101
|
Xin L, Xu W, Wang J, Yu F, Fan S, Xu X, Yang Y. Proteoglycan-depleted regions of annular injury promote nerve ingrowth in a rabbit disc degeneration model. Open Med (Wars) 2021; 16:1616-1627. [PMID: 34761113 PMCID: PMC8565593 DOI: 10.1515/med-2021-0363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Background To assess the effects of proteoglycan-depleted regions of annular disruptions on nerve ingrowth in the injury site in vivo. Methods New Zealand white rabbits (n = 18) received annular injuries at L3/4, L4/5, and L5/6. The experimental discs were randomly assigned to four groups: (a) an annular defect was created; (b) an annular defect implanted with a poly lactic-co-glycolic acid (PLGA)/fibrin/PBS plug; (c) an annular defect implanted with a PLGA/fibrin/chondroitinase ABC (chABC) plug; and (d) an uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, and analysis of the proteoglycan (PG) content. Immunohistochemical detection of nerve fibers and chondroitin sulfate (CS) was performed. Results The injured discs produced progressive and reliable disc degeneration. In the defective discs, the lamellated appearance of AF (Annulus fibrosus) was replaced by extensive fibrocartilaginous-like tissue formation outside the injured sites. In contrast, newly formed tissue was distributed along small fissures, and small blood vessels appeared in the outer part of the disrupted area in the PLGA/fibrin/PBS discs. More sprouting nerve fibers grew further into the depleted annulus regions in the PLGA/fibrin/chABC discs than in the control discs and those receiving PLGA/fibrin/PBS. In addition, the innervation scores of the PLGA/fibrin/chABC discs were significantly increased compared with those of the PLGA/fibrin/PBS discs and defected discs. Conclusion ChABC-based PLGA/fibrin gel showed promising results by achieving biointegration with native annulus tissue and providing a local source for the sustained release of active chABC. Disc-derived PG-mediated inhibition of nerve and blood vessel ingrowth was abrogated by chABC enzymatic deglycosylation in an annular-injured rabbit disc degeneration model.
Collapse
Affiliation(s)
- Long Xin
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Weixin Xu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Jian Wang
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Fang Yu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Shunwu Fan
- Department of Spine Surgery, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310020, Zhejiang Province, China
| | - Xinwei Xu
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Yang Yang
- Department of Spine Surgery, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Hangzhou 310012, Zhejiang Province, China
| |
Collapse
|
102
|
Latka K, Kozlowska K, Waligora M, Kolodziej W, Olbrycht T, Chowaniec J, Hendryk S, Latka M, Latka D. Efficacy of DiscoGel in Treatment of Degenerative Disc Disease: A Prospective 1-Year Observation of 67 Patients. Brain Sci 2021; 11:1434. [PMID: 34827432 PMCID: PMC8615618 DOI: 10.3390/brainsci11111434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with degenerative disc disease may suffer from chronic lumbar discogenic (DP) or radicular leg (RLP) pain. Minimally invasive DiscoGel therapy involves the percutaneous injection of an ethanol gel into the degenerated disk's nucleus pulposus. This paper compares the 1-year outcome of such treatment in DP and RLP patients. We operated on 67 patients (49 men and 18 women) aged 20-68 years (mean age 46 ± 11 years) with DP (n = 45) and RLP (n = 22), of at least 6-8 weeks duration, with no adverse effects. We evaluated the treatment outcome with Core Outcome Measures Index (COMI) and Visual Analog Scale (VAS). A year after the ethanol gel injection, in the DP cohort, COMI and VAS dropped by 66% (6.40 vs. 2.20) and 53% (6.33 vs. 2.97), respectively. For the RLP patients, the corresponding values dropped 48% (7.05 vs. 3.68) and 54% (6.77 vs. 3.13). There were no differences between the cohorts in COMI and VAS at the follow-up end. Six months into the study, 74% of DP and 81% of RLP patients did not use any analgesics. Ethanol gel therapy can be effective for many patients. Moreover, its potential failure does not exclude surgical treatment options.
Collapse
Affiliation(s)
- Kajetan Latka
- Department of Neurosurgery, University Hospital in Opole, Institute of Medicine, University of Opole, 45-001 Opole, Poland; (W.K.); (T.O.); (J.C.); (D.L.)
- Center for Minimally Invasive Spine and Peripheral Nerves Surgery Latka and Partners, 45-064 Opole, Poland
| | - Klaudia Kozlowska
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (K.K.); (M.L.)
| | - Marek Waligora
- Clinical Department of Diagnostic Imaging, Faculty of Medicine, University of Opole, 45-040 Opole, Poland;
| | - Waldemar Kolodziej
- Department of Neurosurgery, University Hospital in Opole, Institute of Medicine, University of Opole, 45-001 Opole, Poland; (W.K.); (T.O.); (J.C.); (D.L.)
| | - Tomasz Olbrycht
- Department of Neurosurgery, University Hospital in Opole, Institute of Medicine, University of Opole, 45-001 Opole, Poland; (W.K.); (T.O.); (J.C.); (D.L.)
| | - Jacek Chowaniec
- Department of Neurosurgery, University Hospital in Opole, Institute of Medicine, University of Opole, 45-001 Opole, Poland; (W.K.); (T.O.); (J.C.); (D.L.)
| | | | - Miroslaw Latka
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (K.K.); (M.L.)
| | - Dariusz Latka
- Department of Neurosurgery, University Hospital in Opole, Institute of Medicine, University of Opole, 45-001 Opole, Poland; (W.K.); (T.O.); (J.C.); (D.L.)
