101
|
Le Gac G, Scotet V, Gourlaouen I, L'Hostis C, Merour MC, Karim Z, Deugnier Y, Bardou-Jacquet E, Lefebvre T, Assari S, Ferec C. Prevalence of HFE-related haemochromatosis and secondary causes of hyperferritinaemia and their association with iron overload in 1059 French patients treated by venesection. Aliment Pharmacol Ther 2022; 55:1016-1027. [PMID: 35122291 DOI: 10.1111/apt.16775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Venesection is the key therapy in haemochromatosis, but it remains controversial in hyperferritinaemia with moderate iron accumulation. There is substantial evidence that the results of HFE genotyping are routinely misinterpreted, while elevated serum ferritin has become more frequent in recent years in white adult populations following the increase of obesity and metabolic traits. AIMS To examine the reasons for prescribing venesection in 1,059 French patients during the period 2012-2015, determine the true prevalence of HFE-related haemochromatosis, and compare iron overload profiles between haemochromatosis and non-haemochromatosis patients. RESULTS Only 258 of the 488 patients referred for haemochromatosis had the p.[Cys282Tyr];[Cys282Tyr] disease causative genotype (adjusted prevalence: 24.4%). Of the 801 remaining patients, 112 (14.0%) had the debated p.[Cys282Tyr];[His63Asp] compound heterozygote genotype, 643 (80.3%) had central obesity, 475 (59.3%) had metabolic syndrome (MetS) and 93 (11.6%) were heavy drinkers. The non-haemochromatosis patients started therapeutic venesection 9 years later than haemochromatosis patients (P < 0.001). Despite similar serum ferritin values, they had lower transferrin saturation (41.1% vs 74.3%; P < 0.001), lower amounts of iron removed by venesection (1.7 vs 3.2 g; P < 0.001) and lower hepatic iron concentrations (107 vs 237 µmol/g; P < 0.001). CONCLUSIONS Haemochromatosis is over-diagnosed and is no longer the main reason for therapeutic venesection in France. Obesity and other metabolic abnormalities are frequently associated with mild elevation of serum ferritin, the MetS is confirmed in ~50% of treated patients. There is a minimal relationship between serum ferritin and iron overload in non-p.Cys282Tyr homozygotes. Our observations raise questions about venesection indications in non-haemochromatosis patients.
Collapse
|
102
|
Lederer D, Weigand MA, Larmann J. [Anesthesia in patients with acute porphyria]. Anaesthesist 2022; 71:321-330. [PMID: 35352131 DOI: 10.1007/s00101-022-01107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 11/24/2022]
Abstract
Porphyrias are a group of rare, mostly inherited metabolic disorders of heme biosynthesis. Each type of porphyria results from a specific deficiency of one of the pathway enzymes, causing a characteristic accumulation and excretion of heme precursors. Diagnosis is confirmed by the biochemical detection of these porphyrins and the precursors in urine, feces and blood. Porphyrias can be classified into acute and non-acute forms. The clinical presentation is unspecific and includes acute neurovisceral and/or cutaneous symptoms. The latent phase can evolve into a potentially life-threatening acute crisis, which is often misdiagnosed. The four acute hepatic porphyrias are relevant for anesthesiologists as precipitating factors are commonly found in the perioperative setting. Safe anesthetic management in cases of known porphyria is possible by adherence to current recommendations. The immediate administration of heme arginate as specific treatment for acute attacks is decisive for the outcome.
Collapse
Affiliation(s)
- Dominique Lederer
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| | - Markus A Weigand
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| | - Jan Larmann
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland.
| |
Collapse
|
103
|
Evaluation of Metabolic Changes in Acute Intermittent Porphyria Patients by Targeted Metabolomics. Int J Mol Sci 2022; 23:ijms23063219. [PMID: 35328641 PMCID: PMC8950560 DOI: 10.3390/ijms23063219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Acute intermittent porphyria (AIP) is an inherited rare hepatic disorder due to mutations within the hydroxymethylbilane gene. AIP patients with active disease overproduce aminolevulinic acid (ALA) and porphobilinogen (PBG) in the liver which are exported inducing severe neurological attacks. Different hepatic metabolic abnormalities have been described to be associated with this condition. The goal of this research was to explore the metabolome of symptomatic AIP patients by state-of-the art liquid chromatography-tandem mass spectrometry (LC-MS/MS). A case versus control study including 18 symptomatic AIP patients and 33 healthy controls was performed. Plasmatic levels of 51 metabolites and 16 ratios belonging to four metabolic pathways were determined. The results showed that the AIP patients presented significant changes in the two main areas of the metabolome under study: (a) the tryptophan/kynurenine pathway with an increase of tryptophan in plasma together with increase of the kynurenine/tryptophan ratio; and (b) changes in the tricarboxylic acid cycle (TCA) including increase of succinic acid and decrease of the fumaric acid/succinic acid ratio. We performed a complementary in vitro study adding ALA to hepatocytes media that showed some of the effects on the TCA cycle were parallel to those observed in vivo. Our study confirms in plasma previous results obtained in urine showing that AIP patients present a moderate increase of the kynurenine/tryptophan ratio possibly associated with inflammation. In addition, it also reports changes in the mitochondrial TCA cycle that, despite requiring further research, could be associated with an energy misbalance due to sustained overproduction of heme-precursors in the liver.
Collapse
|
104
|
Longo M, Paolini E, Meroni M, Dongiovanni P. Cutting-Edge Therapies and Novel Strategies for Acute Intermittent Porphyria: Step-by-Step towards the Solution. Biomedicines 2022; 10:biomedicines10030648. [PMID: 35327450 PMCID: PMC8945550 DOI: 10.3390/biomedicines10030648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Acute intermittent porphyria (AIP) is an autosomal dominant disease caused by the hepatic deficiency of porphobilinogen deaminase (PBGD) and the slowdown of heme biosynthesis. AIP symptomatology includes life-threatening, acute neurovisceral or neuropsychiatric attacks manifesting in response to precipitating factors. The latter promote the upregulation of 5-aminolevulinic acid synthase-1 (ALAS1), the first enzyme of heme biosynthesis, which promotes the overload of neurotoxic porphyrin precursors. Hemin or glucose infusions are the first-line therapies for the reduction of ALAS1 levels in patients with mild to severe AIP, while liver transplantation is the only curative treatment for refractory patients. Recently, the RNA-interference against ALAS1 was approved as a treatment for adult and adolescent patients with AIP. These emerging therapies aim to substitute dysfunctional PBGD with adeno-associated vectors for genome editing, human PBGD mRNA encapsulated in lipid nanoparticles, or PBGD protein linked to apolipoprotein A1. Finally, the impairment of glucose metabolism linked to insulin resistance, and mitochondrial aberrations during AIP pathophysiology provided new therapeutic targets. Therefore, the use of liver-targeted insulin and insulin-mimetics such as α-lipoic acid may be useful for overcoming metabolic dysfunction in these subjects. Herein, the present review aims to provide an overview of AIP pathophysiology and management, focusing on conventional and recent therapeutical approaches.
Collapse
Affiliation(s)
- Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5503-4229
| |
Collapse
|
105
|
Poli A, Schmitt C, Moulouel B, Mirmiran A, Talbi N, Rivière S, Cerutti D, Bouchoule I, Faivre A, Grobost V, Douillard C, Duchêne F, Fiorentino V, Dupré T, Manceau H, Peoc'h K, Puy H, Lefebvre T, Gouya L. Givosiran in acute intermittent porphyria: A personalized medicine approach. Mol Genet Metab 2022; 135:206-214. [PMID: 35058124 DOI: 10.1016/j.ymgme.2022.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/30/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND In patients with acute intermittent porphyria (AIP), induction of delta aminolevulinic acid synthase 1 (ALAS1) leads to haem precursor accumulation that may cause recurring acute attacks. In a recent phase III trial, givosiran significantly reduced the attack rate in severe AIP patients. Frequent adverse events were injection-site reaction, fatigue, nausea, chronic kidney disease and increased alanine aminotransferase. OBJECTIVES To describe the efficacy and safety of givosiran based on a personalized medical approach. METHODS We conducted a retrospective patient file study in 25 severe AIP patients treated with givosiran in France. We collected data on clinical and biochemical efficacy along with reports of adverse events. RESULTS Givosiran drastically reduced the attack rate in our cohort, as 96% were attack-free at the time of the study. The sustained efficacy of givosiran in most patients allowed us to personalize dosing frequency. In 42%, givosiran was only given when haem precursor levels were increasing. Our data suggest that givosiran is most effective when given early in the disease course. We confirmed a high prevalence of adverse events. One patient discontinued treatment due to acute pancreatitis. All patients had hyperhomocysteinemia, and all patients with initial homocysteine levels available showed an increase under treatment. In this context, one patient was diagnosed with pulmonary embolism. CONCLUSION The sustained effect of givosiran allowed a decrease in dosing frequency without compromising treatment efficacy. The high prevalence of adverse events emphasizes the importance of restricting the treatment to severe AIP and administering the minimum effective dose for each patient.
Collapse
Affiliation(s)
- Antoine Poli
- Université de Paris, INSERM U1149, Centre de Recherche sur l’Inflammation, F-75018 Paris, France
- AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
- Laboratory of Excellence Gr-Ex, Paris
| | - Caroline Schmitt
- Université de Paris, INSERM U1149, Centre de Recherche sur l’Inflammation, F-75018 Paris, France
- AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
- Laboratory of Excellence Gr-Ex, Paris
| | - Boualem Moulouel
- AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
| | - Arienne Mirmiran
- AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
| | - Neila Talbi
- AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
| | - Sophie Rivière
- CHU Montpellier, Médecine interne, Hôpital St Eloi, Montpellier, France
| | - Diane Cerutti
- CH Toulon, Médecine polyvalente, La Seyne-sur-Mer, France
| | - Isabelle Bouchoule
- CHI Elbeuf Louviers Val de Reuil, Néphrologie, Saint-Aubin-lès-Elbeuf, France
| | | | | | - Claire Douillard
- CHRU Lille, Endocrinologie-diabétologie-métabolisme-nutrition, hôpital Huriez, Lille, France
| | - Francis Duchêne
- Hôpital Nord Franche-Comté, Médecine interne, Trévenans, France
| | - Valeria Fiorentino
- Université de Paris, INSERM U1149, Centre de Recherche sur l’Inflammation, F-75018 Paris, France
| | - Thierry Dupré
- Université de Paris, INSERM U1149, Centre de Recherche sur l’Inflammation, F-75018 Paris, France
| | - Hana Manceau
- Université de Paris, INSERM U1149, Centre de Recherche sur l’Inflammation, F-75018 Paris, France
- AP-HP, Biochimie, Hôpital Beaujon, Clichy, France
| | - Katell Peoc'h
- Université de Paris, INSERM U1149, Centre de Recherche sur l’Inflammation, F-75018 Paris, France
- AP-HP, Biochimie, Hôpital Beaujon, Clichy, France
| | - Hervé Puy
- Université de Paris, INSERM U1149, Centre de Recherche sur l’Inflammation, F-75018 Paris, France
- AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
- Laboratory of Excellence Gr-Ex, Paris
| | - Thibaud Lefebvre
- Université de Paris, INSERM U1149, Centre de Recherche sur l’Inflammation, F-75018 Paris, France
- AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
| | - Laurent Gouya
- Université de Paris, INSERM U1149, Centre de Recherche sur l’Inflammation, F-75018 Paris, France
- AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
- Laboratory of Excellence Gr-Ex, Paris
| |
Collapse
|
106
|
Baravelli CM, Aarsand AK, Sandberg S, Tollånes MC. Porphyria cutanea tarda and patterns of long-term sick leave and disability pension: a 24-year nationwide matched-cohort study. Orphanet J Rare Dis 2022; 17:72. [PMID: 35193623 PMCID: PMC8862313 DOI: 10.1186/s13023-022-02201-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/30/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Porphyria cutanea tarda (PCT) is a skin disorder caused by a defect in the liver enzyme uroporphyrinogen decarboxylase and is associated with hepatitis C virus infection, high alcohol intake, smoking and iron overload. Data on the long-term morbidity of PCT is lacking. METHODS We conducted a nationwide matched cohort study over a 24-year period. The study sample included 534 persons aged 18-67 years with a biochemically confirmed PCT diagnosis and a sample of 21,360 persons randomly selected from the working age population, matched on age, sex and educational attainment. We investigated if persons with sporadic and familial PCT had an increased risk of long-term sick leave (LTSL) or disability pension. We further assessed risk before (pre-PCT), during (during-PCT) and after (post-PCT) the typical period of first onset to diagnosis, treatment and remission. RESULTS Overall, persons with PCT had a 40% increased risk (hazard ratio [HR] = 1.4, 95% confidence interval [CI] = 1.3, 1.5) of LTSL and a 50% increased risk (HR = 1.5, CI = 1.3, 1.7) of disability pension. Risk of disability pension was increased pre-PCT (HR = 1.3, CI 1.3 (1.0, 1.6), during-PCT (HR 1.5, CI 1.0, 2.2) and post-PCT (HR = 2.0, CI 1.5, 2.6). For LTSL, risk was increased pre-PCT (HR = 1.3, CI 1.1, 1.4) and during-PCT (HR = 1.5, CI 1.1, 2.1), but not post-PCT. Risk was greatest in persons with sporadic than familial PCT. Diagnostic reasons for disability pension that were increased compared to matched controls were PCT or skin disease in 11 of 199 cases (PCT: n = 7, incident rate ratios [IRR] = 49.2, CI = 38.8, 62.4; diseases of the skin and subcutaneous tissue, n = 4, IRR = 4.2, CI = 1.6, 11.0). The vast majority of diagnostic reasons for accessing disability pension were related to comorbidities, PCT susceptibility factors and more general health issues such as: malignant neoplasms (n = 12, IRR = 2.4, CI = 1.4, 4.2), substance and alcohol dependence (n = 7, IRR = 5.0, CI = 2.5, 10.1), neurotic and mood-disorders (n = 21, IRR = 1.7, CI = 1.1, 2.6), and diseases of the musculoskeletal system and connective tissue (n = 71, IRR = 2.5, CI = 1.9, 3.2). CONCLUSIONS Persons with PCT have an increased risk of LTSL and disability pension indicating significant morbidity in this patient group. Appropriate long-term follow-up and monitoring for relapses and co-morbid diseases are recommended.
