, Welsh JW. Modulation of c-Met signaling and cellular sensitivity to radiation: potential implications for therapy. Cancer 2013; 119:1768-75. [PMID: 23423860 DOI: 10.1002/cncr.27965] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022]
Abstract
The c-Met/hepatocyte growth factor receptor and its family members are known to promote cancer cell migration and invasion. Signaling within and beyond this pathway contributes to the systemic spread of metastases through induction of the epithelial-mesenchymal transition, a process also implicated in mediating resistance to current anticancer therapies, including radiation. Induction of c-Met has also been observed after irradiation, suggesting that c-Met participates in radiation-induced disease progression through the epithelial-mesenchymal transition. Therefore, c-Met inhibition is an attractive target for potentially mitigating radiation resistance. This article summarizes key findings regarding crosstalk between radiotherapy and c-Met and discusses studies performed to date in which c-Met inhibition was used as a strategy to increase cellular radiosensitivity.
Collapse
Affiliation(s)
- Vikas Bhardwaj
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Hsu YL, Wu CY, Hung JY, Lin YS, Huang MS, Kuo PL. Galectin-1 promotes lung cancer tumor metastasis by potentiating integrin α6β4 and Notch1/Jagged2 signaling pathway. Carcinogenesis 2013; 34:1370-81. [PMID: 23389289 DOI: 10.1093/carcin/bgt040] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lung cancer is a major cancer, leading in both incidence and mortality in the world, and metastasis underlies the majority of lung cancer-related deaths. Galectin-1, a glycan-binding protein, has been shown to be overexpressed in lung cancer and involved in tumor-mediated immune suppression. However, the functional role of galectin-1 in lung cancer per se remains unknown. We demonstrate that ectopic expression of galectin-1 in a low-metastatic CL1-0 lung cancer cell line promotes its migration, invasion and epithelial-mesenchymal transition. Conversely, we also show that suppression of galectin-1 expression in highly invasive CL1-5 and A549 cells inhibits migration and invasion of lung cancer cell and causes a mesenchymal-epithelial transition. These effects may be transduced by increasing the expression of integrin α6β4 and Notch1/Jagged2, which in turn co-operates in the phosphorylation of AKT. The effects of galectin-1 on cancer progression are reduced when integrin β4 and Notch1 are absent. Further study has indicated that galectin-1 knockdown prevents the spread of highly metastatic Lewis lung carcinoma in vivo. Our study suggests that galectin-1 represents a crucial regulator of lung cancer metastasis. Thus, the detection and targeted treatment of galectin-1-expressing cancer serves as a new therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
104
|
Yoshioka T, Otero J, Chen Y, Kim YM, Koutcher JA, Satagopan J, Reuter V, Carver B, de Stanchina E, Enomoto K, Greenberg NM, Scardino PT, Scher HI, Sawyers CL, Giancotti FG. β4 Integrin signaling induces expansion of prostate tumor progenitors. J Clin Invest 2013; 123:682-99. [PMID: 23348745 PMCID: PMC3561800 DOI: 10.1172/jci60720] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/25/2012] [Indexed: 02/03/2023] Open
Abstract
The contextual signals that regulate the expansion of prostate tumor progenitor cells are poorly defined. We found that a significant fraction of advanced human prostate cancers and castration-resistant metastases express high levels of the β4 integrin, which binds to laminin-5. Targeted deletion of the signaling domain of β4 inhibited prostate tumor growth and progression in response to loss of p53 and Rb function in a mouse model of prostate cancer (PB-TAg mice). Additionally, it suppressed Pten loss-driven prostate tumorigenesis in tissue recombination experiments. We traced this defect back to an inability of signaling-defective β4 to sustain self-renewal of putative cancer stem cells in vitro and proliferation of transit-amplifying cells in vivo. Mechanistic studies indicated that mutant β4 fails to promote transactivation of ErbB2 and c-Met in prostate tumor progenitor cells and human cancer cell lines. Pharmacological inhibition of ErbB2 and c-Met reduced the ability of prostate tumor progenitor cells to undergo self-renewal in vitro. Finally, we found that β4 is often coexpressed with c-Met and ErbB2 in human prostate cancers and that combined pharmacological inhibition of these receptor tyrosine kinases exerts antitumor activity in a mouse xenograft model. These findings indicate that the β4 integrin promotes prostate tumorigenesis by amplifying ErbB2 and c-Met signaling in tumor progenitor cells.
Collapse
Affiliation(s)
- Toshiaki Yoshioka
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Javier Otero
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Yu Chen
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Young-Mi Kim
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Jason A. Koutcher
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Jaya Satagopan
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Victor Reuter
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Brett Carver
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Elisa de Stanchina
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Katsuhiko Enomoto
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Norman M. Greenberg
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Peter T. Scardino
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Howard I. Scher
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Charles L. Sawyers
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Filippo G. Giancotti
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| |
Collapse
|
105
|
|
106
|
Ephstein Y, Singleton PA, Chen W, Wang L, Salgia R, Kanteti P, Dudek SM, Garcia JGN, Jacobson JR. Critical role of S1PR1 and integrin β4 in HGF/c-Met-mediated increases in vascular integrity. J Biol Chem 2012; 288:2191-200. [PMID: 23212923 DOI: 10.1074/jbc.m112.404780] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial cell (EC) barrier integrity is critical to vessel homeostasis whereas barrier dysfunction is a key feature of inflammatory disorders and tumor angiogenesis. We previously reported that hepatocyte growth factor (HGF)-mediated increases in EC barrier integrity are signaled through a dynamic complex present in lipid rafts involving its receptor, c-Met. We extended these observations to confirm that S1PR1 (sphingosine 1-phosphate receptor 1) and integrin β4 (ITGB4) are essential participants in HGF-induced EC barrier enhancement. Immunoprecipitation experiments demonstrated HGF-mediated recruitment of c-Met, ITGB4 and S1PR1 to caveolin-enriched lipid rafts in human lung EC with direct interactions of c-Met with both S1PR1 and ITGB4 accompanied by c-Met-dependent S1PR1 and ITGB4 transactivation. Reduced S1PR1 expression (siRNA) attenuated both ITGB4 and Rac1 activation as well as c-Met/ITGB4 interaction and resulted in decreased transendothelial electrical resistance. Furthermore, reduced ITGB4 expression attenuated HGF-induced c-Met activation, c-Met/S1PR1 interaction, and effected decreases in S1P- and HGF-induced EC barrier enhancement. Finally, the c-Met inhibitor, XL880, suppressed HGF-induced c-Met activation as well as S1PR1 and ITGB4 transactivation. These results support a critical role for S1PR1 and ITGB4 transactivation as rate-limiting events in the transduction of HGF signals via a dynamic c-Met complex resulting in enhanced EC barrier integrity.
Collapse
Affiliation(s)
- Yulia Ephstein
- Institute for Personalized Respiratory Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
Solid tumors not only comprise malignant cells but also other nonmalignant cell types, forming a unique microenvironment that can strongly influence the behavior of tumor cells. Recent advances in the understanding of cancer biology have highlighted the functional role of semaphorins. In fact, semaphorins form a family of molecular signals known to guide and control cell migration during embryo development and in adults. Tumor cells express semaphorins as well as their receptors, plexins and neuropilins. It has been shown that semaphorin signaling can regulate tumor cell behavior. Moreover, semaphorins are important regulators of tumor angiogenesis. Conversely, very little is known about the functional relevance of semaphorin signals for tumor-infiltrating stromal cells, such as leukocytes. In this chapter, we review the current knowledge on the functional role of semaphorins in cancer progression, and we focus on the emerging role of semaphorins in mediating the cross talk between tumor cells and different tumor stromal cells.
Collapse
Affiliation(s)
- Claudia Muratori
- University of Torino Medical School, Institute for Cancer Research (IRCC), Candiolo, Turin, Italy
| | | |
Collapse
|
108
|
Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev 2012; 64:1078-89. [PMID: 22465487 DOI: 10.1016/j.addr.2012.03.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/12/2012] [Accepted: 03/05/2012] [Indexed: 11/21/2022]
Abstract
The regeneration of large bone defects caused by trauma or disease remains a significant clinical problem. Although osteoinductive growth factors such as bone morphogenetic proteins have entered clinics, transplantation of autologous bone remains the gold standard to treat bone defects. The effective treatment of bone defects by protein therapeutics in humans requires quantities that exceed the physiological doses by several orders of magnitude. This not only results in very high treatment costs but also bears considerable risks for adverse side effects. These issues have motivated the development of biomaterials technologies allowing to better control biomolecule delivery from the solid phase. Here we review recent approaches to immobilize biomolecules by affinity binding or by covalent grafting to biomaterial matrices. We focus on biomaterials concepts that are inspired by extracellular matrix (ECM) biology and in particular the dynamic interaction of growth factors with the ECM. We highlight the value of synthetic, ECM-mimicking matrices for future technologies to study bone biology and develop the next generation of 'smart' implants.