- Center for Minimally Invasive Spine and Peripheral Nerves Surgery Latka and Partners, 45-064 Opole, Poland
| |
Collapse
|
103
|
Stem Cell Therapy and Exercise for Treatment of Intervertebral Disc Degeneration. Stem Cells Int 2021; 2021:7982333. [PMID: 34691192 PMCID: PMC8528633 DOI: 10.1155/2021/7982333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
As part of the motor system, intervertebral disc (IVD) is a complicated tissue with multiple components. The degeneration of IVD may result in low back pain (LBP), which strongly impairs quality of life. Various causes are related to the degeneration of IVD, including cell senescence, hydration lost, and inflammation. Stem cells founded in different tissues have attracted the interest of the researchers and clinicians to study the implication of these cells in the treatment for tissue injury and degeneration. In this report, we will review the study of stem cells in the treatment for IVD degeneration. On the other hand, the effect of exercise on IVD degeneration and the relationship between IVD degeneration and musculoskeletal disorders like sarcopenia are discussed.
Collapse
|
104
|
Kim AG, Kim TW, Kwon WK, Lee KH, Jeong S, Hwang MH, Choi H. Microfluidic Chip with Low Constant-Current Stimulation (LCCS) Platform: Human Nucleus Pulposus Degeneration In Vitro Model for Symptomatic Intervertebral Disc. MICROMACHINES 2021; 12:1291. [PMID: 34832700 PMCID: PMC8621874 DOI: 10.3390/mi12111291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP) in the lumbar spine. This phenomenon is caused by several processes, including matrix degradation in IVD tissues, which is mediated by matrix metalloproteinases (MMPs) and inflammatory responses, which can be mediated by interactions among immune cells, such as macrophages and IVD cells. In particular, interleukin (IL)-1 beta (β), which is a master regulator secreted by macrophages, mediates the inflammatory response in nucleus pulposus cells (NP) and plays a significant role in the development or progression of diseases. In this study, we developed a custom electrical stimulation (ES) platform that can apply low-constant-current stimulation (LCCS) signals to microfluidic chips. Using this platform, we examined the effects of LCCS on IL-1β-mediated inflammatory NP cells, administered at various currents (5, 10, 20, 50, and 100 μA at 200 Hz). Our results showed that the inflammatory response, induced by IL-1β in human NP cells, was successfully established. Furthermore, 5, 10, 20, and 100 μA LCCS positively modulated inflamed human NP cells' morphological phenotype and kinetic properties. LCCS could affect the treatment of degenerative diseases, revealing the applicability of the LCCS platform for basic research of electroceuticals.
Collapse
Affiliation(s)
- An-Gi Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| | - Tae-Won Kim
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| | - Woo-Keun Kwon
- Department of Neurosurgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Kwang-Ho Lee
- Division of Mechanical and Biomedical, Mechatronics, and Materials Science and Engineering, College of Engineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Sehoon Jeong
- Department of Healthcare Information Technology, Inje University, Gimhae 50834, Korea;
| | - Min-Ho Hwang
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea; (A.-G.K.); (T.-W.K.)
| |
Collapse
|
105
|
Glutamate triggers the expression of functional ionotropic and metabotropic glutamate receptors in mast cells. Cell Mol Immunol 2021; 18:2383-2392. [PMID: 32313211 PMCID: PMC8484602 DOI: 10.1038/s41423-020-0421-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Mast cells are emerging as players in the communication between peripheral nerve endings and cells of the immune system. However, it is not clear the mechanism by which mast cells communicate with peripheral nerves. We previously found that mast cells located within healing tendons can express glutamate receptors, raising the possibility that mast cells may be sensitive to glutamate signaling. To evaluate this hypothesis, we stimulated primary mast cells with glutamate and showed that glutamate induced the profound upregulation of a panel of glutamate receptors of both the ionotropic type (NMDAR1, NMDAR2A, and NMDAR2B) and the metabotropic type (mGluR2 and mGluR7) at both the mRNA and protein levels. The binding of glutamate to glutamate receptors on the mast cell surface was confirmed. Further, glutamate had extensive effects on gene expression in the mast cells, including the upregulation of pro-inflammatory components such as IL-6 and CCL2. Glutamate also induced the upregulation of transcription factors, including Egr2, Egr3 and, in particular, FosB. The extensive induction of FosB was confirmed by immunofluorescence assessment. Glutamate receptor antagonists abrogated the responses of the mast cells to glutamate, supporting the supposition of a functional glutamate-glutamate receptor axis in mast cells. Finally, we provide in vivo evidence supporting a functional glutamate-glutamate receptor axis in the mast cells of injured tendons. Together, these findings establish glutamate as an effector of mast cell function, thereby introducing a novel principle for how cells in the immune system can communicate with nerve cells.
Collapse
|
106
|
Waist circumference, waist-hip ratio, body fat rate, total body fat mass and risk of low back pain: a systematic review and meta-analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 31:123-135. [PMID: 34561729 DOI: 10.1007/s00586-021-06994-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/08/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To identify the associations between waist circumference (WC), waist-hip ratio (WHR), body fat rate (BFR), total body fat mass (BFM), and the risk of low back pain (LBP). METHODS We have searched PubMed through October 2020 for observational studies investigating the associations between WC, WHR, BFR, or total BFM and the risk of LBP. Random-effect models were used to calculate the summary risk estimates and corresponding 95% confidence intervals (95% CIs). RESULTS A total of fifteen studies with 92,936 participants were included, of which ten were related to WC, five were related to WHR, four were related to BFR, and four were related to total BFM. Pooled results indicated that high WC (odds ratio (OR) = 1.30, 95% CI 1.10-1.54) and WHR (OR = 1.33, 95% CI 1.00-1.76) were associated with an increased risk of chronic low back pain (c-LBP). High WC (OR = 1.18, 95% CI 1.03-1.34) was also associated with an increased risk of non-c-LBP. The risk of non-c-LBP increased by 23% (OR = 1.23, 95% CI 1.01-1.50) for every 10% increase in BFR, and for every 10 kg increase in total BFM, the risk of non-c-LBP increased by 24% (OR = 1.24, 95% CI 1.10-1.39). CONCLUSION Observational epidemiological evidence suggested that individuals with increased WC, WHR, BFR, or total BFM tended to have an increased risk of LBP, regardless of whether their body mass indexes were normal. Excessive fat mass was the essence of the process.