Collapse
Affiliation(s)
- Carl Michael Baravelli
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Norwegian Porphyria Centre (NAPOS), P. O. Box 1400, 5021, Bergen, Norway. .,Department of Disease Burden, Norwegian Institute of Public Health, Bergen, Norway. .,Norwegian Institute of Public Health, Bergen, Norway.
| | - Aasne Karine Aarsand
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Norwegian Porphyria Centre (NAPOS), P. O. Box 1400, 5021, Bergen, Norway.,Norwegian Organisation for Quality Improvement of Laboratory Examinations (NOKLUS), Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Sverre Sandberg
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Norwegian Porphyria Centre (NAPOS), P. O. Box 1400, 5021, Bergen, Norway.,Norwegian Institute of Public Health, Bergen, Norway.,Norwegian Organisation for Quality Improvement of Laboratory Examinations (NOKLUS), Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Mette Christophersen Tollånes
- Norwegian Organisation for Quality Improvement of Laboratory Examinations (NOKLUS), Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
107
|
Vera-Yunca D, Córdoba KM, Parra-Guillen ZP, Jericó D, Fontanellas A, Trocóniz IF. Mechanistic modelling of enzyme-restoration effects for new recombinant liver-targeted proteins in acute intermittent porphyria. Br J Pharmacol 2022; 179:3815-3830. [PMID: 35170015 PMCID: PMC9310908 DOI: 10.1111/bph.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Acute intermittent porphyria (AIP) is a rare disease caused by a genetic mutation in the hepatic activity of the porphobilinogen‐deaminase. We aimed to develop a mechanistic model of the enzymatic restoration effects of a novel therapy based on the administration of different formulations of recombinant human‐PBGD (rhPBGD) linked to the ApoAI lipoprotein. This fusion protein circulates in blood, incorporating into HDL and penetrating hepatocytes. Experimental Approach Single i.v. dose of different formulations of rhPBGD linked to ApoAI were administered to AIP mice in which a porphyric attack was triggered by i.p. phenobarbital. Data consist on 24 h urine excreted amounts of heme precursors, 5‐aminolevulinic acid (ALA), PBG and total porphyrins that were analysed using non‐linear mixed‐effects analysis. Key Results The mechanistic model successfully characterized over time the amounts excreted in urine of the three heme precursors for different formulations of rhPBGD and unravelled several mechanisms in the heme pathway, such as the regulation in ALA synthesis by heme. Treatment with rhPBGD formulations restored PBGD activity, increasing up to 51 times the value of the rate of tPOR formation estimated from baseline. Model‐based simulations showed that several formulation prototypes provided efficient protective effects when administered up to 1 week prior to the occurrence of the AIP attack. Conclusion and Implications The model developed had excellent performance over a range of doses and formulation type. This mechanistic model warrants use beyond ApoAI‐conjugates and represents a useful tool towards more efficient drug treatments of other enzymopenias as well as for acute intermittent porphyria.
Collapse
Affiliation(s)
- Diego Vera-Yunca
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Karol M Córdoba
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Zinnia P Parra-Guillen
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Daniel Jericó
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Antonio Fontanellas
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Iñaki F Trocóniz
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
108
|
Burns S, Harmel A, Miller S, Pucci GF, Greco J, Pulley M, Pizzi M. Clinical Challenges of Acute Porphyria in the Young Adult. Neurohospitalist 2022; 12:377-382. [PMID: 35419127 PMCID: PMC8995621 DOI: 10.1177/19418744211073029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Porphyria is a metabolic disorder caused by a mutation in the heme biosynthetic pathway, with vague symptomatology and rare prevalence. A triad of hyponatremia, intermittent seizures, and abdominal pain should raise suspicion for porphyria. The diagnosis is based on increased blood porphobilinogen levels and genetic mutations. Treatment involves Dextrose-10 administration followed by hematin infusions as soon as possible. A maintenance dose of hematin is required in some cases. Here, we report a delayed diagnosis of acute intermittent porphyria (AIP) in an 18-year-old female, who first presented with severe anemia attributed to iron deficiency from menstrual blood loss. After discharge, she was readmitted with bilateral lower extremity and abdominal pain, hyponatremia, and seizure attributed to polypharmacy. During this second hospitalization, she was transferred to our hospital complaining of chest pain, shortness of breath, markedly decreased weakness, dysphagia, and hallucinations. After an extensive workup, she was diagnosed with AIP, and Dextrose-10 and hemin infusion were started. Our patient was found to have a missense mutation in the Hydroxymethylbilane synthase gene. She recovered after an extended ICU stay of 45 days and was discharged with a moderate improvement of weakness. Early diagnosis is necessary to prevent severe manifestations and long-term sequelae, such as axonal neuropathy, which occurred in the presented case.
Collapse
Affiliation(s)
- Shannon Burns
- Neurology, University of Florida Health at
Jacksonville, Jacksonville, FL, USA
- Shannon Burns, Neurology, University of Florida
Health at Jacksonville, 655 W. 8th St, Jacksonville, FL 32209-6595, USA.
| | | | - Sally Miller
- University of Florida Health at
Jacksonville, Jacksonville, FL, USA
| | | | - Jonathan Greco
- University of Florida College of Medicine -
Jacksonville, Jacksonville, FL, USA
| | - Michael Pulley
- University of Florida Health at
Jacksonville, Jacksonville, FL, USA
| | | |
Collapse
|
109
|
Leasure AC, Turner N, Lim I. Facial hyperpigmentation and crusted papules on the hands. JAAD Case Rep 2022; 20:23-25. [PMID: 35036499 PMCID: PMC8753054 DOI: 10.1016/j.jdcr.2021.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Noel Turner
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Ilya Lim
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
110
|
Lee MJ, Lee I, Wang K. Recent Advances in RNA Therapy and Its Carriers to Treat the Single-Gene Neurological Disorders. Biomedicines 2022; 10:biomedicines10010158. [PMID: 35052837 PMCID: PMC8773368 DOI: 10.3390/biomedicines10010158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The development of new sequencing technologies in the post-genomic era has accelerated the identification of causative mutations of several single gene disorders. Advances in cell and animal models provide insights into the underlining pathogenesis, which facilitates the development and maturation of new treatment strategies. The progress in biochemistry and molecular biology has established a new class of therapeutics—the short RNAs and expressible long RNAs. The sequences of therapeutic RNAs can be optimized to enhance their stability and translatability with reduced immunogenicity. The chemically-modified RNAs can also increase their stability during intracellular trafficking. In addition, the development of safe and high efficiency carriers that preserves the integrity of therapeutic RNA molecules also accelerates the transition of RNA therapeutics into the clinic. For example, for diseases that are caused by genetic defects in a specific protein, an effective approach termed “protein replacement therapy” can provide treatment through the delivery of modified translatable mRNAs. Short interference RNAs can also be used to treat diseases caused by gain of function mutations or restore the splicing aberration defects. Here we review the applications of newly developed RNA-based therapeutics and its delivery and discuss the clinical evidence supporting the potential of RNA-based therapy in single-gene neurological disorders.
Collapse
Affiliation(s)
- Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei 10012, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10012, Taiwan
| | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98109, USA;
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA;
- Correspondence: ; Tel.: +1-206-732-1336
| |
Collapse
|
111
|
Vassiliou D, Sardh E. Acute hepatic porphyria and maternal health: Clinical and biochemical follow-up of 44 pregnancies. J Intern Med 2022; 291:81-94. [PMID: 34411356 DOI: 10.1111/joim.13376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pregnancy in women with acute hepatic porphyria (AHP) has historically been associated with significant morbidity. Clinical outcomes have been the focus of previous reports on porphyria and maternal health, with little data available on the levels of heme precursors during pregnancy. We present the results of a follow-up program for women with AHP in the Swedish cohort who were pregnant between 2001 and 2020. METHODS Thirty-three women with AHP were monitored during 44 pregnancies resulting in 44 single births. Seven of 33 women had a clinical history of acute attacks that required hospitalization. RESULTS Four women experienced acute porphyria attacks during pregnancy and one during the puerperium. Seven women developed hypertension and four pregnancies ended with pre-eclampsia. There were no maternal or fetal pre- or postnatal deaths. One infant had a congenital cardiac anomaly. In 32 of the 38 pregnancies in which we measured heme precursors in the urine during pregnancy, the levels increased. CONCLUSION Our observations align with contemporary reports that pregnancy in patients with AHP is frequently uncomplicated. Excretion of heme precursors increased during pregnancy, but this did not manifest as a higher frequency of clinical porphyria manifestations. The involvement of porphyria specialists in the patients' maternal care is recommended for reducing risk and improving the probability of good pregnancy outcomes.
Collapse
Affiliation(s)
- Daphne Vassiliou
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases (CMMS), Porphyria Centre Sweden, Karolinska University Hospital, Stockholm, Sweden
| | - Eliane Sardh
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases (CMMS), Porphyria Centre Sweden, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
112
|
Anderson KE, Desnick RJ, Stewart MF, Ventura P, Bonkovsky HL. Acute Hepatic Porphyrias: "Purple Flags"-Clinical Features That Should Prompt Specific Diagnostic Testing. Am J Med Sci 2022; 363:1-10. [PMID: 34606756 DOI: 10.1016/j.amjms.2021.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Porphyrias are a group of rare diseases leading to dysregulation in heme biosynthesis and the accumulation of heme precursors, including porphyrinogens, which in their oxidized states [porphyrins] are reddish or purple. Acute hepatic porphyrias (AHP) comprise four diseases that cause acute debilitating neurovisceral attacks. Despite diagnostic advances, AHP is often undiagnosed or misdiagnosed due to a lack of disease awareness, low clinical suspicion, variable presentation, and nonspecific symptoms that mimic more common diseases. Delays in diagnosis and treatment increase the risk of serious acute and chronic complications. METHODS In order to assess whether symptoms alone or in combination might be utilized as important indicators or "purple flags" that, when present, should alert clinicians to suspect AHP and pursue specific diagnostic testing, we conducted a comprehensive review of the literature on AHP, including cohort studies and case reports over two epochs, from 1980 to 2006 and from 2012 to 2018. RESULTS We found that severe abdominal pain, with or without acute central nervous system manifestations and peripheral neuropathy, continues to be the most frequent symptom. Hyponatremia, change in urine color, and certain chronic symptoms were also identified as features that should raise suspicion of AHP. To improve diagnosis of AHP, clinicians need to take a broad perspective, including demographic data and medical history, into consideration. CONCLUSIONS The clinical features of AHP continue to be severe pain, especially pain in the abdomen. Other features that should raise suspicion are autonomic, peripheral, or central neuropathies, hyponatremia, and red-purple urine color.
Collapse
Affiliation(s)
- Karl E Anderson
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert J Desnick
- Department of Genetics and Genomic Medicine, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - M Felicity Stewart
- Salford Royal NHS Foundation Trust, Salford, UK; Division of Medical Education, University of Manchester, Manchester, UK
| | - Paolo Ventura
- Internal Medicine Unit, Policlinico Hospital, Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Herbert L Bonkovsky
- Section on Gastroenterology & Hepatology, Department of Medicine, Wake Forest University School of Medicine/North Carolina Baptist Hospital, Nutrition Research Center, Winston-Salem, NC, USA..
| |
Collapse
|
113
|
Ventura P, Bonkovsky HL, Gouya L, Aguilera‐Peiró P, Montgomery Bissell D, Stein PE, Balwani M, Anderson DKE, Parker C, Kuter DJ, Monroy S, Oh J, Ritchie B, Ko JJ, Hua Z, Sweetser MT, Sardh E. Efficacy and safety of givosiran for acute hepatic porphyria: 24-month interim analysis of the randomized phase 3 ENVISION study. Liver Int 2022; 42:161-172. [PMID: 34717041 PMCID: PMC9299194 DOI: 10.1111/liv.15090] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Upregulation of hepatic delta-aminolevulinic acid synthase 1 with accumulation of potentially toxic heme precursors delta-aminolevulinic acid and porphobilinogen is fundamental to the pathogenesis of acute hepatic porphyria. AIMS evaluate long-term efficacy and safety of givosiran in acute hepatic porphyria. METHODS Interim analysis of ongoing ENVISION study (NCT03338816), after all active patients completed their Month 24 visit. Patients with acute hepatic porphyria (≥12 years) with recurrent attacks received givosiran (2.5 mg/kg monthly) (n = 48) or placebo (n = 46) for 6 months (double-blind period); 93 received givosiran (2.5 mg or 1.25 mg/kg monthly) in the open-label extension (continuous givosiran, n = 47/48; placebo crossover, n = 46/46). Endpoints included annualized attack rate, urinary delta-aminolevulinic acid and porphobilinogen levels, hemin use, daily worst pain, quality of life, and adverse events. RESULTS Patients receiving continuous givosiran had sustained annualized attack rate reduction (median 1.0 in double-blind period, 0.0 in open-label extension); in placebo crossover patients, median annualized attack rate decreased from 10.7 to 1.4. Median annualized days of hemin use were 0.0 (double-blind period) and 0.0 (open-label extension) for continuous givosiran patients and reduced from 14.98 to 0.71 for placebo crossover patients. Long-term givosiran led to sustained lowering of delta-aminolevulinic acid and porphobilinogen and improvements in daily worst pain and quality of life. Safety findings were consistent with the double-blind period. CONCLUSIONS Long-term givosiran has an acceptable safety profile and significantly benefits acute hepatic porphyria patients with recurrent attacks by reducing attack frequency, hemin use, and severity of daily worst pain while improving quality of life.