Collapse
|
109
|
Polacheck WJ, Zervantonakis IK, Kamm RD. Tumor cell migration in complex microenvironments. Cell Mol Life Sci 2012; 70:1335-56. [PMID: 22926411 DOI: 10.1007/s00018-012-1115-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/21/2012] [Accepted: 07/31/2012] [Indexed: 12/18/2022]
Abstract
Tumor cell migration is essential for invasion and dissemination from primary solid tumors and for the establishment of lethal secondary metastases at distant organs. In vivo and in vitro models enabled identification of different factors in the tumor microenvironment that regulate tumor progression and metastasis. However, the mechanisms by which tumor cells integrate these chemical and mechanical signals from multiple sources to navigate the complex microenvironment remain poorly understood. In this review, we discuss the factors that influence tumor cell migration with a focus on the migration of transformed carcinoma cells. We provide an overview of the experimental and computational methods that allow the investigation of tumor cell migration, and we highlight the benefits and shortcomings of the various assays. We emphasize that the chemical and mechanical stimulus paradigms are not independent and that crosstalk between them motivates the development of new assays capable of applying multiple, simultaneous stimuli and imaging the cellular migratory response in real-time. These next-generation assays will more closely mimic the in vivo microenvironment to provide new insights into tumor progression, inform techniques to control tumor cell migration, and render cancer more treatable.
Collapse
Affiliation(s)
- William J Polacheck
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave. Room NE47-315, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
110
|
Abstract
c-MET is a receptor tyrosine kinase that, after binding with its ligand, hepatocyte growth factor, activates a wide range of different cellular signaling pathways, including those involved in proliferation, motility, migration and invasion. Although c-MET is important in the control of tissue homeostasis under normal physiological conditions, it has also been found to be aberrantly activated in human cancers via mutation, amplification or protein overexpression. This paper provides an overview of the c-MET signaling pathway, including its role in the development of cancers, and provides a rationale for targeting the pathway as a possible treatment option.
Collapse
|
111
|
Blumenschein GR, Mills GB, Gonzalez-Angulo AM. Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J Clin Oncol 2012; 30:3287-96. [PMID: 22869872 DOI: 10.1200/jco.2011.40.3774] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The hepatocyte growth factor (HGF) and its receptor, the transmembrane tyrosine kinase cMET, promote cell proliferation, survival, motility, and invasion as well as morphogenic changes that stimulate tissue repair and regeneration in normal cells but can be co-opted during tumor growth. MET overexpression, with or without gene amplification, has been reported in a variety of human cancers, including breast, lung, and GI malignancies. Furthermore, high levels of HGF and/or cMET correlate with poor prognosis in several tumor types, including breast, ovarian, cervical, gastric, head and neck, and non-small-cell lung cancers. Gene amplification and protein overexpression of cMET drive resistance to epidermal growth factor receptor family inhibitors, both in preclinical models and in patients. It is increasingly apparent that the HGF-cMET axis signaling network is complex, and rational combinatorial therapy is needed for optimal clinical efficacy. Better understanding of HGF-cMET axis signaling and the mechanism of action of HGF-cMET inhibitors, along with the identification of biomarkers of response and resistance, will lead to more effective targeting of this pathway for cancer therapy.
Collapse
Affiliation(s)
- George R Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 432, Houston, TX 77030-4009, USA.
| | | | | |
Collapse
|
112
|
Lin HC, Lai PY, Lin YP, Huang JY, Yang BC. Fas ligand enhances malignant behavior of tumor cells through interaction with Met, hepatocyte growth factor receptor, in lipid rafts. J Biol Chem 2012; 287:20664-73. [PMID: 22535954 DOI: 10.1074/jbc.m111.326058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many late-stage cancer cells express Fas ligand (FasL) and show high malignancy with metastatic potential. We report here a novel signaling mechanism for FasL that hijacks the Met signal pathway to promote tumor metastasis. FasL-expressing human tumor cells express a significant amount of phosphorylated Met. The down-regulation of FasL in these cells led to decreased Met activity and reduced cell motility. Ectopic expression of human FasL in NIH3T3 cells significantly stimulated their migration and invasion. The inhibition of Met and Stat3 activities reverted the FasL-associated phenotype. Notably, FasL variants activated the Met pathway, even though most of their intracellular domain or Fas binding sites were deleted. FasL interacted with Met through the FasL(105-130) extracellular region in lipid rafts, which consequently led to Met activation. Knocking down Met gene expression by RNAi technology reverted the FasL-associated motility to basal levels. Furthermore, treatment with synthetic peptides corresponding to FasL(117-126) significantly reduced the FasL/Met interaction, Met phosphorylation, and cell motility of FasL(+) transfectants and tumor cells. Finally, the transfectants of truncated FasL showed strong anchorage-independent growth and lung metastasis potential in null mice. Collectively, our results establish the FasL-Met-Stat3 signaling pathway and explains the metastatic phenotype of FasL-expressing tumors.
Collapse
Affiliation(s)
- Huan-Ching Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | |
Collapse
|
113
|
Yu PT, Babicky M, Jaquish D, French R, Marayuma K, Mose E, Niessen S, Hoover H, Shields D, Cheresh D, Cravatt BF, Lowy AM. The RON-receptor regulates pancreatic cancer cell migration through phosphorylation-dependent breakdown of the hemidesmosome. Int J Cancer 2012; 131:1744-54. [PMID: 22275185 DOI: 10.1002/ijc.27447] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/02/2012] [Indexed: 01/12/2023]
Abstract
The recepteur d'origine nantais (RON) receptor tyrosine kinase is overexpressed and stimulates invasive growth in pancreatic cancer cells, yet the mechanisms that underlie RON-mediated phenotypes remain poorly characterized. To better understand RON function in pancreatic cancer cells, we sought to identify novel RON interactants using multidimensional protein identification analysis. These studies revealed plectin, a large protein of the spectrin superfamily, to be a novel RON interactant. Plectin is a multifunctional protein that complexes with integrin-β4 (ITGB4) to form hemidesmosomes, serves as a scaffolding platform crucial to the function of numerous protein signaling pathways and was recently described as an overexpressed protein in pancreatic cancer (Bausch D et al., Clin Cancer Res 2010; Kelly et al., PLoS Med 2008;5:e85). In this study, we demonstrate that on exposure to its ligand, macrophage-stimulating protein, RON binds to plectin and ITGB4, which results in disruption of the plectin-ITGB4 interaction and enhanced cell migration, a phenotype that can be recapitulated by small hairpin ribosomal nucleic acid (shRNA)-mediated suppression of plectin expression. We demonstrate that disruption of plectin-ITGB4 is dependent on RON and phosphoinositide-3 (PI3) kinase, but not mitogen-activated protein kinase (MEK), activity. Thus, in pancreatic cancer cells, plectin and ITGB4 form hemidesmosomes which serve to anchor cells to the extracellular matrix (ECM) and restrain migration. The current study defines a novel interaction between RON and plectin, provides new insight into RON-mediated migration and further supports efforts to target RON kinase activity in pancreatic cancer.