Collapse
|
107
|
Padda J, Khalid K, Zubair U, Al Hennawi H, Yadav J, Almanie AH, Mehta KA, Tasnim F, Cooper AC, Jean-Charles G. Stem Cell Therapy and Its Significance in Pain Management. Cureus 2021; 13:e17258. [PMID: 34540482 PMCID: PMC8445610 DOI: 10.7759/cureus.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
Pain management has always been a challenging issue, which is why it has been a major focus of many rigorous studies. Chronic pain which typically lasts for more than three months is prevalent at an astounding rate of 11% to 19% of the adult population. Pain management techniques have gone through major advances in the last decade with no major improvement in the quality of life in affected populations. Recently there has been growing interest in the utilization of stem cells for pain management. Advancement of stem cell therapy has been noted for the past few years and is now being used in human clinical trials. Stem cell therapy has shown promising results in the management of neuropathic, discogenic back, osteoarthritis, and musculoskeletal pain. In this article, we will discuss the role of stem cells in the pain management of the aforementioned conditions, along with the mechanism, adverse effects, and risks of stem cell therapy.
Collapse
Affiliation(s)
- Jaskamal Padda
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, Avalon University School of Medicine, Willemstad, CUW
| | | | - Ujala Zubair
- Internal Medicine, JC Medical Center, Orlando, USA
| | | | - Jayant Yadav
- Internal Medicine, JC Medical Center, Orlando, USA
| | | | | | | | | | | |
Collapse
|
108
|
Barcellona MN, Speer JE, Jing L, Patil DS, Gupta MC, Buchowski JM, Setton LA. Bioactive in situ crosslinkable polymer-peptide hydrogel for cell delivery to the intervertebral disc in a rat model. Acta Biomater 2021; 131:117-127. [PMID: 34229105 PMCID: PMC9157564 DOI: 10.1016/j.actbio.2021.06.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Degeneration of the intervertebral disc (IVD) is associated with
significant biochemical and morphological changes that include a loss of disc
height, decreased water content and decreased cellularity. Cell delivery has
been widely explored as a strategy to supplement the nucleus pulposus (NP)
region of the degenerated IVD in both pre-clinical and clinical trials, using
progenitor or primary cell sources. We previously demonstrated an ability for a
polymer-peptide hydrogel, serving as a culture substrate, to promote adult NP
cells to undergo a shift from a degenerative fibroblast-like state to a
juvenile-like NP phenotype. In the current study, we evaluate the ability for
this peptide-functionalized hydrogel to serve as a bioactive system for cell
delivery, retention and preservation of a biosynthetic phenotype for primary IVD
cells delivered to the rat caudal disc in an anular puncture degeneration model.
Our data suggest that encapsulation of adult degenerative human NP cells in a
stiff formulation of the hydrogel functionalized with laminin-mimetic peptides
IKVAV and AG73 can promote cell viability and increased biosynthetic activity
for this population in 3D culture in vitro. Delivery of the
peptide-functionalized biomaterial with primary rat cells to the degenerated IVD
supported NP cell retention and NP-specific protein expression in
vivo, and promoted improved disc height index (DHI) values and
endplate organization compared to untreated degenerated controls. The results of
this study suggest the physical cues of this peptide-functionalized hydrogel can
serve as a supportive carrier for cell delivery to the IVD.
Collapse
Affiliation(s)
- Marcos N Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Julie E Speer
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Deepanjali S Patil
- Department of Biomedical Engineering, Washington University in St. Louis, United States
| | - Munish C Gupta
- Department of Orthopedic Surgery, Washington University School of Medicine, United States
| | - Jacob M Buchowski
- Department of Orthopedic Surgery, Washington University School of Medicine, United States
| | - Lori A Setton
- Department of Biomedical Engineering, Washington University in St. Louis, United States; Department of Orthopedic Surgery, Washington University School of Medicine, United States.
| |
Collapse
|
109
|
Misir A, Uzun E, Kizkapan TB, Ozcamdalli M, Sekban H, Guney A. Factors Affecting Prolonged Postoperative Pain and Analgesic Use After Arthroscopic Full-Thickness Rotator Cuff Repair. Orthop J Sports Med 2021; 9:23259671211012406. [PMID: 34368377 PMCID: PMC8299889 DOI: 10.1177/23259671211012406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Postoperative pain and analgesic use after arthroscopic rotator cuff repair remain important issues that affect rehabilitation and overall outcomes. Purpose: To evaluate the pre- and intraoperative factors that may cause prolonged duration of postoperative pain and analgesic use. Study Design: Case-control study; Level of evidence, 3. Methods: We included 443 patients who underwent arthroscopic rotator cuff repair and subacromial decompression. Visual analog scale (VAS) scores for pain were obtained preoperatively and at 30 and 90 days postoperatively. Patients were divided into a group who had prolonged postoperative pain (duration ≥1 and <3 months; n = 86 patients) and a group with nonprolonged pain (duration <1 month; n = 357 patients). The following factors were compared between groups: age, sex, body mass index, repair technique, tear size, retraction amount, repair tension, tendon degeneration, preoperative pseudoparesis, symptom duration, application of microfracture to the rotator cuff footprint for marrow stimulation, smoking, degree of fatty degeneration, preoperative narcotic analgesic use, diabetes, acromioclavicular joint degeneration, and preoperative Douleur Neuropathique 4 (DN4) and American Shoulder and Elbow Society (ASES) scores. Results: Significant differences were seen between the prolonged and nonprolonged groups regarding the median duration of pain (54 vs 27 days, respectively; P < .001) and analgesic use (42 vs 28 days, respectively; P < .001). Significant differences were noted between the groups for symptom duration (P = .007), smoking status (P = .001), degree of fatty degeneration (P = .009), preoperative narcotic analgesic use (P < .001), preoperative DN4 and ASES scores, 30-day VAS score (P < .001), duration of opioid and nonopioid analgesic use (P < .001), tear size (P = .026), and retraction stage (P = .032). Tear size (P = .009), retraction amount (P = .005), preoperative narcotic analgesic use (P < .001), degree of fatty degeneration (P < .001), and preoperative DN4 score (P = .024) were factors independently associated with prolonged postoperative pain and analgesic use. Conclusion: Patients with larger size tears, retracted tendons, preoperative use of narcotic analgesics, higher tensioned tendon after repair, and Goutallier grade 3 or 4 fatty degeneration faced an increased risk of prolonged postoperative pain and analgesic use after arthroscopic rotator cuff repair. These factors might be mitigated by psychosocial support; gentle, controlled, and individualized postoperative rehabilitation approaches; detailed preoperative evaluation; and closer follow-up of patients who are treated operatively.