Collapse
Affiliation(s)
- Paolo Ventura
- Department of Surgical and Medical Sciences for Children and Adults, Internal Medicine UnitUniversity of Modena and Reggio EmiliaModenaItaly
| | - Herbert L. Bonkovsky
- Section on Gastroenterology and HepatologyWake Forest University/North Carolina Baptist Medical CenterWinston‐SalemNCUSA
| | | | | | | | | | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | | | - David J. Kuter
- Center for HematologyMassachusetts General HospitalBostonMAUSA
| | | | - Jeeyoung Oh
- Konkuk University Medical CenterSeoulSouth Korea
| | | | | | | | | | - Eliane Sardh
- Porphyria Centre Sweden, Centre for Inherited Metabolic Diseases, Karolinska Institutet, Karolinska University HospitalStockholmSweden
| | | |
Collapse
|
114
|
Novakova Z, Mikesova J, Ondrakova M, Kutil Z, Vesela K, Martasek P, Barinka C. Molecular characterization of a novel His333Arg variant of human protoporphyrinogen oxidase IX. Biochem Biophys Res Commun 2021; 588:182-186. [PMID: 34968794 DOI: 10.1016/j.bbrc.2021.12.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
Variegate porphyria is caused by mutations in the protoporphyrinogen oxidase IX (PPOX, EC 1.3.3.4) gene, resulting in reduced overall enzymatic activity of PPOX in human tissues. Recently, we have identified the His333Arg mutation in the PPOX protein (PPOX(H333R)) as a putative founder mutation in the Moroccan Jewish population. Herein we report the molecular characterization of PPOX(H333R) in vitro and in cells. Purified recombinant PPOX(H333R) did not show any appreciable enzymatic activity in vitro, corroborating the clinical findings. Biophysical experiments and molecular modeling revealed that PPOX(H333R) is not folded properly and fails to adopt its native functional three-dimensional conformation due to steric clashes in the vicinity of the active site of the enzyme. On the other hand, PPOX(H333R) subcellular distribution, as evaluated by live-cell confocal microscopy, is unimpaired suggesting that the functional three-dimensional fold is not required for efficient transport of the polypeptide chain into mitochondria. Overall, the data presented here provide molecular underpinnings of the pathogenicity of PPOX(H333R) and might serve as a blueprint for deciphering whether a given PPOX variant represents a disease-causing mutation.
Collapse
Affiliation(s)
- Zora Novakova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Jana Mikesova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Marketa Ondrakova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Zsofia Kutil
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Katerina Vesela
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 128 08, Prague 2, Czech Republic.
| | - Pavel Martasek
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 128 08, Prague 2, Czech Republic.
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.
| |
Collapse
|
115
|
Willett LL, Bromberg GK, Chung R, Leaf RK, Goldman RH, Dickey AK. Case 38-2021: A 76-Year-Old Woman with Abdominal Pain, Weight Loss, and Memory Impairment. N Engl J Med 2021; 385:2378-2388. [PMID: 34910867 DOI: 10.1056/nejmcpc2107354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Lisa L Willett
- From the Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham (L.L.W.); and the Departments of Medicine (G.K.B., R.K.L., A.K.D.) and Radiology (R.C.), Massachusetts General Hospital, and the Departments of Medicine (G.K.B., R.K.L., R.H.G., A.K.D.) and Radiology (R.C.), Harvard Medical School, Boston, and the Department of Medicine, Cambridge Health Alliance, Cambridge (R.H.G.) - all in Massachusetts
| | - Gabrielle K Bromberg
- From the Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham (L.L.W.); and the Departments of Medicine (G.K.B., R.K.L., A.K.D.) and Radiology (R.C.), Massachusetts General Hospital, and the Departments of Medicine (G.K.B., R.K.L., R.H.G., A.K.D.) and Radiology (R.C.), Harvard Medical School, Boston, and the Department of Medicine, Cambridge Health Alliance, Cambridge (R.H.G.) - all in Massachusetts
| | - Ryan Chung
- From the Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham (L.L.W.); and the Departments of Medicine (G.K.B., R.K.L., A.K.D.) and Radiology (R.C.), Massachusetts General Hospital, and the Departments of Medicine (G.K.B., R.K.L., R.H.G., A.K.D.) and Radiology (R.C.), Harvard Medical School, Boston, and the Department of Medicine, Cambridge Health Alliance, Cambridge (R.H.G.) - all in Massachusetts
| | - Rebecca K Leaf
- From the Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham (L.L.W.); and the Departments of Medicine (G.K.B., R.K.L., A.K.D.) and Radiology (R.C.), Massachusetts General Hospital, and the Departments of Medicine (G.K.B., R.K.L., R.H.G., A.K.D.) and Radiology (R.C.), Harvard Medical School, Boston, and the Department of Medicine, Cambridge Health Alliance, Cambridge (R.H.G.) - all in Massachusetts
| | - Rose H Goldman
- From the Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham (L.L.W.); and the Departments of Medicine (G.K.B., R.K.L., A.K.D.) and Radiology (R.C.), Massachusetts General Hospital, and the Departments of Medicine (G.K.B., R.K.L., R.H.G., A.K.D.) and Radiology (R.C.), Harvard Medical School, Boston, and the Department of Medicine, Cambridge Health Alliance, Cambridge (R.H.G.) - all in Massachusetts
| | - Amy K Dickey
- From the Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham (L.L.W.); and the Departments of Medicine (G.K.B., R.K.L., A.K.D.) and Radiology (R.C.), Massachusetts General Hospital, and the Departments of Medicine (G.K.B., R.K.L., R.H.G., A.K.D.) and Radiology (R.C.), Harvard Medical School, Boston, and the Department of Medicine, Cambridge Health Alliance, Cambridge (R.H.G.) - all in Massachusetts
| |
Collapse
|
116
|
Iron, Heme Synthesis and Erythropoietic Porphyrias: A Complex Interplay. Metabolites 2021; 11:metabo11120798. [PMID: 34940556 PMCID: PMC8705723 DOI: 10.3390/metabo11120798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Erythropoietic porphyrias are caused by enzymatic dysfunctions in the heme biosynthetic pathway, resulting in porphyrins accumulation in red blood cells. The porphyrins deposition in tissues, including the skin, leads to photosensitivity that is present in all erythropoietic porphyrias. In the bone marrow, heme synthesis is mainly controlled by intracellular labile iron by post-transcriptional regulation: translation of ALAS2 mRNA, the first and rate-limiting enzyme of the pathway, is inhibited when iron availability is low. Moreover, it has been shown that the expression of ferrochelatase (FECH, an iron-sulfur cluster enzyme that inserts iron into protoporphyrin IX to form heme), is regulated by intracellular iron level. Accordingly, there is accumulating evidence that iron status can mitigate disease expression in patients with erythropoietic porphyrias. This article will review the available clinical data on how iron status can modify the symptoms of erythropoietic porphyrias. We will then review the modulation of heme biosynthesis pathway by iron availability in the erythron and its role in erythropoietic porphyrias physiopathology. Finally, we will summarize what is known of FECH interactions with other proteins involved in iron metabolism in the mitochondria.
Collapse
|
117
|
Gerischer LM, Scheibe F, Nümann A, Köhnlein M, Stölzel U, Meisel A. Acute porphyrias - A neurological perspective. Brain Behav 2021; 11:e2389. [PMID: 34661997 PMCID: PMC8613433 DOI: 10.1002/brb3.2389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/21/2021] [Accepted: 09/14/2021] [Indexed: 01/23/2023] Open
Abstract
Acute hepatic porphyrias (AHP) can cause severe neurological symptoms involving the central, autonomic, and peripheral nervous system. Due to their relative rarity and their chameleon-like presentation, delayed diagnosis and misdiagnosis are common. AHPs are genetically inherited disorders that result from heme biosynthesis enzyme deficiencies and comprise four forms: acute intermittent porphyria (AIP), variegate porphyria (VP), hereditary coproporphyria (HCP), and ALA-dehydratase porphyria (ALADP). Depending on the clinical presentation, the main differential diagnoses are Guillain-Barré syndrome and autoimmune encephalitis. Red flags that could raise the suspicion of acute porphyria are neurological symptoms starting after severe (abdominal) pain, in association with reddish urine, hyponatremia or photodermatitis, and the presence of encephalopathy and/or axonal neuropathy. We highlight the diagnostic difficulties by presenting three cases from our neurological intensive care unit and give a comprehensive overview about the diagnostic findings in imaging, electrophysiology, and neuropathology.
Collapse
Affiliation(s)
- Lea M. Gerischer
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Department of NeurologyBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, NeuroCure Clinical Research CenterBerlinGermany
| | - Franziska Scheibe
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Department of NeurologyBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, NeuroCure Clinical Research CenterBerlinGermany
| | - Astrid Nümann
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Department of NeurologyBerlinGermany
| | - Martin Köhnlein
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Department of NeurologyBerlinGermany
| | - Ulrich Stölzel
- Department of Internal Medicine II, Porphyria Center SaxoniaKlinikum Chemnitz gGmbHChemnitzGermany
| | - Andreas Meisel
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Department of NeurologyBerlinGermany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, NeuroCure Clinical Research CenterBerlinGermany
| |
Collapse
|
118
|
Pizano PE, Suárez EU. Facial hypertrichosis, hyperpigmentation, and hepatosplenomegaly. Eur J Intern Med 2021; 92:109-110. [PMID: 34497019 DOI: 10.1016/j.ejim.2021.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Paola E Pizano
- Department of Internal Medicine, Universidad de Antioquia, Medellín, Colombia; Department of Radiology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Edwin Uriel Suárez
- Department of Internal Medicine, Universidad de Antioquia, Medellín, Colombia; Department of Haematology, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
119
|
Erwin AL, Balwani M. Porphyrias in the Age of Targeted Therapies. Diagnostics (Basel) 2021; 11:diagnostics11101795. [PMID: 34679493 PMCID: PMC8534485 DOI: 10.3390/diagnostics11101795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023] Open
Abstract
The porphyrias are a group of eight rare genetic disorders, each caused by the deficiency of one of the enzymes in the heme biosynthetic pathway, resulting in the excess accumulation of heme precursors and porphyrins. Depending on the tissue site as well as the chemical characteristics of the accumulating substances, the clinical features of different porphyrias vary substantially. Heme precursors are neurotoxic, and their accumulation results in acute hepatic porphyria, while porphyrins are photoactive, and excess amounts cause cutaneous porphyrias, which present with photosensitivity. These disorders are clinically heterogeneous but can result in severe clinical manifestations, long-term complications and a significantly diminished quality of life. Medical management consists mostly of the avoidance of triggering factors and symptomatic treatment. With an improved understanding of the underlying pathophysiology and disease mechanisms, new treatment approaches have become available, which address the underlying defects at a molecular or cellular level, and promise significant improvement, symptom prevention and more effective treatment of acute and chronic disease manifestations.
Collapse
Affiliation(s)
- Angelika L. Erwin
- Center for Personalized Genetic Healthcare, Cleveland Clinic & Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Correspondence: ; Tel.: +1-216-444-9249
| | - Manisha Balwani
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
120
|
Jericó D, Córdoba KM, Jiang L, Schmitt C, Morán M, Sampedro A, Alegre M, Collantes M, Santamaría E, Alegre E, Culerier C, de Mendoza AEH, Oyarzabal J, Martín MA, Peñuelas I, Ávila MA, Gouya L, Martini PGV, Fontanellas A. mRNA-based therapy in a rabbit model of variegate porphyria offers new insights into the pathogenesis of acute attacks. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:207-219. [PMID: 34458006 PMCID: PMC8368795 DOI: 10.1016/j.omtn.2021.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/13/2021] [Indexed: 11/28/2022]
Abstract
Variegate porphyria (VP) results from haploinsufficiency of protoporphyrinogen oxidase (PPOX), the seventh enzyme in the heme synthesis pathway. There is no VP model that recapitulates the clinical manifestations of acute attacks. Combined administrations of 2-allyl-2-isopropylacetamide and rifampicin in rabbits halved hepatic PPOX activity, resulting in increased accumulation of a potentially neurotoxic heme precursor, lipid peroxidation, inflammation, and hepatocyte cytoplasmic stress. Rabbits also showed hypertension, motor impairment, reduced activity of critical mitochondrial hemoprotein functions, and altered glucose homeostasis. Hemin treatment only resulted in a slight drop in heme precursor accumulation but further increased hepatic heme catabolism, inflammation, and cytoplasmic stress. Hemin replenishment did protect against hypertension, but it failed to restore action potentials in the sciatic nerve or glucose homeostasis. Systemic porphobilinogen deaminase (PBGD) mRNA administration increased hepatic PBGD activity, the third enzyme of the pathway, and rapidly normalized serum and urine porphyrin precursor levels. All features studied were improved, including those related to critical hemoprotein functions. In conclusion, the VP model recapitulates the biochemical characteristics and some clinical manifestations associated with severe acute attacks in humans. Systemic PBGD mRNA provided successful protection against the acute attack, indicating that PBGD, and not PPOX, was the critical enzyme for hepatic heme synthesis in VP rabbits.