Collapse
Affiliation(s)
- Peter T Yu
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Ohnishi H, Oka K, Mizuno S, Nakamura T. Identification of mannose receptor as receptor for hepatocyte growth factor β-chain: novel ligand-receptor pathway for enhancing macrophage phagocytosis. J Biol Chem 2012; 287:13371-81. [PMID: 22354962 DOI: 10.1074/jbc.m111.318568] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hepatocyte growth factor (HGF), a heterodimer composed of the α-chain and β-chain, exerts multifunctional actions for tissue repair and homeostasis via its receptor, MET. HGF is cleaved by proteases secreted from inflammatory cells, and NK4 and β-chain remnant (HGF-β) are generated. Here, we provide evidence that HGF-β binds to a new receptor other than MET for promoting a host cell clearance system. By an affinity cross-linking, radiolabeled HGF-β was bound to liver non-parenchymal cells, particularly to Kupffer cells and sinusoidal endothelial cells, but not to parenchymal hepatocytes. The cross-linked complex was immunoprecipitated by anti-HGF antibody, but not anti-MET antibody, implying that HGF-β binds to non-parenchymal cells at a site distinct from MET. Mass spectrometric detection of the ligand receptor complex revealed that the binding site of HGF-β was the mannose receptor (MR). Actually, an ectopic expression of MR in COS-7 cells, which express no endogenous MR or MET, enabled HGF-β to bind these cells at a K(D) of 89 nM, demonstrating that MR is the new receptor for HGF-β. Interaction of HGF-β and MR was diminished by EGTA, and by an enzymatic digestion of HGF-β sugar chains, suggesting that MR may recognize the glycosylation site(s) of HGF-β in a Ca(2+)-dependent fashion. Notably, HGF-β, but not other MR ligands, enhanced the ingestion of latex beads, or of apoptotic neutrophils, by Kupffer cells, possibly via an F-actin-dependent pathway. Thus, the HGF-β·MR complex may provide a new pathway for the enhancement of cell clearance systems, which is associated with resolution of inflammation.
Collapse
Affiliation(s)
- Hiroyuki Ohnishi
- Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
115
|
Molecular alterations associated with osteosarcoma development. Sarcoma 2012; 2012:523432. [PMID: 22448123 PMCID: PMC3289857 DOI: 10.1155/2012/523432] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/02/2011] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma is the most frequent malignant primary bone tumor characterized by a high potency to form lung metastases which is the main cause of death. Unfortunately, the conventional chemotherapy is not fully effective on osteosarcoma metastases. The progression of a primary tumor to metastasis requires multiple processes, which are neovascularization, proliferation, invasion, survival in the bloodstream, apoptosis resistance, arrest at a distant organ, and outgrowth in secondary sites. Consequently, recent studies have revealed new insights into the molecular mechanisms of metastasis development. The understanding of the mechanism of molecular alterations can provide the identification of novel therapeutic targets and/or prognostic markers for osteosarcoma treatment to improve the clinical outcome.
Collapse
|
116
|
Liadaki K, Casar JC, Wessen M, Luth ES, Jun S, Gussoni E, Kunkel LM. β4 integrin marks interstitial myogenic progenitor cells in adult murine skeletal muscle. J Histochem Cytochem 2012; 60:31-44. [PMID: 22205679 DOI: 10.1369/0022155411428991] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle growth and its regeneration following injury rely on myogenic progenitor cells, a heterogeneous population that includes the satellite cells and other interstitial progenitors. The present study demonstrates that surface expression of β4 integrin marks a population of vessel-associated interstitial muscle progenitor cells. Muscle β4 integrin-positive cells do not express myogenic markers upon isolation. However, they are capable of undergoing myogenic specification in vitro and in vivo: β4 integrin cells differentiate into multinucleated myotubes in culture dishes and contribute to muscle regeneration upon delivery into diseased mice. Subfractionation of β4 integrin-expressing cells based on CD31 expression does not further enrich for myogenic precursors. These findings support the expression of β4 integrin in interstitial, vessel-associated cells with myogenic activity within adult skeletal muscle.
Collapse
Affiliation(s)
- Kalliopi Liadaki
- Program in Genomics, Division of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Gerson KD, Shearstone JR, Maddula VSRK, Seligmann BE, Mercurio AM. Integrin β4 regulates SPARC protein to promote invasion. J Biol Chem 2012; 287:9835-9844. [PMID: 22308039 DOI: 10.1074/jbc.m111.317727] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The α6β4 integrin (referred to as "β4" integrin) is a receptor for laminins that promotes carcinoma invasion through its ability to regulate key signaling pathways and cytoskeletal dynamics. An analysis of published Affymetrix GeneChip data to detect downstream effectors involved in β4-mediated invasion of breast carcinoma cells identified SPARC, or secreted protein acidic and rich in cysteine. This glycoprotein has been shown to play an important role in matrix remodeling and invasion. Our analysis revealed that manipulation of β4 integrin expression and signaling impacted SPARC expression and that SPARC facilitates β4-mediated invasion. Expression of β4 in β4-deficient cells reduced the expression of a specific microRNA (miR-29a) that targets SPARC and impedes invasion. In cells that express endogenous β4, miR-29a expression is low and β4 ligation facilitates the translation of SPARC through a TOR-dependent mechanism. The results obtained in this study demonstrate that β4 can regulate SPARC expression and that SPARC is an effector of β4-mediated invasion. They also highlight a potential role for specific miRNAs in executing the functions of integrins.
Collapse
Affiliation(s)
- Kristin D Gerson
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Jeffrey R Shearstone
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | | | | | - Arthur M Mercurio
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and.
| |
Collapse
|
118
|
Ferreira MBA, Lima JPSN, Cohen EEW. Novel targeted therapies in head and neck cancer. Expert Opin Investig Drugs 2012; 21:281-95. [PMID: 22239178 DOI: 10.1517/13543784.2012.651455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Molecularly targeted therapy, with the potential for increased selectivity and fewer adverse effects, hold promise in the treatment of HNSCC. AREAS COVERED Targeted agents for HNSCC expected to improve the effectiveness of current therapy including HER family, Src-family kinase, cell cycle, MET, AKT, HDAC, PARP, COX inhibitors and antiangiogenesis. EXPERT OPINION Epidermal growth factor receptor inhibitors are established in HNSCC and the need now is to find biomarkers for sensitivity to better select patients. Moreover, other pathway inhibitors hold significant promise and are being tested in clinical trials. Angiogenesis inhibition is likely to yield only modest efficacy alone but may augment existing standards. Lastly, one clinical arena where targeted therapies may find secure purchase is in the adjuvant or prevention setting where minimal or preneoplastic disease can be affected by inhibition of a single or few targets.
Collapse
|
119
|
Role of ITAM signaling module in signal integration. Curr Opin Immunol 2012; 24:58-66. [PMID: 22240121 DOI: 10.1016/j.coi.2011.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/21/2011] [Indexed: 12/17/2022]
Abstract
Diverse cell types use a small number of evolutionarily conserved signaling modules to integrate external cues and elicit distinct functions. A question thus arises as to how does a receptor, which contains a single signaling module, produce distinct outcomes to diverse signals, particularly if such module is shared amongst a family of receptors? Emerging data suggest that many immunoreceptors, all of which use a conserved ITAM-module for their signaling, can couple with members of additional classes of membrane receptors to deliver unique signal(s) to the cell. We discuss the possible biological purposes and mechanisms behind these interactions at the plasma membrane. We offer a conceptual framework to understand information processing within the immune system and discuss the new biology of old receptors involving their structural and functional collaborations that evolved to deliver unique signal(s) to the cell using a limited set of conserved signaling modules.