Collapse
Affiliation(s)
- Abdulhamit Misir
- Istanbul Basaksehir Pine and Sakura City Hospital, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| | - Erdal Uzun
- Erciyes University Faculty of Medicine, Department of Orthopaedics and Traumatology, Kayseri, Turkey
| | - Turan Bilge Kizkapan
- Bursa Cekirge State Hospital, Department of Orthopaedics and Traumatology, Bursa, Turkey
| | - Mustafa Ozcamdalli
- Istanbul Basaksehir Pine and Sakura City Hospital, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| | - Hazim Sekban
- Health Sciences University Kayseri City Training and Research Hospital, Department of Orthopaedics and Traumatology, Kayseri, Turkey
| | - Ahmet Guney
- Erciyes University Faculty of Medicine, Department of Orthopaedics and Traumatology, Kayseri, Turkey
| |
Collapse
|
110
|
Hollenberg AM, Maqsoodi N, Phan A, Huber A, Jubril A, Baldwin AL, Yokogawa N, Eliseev RA, Mesfin A. Bone morphogenic protein-2 signaling in human disc degeneration and correlation to the Pfirrmann MRI grading system. Spine J 2021; 21:1205-1216. [PMID: 33677096 PMCID: PMC8356724 DOI: 10.1016/j.spinee.2021.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Back and neck pain secondary to disc degeneration is a major public health burden. There is a need for therapeutic treatments to restore intervertebral disc (IVD) composition and function. PURPOSE To quantify ALK3, BMP-2, pSMAD1/5/8 and MMP-13 expression in IVD specimens collected from patients undergoing surgery for disc degeneration, to correlate ALK3, BMP-2, pSMAD1/5/8 and MMP-13 expression in IVD specimens to the 5-level Pfirrmann MRI grading system, and to compare ALK3, BMP-2, pSMAD1/5/8 and MMP-13 expression between cervical and lumbar degenerative disc specimens. STUDY DESIGN An immunohistochemical study assessing ALK3, BMP-2, pSMAD1/5/8, and MMP-13 expression levels in human control and degenerative IVD specimens. METHODS Human IVD specimens were collected from surgical patients who underwent discectomy and interbody fusion at our institution between 1/2015 and 8/2017. Each patient underwent MRI prior to surgery. The degree of disc degeneration was measured according to the 5-level Pfirrmann MRI grading system. Patients were categorized into either the 1) control group (Pfirrmann grades I-II) or 2) degenerative group (Pfirrmann grades III-V). Histology slides of the collected IVD specimens were prepared and immunohistochemical staining was performed to assess ALK3, BMP-2, pSMAD1/5/8, and MMP-13 expression levels in the control and degenerative specimens. Expression levels were also correlated to the Pfirrmann criteria. Lastly, the degenerative specimens were stratified according to their vertebral level and expression levels between the degenerative lumbar and cervical discs were compared. RESULTS Fifty-two patients were enrolled; however, 2 control and 2 degenerative patients were excluded due to incomplete data sets. Of the remaining 48 patients, there were 12 control and 36 degenerative specimens. Degenerative specimens had increased expression levels of BMP-2 (p=.0006) and pSMAD1/5/8 (p<.0001). Pfirrmann grade 3 (p=.0365) and grade 4 (p=.0008) discs had significantly higher BMP-2 expression as compared to grade 2 discs. Pfirrmann grade 4 discs had higher pSMAD1/5/8 expression as compared to grade 2 discs (p<.0001). There were no differences in ALK3 or MMP-13 expression between the control and degenerative discs (p>.05). Stratifying the degenerative specimens according to their vertebral level showed no significant differences in expression levels between the lumbar and cervical discs (p>.05). CONCLUSIONS BMP-2 and pSMAD1/5/8 signaling activity was significantly upregulated in the human degenerative specimens, while ALK3 and MMP-13 expression were not significantly changed. The expression levels of BMP-2 and pSMAD1/5/8 correlate positively with the degree of disc degeneration measured according to the Pfirrmann MRI grading system. CLINICAL SIGNIFICANCE BMP-SMAD signaling represents a promising therapeutic target to restore IVD composition and function in the setting of disc degeneration.
Collapse
Affiliation(s)
- Alex M Hollenberg
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Noorullah Maqsoodi
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Amy Phan
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aric Huber
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ayodeji Jubril
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Avionna L Baldwin
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Noriaki Yokogawa
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Roman A Eliseev
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Addisu Mesfin
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
111
|
Groh AMR, Fournier DE, Battié MC, Séguin CA. Innervation of the Human Intervertebral Disc: A Scoping Review. PAIN MEDICINE (MALDEN, MASS.) 2021; 22:1281-1304. [PMID: 33595648 PMCID: PMC8185559 DOI: 10.1093/pm/pnab070] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Back pain is an elusive symptom complicated by a variety of possible causes, precipitating and maintaining factors, and consequences. Notably, the underlying pathology remains unknown in a significant number of cases. Changes to the intervertebral disc (IVD) have been associated with back pain, leading many to postulate that the IVD may be a direct source of pain, typically referred to as discogenic back pain. Yet despite decades of research into the neuroanatomy of the IVD, there is a lack of consensus in the literature as to the distribution and function of neural elements within the tissue. The current scoping review provides a comprehensive systematic overview of studies that document the topography, morphology, and immunoreactivity of neural elements within the IVD in humans. METHOD Articles were retrieved from six separate databases in a three-step systematic search and were independently evaluated by two reviewers. RESULTS Three categories of neural elements were described within the IVD: perivascular nerves, sensory nerves independent of blood vessels, and mechanoreceptors. Nerves were consistently localized within the outer layers of the annulus fibrosus. Neural ingrowth into the inner annulus fibrosus and nucleus pulposus was found to occur only in degenerative and disease states. CONCLUSION While the pattern of innervation within the IVD is clear, the specific topographic arrangement and function of neural elements in the context of back pain remains unclear.