Collapse
Affiliation(s)
- Daniel Jericó
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Karol M Córdoba
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Lei Jiang
- Moderna Inc., Cambridge, MA 02139, USA
| | - Caroline Schmitt
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale U1149, 75018 Paris, France.,Centre Français des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes et Université de Paris, 92701 Colombes, France
| | - María Morán
- Mitochondrial Diseases Laboratory, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Sampedro
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Manuel Alegre
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,Department of Clinical Neurophysiology, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| | - María Collantes
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,MicroPET Research Unit, CIMA-CUN, 31008 Pamplona, Spain.,Nuclear Medicine Department, CUN, 31008 Pamplona, Spain
| | - Eva Santamaría
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Estíbaliz Alegre
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,Department of Biochemistry, Service of Biochemistry, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| | - Corinne Culerier
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale U1149, 75018 Paris, France.,Centre Français des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes et Université de Paris, 92701 Colombes, France
| | | | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, CIMA-University of Navarra, 31008 Pamplona, Spain
| | - Miguel A Martín
- Mitochondrial Diseases Laboratory, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Iván Peñuelas
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,MicroPET Research Unit, CIMA-CUN, 31008 Pamplona, Spain.,Nuclear Medicine Department, CUN, 31008 Pamplona, Spain
| | - Matías A Ávila
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laurent Gouya
- Centre de Recherche sur l'Inflammation, Institut National de la Santé et de la Recherche Médicale U1149, 75018 Paris, France.,Centre Français des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes et Université de Paris, 92701 Colombes, France
| | | | - Antonio Fontanellas
- Hepatology Program, Centre for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
121
|
Dietz JV, Fox JL, Khalimonchuk O. Down the Iron Path: Mitochondrial Iron Homeostasis and Beyond. Cells 2021; 10:cells10092198. [PMID: 34571846 PMCID: PMC8468894 DOI: 10.3390/cells10092198] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cellular iron homeostasis and mitochondrial iron homeostasis are interdependent. Mitochondria must import iron to form iron–sulfur clusters and heme, and to incorporate these cofactors along with iron ions into mitochondrial proteins that support essential functions, including cellular respiration. In turn, mitochondria supply the cell with heme and enable the biogenesis of cytosolic and nuclear proteins containing iron–sulfur clusters. Impairment in cellular or mitochondrial iron homeostasis is deleterious and can result in numerous human diseases. Due to its reactivity, iron is stored and trafficked through the body, intracellularly, and within mitochondria via carefully orchestrated processes. Here, we focus on describing the processes of and components involved in mitochondrial iron trafficking and storage, as well as mitochondrial iron–sulfur cluster biogenesis and heme biosynthesis. Recent findings and the most pressing topics for future research are highlighted.
Collapse
Affiliation(s)
- Jonathan V. Dietz
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
| | - Jennifer L. Fox
- Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424, USA;
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68198, USA
- Correspondence:
| |
Collapse
|
122
|
Gilles A, Vermeersch S, Vermeersch P, Wolff F, Cotton F, Tilleux S, Cassiman D. Expert consensus statement on acute hepatic porphyria in Belgium. Acta Clin Belg 2021; 77:735-741. [PMID: 34369323 DOI: 10.1080/17843286.2021.1961056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute hepatic porphyrias (AHP) are a group of four different rare to ultra-rare, severely debilitating, and sometimes fatal diseases that significantly impact patients' lives: 5-aminolevulinic acid (ALA) dehydratase deficiency porphyria (ADP), acute intermittent porphyria (AIP), hereditary coproporphyria (HCP), and variegate porphyria (VP). Based on literature estimates, a conservative estimate of the number of AHP patients in Belgium requiring treatment, defined as patients experiencing recurrent attacks and/or chronic debilitating symptoms, is likely limited to 11-34 patients. These patients face a considerable unmet need, as there is currently no pharmaceutical treatment available that effectively prevents attacks and has an impact on other chronic symptoms of the disease.A panel consisting of the two European Porphyria Network1 (EPNet) centers in Belgium (Center for inborn errors of metabolism of UZ Leuven and the 'Centre Belge des Porphyries' of Erasme Hospital and LHUB-ULB) participated in an advisory board on 24 January 2020. Representatives of the sponsoring pharmaceutical company, Alnylam Pharmaceuticals, organized and attended the meeting. The objective of the meeting was to obtain expert input on the state-of-the-art clinical practice of AHP in Belgium. Following this meeting, this expert consensus statement was drafted, in collaboration with and coordinated by the EPNet centers in Belgium. This statement provides an overview of the state-of-the art in AHP, by means of a concise overview of AHP pathophysiology, clinical manifestations, and burden of disease, (Belgian) epidemiology, treatments, and proposed organization of care.
Collapse
Affiliation(s)
- Axelle Gilles
- Dept of Clinical Hematology, Cliniques universitaires de Bruxelles, Erasme Hospital
| | | | | | - Fleur Wolff
- Department of Clinical Chemistry, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centre Belge de Porphyries, Erasme Hospital, Université Libre de Bruxelles
| | - Frederic Cotton
- Department of Clinical Chemistry, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centre Belge de Porphyries, Erasme Hospital, Université Libre de Bruxelles
| | | | - David Cassiman
- Dienst Maag-Darm-Leverziekten en Metabool Centrum, UZ Leuven, Belgium
| |
Collapse
|
123
|
Ottesen EW, Luo D, Singh NN, Singh RN. High Concentration of an ISS-N1-Targeting Antisense Oligonucleotide Causes Massive Perturbation of the Transcriptome. Int J Mol Sci 2021; 22:ijms22168378. [PMID: 34445083 PMCID: PMC8395096 DOI: 10.3390/ijms22168378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/14/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022] Open
Abstract
Intronic splicing silencer N1 (ISS-N1) located within Survival Motor Neuron 2 (SMN2) intron 7 is the target of a therapeutic antisense oligonucleotide (ASO), nusinersen (Spinraza), which is currently being used for the treatment of spinal muscular atrophy (SMA), a leading genetic disease associated with infant mortality. The discovery of ISS-N1 as a promising therapeutic target was enabled in part by Anti-N1, a 20-mer ASO that restored SMN2 exon 7 inclusion by annealing to ISS-N1. Here, we analyzed the transcriptome of SMA patient cells treated with 100 nM of Anti-N1 for 30 h. Such concentrations are routinely used to demonstrate the efficacy of an ASO. While 100 nM of Anti-N1 substantially stimulated SMN2 exon 7 inclusion, it also caused massive perturbations in the transcriptome and triggered widespread aberrant splicing, affecting expression of essential genes associated with multiple cellular processes such as transcription, splicing, translation, cell signaling, cell cycle, macromolecular trafficking, cytoskeletal dynamics, and innate immunity. We validated our findings with quantitative and semiquantitative PCR of 39 candidate genes associated with diverse pathways. We also showed a substantial reduction in off-target effects with shorter ISS-N1-targeting ASOs. Our findings are significant for implementing better ASO design and dosing regimens of ASO-based drugs.
Collapse
|
124
|
Connolly MP, Kotsopoulos N, Vermeersch S, Patris J, Cassiman D. Estimating the broader fiscal consequences of acute hepatic porphyria (AHP) with recurrent attacks in Belgium using a public economic analytic framework. Orphanet J Rare Dis 2021; 16:346. [PMID: 34348763 PMCID: PMC8336398 DOI: 10.1186/s13023-021-01966-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Acute hepatic porphyria (AHP) is a rare, debilitating disease characterized by potentially life-threatening attacks often resulting in chronic symptoms that negatively impact daily functioning and quality of life. Symptoms of AHP prevent many individuals from working and achieving lifetime work averages. The aim of this study was to apply a public economic framework to evaluate AHP in Belgium, taking into consideration a broad range of costs that are relevant to government in relation to social benefit payments and lifetime taxes paid. METHODOLOGY A public economic framework was developed exploring lifetime costs for government attributed to an individual with AHP and recurrent attacks in Belgium. Work-activity and lifetime direct taxes paid, indirect consumption taxes and requirements for public benefits were estimated based on established clinical pathways for AHP and compared to the general population (GP). The model includes AHP-related healthcare costs and non-AHP healthcare costs for the GP. RESULTS Lifetime earnings are reduced in an individual with AHP by €347,802 per person (p.p.), translating to reduced lifetime taxes paid of €183,187 for an AHP individual compared to the GP. We estimate increased lifetime disability benefit support of €247,242 for an AHP individual compared to GP. Lifetime healthcare costs for a person with AHP were estimated to be €3,030,316 due to frequent hospitalisations associated with porphyria attacks compared to the GP. The lifetime costs for a person with 12 attacks per annum factoring in transfers, taxes and healthcare costs are estimated to be €3,460,745 p.p. Eliminating AHP attacks after 10 years of active disease, thus, enabling a person to return to work increases lifetime earnings by €224,575 p.p. Increased work activity in such individuals would generate an estimated €118,284 p.p. over their lifetime. The elimination of AHP attacks could also lead to reductions in disability payments of €179,184 p.p. and healthcare cost savings of €1,511,027 p.p. CONCLUSIONS Due to severe disability resulting from constant attacks, AHP patients with recurrent attacks incur significant public costs. Lifetime taxes paid are reduced as these attacks occur during peak earning and working years. In those patients, reducing AHP attacks can confer significant fiscal benefits for government, including reduced healthcare costs, reduced disability payments and improved tax revenue.
Collapse
Affiliation(s)
- Mark P Connolly
- Global Market Access Solutions Sarl, St-Prex, Switzerland.
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | | | | | - Julien Patris
- Alnylam Pharmaceuticals, Antonio Vivaldistraat 150, 1083 HP, Amsterdam, Netherlands
| | - David Cassiman
- Metabolic Center, Department of Gastroenterology-Hepatology, University of Leuven, Leuven, Belgium
| |
Collapse
|
125
|
Oliveira Santos M, Leal Rato M. Neurology of the acute hepatic porphyrias. J Neurol Sci 2021; 428:117605. [PMID: 34375916 DOI: 10.1016/j.jns.2021.117605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/01/2021] [Accepted: 08/01/2021] [Indexed: 11/30/2022]
Abstract
Porphyrias are a set of rare inherited metabolic disorders, each of them representing a defect in one of the eight enzymes in the haem biosynthetic pathway resulting in the accumulation of organic compounds called porphyrins. Acute hepatic porphyrias (AHP) are those in which the enzyme deficiency occurs in the liver, of which acute intermittent porphyria is by far the most common subtype. Neurology of the AHP is still challenging in practice, and patients rarely receive the correct diagnosis early in the disease course. For AHP, which primarily affects the central and peripheral nervous system, the cause of symptoms seems to be the increased production of neurotoxic precursors, in particular delta-aminolaevulinic acid and porphobilinogen. Neurological complications usually result from severe episodes of acute attacks. The neurologic hallmark of porphyrias is an acute predominantly motor axonal neuropathy resembling a Guillain-Barré syndrome that generally occurs after the onset of other clinical features such as abdominal pain and central nervous system manifestations. Neuropsychiatric syndromes, seizures, encephalopathy, and cerebrovascular disorders are among the possible central nervous system presentations. Therapeutic approach to AHP is divided into management and prophylaxis of an acute attack, including long standing options such as intravenous hematin and new therapeutic agents such as givosiran.
Collapse
Affiliation(s)
- Miguel Oliveira Santos
- Neurology, Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal; Institute of Physiology Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| | - Miguel Leal Rato
- Neurology, Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal; Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
126
|
Zou J, Wang YH, Wang L, Chen RC. Liver Failure of Wilson's Disease With Manifestations Similar to Porphyria and Uncommon ATP7B Gene Mutation: A Case Report and Literature Review. Front Med (Lausanne) 2021; 8:702312. [PMID: 34381801 PMCID: PMC8350053 DOI: 10.3389/fmed.2021.702312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Wilson's disease (WD) is a rare condition; its diagnosis is challenging owing to a wide spectrum of ATP7B genotypes and variable clinical phenotypes, along with environmental factors. Few cases of WD with presentation of skin lesions and acute neurovisceral symptoms have been reported in the literature. To our knowledge, this is the first reported case of WD with an uncommon ATP7B gene mutation and rare symptoms of photosensitivity, sensation abnormality, and skin eruption occurring in a 19-year-old woman. Case presentation: We report the case of a 19-year-old woman with WD presenting with liver failure, skin manifestations, and acute neurovisceral symptoms.The rare mutation in intron 1 of ATP7B (c.51+2T > G) was further confirmed by gene sequencing. The patients' symptoms improved after administration of penicillamine and zinc therapy combined with plasma exchange. She received long-term penicillamine treatment, and her liver function was within the normal range at 1 year after discharge. However, she underwent liver transplantation at 1.5 years after discharge. Conclusions: We present a case of WD with a novel ATP7B gene mutation that may serve as a reference to generalists and specialists in hepatology or neurology of the rare clinical characteristics of WD, to prevent misdiagnosis and aid in the early diagnosis and treatment of the condition.