Collapse
|
120
|
|
121
|
Zhang Y, Wang L, Zhang M, Jin M, Bai C, Wang X. Potential mechanism of interleukin-8 production from lung cancer cells: an involvement of EGF-EGFR-PI3K-Akt-Erk pathway. J Cell Physiol 2011; 227:35-43. [PMID: 21412767 DOI: 10.1002/jcp.22722] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor inflammatory microenvironment is considered to play the role in the sensitivity of tumor cells to therapies and prognosis of lung cancer patients. Interleukin-8 (IL-8) is one of critical chemo-attractants responsible for leukocyte recruitment, cancer proliferation, and angiogenesis. The present study aimed at investigating potential mechanism of IL-8 production from human non-small cell lung cancer (NSCLC) SPC-A1 cells. We initially found that EGF could directly stimulate IL-8 production, proliferation, and bio-behaviors of lung cancer cells through the activation of EGFR, PI3K, Akt, and Erk signal pathway. EGF-stimulated IL-8 production, phosphorylation of Akt and Erk, and cell proliferation and movement could be inhibited by EGFR inhibitor (Erlotinib), PI3K inhibitor (GDC-0941 BEZ-235 and SHBM1009), and ERK1/2 inhibitor (PD98059). Our data indicate that IL-8 production from lung cancer cells could be initiated by their own produced factors, leading to the recruitment of inflammatory cells in the cancer tissue, and the formation of inflammatory microenvironment. Thus, it seems that the signal pathway of EGFR-PI3K-Akt-Erk can be the potential target of therapies for inflammatory microenvironment in lung cancer.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pulmonary Medicine, Center for Biomedical Research, Zhongshan Hospital, Fudan University Medical School, Shanghai, China
| | | | | | | | | | | |
Collapse
|
122
|
Sperka T, Geißler KJ, Merkel U, Scholl I, Rubio I, Herrlich P, Morrison HL. Activation of Ras requires the ERM-dependent link of actin to the plasma membrane. PLoS One 2011; 6:e27511. [PMID: 22132106 PMCID: PMC3221661 DOI: 10.1371/journal.pone.0027511] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/18/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Receptor tyrosine kinases (RTKs) participate in a multitude of signaling pathways, some of them via the small G-protein Ras. An important component in the activation of Ras is Son of sevenless (SOS), which catalyzes the nucleotide exchange on Ras. PRINCIPAL FINDINGS We can now demonstrate that the activation of Ras requires, in addition, the essential participation of ezrin, radixin and/or moesin (ERM), a family of actin-binding proteins, and of actin. Disrupting either the interaction of the ERM proteins with co-receptors, down-regulation of ERM proteins by siRNA, expression of dominant-negative mutants of the ERM proteins or disruption of F-actin, abolishes growth factor-induced Ras activation. Ezrin/actin catalyzes the formation of a multiprotein complex consisting of RTK, co-receptor, Grb2, SOS and Ras. We also identify binding sites for both Ras and SOS on ezrin; mutations of these binding sites destroy the interactions and inhibit Ras activation. Finally, we show that the formation of the ezrin-dependent complex is necessary to enhance the catalytic activity of SOS and thereby Ras activation. CONCLUSIONS Taking these findings together, we propose that the ERM proteins are novel scaffolds at the level of SOS activity control, which is relevant for both normal Ras function and dysfunction known to occur in several human cancers.
Collapse
Affiliation(s)
- Tobias Sperka
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
- Herrlich Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Katja J. Geißler
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ulrike Merkel
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ingmar Scholl
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, Friedrich-Schiller-University, Jena, Germany
| | - Peter Herrlich
- Herrlich Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Helen L. Morrison
- Morrison Laboratory, Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
- * E-mail:
| |
Collapse
|
123
|
O'Connor KL, Chen M, Towers LN. Integrin α6β4 cooperates with LPA signaling to stimulate Rac through AKAP-Lbc-mediated RhoA activation. Am J Physiol Cell Physiol 2011; 302:C605-14. [PMID: 22049212 DOI: 10.1152/ajpcell.00095.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The α(6)β(4) integrin promotes carcinoma invasion through its ability to promote directed migration and polarization of carcinoma cells. In this study, we explore how the α(6)β(4) integrin cooperates with lysophosphatidic acid (LPA) to activate Rho and Rac small GTPases. Through the use of dominant negative Rho constructs, C3 exotransferase, and Rho kinase inhibitor, we find that Rho is critical for LPA-dependent chemotaxis and lamellae formation. However, utilization of specific Rho isoforms depends on integrin α(6)β(4) expression status. Integrin α(6)β(4)-negative MDA-MB-435 cells utilize only RhoC for motility, whereas integrin α(6)β(4)-expressing cells utilize RhoC but additionally activate and utilize RhoA for LPA-dependent cell motility and lamellae formation. Notably, the activation of RhoA by cooperative LPA and integrin α(6)β(4) signaling requires the Rho guanine nucleotide exchange factor AKAP-Lbc. We also determine that integrin α(6)β(4) cannot activate Rac1 directly but promotes LPA-mediated Rac1 activation that is dependent on RhoA activity and de novo β(1) integrin ligation. Finally, we find that the regulation of Rac1 and RhoA in response to LPA is differentially regulated by phosphodiesterases, PKA, and phosphatidylinositol 3-kinase, thus supporting their spatially distinct compartmentalization. In summary, signaling from integrin α(6)β(4) facilitates LPA-stimulated chemotaxis through preferential activation of RhoA, which, in turn, facilitates activation of Rac1.
Collapse
|
124
|
Varkaris A, Corn PG, Gaur S, Dayyani F, Logothetis CJ, Gallick GE. The role of HGF/c-Met signaling in prostate cancer progression and c-Met inhibitors in clinical trials. Expert Opin Investig Drugs 2011; 20:1677-84. [PMID: 22035268 DOI: 10.1517/13543784.2011.631523] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION An increasing number of basic, translational and clinical studies demonstrate the importance of the protein tyrosine kinase receptor, c-Met, in the progression of prostate cancer. c-Met is overexpressed in primary prostate cancers, further increased in expression in bone metastases and is associated with the development of castrate-resistant disease. Because of its importance as a target, c-Met inhibitors have reached clinical trial for advanced, castrate-resistant prostate cancer. AREAS COVERED In this review, altered expression of c-Met and hepatocyte growth factor in prostate tumors and the microenvironment and how they contribute to growth and invasion of prostate cancer cells is described. Next, preclinical studies providing the support for use of c-Met inhibitors are discussed. Finally, early promising results from c-Met inhibitors in clinical trial, and future prospects for c-Met inhibitors in the treatment of advanced stage prostate cancer, are discussed. EXPERT OPINION An emerging theme in treating metastatic prostate cancer is the requirement to target both the epithelial and stromal compartments. Results from clinical trials suggest that inhibitors of c-Met that block stromal-mediated c-Met activation in prostate tumors may be important therapeutic agents in at least a subset of patients with metastatic prostate cancer. However, as many of the inhibitors have multiple targets, the efficacy of targeting c-Met alone remains to be determined.
Collapse
Affiliation(s)
- Andreas Varkaris
- University of Texas MD Anderson Cancer Center, Department of Genitourinary Medical Oncology, Clinical Research Building (T7.3891), 1515 Holcombe Blvd, Unit 0018-4, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
125
|
Abstract
INTRODUCTION The aberrantly upregulated c-mesenchymal-epithelia transition factor (c-MET) signaling pathway has been considered to be an attractive target for cancer intervention owing to the important roles it plays in tumor formation, progression, metastasis, angiogenesis and drug resistance. Based on the historical preclinical evidence, a number of c-MET pathway targeted agents are being developed in the clinic, and recent clinical data have begun to provide some insight into which tumor types and patient populations a c-MET pathway inhibitor may be beneficial for. AREAS COVERED Through reviewing recent publications in the literature and information disclosed in other public forums, we describe the current understanding of c-MET biology in human malignancies and discuss the latest progress in the development of c-MET pathway inhibitors for cancer treatment. EXPERT OPINION The c-MET pathway inhibitors currently being evaluated in the clinic have demonstrated compelling evidence of clinical activity in different cancer types and may provide significant therapeutic opportunities. The challenges, however, are to identify the tumor types and patient populations that benefit most, and find the most effective combinations of therapies while minimizing potential toxicity.
Collapse
Affiliation(s)
- Xiangdong Liu
- Incyte Corporation, Experimental Station, Wilmington, DE 19880, USA.
| | | | | |
Collapse
|
126
|
Ivaska J, Heino J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu Rev Cell Dev Biol 2011; 27:291-320. [PMID: 21663443 DOI: 10.1146/annurev-cellbio-092910-154017] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All multicellular animals express receptors for growth factors (GFs) and extracellular matrix (ECM) molecules. Integrin-type ECM receptors anchor cells to their surroundings and concomitantly activate intracellular signal transduction pathways. The same signaling mechanisms are regulated by GF receptors (GFRs). Recently, intensive research efforts have revealed novel mechanisms describing how the two receptor systems collaborate at many different levels. Integrins can directly bind to GFs and promote their activation. Adhesion receptors also organize signaling platforms and assist GFRs or even activate them via ligand-independent mechanisms. Furthermore, integrins can orchestrate endocytosis and recycling of GFRs. Here, we review the present knowledge about the interplay between integrins and GFRs and discuss recent ideas of how this collaboration may explain some previous controversies in integrin research.