Collapse
Affiliation(s)
- Adam M R Groh
- Integrated Program in Neuroscience, The Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Dale E Fournier
- Health and Rehabilitation Sciences (Physical Therapy), Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
| | - Michele C Battié
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
- School of Physical Therapy, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Cheryle A Séguin
- Bone and Joint Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
112
|
Le Maitre CL, Dahia CL, Giers M, Illien‐Junger S, Cicione C, Samartzis D, Vadala G, Fields A, Lotz J. Development of a standardized histopathology scoring system for human intervertebral disc degeneration: an Orthopaedic Research Society Spine Section Initiative. JOR Spine 2021; 4:e1167. [PMID: 34337340 PMCID: PMC8313169 DOI: 10.1002/jsp2.1167] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Histopathological analysis of intervertebral disc (IVD) tissues is a critical domain of back pain research. Identification, description, and classification of attributes that distinguish abnormal tissues form a basis for probing disease mechanisms and conceiving novel therapies. Unfortunately, lack of standardized methods and nomenclature can limit comparisons of results across studies and prevent organizing information into a clear representation of the hierarchical, spatial, and temporal patterns of IVD degeneration. Thus, the following Orthopaedic Research Society (ORS) Spine Section Initiative aimed to develop a standardized histopathology scoring scheme for human IVD degeneration. METHODS Guided by a working group of experts, this prospective process entailed a series of stages that consisted of reviewing and assessing past grading schemes, surveying IVD researchers globally on current practice and recommendations for a new grading system, utilizing expert opinion a taxonomy of histological grading was developed, and validation performed. RESULTS A standardized taxonomy was developed, which showed excellent intra-rater reliability for scoring nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous end plate (CEP) regions (interclass correlation [ICC] > .89). The ability to reliably detect subtle changes varied by IVD region, being poorest in the NP (ICC: .89-.95) where changes at the cellular level were important, vs the AF (ICC: .93-.98), CEP (ICC: .97-.98), and boney end plate (ICC: .96-.99) where matrix and structural changes varied more dramatically with degeneration. CONCLUSIONS The proposed grading system incorporates more comprehensive descriptions of degenerative features for all the IVD sub-tissues than prior criteria. While there was excellent reliability, our results reinforce the need for improved training, particularly for novice raters. Future evaluation of the proposed system in real-world settings (eg, at the microscope) will be needed to further refine criteria and more fully evaluate utility. This improved taxonomy could aid in the understanding of IVD degeneration phenotypes and their association with back pain.
Collapse
Affiliation(s)
| | - Chitra L. Dahia
- Orthopaedic Soft Tissue Research ProgramHospital for Special SurgeryNew YorkNew YorkUSA
- Department of Cell and Developmental BiologyWeill Cornell Medicine, Graduate School of Medical SciencesNew YorkNew YorkUSA
| | - Morgan Giers
- School of Chemical, Biological, and Environmental EngineeringOregon State UniversityCorvallisOregonUSA
| | | | - Claudia Cicione
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma SurgeryCampus Bio‐Medico University of RomeRomeItaly
| | - Dino Samartzis
- Department of Orthopaedic SurgeryRush University Medical CenterChicagoIllinoisUSA
- International Spine Research and Innovation InitiativeRush University Medical CenterChicagoIllinoisUSA
| | - Gianluca Vadala
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma SurgeryCampus Bio‐Medico University of RomeRomeItaly
| | - Aaron Fields
- Department of Orthopaedic SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Jeffrey Lotz
- Department of Orthopaedic SurgeryUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
113
|
Stover JD, Lawrence B, Bowles RD. Degenerative IVD conditioned media and acidic pH sensitize sensory neurons to cyclic tensile strain. J Orthop Res 2021; 39:1192-1203. [PMID: 32255531 PMCID: PMC9265139 DOI: 10.1002/jor.24682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/27/2020] [Accepted: 03/19/2020] [Indexed: 02/04/2023]
Abstract
Low back pain is among the leading causes of disability worldwide. The degenerative intervertebral disc (IVD) environment contains pathologically high levels of inflammatory cytokines and acidic pH hypothesized to contribute to back pain by sensitizing nociceptive neurons to stimuli that would not be painful in healthy patients. We hypothesized that the degenerative IVD environment drives discogenic pain by sensitizing nociceptive neurons to mechanical loading. To test this hypothesis, we developed an in vitro model that facilitated the investigation of interactions between the degenerative IVD environment, nociceptive neurons innervating the IVD and mechanical loading of the disc; and, the identification of the underlying mechanism of degenerative IVD induced nociceptive neuron sensitization. In our model, rat dorsal root ganglia (DRG) neurons were seeding onto bovine annulus fibrosus tissue, exposed to degenerative IVD conditioned media and/or acidic pH, and subjected to cyclic tensile strain (1 Hz; 1%-6% strain) during measurement of DRG sensory neuron activity via calcium imaging. Using this model, we demonstrated that both degenerative IVD conditioned media and degenerative IVD acidic pH levels induced elevated nociceptive neuron activation in response to physiologic levels of mechanical strain. In addition, interleukin 6 (IL-6) was demonstrated to mediate degenerative IVD conditioned media induced elevated nociceptive neuron activation. These results demonstrate IL-6 mediates degenerative IVD induced neuron sensitization to mechanical loading and further establishes IL-6 as a potential therapeutic target for the treatment of discogenic pain. Data further suggests the degenerative IVD environment contains multiple neuron sensitization pathways (IL-6, pH) that may contribute to discogenic pain.