Collapse
Affiliation(s)
- Ju Zou
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Ying-Hao Wang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling Wang
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Ruo-Chan Chen
- Department of Infectious Disease, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
127
|
Di Pierro E, De Canio M, Mercadante R, Savino M, Granata F, Tavazzi D, Nicolli AM, Trevisan A, Marchini S, Fustinoni S. Laboratory Diagnosis of Porphyria. Diagnostics (Basel) 2021; 11:diagnostics11081343. [PMID: 34441276 PMCID: PMC8391404 DOI: 10.3390/diagnostics11081343] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Porphyrias are a group of diseases that are clinically and genetically heterogeneous and originate mostly from inherited dysfunctions of specific enzymes involved in heme biosynthesis. Such dysfunctions result in the excessive production and excretion of the intermediates of the heme biosynthesis pathway in the blood, urine, or feces, and these intermediates are responsible for specific clinical presentations. Porphyrias continue to be underdiagnosed, although laboratory diagnosis based on the measurement of metabolites could be utilized to support clinical suspicion in all symptomatic patients. Moreover, the measurement of enzymatic activities along with a molecular analysis may confirm the diagnosis and are, therefore, crucial for identifying pre-symptomatic carriers. The present review provides an overview of the laboratory assays used most commonly for establishing the diagnosis of porphyria. This would assist the clinicians in prescribing appropriate diagnostic testing and interpreting the testing results.
Collapse
Affiliation(s)
- Elena Di Pierro
- Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Correspondence: ; Tel.: +39-0255036155
| | - Michele De Canio
- Porphyria and Rare Diseases Centre, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy;
| | - Rosa Mercadante
- EPIGET-Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.M.); (D.T.); (S.F.)
| | - Maria Savino
- Servizio di Medicina Trasfusionale e Laboratorio Analisi, Laboratorio di Immunogenetica, IRCCS Ospedale “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Francesca Granata
- Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Dario Tavazzi
- EPIGET-Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.M.); (D.T.); (S.F.)
| | - Anna Maria Nicolli
- Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università Degli Studi di Padova, 35121 Padova, Italy; (A.M.N.); (A.T.)
| | - Andrea Trevisan
- Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università Degli Studi di Padova, 35121 Padova, Italy; (A.M.N.); (A.T.)
| | - Stefano Marchini
- Laboratorio Malattie Rare-Settore Porfirie, Dipartimento di Scienze Mediche, Chirurgiche, Materno-Infantili e Dell’Adulto, Azienda Ospedaliero-Universitaria Policlinico di Modena, 41125 Modena, Italy;
| | - Silvia Fustinoni
- EPIGET-Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.M.); (D.T.); (S.F.)
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
128
|
Ducamp S, Luscieti S, Ferrer-Cortès X, Nicolas G, Manceau H, Peoc'h K, Yien YY, Kannengiesser C, Gouya L, Puy H, Sanchez M. A mutation in the iron-responsive element of ALAS2 is a modifier of disease severity in a patient suffering from CLPX associated erythropoietic protoporphyria. Haematologica 2021; 106:2030-2033. [PMID: 33596641 PMCID: PMC8252951 DOI: 10.3324/haematol.2020.272450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sarah Ducamp
- INSERM U1149 CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France Paris; Laboratory of excellence, GR-EX, Paris
| | - Sara Luscieti
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC). Badalona
| | - Xènia Ferrer-Cortès
- Universitat Internacional de Catalunya (UIC), Department of Basic Sciences, Iron metabolism: Regulation and Diseases. Sant Cugat del Vallès, Barcelona; BloodGenetics S.L. Diagnostics in Inherited Blood Diseases. Esplugues de Llobregat
| | - Gaël Nicolas
- INSERM U1149 CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France Paris; Laboratory of excellence, GR-EX, Paris
| | - Hana Manceau
- Laboratory of excellence, GR-EX, Paris, France; Institute of Predictive and Personalized Medicine of Cancer (IMPPC). Badalona, Barcelona; Universitat Internacional de Catalunya (UIC), Department of Basic Sciences, Iron metabolism: Regulation and Diseases. Sant Cugat del Vallès, Barcelona; BloodGenetics S.L. Diagnostics in Inherited Blood Diseases. Esplugues de Llobregat, Barcelona; AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes
| | - Katell Peoc'h
- Laboratory of excellence, GR-EX, Paris, France; Institute of Predictive and Personalized Medicine of Cancer (IMPPC). Badalona, Barcelona; Universitat Internacional de Catalunya (UIC), Department of Basic Sciences, Iron metabolism: Regulation and Diseases. Sant Cugat del Vallès, Barcelona; BloodGenetics S.L. Diagnostics in Inherited Blood Diseases. Esplugues de Llobregat, Barcelona; AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes
| | - Yvette Y Yien
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Caroline Kannengiesser
- INSERM U1149 CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France Paris; Laboratory of excellence, GR-EX, Paris, France; Institute of Predictive and Personalized Medicine of Cancer (IMPPC). Badalona
| | - Laurent Gouya
- INSERM U1149 CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France Paris; Laboratory of excellence, GR-EX, Paris, France; AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes
| | - Herve Puy
- INSERM U1149 CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France Paris; Laboratory of excellence, GR-EX, Paris, France; AP-HP, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes.
| | - Mayka Sanchez
- Universitat Internacional de Catalunya (UIC), Department of Basic Sciences, Iron metabolism: Regulation and Diseases. Sant Cugat del Vallès, Barcelona; BloodGenetics S.L. Diagnostics in Inherited Blood Diseases. Esplugues de Llobregat.
| |
Collapse
|
129
|
Li J, Liu J, Zhang X, Clausen V, Tran C, Arciprete M, Wang Q, Rocca C, Guan LH, Zhang G, Najarian D, Xu Y, Smith P, Wu JT, Chong S. Nonclinical Pharmacokinetics and Absorption, Distribution, Metabolism, and Excretion of Givosiran, the First Approved N-Acetylgalactosamine-Conjugated RNA Interference Therapeutic. Drug Metab Dispos 2021; 49:572-580. [PMID: 33941543 DOI: 10.1124/dmd.121.000381] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Givosiran is an N-acetylgalactosamine-conjugated RNA interference therapeutic that targets 5'-aminolevulinate synthase 1 mRNA in the liver and is currently marketed for the treatment of acute hepatic porphyria. Herein, nonclinical pharmacokinetics and absorption, distribution, metabolism, and excretion properties of givosiran were characterized. Givosiran was completely absorbed after subcutaneous administration with relatively short plasma elimination half-life (t1/2; less than 4 hours). Plasma exposure increased approximately dose proportionally with no accumulation after repeat doses. Plasma protein binding was concentration dependent across all species tested and was around 90% at clinically relevant concentration in human. Givosiran predominantly distributed to the liver by asialoglycoprotein receptor-mediated uptake, and the t1/2 in the liver was significantly longer (∼1 week). Givosiran was metabolized by nucleases, not cytochrome P450 (P450) isozymes, across species with no human unique metabolites. Givosiran metabolized to form one primary active metabolite with the loss of one nucleotide from the 3' end of antisense strand, AS(N-1)3' givosiran, which was equipotent to givosiran. Renal and fecal excretion were minor routes of elimination of givosiran as approximately 10% and 16% of the dose was recovered intact in excreta of rats and monkeys, respectively. Givosiran is not a substrate, inhibitor, or inducer of P450 isozymes, and it is not a substrate or inhibitor of uptake and most efflux transporters. Thus, givosiran has a low potential of mediating drug-drug interactions involving P450 isozymes and drug transporters. SIGNIFICANCE STATEMENT: Nonclinical pharmacokinetics and absorption, distribution, metabolism, and excretion (ADME) properties of givosiran were characterized. Givosiran shows similar pharmacokinetics and ADME properties across rats and monkeys in vivo and across human and animal matrices in vitro. Subcutaneous administration results in adequate exposure of givosiran to the target organ (liver). These studies support the interpretation of toxicology studies, help characterize the disposition of givosiran in humans, and support the clinical use of givosiran for the treatment of acute hepatic porphyria.
Collapse
Affiliation(s)
- Jing Li
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Ju Liu
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Xuemei Zhang
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts
| | | | - Chris Tran
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts
| | | | - Qianfan Wang
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Carrie Rocca
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Li-Hua Guan
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Guodong Zhang
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts
| | | | - Yuanxin Xu
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Peter Smith
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Jing-Tao Wu
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Saeho Chong
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts
| |
Collapse
|
130
|
To-Figueras J, Wijngaard R, García-Villoria J, Aarsand AK, Aguilera P, Deulofeu R, Brunet M, Gómez-Gómez À, Pozo OJ, Sandberg S. Dysregulation of homocysteine homeostasis in acute intermittent porphyria patients receiving heme arginate or givosiran. J Inherit Metab Dis 2021; 44:961-971. [PMID: 33861472 DOI: 10.1002/jimd.12391] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022]
Abstract
Acute intermittent porphyria (AIP) is a rare metabolic disease caused by mutations within the hydroxymethylbilane synthase gene. Previous studies have reported increased levels of plasma total homocysteine (tHcy) in symptomatic AIP patients. In this study, we present long-term data for tHcy and related parameters for an AIP patient cohort (n = 37) in different clinical disease-states. In total, 25 patients (68%) presented with hyperhomocysteinemia (HHcy; tHcy > 15 μmol/L) during the observation period. HHcy was more frequent in AIP patients with recurrent disease receiving heme arginate, than in nonrecurrent (median tHcy: 21.6 μmol/L; range: 10-129 vs median tHcy: 14.5 μmol/L; range 6-77). Long-term serial analyses showed a high within-person tHcy variation, especially among the recurrent patients (coefficient of variation: 16.4%-78.8%). HHcy was frequently associated with low blood concentrations of pyridoxal-5'-phosphate and folate, while cobalamin concentration and the allele distribution of the methylene-tetrahydrofolate-reductase gene were normal. Strikingly, 6 out of the 9 recurrent patients who were later included in a regime of givosiran, a small-interfering RNA that effectively reduced recurrent attacks, showed further increased tHcy (median tHcy in 9 patients: 105 μmol/L; range 16-212). Screening of amino acids in plasma by liquid-chromatography showed co-increased levels of methionine (median 71 μmol/L; range 23-616; normal <40), suggestive of acquired deficiency of cystathionine-β-synthase. The kynunerine/tryptophan ratio in plasma was, however, normal, indicating a regular metabolism of tryptophan by heme-dependent enzymes. In conclusion, even if HHcy was observed in AIP patients receiving heme arginate, givosiran induced an aggravation of the dysregulation, causing a co-increase of tHcy and methionine resembling classic homocystinuria.
Collapse
Affiliation(s)
- Jordi To-Figueras
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Robin Wijngaard
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Judit García-Villoria
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Aasne K Aarsand
- Norwegian Porphyria Centre (NAPOS), Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Norwegian Organization for Quality Improvement of Laboratory Examinations, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Paula Aguilera
- Dermatology Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ramon Deulofeu
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Mercè Brunet
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Àlex Gómez-Gómez
- Integrative Pharmacology and Systems Neuroscience Group, Institut Municipal Investigació Mèdica (IMIM), Hospital del Mar, Barcelona, Spain
| | - Oscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Group, Institut Municipal Investigació Mèdica (IMIM), Hospital del Mar, Barcelona, Spain
| | - Sverre Sandberg
- Norwegian Porphyria Centre (NAPOS), Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Norwegian Organization for Quality Improvement of Laboratory Examinations, Haraldsplass Deaconess Hospital, Bergen, Norway
| |
Collapse
|
131
|
Kiew CK, Lam ASEL. Unexpected presentation of acute porphyria. BMJ Case Rep 2021; 14:14/6/e241580. [PMID: 34187794 DOI: 10.1136/bcr-2021-241580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Acute porphyrias are rarely reported in Southeast Asia. They may be underdiagnosed due to their clinical mimicry and lack of awareness among physicians. There is a common cognitive bias to gravitate towards common conditions. In this case report, a 28-year-old woman, who presented with seizures, rhabdomyolysis hyponatraemia and altered mental state, was initially diagnosed as amphetamine overdose. She had presented 3 days prior with abdominal pain, treated for acute cystitis and discharged. On readmission for seizures a day later, she was extensively worked up for altered mental state. Despite normalisation of serum sodium concentration and control of her seizures, she remained unwell. Further investigations later confirmed a diagnosis of acute porphyria. The aim of this case report is to highlight the non-specific nature of presentation of acute porphyria and the importance of considering it as a differential diagnosis in cases of abdominal pain with neuropsychiatric features.