Collapse
Affiliation(s)
- Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Center of Finland, Turku FI-20520, Finland.
| | | |
Collapse
|
127
|
Integrin β4 signaling promotes mammary tumor cell adhesion to brain microvascular endothelium by inducing ErbB2-mediated secretion of VEGF. Ann Biomed Eng 2011; 39:2223-2241. [PMID: 21556948 DOI: 10.1007/s10439-011-0321-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 04/30/2011] [Indexed: 12/13/2022]
Abstract
Prior studies have indicated that the β4 integrin promotes mammary tumor invasion and metastasis by combining with ErbB2 and amplifying its signaling capacity. However, the effector pathways and cellular functions by which the β4 integrin exerts these effects are incompletely understood. To examine if β4 signaling plays a role during mammary tumor cell adhesion to microvascular endothelium, we have examined ErbB2-transformed mammary tumor cells expressing either a wild-type (WT) or a signaling-defective form of β4 (1355T). We report that WT cells adhere to brain microvascular endothelium in vitro to a significantly larger extent as compared to 1355T cells. Interestingly, integrin β4 signaling does not exert a direct effect on adhesion to the endothelium or the underlying basement membrane. Rather, it enhances ErbB2-dependent expression of VEGF by tumor cells. VEGF in turn disrupts the tight and adherens junctions of endothelial monolayers, enabling the exposure of underlying basement membrane and increasing the adhesion of tumor cells to the intercellular junctions of endothelium. Inhibition of ErbB2 on tumor cells or the VEGFR-2 on endothelial cells suppresses mammary tumor cell adhesion to microvascular endothelium. Our results indicate that β4 signaling regulates VEGF expression by the mammary tumor cells thereby enhancing their adhesion to microvascular endothelium.
Collapse
|
128
|
Jung T, Gross W, Zöller M. CD44v6 coordinates tumor matrix-triggered motility and apoptosis resistance. J Biol Chem 2011; 286:15862-74. [PMID: 21372142 PMCID: PMC3091196 DOI: 10.1074/jbc.m110.208421] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/01/2011] [Indexed: 12/14/2022] Open
Abstract
Tumor progression requires a crosstalk with the tumor surrounding, where the tumor matrix plays an essential role. We recently reported that only the matrix delivered by a CD44v6-competent (ASML(wt)), but not that of a CD44v6-deficient (ASML-CD44v(kd)) rat pancreatic adenocarcinoma line supports metastasis formation. We here describe that this matrix provides an important feedback toward the tumor cell and that CD44v6 accounts for orchestrating signals received from the matrix. ASML(wt) cells contain more hyaluronan synthase-3 and secrete higher amounts of >50 kDa HA than ASML-CD44v(kd) cells, which secrete more hyaluronidase. Only the ASML(wt)-matrix supports migration and apoptosis resistance, which both can be initiated via CD44v6, c-Met, and α6β4 ligand binding and proceed via FAK, PI3K/Akt, and MAPK activation, respectively. However, c-Met- and α6β4-initiated signaling are strongly augmented by the association with CD44v6 as only very weak effects are observed in CD44v6-deficient cells. The same CD44v6-dependent convergence of motility- and apoptosis resistance-related signals also accounts for human tumor lines. Thus, CD44v6 promotes motility and apoptosis resistance via its involvement in assembling a matrix that, in turn, triggers activation of signaling cascades, which proceeds, independent of the initiating receptor-ligand interaction, in a concerted action via CD44v6.
Collapse
Affiliation(s)
- Thorsten Jung
- From the Departments of Tumor Cell Biology, University Hospital of Surgery, and
| | - Wolfgang Gross
- Experimental Surgery, University of Heidelberg, D-69120 Heidelberg, Germany and
| | - Margot Zöller
- From the Departments of Tumor Cell Biology, University Hospital of Surgery, and
- German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|
129
|
β1 integrin controls EGFR signaling and tumorigenic properties of lung cancer cells. Oncogene 2011; 30:4087-96. [DOI: 10.1038/onc.2011.107] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
130
|
Mitra AK, Sawada K, Tiwari P, Mui K, Gwin K, Lengyel E. Ligand-independent activation of c-Met by fibronectin and α(5)β(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene 2011; 30:1566-76. [PMID: 21119598 PMCID: PMC3069218 DOI: 10.1038/onc.2010.532] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/16/2010] [Accepted: 10/11/2010] [Indexed: 12/27/2022]
Abstract
The role of the fibronectin receptor, α(5)β(1)-integrin, as an adhesion receptor and in angiogenesis is well established. However, its role in cancer cell invasion and metastasis is less clear. We describe a novel mechanism by which fibronectin regulates ovarian cancer cell signaling and promotes metastasis. Fibronectin binding to α(5)β(1)-integrin led to a direct association of α(5)-integrin with the receptor tyrosine kinase, c-Met, activating it in a hepatocyte growth factor/scatter factor (HGF/SF) independent manner. Subsequently, c-Met associated with Src, and activated Src and focal adhesion kinase (FAK). Inhibition of α(5)β(1)-integrin decreased the phosphorylation of c-Met, FAK and Src, both in vitro and in vivo. Independent activation of c-Met by its native ligand, HGF/SF, or overexpression of a constitutively active FAK in HeyA8 cells could overcome the effect of α(5)β(1)-integrin inhibition on tumor cell invasion, indicating that α(5)β(1)-integrin is upstream of c-Met, Src and FAK. Inhibition of α(5)β(1)-integrin on cancer cells in two xenograft models of ovarian cancer metastasis resulted in a significant decrease of tumor burden, which was independent of the effect of α(5)β(1)-integrin on angiogenesis. These data suggest that fibronectin promotes ovarian cancer invasion and metastasis through an α(5)β(1)-integrin/c-Met/FAK/Src-dependent signaling pathway, transducing signals through c-Met in an HGF/SF-independent manner.
Collapse
Affiliation(s)
- A K Mitra
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, Center for Integrative Science, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
131
|
Abstract
The development of multicellular organisms, as well as maintenance of organ architecture and function, requires robust regulation of cell fates. This is in part achieved by conserved signaling pathways through which cells process extracellular information and translate this information into changes in proliferation, differentiation, migration, and cell shape. Gene deletion studies in higher eukaryotes have assigned critical roles for components of the extracellular matrix (ECM) and their cellular receptors in a vast number of developmental processes, indicating that a large proportion of this signaling is regulated by cell-ECM interactions. In addition, genetic alterations in components of this signaling axis play causative roles in several human diseases. This review will discuss what genetic analyses in mice and lower organisms have taught us about adhesion signaling in development and disease.
Collapse
Affiliation(s)
- Sara A Wickström
- Paul Gerson Una Group, Skin Homeostasis and Ageing, Max Planck Institute for Biology of Ageing, 50937 Cologne, Germany.
| | | | | |
Collapse
|
132
|
Rikitake Y, Takai Y. Directional Cell Migration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:97-143. [DOI: 10.1016/b978-0-12-386043-9.00003-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
133
|
MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 2010; 11:834-48. [PMID: 21102609 DOI: 10.1038/nrm3012] [Citation(s) in RCA: 958] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MET tyrosine kinase receptor (also known as the HGF receptor) promotes tissue remodelling, which underlies developmental morphogenesis, wound repair, organ homeostasis and cancer metastasis, by integrating growth, survival and migration cues in response to environmental stimuli or cell-autonomous perturbations. The versatility of MET-mediated biological responses is sustained by qualitative and quantitative signal modulation. Qualitative mechanisms include the engagement of dedicated signal transducers and the subcellular compartmentalization of MET signalling pathways, whereas quantitative regulation involves MET partnering with adaptor amplifiers or being degraded through the shedding of its extracellular domain or through intracellular ubiquitylation. Controlled activation of MET signalling can be exploited in regenerative medicine, whereas MET inhibition might slow down tumour progression.
Collapse
|
134
|
Franco M, Muratori C, Corso S, Tenaglia E, Bertotti A, Capparuccia L, Trusolino L, Comoglio PM, Tamagnone L. The tetraspanin CD151 is required for Met-dependent signaling and tumor cell growth. J Biol Chem 2010; 285:38756-64. [PMID: 20937830 PMCID: PMC2998140 DOI: 10.1074/jbc.m110.145417] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 10/07/2010] [Indexed: 01/10/2023] Open
Abstract
CD151, a transmembrane protein of the tetraspanin family, is implicated in the regulation of cell-substrate adhesion and cell migration through physical and functional interactions with integrin receptors. In contrast, little is known about the potential role of CD151 in controlling cell proliferation and survival. We have previously shown that β4 integrin, a major CD151 partner, not only acts as an adhesive receptor for laminins but also as an intracellular signaling platform promoting cell proliferation and invasive growth upon interaction with Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF). Here we show that RNAi-mediated silencing of CD151 expression in cancer cells impairs HGF-driven proliferation, anchorage-independent growth, protection from anoikis, and tumor progression in xenograft models in vivo. Mechanistically, we found that CD151 is crucially implicated in the formation of signaling complexes between Met and β4 integrin, a known amplifier of HGF-induced tumor cell growth and survival. CD151 depletion hampered HGF-induced phosphorylation of β4 integrin and the ensuing Grb2-Gab1 association, a signaling pathway leading to MAPK stimulation and cell growth. Accordingly, CD151 knockdown reduced HGF-triggered activation of MAPK but not AKT signaling cascade. These results indicate that CD151 controls Met-dependent neoplastic growth by enhancing receptor signaling through β4 integrin-mediated pathways, independent of cell-substrate adhesion.