Collapse
Affiliation(s)
- Joshua D. Stover
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Brandon Lawrence
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| | - Robby D. Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah,Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
114
|
Li W, Gong Y, Liu J, Guo Y, Tang H, Qin S, Zhao Y, Wang S, Xu Z, Chen B. Peripheral and Central Pathological Mechanisms of Chronic Low Back Pain: A Narrative Review. J Pain Res 2021; 14:1483-1494. [PMID: 34079363 PMCID: PMC8166276 DOI: 10.2147/jpr.s306280] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/01/2021] [Indexed: 12/31/2022] Open
Abstract
Chronic low back pain (CLBP), lasting >3 months, is the end result of multiple pathogenic factors. Unfortunately, little is known about CLBP pathogenesis, which limits its advancements in clinical therapy and disease management. This paper summarizes the known pathological axes of CLBP, involving both peripheral and central systems. In particular, this paper details injurious nerve stimulation, inflammation-induced peripheral pathway, and central sensitization. Lumbar components, such as intervertebral disc (IVD), facet joints, muscles, fascia, ligaments, and joint capsules, contain pain receptors called nociceptors. Degeneration of the aforementioned lumbar components activates inflammatory pathways, which can directly damage nerves, lower nociceptor threshold to fire action potentials (AP), and cause pain. Additionally, damaged lumbar IVDs and endplates can also lead to the pathologic invasion of nerve growth and innervation, followed by the compression of herniated IVDs on nerve roots, thereby causing traumatic neuropathic pain. The central mechanism of CLBP involves alteration of the sensory processing of the brain and malfunction of the descending pain modulatory system, which facilitates pain amplification in the center nervous system (CNS). Lastly, abnormalities in the brain biochemical metabolism, activation of glial cells, and subsequent inflammation also play important roles in CLBP development. Taken together, inflammation plays an important role in both peripheral and central sensitization of CLBP. Due to the heterogeneity of CLBP, its pathological mechanism remains complex and difficult to understand. Therefore, it is a worthy field for future research into the subcomponents of CLBP pathogenesis, in order to distinguish the specific form of the disease, identify its origins, and develop corresponding highly effective comprehensive therapy against CLBP.
Collapse
Affiliation(s)
- Wei Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jingyi Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yongming Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Huiling Tang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Siru Qin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yadan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Songtao Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| |
Collapse
|
115
|
Aripaka SS, Bech-Azeddine R, Jørgensen LM, Chughtai SA, Gaarde C, Bendix T, Mikkelsen JD. Low back pain scores correlate with the cytokine mRNA level in lumbar disc biopsies: a study of inflammatory markers in patients undergoing lumbar spinal fusion. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:2967-2974. [PMID: 34023967 DOI: 10.1007/s00586-021-06868-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE The molecular mechanism behind pain in degenerative disc disease (DDD) and chronic low back pain (LBP) patients is largely unknown. This present study examines the association of LBP and disability to mediators of the inflammatory cascade, as indexed by mRNA gene expression of pro-inflammatory cytokine markers in the intervertebral disc (IVD). METHODS Biopsies of the annulus fibrosus (AF) and the nucleus pulposes (NP) from patients with DDD undergoing 1-2 level fusion surgery at L4/L5 or L5/S1 were obtained from total of 34 patients [9 M, 25 F] with average age of 53 [32-63]. The mRNA expression of TNF-α, IL-1β, and IL-6 in the AF and NP was analyzed using quantitative real-time polymerase chain reaction (RT-qPCR), and the expression level of these markers was correlated to the visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores (0-100) for pain and disability. RESULTS We report a statistically significant positive correlation between pain intensity (VAS score) and the expression of TNF-α in both the AF (r = 0.54, p = 0.001) and NP (r = 0.40, p = 0.02), similarly with IL-1β in AF (r = 0.37, p = 0.02) and IL-6 in NP (r = 0.40, p = 0.02). In addition, we found significant positive correlation observed between disability score (ODI) and expression of IL-6 in both AF (r = 0.36, p = 0.03) and NP (r = 0.41, p = 0.01). CONCLUSION We conclude that the intensity of LBP and disability is associated with the level of inflammation in the disc.
Collapse
Affiliation(s)
- Sanjay S Aripaka
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - R Bech-Azeddine
- Copenhagen Spine Research Unit, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - L M Jørgensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Copenhagen Spine Research Unit, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S A Chughtai
- Copenhagen Spine Research Unit, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
| | - C Gaarde
- Copenhagen Spine Research Unit, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
| | - T Bendix
- Copenhagen Spine Research Unit, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
| | - J D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
116
|
Reactive Oxygen Species Mediate Low Back Pain by Upregulating Substance P in Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6681815. [PMID: 34093962 PMCID: PMC8140854 DOI: 10.1155/2021/6681815] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are thought to have a strong correlation with a number of intervertebral disc (IVD) diseases. Here, we aimed to determine whether ROS represent an etiology of low back pain (LBP) during IVD degeneration. Thirty degenerated intervertebral disc samples were obtained from patients, and ROS levels were quantified using dihydroethidium (DHE) staining. The results suggested a significant correlation between the ROS level and the severity of LBP. Subsequently, a puncture-induced LBP model was established in rats, and ROS levels significantly increased compared with those in the sham surgery group, accompanied with severe puncture-induced IVD degeneration. In addition, when ROS levels were increased by H2O2 administration or decreased by NAC treatment, the rats showed increased or decreased LBP, respectively. Based on this evidence, we further determined that stimulation with H2O2 in nucleus pulposus cells (NPCs) in vivo or in vitro resulted in upregulation of substance P (SP), a peptide thought to be involved in the synaptic transmission of pain, and that the severity of LBP decreased when SP levels were increased by exogenous SP administration or neutralized via aprepitant treatment in the IVDs of rats. In conclusion, ROS are primary inducers of LBP based on clinical and animal data, and the mechanism involves ROS stimulation of NPCs to secrete SP, which is a critical neurotransmitter peptide, to promote LBP in IVDs. Therefore, reducing the level of ROS with specific drugs and inhibiting SP may be alternative methods to treat LBP in the clinic.