Collapse
|
132
|
Yuan H, Guo L, Su Q, Su X, Wen Y, Wang T, Yang P, Xu M, Li F. Afterglow Amplification for Fast and Sensitive Detection of Porphyria in Whole Blood. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27991-27998. [PMID: 34110123 DOI: 10.1021/acsami.1c08518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porphyria is a group of genetic photodermatoses that cause too much porphyrin to accumulate in the blood, skin, and liver, resulting in skin photosensitivity and damage, liver disease, or potential liver failure. Conventional detection methods include high-performance liquid chromatography and fluorescence spectrometry. However, these methods usually require complicated pretreatment and time-consuming processes. Therefore, efficient and fast detection of porphyria is urgently needed. Herein, we develop a molecular afterglow reporter-based sensing scheme for the detection of porphyrins in whole blood. The afterglow reporter can respond to the production of singlet oxygen (1O2) of porphyrins after light excitation, and the detection signals can be amplified through adjusting the amount of singlet oxygen and afterglow reporter molecules. Moreover, without the use of a real-time excitation source, afterglow signals can avoid the scattering and autofluorescence interference in biological samples, thereby reducing background noise. More importantly, we prove the applicability of the afterglow reporter in the quantitative detection of porphyrins in whole blood and demonstrate its great clinical potential.
Collapse
Affiliation(s)
- Hang Yuan
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Linna Guo
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xianlong Su
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Yue Wen
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Tao Wang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Pengyuan Yang
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Ming Xu
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Fuyou Li
- Department of Chemistry & Institutes of Biomedical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| |
Collapse
|
133
|
Stutterd CA, Kidd A, Florkowski C, Janus E, Fanjul M, Raizis A, Wu TY, Archer J, Leventer RJ, Amor DJ, Lukic V, Bahlo M, Gow P, Lockhart PJ, van der Knaap MS, Delatycki MB. Expanding the clinical and radiological phenotypes of leukoencephalopathy due to biallelic HMBS mutations. Am J Med Genet A 2021; 185:2941-2950. [PMID: 34089223 DOI: 10.1002/ajmg.a.62377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 11/07/2022]
Abstract
Pathogenic heterozygous variants in HMBS encoding the enzyme hydroxymethylbilane synthase (HMBS), also known as porphobilinogen deaminase, cause acute intermittent porphyria (AIP). Biallelic variants in HMBS have been reported in a small number of children with severe progressive neurological disease and in three adult siblings with a more slowly, progressive neurological disease and distinct leukoencephalopathy. We report three further adult individuals who share a distinct pattern of white matter abnormality on brain MRI in association with biallelic variants in HMBS, two individuals with homozygous variants, and one with compound-heterozygous variants. We present their clinical and radiological features and compare these with the three adult siblings previously described with leukoencephalopathy and biallelic HMBS variants. All six affected individuals presented with slowly progressive spasticity, ataxia, peripheral neuropathy, with or without mild cognitive impairment, and/or ocular disease with onset in childhood or adolescence. Their brain MRIs show mainly confluent signal abnormalities in the periventricular and deep white matter and bilateral thalami. This recognizable pattern of MRI abnormalities is seen in all six adults described here. Biallelic variants in HMBS cause a phenotype that is distinct from AIP. It is not known whether AIP treatments benefit individuals with HMBS-related leukoencephalopathy. One individual reported here had improved neurological function for 12 months following liver transplantation followed by decline and progression of disease.
Collapse
Affiliation(s)
- Chloe A Stutterd
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Neurology, Royal Children's Hospital, Parkville, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia.,Victorian Clinical Genetics Services, Parkville, Australia
| | - Alexa Kidd
- Genetics Department, Canterbury Health laboratory, Christchurch, New Zealand
| | - Chris Florkowski
- Clinical Biochemistry Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Edward Janus
- Western Health General Internal Medicine Unit, St Albans, Australia.,Department of Medicine, Western Health, The University of Melbourne, Melbourne, Australia
| | - Miriam Fanjul
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Anthony Raizis
- Department of Molecular Pathology, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Teddy Y Wu
- Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| | - John Archer
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Australia
| | - Richard J Leventer
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Neurology, Royal Children's Hospital, Parkville, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Vesna Lukic
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Paul Gow
- Liver Transplant Unit, Austin Hospital, University of Melbourne, Melbourne, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Marjo S van der Knaap
- Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Martin B Delatycki
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia.,Victorian Clinical Genetics Services, Parkville, Australia
| |
Collapse
|
134
|
Maitra D, Pinsky BM, Soherawardy A, Zheng H, Banerjee R, Omary MB. Protein-aggregating ability of different protoporphyrin-IX nanostructures is dependent on their oxidation and protein-binding capacity. J Biol Chem 2021; 297:100778. [PMID: 34023387 PMCID: PMC8253973 DOI: 10.1016/j.jbc.2021.100778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
Porphyrias are rare blood disorders caused by genetic defects in the heme biosynthetic pathway and are associated with the accumulation of high levels of porphyrins that become cytotoxic. Porphyrins, due to their amphipathic nature, spontaneously associate into different nanostructures, but very little is known about the cytotoxic effects of these porphyrin nanostructures. Previously, we demonstrated the unique ability of fluorescent biological porphyrins, including protoporphyrin-IX (PP-IX), to cause organelle-selective protein aggregation, which we posited to be a major mechanism by which fluorescent porphyrins exerts their cytotoxic effect. Herein, we tested the hypothesis that PP-IX-mediated protein aggregation is modulated by different PP-IX nanostructures via a mechanism that depends on their oxidizing potential and protein-binding ability. UV–visible spectrophotometry showed pH-mediated reversible transformations of PP-IX nanostructures. Biochemical analysis showed that PP-IX nanostructure size modulated PP-IX-induced protein oxidation and protein aggregation. Furthermore, albumin, the most abundant serum protein, preferentially binds PP-IX dimers and enhances their oxidizing ability. PP-IX binding quenched albumin intrinsic fluorescence and oxidized His-91 residue to Asn/Asp, likely via a previously described photo-oxidation mechanism for other proteins. Extracellular albumin protected from intracellular porphyrinogenic stress and protein aggregation by acting as a PP-IX sponge. This work highlights the importance of PP-IX nanostructures in the context of porphyrias and offers insights into potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Dhiman Maitra
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA.
| | | | - Amenah Soherawardy
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA
| | - Ruma Banerjee
- University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biological Chemistry, Ann Arbor, Michigan, USA
| | - M Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, USA; University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
135
|
Bragazzi Cunha J, Elenbaas JS, Maitra D, Kuo N, Azuero-Dajud R, Ferguson AC, Griffin MS, Lentz SI, Shavit JA, Omary MB. Acitretin mitigates uroporphyrin-induced bone defects in congenital erythropoietic porphyria models. Sci Rep 2021; 11:9601. [PMID: 33953217 PMCID: PMC8100164 DOI: 10.1038/s41598-021-88668-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Congenital erythropoietic porphyria (CEP) is a rare genetic disorder leading to accumulation of uro/coproporphyrin-I in tissues due to inhibition of uroporphyrinogen-III synthase. Clinical manifestations of CEP include bone fragility, severe photosensitivity and photomutilation. Currently there is no specific treatment for CEP, except bone marrow transplantation, and there is an unmet need for treating this orphan disease. Fluorescent porphyrins cause protein aggregation, which led us to hypothesize that uroporphyrin-I accumulation leads to protein aggregation and CEP-related bone phenotype. We developed a zebrafish model that phenocopies features of CEP. As in human patients, uroporphyrin-I accumulated in the bones of zebrafish, leading to impaired bone development. Furthermore, in an osteoblast-like cell line, uroporphyrin-I decreased mineralization, aggregated bone matrix proteins, activated endoplasmic reticulum stress and disrupted autophagy. Using high-throughput drug screening, we identified acitretin, a second-generation retinoid, and showed that it reduced uroporphyrin-I accumulation and its deleterious effects on bones. Our findings provide a new CEP experimental model and a potential repurposed therapeutic.
Collapse
Affiliation(s)
- Juliana Bragazzi Cunha
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, 08854, USA.
| | - Jared S Elenbaas
- Medical Scientist Training Program, Washington University, Saint Louis, 63110, USA
| | - Dhiman Maitra
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, 08854, USA
| | - Ning Kuo
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, 08854, USA
| | - Rodrigo Azuero-Dajud
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, 08854, USA
| | - Allison C Ferguson
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan, Ann Arbor, 48109, USA
| | - Megan S Griffin
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan, Ann Arbor, 48109, USA
| | - Stephen I Lentz
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, 48109, USA
| | - Jordan A Shavit
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan, Ann Arbor, 48109, USA
| | - M Bishr Omary
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, 08854, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, 48109, USA.
| |
Collapse
|
136
|
Abstract
PURPOSE OF REVIEW Acute hepatic porphyrias (AHP) are a group of rare diseases that are characterized by episodic acute neurovisceral pain episodes caused by abnormal accumulation of the neurotoxic porphyrin precursor delta-aminolevulinic acid (ALA). Patient with frequent recurrent acute attacks have been difficult to treat and these patients sometimes require liver transplantation. Recent developments in small interfering RNA (siRNA)-based therapy led to the development of an effective prophylactic treatment for patients with frequent recurrent attacks. This review will describe treatment options for AHP and highlight management in light of new treatment option. RECENT FINDINGS Givosiran is a novel siRNA-based therapy targeted specifically to hepatocytes to inhibit ALA synthase 1, the first and rate-limiting step in heme biosynthesis. Patients with frequent recurrent attacks treated with givosiran had durable normalization of ALA and significantly reduced numbers of acute attacks and need for hemin treatment. The overall safety profile for givosiran was comparable with placebo and the drug was recently approved by the Food and Drug Administration for treatment of AHP patients. SUMMARY Givosiran is an effective treatment for prevention of acute porphyria attacks in AHP patients with frequent recurrent attacks.
Collapse
Affiliation(s)
- Bruce Wang
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
137
|
Snast I, Kaftory R, Lapidoth M, Mamet R, Hodak E, Edel Y, Levi A. Clinical features of genetic cutaneous porphyrias in Israel: A nationwide survey. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:236-242. [PMID: 33306200 DOI: 10.1111/phpp.12641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND There are three major types of genetic cutaneous porphyrias (GCP): erythropoietic protoporphyria (EPP), variegate porphyria (VP), and hereditary coproporphyria (HCP). Scarce data are available regarding their impact on patients' quality of life in the Mediterranean region. PURPOSE To describe the cutaneous features of GCP in Israel. METHODS An established nationwide cohort of patients with GCP diagnosed during 1988-2019 was surveyed by telephone for cutaneous features of GCP. Impact on quality of life was assessed using the Dermatology Life Quality Index. RESULTS Of the 95 patients with GCP, 71 (75%) completed the survey (21 HCP; 40 VP; 10 EPP). All EPP patients reported cutaneous symptoms compared with 58% of VP and 5% of HCP (P < .001). Mean age at symptom onset was 7 ± 6 years in EPP and 25 ± 15 years in VP (P < .001). Photosensitivity was the most common symptom in EPP (90%). In VP photosensitivity (52%), blistering (52%) and scarring (74%) were all common symptoms. In both VP and EPP, the dorsal hands/forearms were the most affected regions (≥96%), and in ≥ 78%, symptoms occurred on an almost daily basis. All EPP patients changed their lifestyle due to cutaneous symptoms vs 57% in VP. Major effect on quality of life was observed among EPP patients compared with a moderate effect in VP. No treatment was effective in EPP, while phototherapy and moisturizers were effective in 5 of 7 (71%) VP patients. CONCLUSION This study sheds light on the cutaneous features of the GCP, which have a substantial effect on patients' quality of life.
Collapse
Affiliation(s)
- Igor Snast
- Division of Dermatology, Photodermatosis Service, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Kaftory
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Lapidoth
- Division of Dermatology, Photodermatosis Service, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rivka Mamet
- National Service for the Biochemical Diagnoses of Porphyrias, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Emmilia Hodak
- Division of Dermatology, Photodermatosis Service, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yonatan Edel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,National Service for the Biochemical Diagnoses of Porphyrias, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Department "C" of internal Medicine, Beilinson Hospital, Petah Tikva, Israel
| | - Assi Levi
- Division of Dermatology, Photodermatosis Service, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
138
|
Saberi B, Naik H, Overbey JR, Erwin AL, Anderson KE, Bissell DM, Bonkovsky HL, Phillips JD, Wang B, K Singal A, M McGuire B, Desnick RJ, Balwani M. Hepatocellular Carcinoma in Acute Hepatic Porphyrias: Results from the Longitudinal Study of the U.S. Porphyrias Consortium. Hepatology 2021; 73:1736-1746. [PMID: 32681675 DOI: 10.1002/hep.31460] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The risk for hepatocellular carcinoma (HCC) is increased in acute hepatic porphyrias (AHP). The aim of this study was to explore the clinicopathologic characteristics, outcomes, and frequency of HCC in patients with AHP in the United States. APPROACH AND RESULTS This cross-sectional analysis evaluated patients with HCC in a multicenter, longitudinal study of AHP. Among 327 patients with AHP, 5 (1.5%) were diagnosed with HCC. Of the 5 HCC cases, 4 had acute intermittent porphyria and 1 had variegate porphyria, confirmed by biochemical and/or genetic testing. All patients were white females, with a median age of 27 years (range 21-75) at diagnosis. The median age at HCC diagnosis was 69 years (range 61-74). AHP was asymptomatic in 2 patients; 2 reported sporadic attacks; and 1 reported recurrent attacks (>4 attacks/year). All patients had a single HCC lesion on liver imaging that was 1.8-6.5 centimeters in diameter. Serum alpha fetoprotein levels were below 10 ng/mL in all 4 patients with available results. Four patients underwent liver resection, and 1 was treated with radioembolization. No significant inflammation or fibrosis was found in adjacent liver tissues of 3 patients who underwent liver resection. Two patients developed recurrence of HCC at 22 and 26 months following liver resection. All patients are alive with survival times from HCC diagnosis ranging from 26-153 months. CONCLUSION In this U.S. study, 1.5% of patients with AHP had HCC. HCC in AHP occurred in the absence of cirrhosis, which contrasts with other chronic liver diseases. Patients with AHP, regardless of clinical attacks, should be screened for HCC, beginning at age 50. The pathogenesis of hepatocarcinogenesis in AHP is unknown and needs further investigation.