Collapse
Affiliation(s)
- Mélanie Franco
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Claudia Muratori
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Simona Corso
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Enrico Tenaglia
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Andrea Bertotti
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Lorena Capparuccia
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Livio Trusolino
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Paolo M. Comoglio
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| | - Luca Tamagnone
- From the Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Torino, Italy
| |
Collapse
|
135
|
Wei W, Barron PD, Rheinwald JG. Modulation of TGF-β-inducible hypermotility by EGF and other factors in human prostate epithelial cells and keratinocytes. In Vitro Cell Dev Biol Anim 2010; 46:841-55. [PMID: 21042878 PMCID: PMC3568941 DOI: 10.1007/s11626-010-9353-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 09/27/2010] [Indexed: 11/28/2022]
Abstract
Keratinocytes migrating from a wound edge or initiating malignant invasion greatly increase their expression of the basement membrane protein Laminin-322 (Lam332). In culture, keratinocytes initiate sustained directional hypermotility when plated onto an incompletely processed form of Lam332 (Lam332') or when treated with transforming growth factor beta (TGF-β), an inducer of Lam332 expression. The development and tissue architecture of stratified squamous and prostate epithelia are very different, yet the basal cells of both express p63, α6β4 integrin, and Lam332. Keratinocytes and prostate epithelial cells grow well in nutritionally optimized culture media with pituitary extract and certain mitogens. We report that prostate epithelial cells display hypermotility responses indistinguishable from those of keratinocytes. Several culture medium variables attenuated TGF-β-induced hypermotility, including Ca(++), serum, and some pituitary extract preparations, without impairing growth, TGF-β growth inhibition, or hypermotility on Lam322'. Distinct from its role as a mitogen, EGF proved to be a required cofactor for TGF-β-induced hypermotility and could not be replaced by HGF or KGF. Prostate epithelial cells have a short replicative lifespan, restricted both by p16(INK4A) and telomere-related mechanisms. We immortalized the normal prostate epithelial cell line HPrE-1 by transduction to express bmi1 and TERT. Prostate epithelial cells lose expression of p63, β4 integrin, and Lam332 when they transform to invasive carcinoma. In contrast, HPrE-1/bmi1/TERT cells retained expression of these proteins and normal TGF-β signaling and hypermotility for >100 doublings. Thus, keratinocytes and prostate epithelial cells possess common hypermotility and senescence mechanisms and immortalized prostate cell lines can be engineered using defined methods to yield cells retaining normal properties.
Collapse
Affiliation(s)
- Wei Wei
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China, 250012
| | - Patricia D. Barron
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - James G. Rheinwald
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
136
|
Mula RV, Bhatia V, Falzon M. PTHrP promotes colon cancer cell migration and invasion in an integrin α6β4-dependent manner through activation of Rac1. Cancer Lett 2010; 298:119-27. [PMID: 20637541 PMCID: PMC2946490 DOI: 10.1016/j.canlet.2010.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 05/06/2010] [Accepted: 06/07/2010] [Indexed: 12/13/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) is expressed by human colon cancer tissue and cell lines. Rac1 GTPase enhances colon cancer cell migration and invasion. Here we report a positive correlation between PTHrP expression and Rac1 activity in LoVo (human colon cancer) cells. The positive effects of PTHrP on Rac1 activity and on cell migration and invasion are mediated via the guanine nucleotide exchange factor Tiam1. Knockdown of integrin α6β4, which is upregulated by PTHrP, negates the PTHrP-mediated increase in Rac1 activation. Integrin α6β4 signals synergistically with growth factor receptors to activate the phosphatidylinositol 3-kinase (PI3-K) pathway. Chemical inhibition of PI3-K negates the PTHrP-mediated effects on Tiam1 and Rac1 activity. Tumors from PTHrP-overexpressing LoVo cells also show increased expression of Tiam1. Taken together, these observations provide evidence of a link between PTHrP and Rac1 activity through integrin α6β4, resulting in enhanced cell migration and invasion. Targeting PTHrP production in colon cancer may thus prove therapeutically beneficial.
Collapse
Affiliation(s)
- Ramanjaneya V. Mula
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - Vandanajay Bhatia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
| | - Miriam Falzon
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
137
|
Sun C, Liu X, Qi L, Xu J, Zhao J, Zhang Y, Zhang S, Miao J. Modulation of vascular endothelial cell senescence by integrin β4. J Cell Physiol 2010; 225:673-81. [PMID: 20509141 DOI: 10.1002/jcp.22262] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Increasing evidence has demonstrated that the senescence of vascular endothelial cells (VECs) has critical roles in the pathogenesis of vascular dysfunction. Finding important factors that regulate VEC senescence will help provide novel therapeutic strategies for vascular disorders. Previously, we found that integrin β4 was involved in VEC senescence. However, the mechanism underlying VEC senescence mediated by integrin β4 remains poorly understand. In this study, we used a mouse in vivo model and showed that the level of integrin β4 in the endothelium of mouse thoracic aorta was increased during natural aging and atherosclerosis. Furthermore, we found that H-ras, caveolin-1, and AP-1 were implicated in the senescent signal pathway mediated by integrin β4 in human umbilical vein ECs (HUVECs). Knockdown of integrin β4 could attenuate HUVEC senescent features, including increased interleukin-8 (IL-8) release and decreased endothelial nitric oxide synthase (eNOS) and NO levels and mitochondrial membrane potential in vitro. Our findings provide new clues illustrating the mechanism of VEC senescence. Integrin β4 might be a potential target for therapy in cardiovascular diseases.
Collapse
Affiliation(s)
- ChunHui Sun
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
138
|
SHP2 mediates the localized activation of Fyn downstream of the α6β4 integrin to promote carcinoma invasion. Mol Cell Biol 2010; 30:5306-17. [PMID: 20855525 DOI: 10.1128/mcb.00326-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Src family kinase (SFK) activity is elevated in many cancers, and this activity correlates with aggressive tumor behavior. The α6β4 integrin, which is also associated with a poor prognosis in many tumor types, can stimulate SFK activation; however, the mechanism by which it does so is not known. In the current study, we provide novel mechanistic insight into how the α6β4 integrin selectively activates the Src family member Fyn in response to receptor engagement. Both catalytic and noncatalytic functions of SHP2 are required for Fyn activation by α6β4. Specifically, the tyrosine phosphatase SHP2 is recruited to α6β4 and its catalytic activity is stimulated through a specific interaction of its N-terminal SH2 domain with pY1494 in the β4 subunit. Fyn is recruited to the α6β4/SHP2 complex through an interaction with phospho-Y580 in the C terminus of SHP2. In addition to activating Fyn, this interaction with Y580-SHP2 localizes Fyn to sites of receptor engagement, which is required for α6β4-dependent invasion. Of significance for tumor progression, phosphorylation of Y580-SHP2 and SFK activation are increased in orthotopic human breast tumors that express α6β4 and activation of this pathway is dependent upon Y1494.