Collapse
|
117
|
Smith K, Mercuri J. Microgravity and Radiation Effects on Astronaut Intervertebral Disc Health. Aerosp Med Hum Perform 2021; 92:342-352. [PMID: 33875067 DOI: 10.3357/amhp.5713.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION: The effects of spaceflight on the intervertebral disc (IVD) have not been thoroughly studied, despite the knowledge that spaceflight increases the risk of herniation of IVDs in astronauts upon return to Earth. However, as long duration missions become more common, fully characterizing the mechanisms behind space-induced IVD degeneration becomes increasingly imperative for mission success. This review therefore surveys current literature to outline the results of human, animal, and cell-level studies investigating the effect of microgravity and radiation exposure on IVD health. Overall, recurring study findings include increases in IVD height in microgravity conditions, upregulation of catabolic proteases leading to a weakening extracellular matrix (ECM), and both nucleus pulposus (NP) swelling and loss of annulus fibrosus (AF) fiber alignment which are hypothesized to contribute to the increased risk of herniation when reloading is experienced. However, the limitations of current studies are also discussed. For example, human studies do not allow for invasive measures of the underpinning biochemical mechanisms, correlating animal model results to the human condition may be difficult, and cellular studies lack incorporation of ECM and other complexities that mimic the native IVD microarchitecture and environment. Moving forward, the use of three-dimensional organoid culture models that incorporate IVD-specific human cells, ECM, and signals as well as the development of cell- and ECM-level computational models may further improve our understanding of the impacts that spaceflight has on astronaut IVD health.Smith K, Mercuri J. Microgravity and radiation effects on astronaut intervertebral disc health. Aerosp Med Hum Perform. 2021; 92(5):342352.
Collapse
|
118
|
Kirnaz S, Capadona C, Lintz M, Kim B, Yerden R, Goldberg JL, Medary B, Sommer F, McGrath LB, Bonassar LJ, Härtl R. Pathomechanism and Biomechanics of Degenerative Disc Disease: Features of Healthy and Degenerated Discs. Int J Spine Surg 2021; 15:10-25. [PMID: 34376493 DOI: 10.14444/8052] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human intervertebral disc (IVD) is a complex organ composed of fibrous and cartilaginous connective tissues, and it serves as a boundary between 2 adjacent vertebrae. It provides a limited range of motion in the torso as well as stability during axial compression, rotation, and bending. Adult IVDs have poor innate healing potential due to low vascularity and cellularity. Degenerative disc disease (DDD) generally arises from the disruption of the homeostasis maintained by the structures of the IVD, and genetic and environmental factors can accelerate the progression of the disease. Impaired cell metabolism due to pH alteration and poor nutrition may lead to autophagy and disruption of the homeostasis within the IVD and thus plays a key role in DDD etiology. To develop regenerative therapies for degenerated discs, future studies must aim to restore both anatomical and biomechanical properties of the IVDs. The objective of this review is to give a detailed overview about anatomical, radiological, and biomechanical features of the IVDs as well as discuss the structural and functional changes that occur during the degeneration process.
Collapse
Affiliation(s)
- Sertac Kirnaz
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Charisse Capadona
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Marianne Lintz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Byumsu Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Rachel Yerden
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Branden Medary
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Fabian Sommer
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Lynn B McGrath
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Roger Härtl
- Department of Neurological Surgery, Weill Cornell Brain and Spine Center, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York
| |
Collapse
|
119
|
The Application of Mesenchymal Stromal Cells and Their Homing Capabilities to Regenerate the Intervertebral Disc. Int J Mol Sci 2021; 22:ijms22073519. [PMID: 33805356 PMCID: PMC8036861 DOI: 10.3390/ijms22073519] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic low back pain (LBP) remains a challenging condition to treat, and especially to cure. If conservative treatment approaches fail, the current “gold standard” for intervertebral disc degeneration (IDD)-provoked back pain is spinal fusion. However, due to its invasive and destructive nature, the focus of orthopedic research related to the intervertebral disc (IVD) has shifted more towards cell-based therapeutic approaches. They aim to reduce or even reverse the degenerative cascade by mimicking the human body’s physiological healing system. The implementation of progenitor and/or stem cells and, in particular, the delivery of mesenchymal stromal cells (MSCs) has revealed significant potential to cure the degenerated/injured IVD. Over the past decade, many research groups have invested efforts to find ways to utilize these cells as efficiently and sustainably as possible. This narrative literature review presents a summary of achievements made with the application of MSCs for the regeneration of the IVD in recent years, including their preclinical and clinical applications. Moreover, this review presents state-of-the-art strategies on how the homing capabilities of MSCs can be utilized to repair damaged or degenerated IVDs, as well as their current limitations and future perspectives.