Collapse
Affiliation(s)
- Behnam Saberi
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hetanshi Naik
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jessica R Overbey
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Karl E Anderson
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX
| | | | - Herbert L Bonkovsky
- Section on Gastroenterology and Hepatology, Department of Internal Medicine, Wake Forest/NC Baptist Medical Center, Winston-Salem, NC
| | - John D Phillips
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Bruce Wang
- Department of Medicine, University of California, San Francisco, CA
| | - Ashwani K Singal
- Department of Internal Medicine, University of South Dakota, Sioux Falls, SD.,Division of Hepatology, Avera Transplant Institute, Sioux Falls, SD
| | | | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
139
|
Micaglio E, Locati ET, Monasky MM, Romani F, Heilbron F, Pappone C. Role of Pharmacogenetics in Adverse Drug Reactions: An Update towards Personalized Medicine. Front Pharmacol 2021; 12:651720. [PMID: 33995067 PMCID: PMC8120428 DOI: 10.3389/fphar.2021.651720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Adverse drug reactions (ADRs) are an important and frequent cause of morbidity and mortality. ADR can be related to a variety of drugs, including anticonvulsants, anaesthetics, antibiotics, antiretroviral, anticancer, and antiarrhythmics, and can involve every organ or apparatus. The causes of ADRs are still poorly understood due to their clinical heterogeneity and complexity. In this scenario, genetic predisposition toward ADRs is an emerging issue, not only in anticancer chemotherapy, but also in many other fields of medicine, including hemolytic anemia due to glucose-6-phosphate dehydrogenase (G6PD) deficiency, aplastic anemia, porphyria, malignant hyperthermia, epidermal tissue necrosis (Lyell's Syndrome and Stevens-Johnson Syndrome), epilepsy, thyroid diseases, diabetes, Long QT and Brugada Syndromes. The role of genetic mutations in the ADRs pathogenesis has been shown either for dose-dependent or for dose-independent reactions. In this review, we present an update of the genetic background of ADRs, with phenotypic manifestations involving blood, muscles, heart, thyroid, liver, and skin disorders. This review aims to illustrate the growing usefulness of genetics both to prevent ADRs and to optimize the safe therapeutic use of many common drugs. In this prospective, ADRs could become an untoward "stress test," leading to new diagnosis of genetic-determined diseases. Thus, the wider use of pharmacogenetic testing in the work-up of ADRs will lead to new clinical diagnosis of previously unsuspected diseases and to improved safety and efficacy of therapies. Improving the genotype-phenotype correlation through new lab techniques and implementation of artificial intelligence in the future may lead to personalized medicine, able to predict ADR and consequently to choose the appropriate compound and dosage for each patient.
Collapse
Affiliation(s)
- Emanuele Micaglio
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Emanuela T Locati
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Federico Romani
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, (Vita-Salute University) for Federico Romani, Milan, Italy
| | | | - Carlo Pappone
- Arrhythmology and Electrophysiology Department, IRCCS Policlinico San Donato, Milan, Italy.,Vita-Salute San Raffaele University, (Vita-Salute University) for Federico Romani, Milan, Italy
| |
Collapse
|
140
|
Juchniewicz P, Piotrowska E, Kloska A, Podlacha M, Mantej J, Węgrzyn G, Tukaj S, Jakóbkiewicz-Banecka J. Dosage Compensation in Females with X-Linked Metabolic Disorders. Int J Mol Sci 2021; 22:ijms22094514. [PMID: 33925963 PMCID: PMC8123450 DOI: 10.3390/ijms22094514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/19/2023] Open
Abstract
Through the use of new genomic and metabolomic technologies, our comprehension of the molecular and biochemical etiologies of genetic disorders is rapidly expanding, and so are insights into their varying phenotypes. Dosage compensation (lyonization) is an epigenetic mechanism that balances the expression of genes on heteromorphic sex chromosomes. Many studies in the literature have suggested a profound influence of this phenomenon on the manifestation of X-linked disorders in females. In this review, we summarize the clinical and genetic findings in female heterozygotic carriers of a pathogenic variant in one of ten selected X-linked genes whose defects result in metabolic disorders.
Collapse
Affiliation(s)
- Patrycja Juchniewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
- Correspondence: ; Tel.: +48-58-523-6040
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| |
Collapse
|
141
|
Abstract
Givosiran (Givlaari®) is an δ-aminolevulinic acid synthase 1 (ALAS1)-directed small interfering RNA (siRNA) approved for the treatment of acute hepatic porphyria (AHP). In the phase 3 ENVISION trial, givosiran significantly reduced the annualized rate of composite porphyria attacks (i.e. attacks requiring hospitalization, urgent healthcare visit or intravenous hemin administration at home) compared with placebo in patients with recurrent acute intermittent porphyria (the most common type of AHP) attacks. Givosiran also improved several other outcomes, including hemin use and pain (the cardinal symptom of AHP). While generally well tolerated with an acceptable safety profile, the drug may increase the risk of hepatic and kidney adverse events. Givosiran offers the convenience of once-monthly subcutaneous administration. Available evidence indicates that givosiran is an important newer therapeutic option for patients with AHP and severe recurrent attacks.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
142
|
Anderson KE, Lobo R, Salazar D, Schloetter M, Spitzer G, White AL, Young RM, Bonkovsky HL, Frank EL, Mora J, Tortorelli S. Biochemical Diagnosis of Acute Hepatic Porphyria: Updated Expert Recommendations for Primary Care Physicians. Am J Med Sci 2021; 362:113-121. [PMID: 33865828 DOI: 10.1016/j.amjms.2021.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/05/2021] [Accepted: 03/10/2021] [Indexed: 01/06/2023]
Abstract
Acute hepatic porphyria (AHP) is a group of rare, metabolic diseases where patients can experience acute neurovisceral attacks, chronic symptoms, and long-term complications. Diagnostic biochemical testing is widely available and effective, but a substantial time from symptom onset to diagnosis often delays treatment and increases morbidity. A panel of laboratory scientists and clinical AHP specialists collaborated to produce recommendations on how to enhance biochemical diagnosis of AHP in the USA. AHP should be considered in the differential diagnosis of unexplained abdominal pain, the most common symptom, soon after excluding common causes. Measurement of porphobilinogen (PBG) and porphyrins in a random urine sample, with results normalized to creatinine, is recommended as an effective and cost-efficient initial test for AHP. Delta-aminolevulinic acid testing may be included but is not essential. The optimal time to collect a urine sample is during an attack. Substantial PBG elevation confirms an AHP diagnosis and allows for prompt treatment initiation. Additional testing can determine AHP subtype and identify at-risk family members. Increased awareness of AHP and correct diagnostic methods will reduce diagnostic delay and improve patient outcomes.
Collapse
Affiliation(s)
| | - Raynah Lobo
- Quest Diagnostics, Nichols Institute, San Juan Capistrano, CA, USA
| | - Denise Salazar
- Quest Diagnostics, Nichols Institute, San Juan Capistrano, CA, USA
| | | | - Gary Spitzer
- Strategic Medical Testing Services, Greenville, SC, USA
| | - Amy L White
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Randolph M Young
- Special Chemistry Department, LabCorp Center for Esoteric Testing, Burlington, NC, USA
| | | | - Elizabeth L Frank
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | | | - Silvia Tortorelli
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
143
|
Lazareth H, Poli A, Bignon Y, Mirmiran A, Rabant M, Cohen R, Schmitt C, Puy H, Karras A, Gouya L, Pallet N. Renal Function Decline With Small Interfering RNA Silencing Aminolevulinic Acid Synthase 1 (ALAS1). Kidney Int Rep 2021; 6:1904-1911. [PMID: 34307985 PMCID: PMC8258458 DOI: 10.1016/j.ekir.2021.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Givosiran is an RNA interference therapeutic designed to block the synthesis of the aminolevulinic acid (ALA) synthase 1 (ALAS1) enzyme in patients with acute intermittent porphyria (AIP). Givosiran may have adverse effects on the kidney. Methods We performed a descriptive case series of renal function parameters of all the patients who received givosiran in France. Twenty patients receiving givosiran between March 2018 and July 2020 in France were analyzed: 7 patients in the ENVISION trial and 13 patients treated in collaboration with the Centre de Référence Maladies Rares Prophyries. Results A transient decrease in renal function was observed in all but 2 patients (90%) within the 3 months following givosiran initiation. None of the patients developed acute kidney injury or disease. Patients of the ENVISION cohort were followed for at least 30 months: 2 patients did not experience estimated glomerular filtration rate (eGFR) loss, 3 patients experienced a modest decline in renal function (–3.4 ml/min per 1.73 m2 per year in average), and 2 patients had a clearly abnormal eGFR loss (–5.8 ml/min per 1.73 m2 per year in average). None of the patients had biochemical signs of active tubular or glomerular injury. One patient’s kidney was biopsied without finding any signs of an active kidney disease and with normal ALAS1 tubular expression. Conclusions Givosiran is associated with a transient moderate increase in serum creatinine (sCr) without sign of kidney injury. A long-term deleterious impact of ALAS1 inhibition on renal function is not excluded. Because AIP promotes chronic kidney disease, it is difficult to separate the long-term effects of givosiran from the natural progression of the renal disease.
Collapse
Affiliation(s)
- Hélène Lazareth
- Service de Néphrologie, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - Antoine Poli
- Centre de Référence Maladies Rares des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,Université de Paris, INSERM U1149, Centre de Recherche sur l'Inflammation, Labex GREX, Paris, France
| | - Yohan Bignon
- Université de Paris, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Arienne Mirmiran
- Centre de Référence Maladies Rares des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,Université de Paris, INSERM U1149, Centre de Recherche sur l'Inflammation, Labex GREX, Paris, France
| | - Marion Rabant
- Service d'Anatomopathologie, Assistance Publique Hôpitaux de Paris, Hôpital Necker, Paris, France
| | - Raphaël Cohen
- Service d'Explorations Fonctionnelles Rénales, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Caroline Schmitt
- Centre de Référence Maladies Rares des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,Université de Paris, INSERM U1149, Centre de Recherche sur l'Inflammation, Labex GREX, Paris, France
| | - Hervé Puy
- Centre de Référence Maladies Rares des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,Université de Paris, INSERM U1149, Centre de Recherche sur l'Inflammation, Labex GREX, Paris, France
| | - Alexandre Karras
- Service de Néphrologie, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France
| | - Laurent Gouya
- Centre de Référence Maladies Rares des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,Université de Paris, INSERM U1149, Centre de Recherche sur l'Inflammation, Labex GREX, Paris, France
| | - Nicolas Pallet
- Service de Néphrologie, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, France.,Université de Paris, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.,Service de Biochimie, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
144
|
Wang B, Zhang Z, Zhu H, Niu C, Wen X, Xi Z. The hydrogen bonding network involved Arg59 in human protoporphyrinogen IX oxidase is essential for enzyme activity. Biochem Biophys Res Commun 2021; 557:20-25. [PMID: 33857841 DOI: 10.1016/j.bbrc.2021.03.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/18/2022]
Abstract
Protoporphyrinogen IX oxidase (PPO) is the last common enzyme in chlorophyll and heme biosynthesis pathways. In human, point mutations on PPO are responsible for the dominantly inherited disorder disease, Variegate Porphyria (VP). Of the VP-causing mutation site, the Arg59 is by far the most prevalent VP mutation residue identified. Multiple sequences alignment of PPOs shows that the Arg59 of human PPO (hPPO) is not conserved, and experiments have shown that the equivalent residues in PPO from various species are essential for enzymatic activity. In this work, it was proposed that the Arg59 performs its function by forming a hydrogen-bonding (HB) network around it in hPPO, and we investigated the role of the HB network via site-directed mutagenesis, enzymatic kinetics and computational studies. We found the integrity of the HB network around Arg59 is important for enzyme activity. The HB network maintains the substrate binding chamber by holding the side chain of Arg59, while it stabilizes the micro-environment of the isoalloxazine ring of FAD, which is favorable for the substrate-FAD interaction. Our result provides a new insight to understanding the relationship between the structure and function for hPPO that non-conserved residues can form a conserved element to maintain the function of protein.