Collapse
|
139
|
Soung YH, Clifford JL, Chung J. Crosstalk between integrin and receptor tyrosine kinase signaling in breast carcinoma progression. BMB Rep 2010; 43:311-8. [PMID: 20510013 DOI: 10.5483/bmbrep.2010.43.5.311] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This review explored the mechanism of breast carcinoma progression by focusing on integrins and receptor tyrosine kinases (or growth factor receptors). While the primary role of integrins was previously thought to be solely as mediators of adhesive interactions between cells and extracellular matrices, it is now believed that integrins also regulate signaling pathways that control cancer cell growth, survival, and invasion. A large body of evidence suggests that the cooperation between integrin and receptor tyrosine kinase signaling regulates certain signaling functions that are important for cancer progression. Recent developments on the crosstalk between integrins and receptor tyrosine kinases, and its implication in mammary tumor progression, are discussed.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
140
|
Auriemma C, Viscardi M, Tafuri S, Pavone LM, Capuano F, Rinaldi L, Della Morte R, Iovane G, Staiano N. Integrin receptors play a role in the internalin B-dependent entry of Listeria monocytogenes into host cells. Cell Mol Biol Lett 2010; 15:496-506. [PMID: 20526749 PMCID: PMC6275680 DOI: 10.2478/s11658-010-0019-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 05/28/2010] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes enters non-phagocytic cells by binding its surface proteins inlA (internalin) and inlB to the host's E-cadherin and Met, respectively. The two internalins play either separate or cooperative roles in the colonization of infected tissues. Here, we studied bacterial uptake into HeLa cells using an L. monocytogenes mutant strain (DeltainlA) carrying a deletion in the gene coding for inlA. The DeltainlA mutant strain showed the capability to invade HeLa cells. The monoclonal anti-beta(3)- and anti-beta(1)-integrin subunit antibodies prevented bacterial uptake into the cells, while the anti-beta(2)- and anti-beta(4)-integrin subunit antibodies failed to affect L. monocytogenes entry into HeLa cells. Three structurally distinct disintegrins (kistrin, echistatin and flavoridin) also inhibited bacterial uptake, showing different potencies correlated to their selective affinity for the beta(3)- and beta(1)-integrin subunits. In addition to inducing Met phosphorylation, infection of cells by the L. monocytogenes DeltainlA mutant strain promoted the tyrosine phosphorylation of the focal adhesion-associated proteins FAK and paxillin. Our findings provide the first evidence that beta(3)- and beta(1)-integrin receptors play a role in the inlB-dependent internalization of L. monocytogenes into host cells.
Collapse
Affiliation(s)
- Clementina Auriemma
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, via Della Salute 2, 80055 Portici (Na), Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, via Della Salute 2, 80055 Portici (Na), Italy
| | - Simona Tafuri
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università degli Studi di Napoli Federico II, via F. Delpino 1, 80137 Napoli, Italy
| | - Luigi Michele Pavone
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università degli Studi di Napoli Federico II, via F. Delpino 1, 80137 Napoli, Italy
| | - Federico Capuano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, via Della Salute 2, 80055 Portici (Na), Italy
| | - Laura Rinaldi
- Dipartimento di Patologia e Sanità Animale, Università degli Studi di Napoli Federico II, via F. Delpino 1, 80137 Napoli, Italy
| | - Rossella Della Morte
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università degli Studi di Napoli Federico II, via F. Delpino 1, 80137 Napoli, Italy
| | - Giuseppe Iovane
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, via Della Salute 2, 80055 Portici (Na), Italy
- Dipartimento di Patologia e Sanità Animale, Università degli Studi di Napoli Federico II, via F. Delpino 1, 80137 Napoli, Italy
| | - Norma Staiano
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università degli Studi di Napoli Federico II, via F. Delpino 1, 80137 Napoli, Italy
| |
Collapse
|
141
|
Kawano S, Mizutani K, Miyata M, Ikeda W, Takai Y. Interaction of integrin α6β4 with ErbB3 and implication in heregulin-induced ErbB3/ErbB2-mediated DNA synthesis. Genes Cells 2010; 15:995-1001. [DOI: 10.1111/j.1365-2443.2010.01438.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
142
|
Cabodi S, Di Stefano P, Leal MDPC, Tinnirello A, Bisaro B, Morello V, Damiano L, Aramu S, Repetto D, Tornillo G, Defilippi P. Integrins and signal transduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 674:43-54. [PMID: 20549939 DOI: 10.1007/978-1-4419-6066-5_5] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Integrin signaling has a critical function in organizing cells in tissues during both embryonic development and tissue repair. Following their binding to the extracellular ligands, the intracellular signaling pathways triggered by integrins are directed to two major functions: organization of the actin cytoskeleton and regulation of cell behaviour including survival, differentiation and growth. Basic research conducted in the past twelve years has lead to remarkable breakthroughs in this field. Integrins are catalytically inactive and translate positional cues into biochemical signals by direct and/or functional association with intracellular adaptors, cytosolic tyrosine kinases or growth factor and cytokine receptors. The purpose of this chapter is to highlight recent experimental and conceptual advances in integrin signaling with particular emphasis on the ability of integrins to regulate Fak/Src family kinases (SFKs) activation and the cross-talk with soluble growth factors receptors and cytokines.
Collapse
Affiliation(s)
- Sara Cabodi
- Molecular and Biotechnology Center and Department of Genetics, Biology and Biochemistry, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Beaulieu JF. Integrin α6β4 in colorectal cancer. World J Gastrointest Pathophysiol 2010; 1:3-11. [PMID: 21607137 PMCID: PMC3097941 DOI: 10.4291/wjgp.v1.i1.3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/18/2010] [Accepted: 03/25/2010] [Indexed: 02/06/2023] Open
Abstract
The ability of cells to interact with extracellular matrix macromolecules is at the forefront of the regulation of cell phenotype and organization. Indeed most if not all cells bear specific cell surface receptors for these molecules, namely the integrins, which are specific for the ligation of various macromolecules such as the laminins, fibronectins and tenascins. It is now well established that integrins can regulate a variety of biological activities, most notably cell cycle and tissue-specific gene expression. In the intestine, several observations suggest functional roles for cell-matrix interactions in the regulation of epithelial cell functions. This article focuses on integrin α6β4 as a paradigm to illustrate the importance as well as the complexity of integrins in the mediation of cell-matrix interactions. Indeed, α6β4 has been well-characterized for its involvement as a link between the cytoskeleton and extracellular matrix molecules as well as in the activation of a variety of intracellular signalization processes in cooperation with growth factor receptors. Furthermore, recent studies show that distinct forms of α6 and β4 subunits are expressed in the human intestine and, more importantly, recent work provides experimental evidence that various forms of α6β4 can differentially regulate intestinal epithelial cell functions under both normal and pathological conditions. For instance, it has been discovered that colorectal cancer cells express a hybrid form of α6β4 that is never seen in normal cells. Although further work is needed, integrin α6β4 is emerging as a key regulator of intestinal functions in both intestinal health and disease.
Collapse
|
144
|
Haenssen KK, Caldwell SA, Shahriari KS, Jackson SR, Whelan KA, Klein-Szanto AJ, Reginato MJ. ErbB2 requires integrin alpha5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells. J Cell Sci 2010; 123:1373-82. [PMID: 20332114 PMCID: PMC3705932 DOI: 10.1242/jcs.050906] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2010] [Indexed: 12/11/2022] Open
Abstract
ErbB2, a receptor tyrosine kinase highly expressed in many tumors, is known to inhibit apoptotic signals. Overexpression of ErbB2 causes anoikis resistance that contributes to luminal filling in three-dimensional mammary epithelial acinar structures in vitro. Given that integrins and growth factor receptors are highly interdependent for function, we examined the role of integrin subunits in ErbB2-mediated survival signaling. Here, we show that MCF-10A cells overexpressing ErbB2 upregulate integrin alpha5 via the MAP-kinase pathway in three-dimensional acini and found elevated integrin alpha5 levels associated with ErbB2 status in human breast cancer. Integrin alpha5 is required for ErbB2-mediated anoikis resistance and for optimal ErbB2 signaling to the Mek-Erk-Bim axis as depletion of integrin alpha5 reverses anoikis resistance and Bim inhibition. Integrin alpha5 is required for full activation of ErbB2 tyrosine phosphorylation on Y877 and ErbB2 phosphorylation is associated with increased activity of Src in the absence of adhesion. Indeed, we show that blocking elevated Src activity during cell detachment reverses ErbB2-mediated survival and Bim repression. Thus, integrin alpha5 serves as a key mediator of Src and ErbB2-survival signaling in low adhesion states, which are necessary to block the pro-anoikis mediator Bim, and we suggest that this pathway represents a potential novel therapeutic target in ErbB2-positive tumors.