Collapse
Affiliation(s)
- Baifan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zijuan Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hao Zhu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
145
|
Toteja N, Khera D, Panda S, Sasidharan R, Singh K. Discovery of Porphyria in a Postoperative Surgical Patient. Indian J Pediatr 2021; 88:412. [PMID: 33420636 DOI: 10.1007/s12098-020-03631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Nisha Toteja
- Department of Pediatrics, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Daisy Khera
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
| | - Samhita Panda
- Department of Neurology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Rohit Sasidharan
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| | - Kuldeep Singh
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India
| |
Collapse
|
146
|
Lissing M, Nowak G, Adam R, Karam V, Boyd A, Gouya L, Meersseman W, Melum E, Ołdakowska‐Jedynak U, Reiter FP, Colmenero J, Sanchez R, Herden U, Langendonk J, Ventura P, Isoniemi H, Boillot O, Braun F, Perrodin S, Mowlem E, Wahlin S. Liver Transplantation for Acute Intermittent Porphyria. Liver Transpl 2021; 27:491-501. [PMID: 37160035 PMCID: PMC8248103 DOI: 10.1002/lt.25959] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Recurrent attacks of acute intermittent porphyria (AIP) result in poor quality of life and significant risks of morbidity and mortality. Liver transplantation (LT) offers a cure, but published data on outcomes after LT are limited. We assessed the pretransplant characteristics, complications, and outcomes for patients with AIP who received a transplant. Data were collected retrospectively from the European Liver Transplant Registry and from questionnaires sent to identified transplant and porphyria centers. We studied 38 patients who received transplants in 12 countries from 2002 to 2019. Median age at LT was 37 years (range, 18-58), and 34 (89%) of the patients were women. A total of 9 patients died during follow-up, and 2 patients were retransplanted. The 1-year and 5-year overall survival rates were 92% and 82%, which are comparable with other metabolic diseases transplanted during the same period. Advanced pretransplant neurological impairment was associated with increased mortality. The 5-year survival rate was 94% among 19 patients with moderate or no neuropathy at LT and 83% among 10 patients with severe neuropathy (P = 0.04). Pretransplant renal impairment was common. A total of 19 (51%) patients had a GFR < 60 mL/minute. Although few patients improved their renal function after LT, neurological impairments improved, and no worsening of neurological symptoms was recorded. No patient had AIP attacks after LT, except for a patient who received an auxiliary graft. LT is a curative treatment option for patients with recurrent attacks of AIP. Severe neuropathy and impaired renal function are common and increase the risk for poor outcomes. If other treatment options fail, an evaluation for LT should be performed early.
Collapse
Affiliation(s)
- Mattias Lissing
- Hepatology DivisionDepartment of Upper GI DiseasesPorphyria Centre SwedenKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - Greg Nowak
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska Institutet and Karolinska University HospitalStockholmSweden
| | - René Adam
- Paul Brousse HospitalUniversity Paris‐SudInserm U935VillejuifFrance
| | - Vincent Karam
- Paul Brousse HospitalUniversity Paris‐SudInserm U935VillejuifFrance
| | | | - Laurent Gouya
- Centre Francais des PorphyriesHôpital Louis MourierAssistance Publique‐Hôpitaux de ParisParisFrance
| | - Wouter Meersseman
- Department of General Internal MedicineUniversitair Ziekenhuis (UZ) LeuvenLeuvenBelgium
| | - Espen Melum
- Section for GastroenterologyNorwegian Primary Sclerosing Cholangitis (PSC) Research CenterDepartment of Transplantation MedicineResearch Institute of Internal MedicineDivision of SurgeryInflammatory Diseases and TransplantationOslo University Hospital RikshospitaletHybrid Technology Hub‐Centre of ExcellenceInstitute of Basic Medical SciencesInstitute of Clinical MedicineFaculty of MedicineUniversity of OsloOsloNorway
| | | | - Florian P. Reiter
- Liver Center MunichDepartment of Medicine IIUniversity HospitalLudwig Maximilian University (LMU) MunichMunichGermany
| | - Jordi Colmenero
- Liver Transplant UnitHospital Clínic de BarcelonaInstitut d'Investigacions Biomèdiques August Pi i SunyerCentro de Investigación Biomédica en Red en Enfermedades Hepáticas y DigestivasUniversitat de BarcelonaBarcelonaSpain
| | - Rosario Sanchez
- Institute of Sanitary and Biomedical Investigation of AlicanteAlicanteSpain
| | - Uta Herden
- Department of Visceral Transplant SurgeryUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Janneke Langendonk
- Erasmus MCUniversity Medical Center RotterdamPorphyria Center RotterdamRotterdamThe Netherlands
| | - Paolo Ventura
- Department of Medical and Surgical Sciences for Children and AdultsUniversity of Modena and Reggio EmiliaUnit of Internal MedicinePoliclinico Hospital of ModenaModenaItaly
| | - Helena Isoniemi
- Department of Transplantation and Liver SurgeryHelsinki University HospitalHelsinkiFinland
| | | | - Felix Braun
- Department of General, Visceral, Thoracic, Transplantation and Pediatric SurgeryUniversitätsklinikum Schleswig‐Holstein (UKSH)Campus KielKielGermany
| | - Stéphanie Perrodin
- Department of Visceral Surgery and MedicineInselspital University Hospital of BernBernSwitzerland
| | - Elizabeth Mowlem
- The Liver UnitAddenbrooke's HospitalCambridge University HospitalsCambridgeUK
| | - Staffan Wahlin
- Hepatology DivisionDepartment of Upper GI DiseasesPorphyria Centre SwedenKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | | |
Collapse
|
147
|
Gandhi Mehta RK, Caress JB, Rudnick SR, Bonkovsky HL. Porphyric neuropathy. Muscle Nerve 2021; 64:140-152. [PMID: 33786855 DOI: 10.1002/mus.27232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022]
Abstract
Acute hepatic porphyrias are inherited metabolic disorders that may present with polyneuropathy, which if not diagnosed early can lead to quadriparesis, respiratory weakness, and death. Porphyric neuropathy is an acute to subacute motor predominant axonal neuropathy with a predilection for the upper extremities and usually preceded by a predominantly parasympathetic autonomic neuropathy. The rapid progression and associated dysautonomia mimic Guillain-Barré syndrome but are distinguished by the absence of cerebrospinal fluid albuminocytologic dissociation, progression beyond 4 wk, and associated abdominal pain. Spot urine test to assess the porphyrin precursors delta-aminolevulinic acid and porphobilinogen can provide a timely diagnosis during an acute attack. Timely treatment with intravenous heme, carbohydrate loading, and avoidance of porphyrinogenic medications can prevent further neurological morbidity and mortality.
Collapse
Affiliation(s)
| | - James B Caress
- Department of Neurology, Wake Forest Baptist Health, Winston Salem, North Carolina, USA
| | - Sean R Rudnick
- Section on Gastroenterology & Hepatology, Department of Internal Medicine, Wake Forest Baptist health, Winston Salem, North Carolina, USA
| | - Herbert L Bonkovsky
- Section on Gastroenterology & Hepatology, Department of Internal Medicine, Wake Forest Baptist health, Winston Salem, North Carolina, USA
| |
Collapse
|
148
|
Peng Y, Li J, Luo D, Zhang S, Li S, Wang D, Wang X, Zhang Z, Wang X, Sun C, Gao X, Hui Y, He R. Muscle atrophy induced by overexpression of ALAS2 is related to muscle mitochondrial dysfunction. Skelet Muscle 2021; 11:9. [PMID: 33785075 PMCID: PMC8008657 DOI: 10.1186/s13395-021-00263-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ALAS2 (delta-aminolevulinate synthase 2) is one of the two isoenzymes catalyzing the synthesis of delta-aminolevulinic acid (ALA), which is the first precursor of heme synthesis. ALAS2-overexpressing transgenic mice (Tg mice) showed syndrome of porphyria, a series of diseases related to the heme anabolism deficiency. Tg mice showed an obvious decrease in muscle size. Muscle atrophy results from a decrease in protein synthesis and an increase in protein degradation, which ultimately leads to a decrease in myofiber size due to loss of contractile proteins, organelles, nuclei, and cytoplasm. METHODS The forelimb muscle grip strength of age-matched ALAS-2 transgenic mice (Tg mice) and wild-type mice (WT mice) were measured with an automated grip strength meter. The activities of serum LDH and CK-MB were measured by Modular DPP. The histology of skeletal muscle (quadriceps femoris and gastrocnemius) was observed by hematoxylin and eosin (HE) staining, immunohistochemistry, and transmission electron microscope. Real-time PCR was used to detect mtDNA content and UCP3 mRNA expression. Evans blue dye staining was used to detect the membrane damage of the muscle fiber. Single skeletal muscle fiber diameter was measured by single-fiber analyses. Muscle adenosine triphosphate (ATP) levels were detected by a luminometric assay with an ATP assay kit. RESULTS Compared with WT mice, the strength of forelimb muscle and mass of gastrocnemius were decreased in Tg mice. The activities of serum CK-MB and LDH, the number of central nuclei fibers, and Evans blue positive fibers were more than those in WT mice, while the diameter of single fibers was smaller, which were associated with suppressed expression levels of MHC, myoD1, dystrophin, atrogin1, and MuRF1. Re-expression of eMyHC was only showed in the quadriceps of Tg mice, but not in WT mice. Muscle mitochondria in Tg mice showed dysfunction with descented ATP production and mtDNA content, downregulated UCP3 mRNA expression, and swelling of mitochondria. CONCLUSION ALAS2 overexpressing-transgenic mice (Tg mice) showed muscle dystrophy, which was associated with decreased atrogin-1 and MuRF-1, and closely related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yahui Peng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Jihong Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Dixian Luo
- Institute of Translational Medicine, National and Local Joint Engineering Laboratory of High-through Molecular Diagnostic Technology, the First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China
| | - Shuai Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Sijia Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Zhujun Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Xue Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Changhui Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China.,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150086, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China. .,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Beijing, 150086, China.
| | - Rongzhang He
- Institute of Translational Medicine, National and Local Joint Engineering Laboratory of High-through Molecular Diagnostic Technology, the First People's Hospital of Chenzhou, The First Affiliated Hospital of Xiangnan University, Chenzhou, 423000, China. .,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
149
|
Martinez MDC, Cerbino GN, Granata BX, Batlle A, Parera VE, Rossetti MV. Clinical, biochemical, and genetic characterization of acute hepatic porphyrias in a cohort of Argentine patients. Mol Genet Genomic Med 2021; 9:e1059. [PMID: 33764674 PMCID: PMC8172188 DOI: 10.1002/mgg3.1059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/04/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute Hepatic Porphyrias (AHPs) are characterized by an acute neuroabdominal syndrome including both neuropsychiatric symptoms and neurodegenerative changes. Two main hypotheses explain the pathogenesis of nervous system dysfunction: (a) the ROS generation by autooxidation of 5-aminolevulinic acid accumulated in liver and brain; (b) liver heme deficiency and in neural tissues that generate an oxidative status, a component of the neurodegenerative process. METHODS We review results obtained from Acute Intermittent Porphyria (AIP) and Variegate Porphyria (VP) families studied at clinical, biochemical, and molecular level at the CIPYP in Argentina. The relationship between the porphyric attack and oxidative stress was also evaluated in AHP patients and controls, to identify a marker of neurological dysfunction. RESULTS We studied 116 AIP families and 30 VP families, 609 and 132 individuals, respectively. Genotype/phenotype relation was studied. Oxidative stress parameters and plasma homocysteine levels were measured in 20 healthy volunteers, 22 AIP and 12 VP individuals. CONCLUSION No significant difference in oxidative stress parameters and homocysteine levels between the analyzed groups were found.
Collapse
Affiliation(s)
- María Del Carmen Martinez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET-UBA, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Gabriela Nora Cerbino
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET-UBA, Buenos Aires, Argentina
| | - Bárbara Xoana Granata
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET-UBA, Buenos Aires, Argentina
| | - Alcira Batlle
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET-UBA, Buenos Aires, Argentina
| | - Victoria Estela Parera
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET-UBA, Buenos Aires, Argentina
| | - María Victoria Rossetti
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
150
|
Sachau J, Kersebaum D, Baron R, Dickenson AH. Unusual Pain Disorders - What Can Be Learned from Them? J Pain Res 2021; 13:3539-3554. [PMID: 33758536 PMCID: PMC7980038 DOI: 10.2147/jpr.s287603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pain is common in many different disorders and leads to a significant reduction in quality of life in the affected patients. Current treatment options are limited and often result in insufficient pain relief, partly due to the incomplete understanding of the underlying pathophysiological mechanisms. The identification of these pathomechanisms is therefore a central object of current research. There are also a number of rare pain diseases, that are generally little known and often undiagnosed, but whose correct diagnosis and examination can help to improve the management of pain disorders in general. In some of these unusual pain disorders like sodium-channelopathies or sensory modulation disorder the underlying pathophysiological mechanisms have only recently been unravelled. These mechanisms might serve as pharmacological targets that may also play a role in subgroups of other, more common pain diseases. In other unusual pain disorders, the identification of pathomechanisms has already led to the development of new drugs. A completely new therapeutic approach, the gene silencing, can even stop progression in hereditary transthyretin amyloidosis and porphyria, ie in pain diseases that would otherwise be rapidly fatal if left untreated. Thus, pain therapists and researchers should be aware of these rare and unusual pain disorders as they offer the unique opportunity to study mechanisms, identify new druggable targets and finally because early diagnosis might save many patient lives.
Collapse
Affiliation(s)
- Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|