Collapse
Affiliation(s)
- Keneshia K. Haenssen
- Department of Biochemistry and Molecular Biology, 245 N. 15 Street, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Sarah A. Caldwell
- Department of Biochemistry and Molecular Biology, 245 N. 15 Street, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kristina S. Shahriari
- Department of Biochemistry and Molecular Biology, 245 N. 15 Street, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - S. RaElle Jackson
- Department of Biochemistry and Molecular Biology, 245 N. 15 Street, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kelly A. Whelan
- Department of Biochemistry and Molecular Biology, 245 N. 15 Street, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | - Mauricio J. Reginato
- Department of Biochemistry and Molecular Biology, 245 N. 15 Street, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
145
|
Kippenberger S, Hofmann M, Zöller N, Thaçi D, Müller J, Kaufmann R, Bernd A. Ligation of beta4 integrins activates PKB/Akt and ERK1/2 by distinct pathways-relevance of the keratin filament. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:940-50. [PMID: 20307589 DOI: 10.1016/j.bbamcr.2010.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/10/2010] [Accepted: 03/12/2010] [Indexed: 11/28/2022]
Abstract
In normal epithelial cells hemidesmosomes mediate stable adhesion to the underlying basement membrane. In carcinoma cells a functional and spatial dissociation of the hemidesmosomal complex is observed stimulating the hypothesis that the beta4 integrin may trigger essential signalling cascades determining cell fate. In the present study we dissected the signalling pathways giving rise to PKB/Akt and ERK1/2 activation in response to beta4 ligation by 3E1. It was found that the activation of PKB/Akt is sensitive towards alterations of the keratin filament as demonstrated by using KEB-7 cells that carry a keratin mutation typical for epidermolysis bullosa simplex. Similar results were achieved by chemically induced keratin aggregations. Of note, the signalling to ERK1/2 was not affected. ERK1/2 activation utilizes an EGF-R transactivation mechanism as shown by dominant-negative expression experiments and also by treatment with a specific inhibitor (AG1478). Downstream from the EGF-R the activation of ERK1/2 takes the prototypical signalling cascade via Shc, Ras and Raf-1 as demonstrated by dominant-negative expression experiments. Taken together our data define a new model of beta4-dependent PKB/Akt and ERK1/2 activation demonstrating the keratin filament as a structure necessary in signal transmission.
Collapse
Affiliation(s)
- Stefan Kippenberger
- Department of Dermatology and Venerology, University of Frankfurt Medical School, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
146
|
Wang H, Leavitt L, Ramaswamy R, Rapraeger AC. Interaction of syndecan and alpha6beta4 integrin cytoplasmic domains: regulation of ErbB2-mediated integrin activation. J Biol Chem 2010; 285:13569-79. [PMID: 20181947 DOI: 10.1074/jbc.m110.102137] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The alpha6beta4 integrin is a laminin 332 (LN332) receptor central to the formation of hemidesmosomes in epithelial layers. However, the integrin becomes phosphorylated by keratinocytes responding to epidermal growth factor in skin wounds or by squamous cell carcinomas that overexpress/hyperactivate the tyrosine kinase ErbB2, epidermal growth factor receptor, or c-Met. We show here that the beta4-dependent signaling in A431 human squamous carcinoma cells is dependent on the syndecan family of matrix receptors. Yeast two-hybrid analysis identifies an interaction within the distal third (amino acids 1473-1752) of the beta4 cytoplasmic domain and the conserved C2 region of the syndecan cytoplasmic domain. Via its C2 region, Sdc1 forms a complex with the alpha6beta4 integrin along with the receptor tyrosine kinase ErbB2 and the cytoplasmic kinase Fyn in A431 cells. Engagement of LN332 or clustering of the alpha6beta4 integrin with integrin-specific antibodies causes phosphorylation of ErbB2, Fyn, and the beta4 subunit as well as activation of phosphatidylinositol 3-kinase and Akt and their assimilation into this complex. This leads to phosphatidylinositol 3-kinase-dependent cell spreading and Akt-dependent protection from apoptosis. This is disrupted by RNA interference silencing of Sdc1 but can be rescued by mouse Sdc1 or Sdc4 but not by syndecan mutants lacking their C-terminal C2 region. This disruption does not prevent the phosphorylation of ErbB2 or Fyn but blocks the Fyn-mediated phosphorylation of the beta4 tail. We propose that syndecans engage the distal region of the beta4 cytoplasmic domain and bring it to the plasma membrane, where it can be acted upon by Src family kinases.
Collapse
Affiliation(s)
- Haiyao Wang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | |
Collapse
|
147
|
Abstract
Within the integrin family of cell adhesion receptors, integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 make up a laminin-binding subfamily. The literature is divided on the role of these laminin-binding integrins in metastasis, with different studies indicating either pro- or antimetastatic functions. The opposing roles of the laminin-binding integrins in different settings might derive in part from their unusually robust associations with tetraspanin proteins. Tetraspanins organise integrins into multiprotein complexes within discrete plasma membrane domains termed tetraspanin-enriched microdomains (TEMs). TEM association is crucial to the strikingly rapid cell migration mediated by some of the laminin-binding integrins. However, emerging data suggest that laminin-binding integrins also promote the stability of E-cadherin-based cell-cell junctions, and that tetraspanins are essential for this function as well. Thus, TEM association endows the laminin-binding integrins with both pro-invasive functions (rapid migration) and anti-invasive functions (stable cell junctions), and the composition of TEMs in different cell types might help determine the balance between these opposing activities. Unravelling the tetraspanin control mechanisms that regulate laminin-binding integrins will help to define the settings where inhibiting the function of these integrins would be helpful rather than harmful, and may create opportunities to modulate integrin activity in more sophisticated ways than simple functional blockade.
Collapse
|
148
|
Abstract
The integrin family of cell adhesion receptors regulates a diverse array of cellular functions crucial to the initiation, progression and metastasis of solid tumours. The importance of integrins in several cell types that affect tumour progression has made them an appealing target for cancer therapy. Integrin antagonists, including the alphavbeta3 and alphavbeta5 inhibitor cilengitide, have shown encouraging activity in Phase II clinical trials and cilengitide is currently being tested in a Phase III trial in patients with glioblastoma. These exciting clinical developments emphasize the need to identify how integrin antagonists influence the tumour and its microenvironment.
Collapse
Affiliation(s)
- Jay S Desgrosellier
- Department of Pathology, Moores University of California at San Diego Cancer Center, La Jolla, 92093-0803, United States
| | | |
Collapse
|
149
|
Ivaska J, Heino J. Interplay between cell adhesion and growth factor receptors: from the plasma membrane to the endosomes. Cell Tissue Res 2010; 339:111-20. [PMID: 19722108 PMCID: PMC2784865 DOI: 10.1007/s00441-009-0857-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 08/03/2009] [Indexed: 11/24/2022]
Abstract
The emergence of multicellular animals could only take place once evolution had produced molecular mechanisms for cell adhesion and communication. Today, all metazoans express integrin-type adhesion receptors and receptors for growth factors. Integrins recognize extracellular matrix proteins and respective receptors on other cells and, following ligand binding, can activate the same cellular signaling pathways that are regulated by growth factor receptors. Recent reports have indicated that the two receptor systems also collaborate in many other ways. Here, we review the present information concerning the role of integrins as assisting growth factor receptors and the interplay between the receptors in cell signaling and in the orchestration of receptor recycling.
Collapse
Affiliation(s)
- Johanna Ivaska
- VTT Technical Research Centre of Finland, Medical Biotechnology, Turku, FI-20520 Finland
- Centre for Biotechnology, Turku University, Turku, FI-20520 Finland
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, FI-20014 Finland
| | - Jyrki Heino
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, FI-20014 Finland
| |
Collapse
|
150
|
Hanna JA, Bordeaux J, Rimm DL, Agarwal S. The function, proteolytic processing, and histopathology of Met in cancer. Adv Cancer Res 2009; 103:1-23. [PMID: 19854350 DOI: 10.1016/s0065-230x(09)03001-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hepatocyte growth factor (HGF) and its receptor, the Met receptor tyrosine kinase, form a signaling network promoting cell proliferation, invasion, and survival in normal and cancer cells. Improper regulation of this pathway is attributed to many cancer types through overexpression, activating mutations, or autocrine loop formation. Many studies describe the localization of Met as membranous/cytoplasmic, but some studies using antibodies targeted to the C-terminal domain of Met report nuclear localization. This chapter seeks to highlight the histopathology and expression of Met in cancer and its association with clinicopathological characteristics. We also discuss recent studies of the proteolytic processing of Met and effects of the processing on the subcellular localization of Met. Finally, we comment on Met as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Jason A Hanna
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|