Collapse
|
120
|
Huang X, Zheng C, Wang W, Ye X, Lin CY, Wu Z. The Effect and Possible Mechanism of Intradiscal Injection of Simvastatin in the Treatment of Discogenic Pain in Rats. Front Neurosci 2021; 15:642436. [PMID: 33815046 PMCID: PMC8010318 DOI: 10.3389/fnins.2021.642436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
To study the effect of intradiscal injection of simvastatin on discogenic pain in rats and its possible mechanism, 30 adult female rats were used in this experiment. Twenty rats were randomly divided into sham operation group (Control group), intervertebral disk degeneration group (DDD group), intervertebral disk degeneration + hydrogel group (DDD + GEL group), and intervertebral disk degeneration + simvastatin group (DDD + SIM group). The mechanical pain threshold and cold sensation in rats were measured. The contents of NF-kappa B1, RelA, GAP43, SP, CGRP, TRPM 8, IL-1β, and TNF-α in the intervertebral disk (IVD), the corresponding contents of dorsal root ganglion (DRG) and plantar skin GAP43 and TRPM 8 were quantitatively detected by PCR. The corresponding IVDs were stained to detect their degeneration. There was no significant difference in the mechanical pain threshold between the groups at each time point. From the first day to the 8th week after surgery, the cold-sensing response of the DDD group was significantly higher than that of the Control group (P < 0.05). At 7 and 8 weeks postoperatively, the cold-sensing response of the DDD + SIM group was significantly lower than that of the DDD + GEL group (P < 0.05). The levels of NF-κB1, RelA, GAP43, SP, CGRP, TRPM8, IL-1β, and TNF-α in the IVD of DDD + SIM group were significantly lower than those in DDD group (P < 0.05). The content of GAP43 and TRPM8 in rat plantar skin decreased significantly and TRPM8 in DRG decreased significantly (P < 0.05).
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Changkun Zheng
- Department of Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fujian, China
| | - Weiheng Wang
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Xiaojian Ye
- Department of Orthopaedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Chia-Ying Lin
- Department of Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Zenghui Wu
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| |
Collapse
|
121
|
Peredo AP, Gullbrand SE, Mauck RL, Smith HE. A challenging playing field: Identifying the endogenous impediments to annulus fibrosus repair. JOR Spine 2021; 4:e1133. [PMID: 33778407 PMCID: PMC7984000 DOI: 10.1002/jsp2.1133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc (IVD) herniations, caused by annulus fibrosus (AF) tears that enable disc tissue extrusion beyond the disc space, are very prevalent, especially among adults in the third to fifth decade of life. Symptomatic herniations, in which the extruded tissue compresses surrounding nerves, are characterized by back pain, numbness, and tingling and can cause extreme physical disability. Patients whose symptoms persist after nonoperative intervention may undergo surgical removal of the herniated tissue via microdiscectomy surgery. The AF, however, which has a poor endogenous healing ability, is left unrepaired increasing the risk for re-herniation and pre-disposing the IVD to degenerative disc disease. The lack of understanding of the mechanisms involved in native AF repair limits the design of repair systems that overcome the impediments to successful AF restoration. Moreover, the complexity of the AF structure and the challenging anatomy of the repair environment represents a significant challenge for the design of new repair devices. While progress has been made towards the development of an effective AF repair technique, these methods have yet to demonstrate long-term repair and recovery of IVD biomechanics. In this review, the limitations of endogenous AF healing are discussed and key cellular events and factors involved are highlighted to identify potential therapeutic targets that can be integrated into AF repair methods. Clinical repair strategies and their limitations are described to further guide the design of repair approaches that effectively restore native tissue structure and function.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Robert L. Mauck
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
122
|
Sources of lumbar back pain during aging and potential therapeutic targets. VITAMINS AND HORMONES 2021; 115:571-583. [PMID: 33706962 DOI: 10.1016/bs.vh.2020.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lumbar back pain during aging is a major clinical problem, the origins and underlying mechanisms of which are challenging to study. Degenerative changes occur in various parts of the functional spinal unit, such the vertebral endplate and intervertebral disc. The homeostasis of these structural components is regulated by signaling molecules, such as transforming growth factor-β and parathyroid hormone. Previous efforts to understand sources of lumbar back pain focused on sensory innervation in the degenerative intervertebral disc, but intervertebral disc degeneration is frequently asymptomatic. An in vivo mouse model of lumbar spine aging and degeneration, combined with genetic technology, has identified endplate innervation as a major source of lumbar back pain and a potential therapeutic target. In this review, we consider how each structural component of the functional spinal unit contributes to lumbar back pain, how the homeostasis of each component is regulated, and how these findings can be used to develop potential therapies.
Collapse
|
123
|
Michalik AJ, Patel RK. Evaluation of transforaminal epidural steroid injections for discogenic axial lumbosacral back pain utilizing PROMIS as an outcome measure. Spine J 2021; 21:202-211. [PMID: 33091610 DOI: 10.1016/j.spinee.2020.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/17/2020] [Accepted: 10/14/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Discogenic lumbosacral back pain continues to present a challenging clinical entity with limited, controversial therapeutic options. No study to date has evaluated the efficacy of fluoroscopically guided transforaminal epidural steroid injections (TFESI) in a homogenous patient population with axial lumbosacral back pain from discogenic pathology utilizing strict, explicitly clinical and radiographic criteria. Additionally, there is a paucity of published data utilizing Patient Reported Outcome Measurement Information System (PROMIS) scores as an outcome measure for interventional spine procedures. PURPOSE Evaluate the therapeutic effect of TFESIs in a specific subset of patients with discogenic axial lumbosacral back pain. Investigate PROMIS as an outcome measure for interventional spine procedures targeting focal degenerative spinal pathology. STUDY DESIGN/SETTING Retrospective review of patients presenting to a multidisciplinary, tertiary academic spine center. PATIENT SAMPLE Three thousand eight hundred eighty-one patients were screened for inclusion. A total of 26 patients with discogenic axial low back, based on strict clinical and radiographic criteria, underwent TFESIs. All patients had axial low back pain without radicular pain, ≥3 clinical features of discogenic pain, corroborative radiographic features of active discogenic pathology on lumbar spine magnetic resonance imaging without confounding spinal pathology. OUTCOME MEASURES PROMIS Pain Interference (PI) v1.1, PROMIS Physical Function (PF) v1.2/v2.0, and PROMIS Depression (D) v1.0 outcome scores were collected at baseline and postprocedure follow-up. METHODS Query of an institutional, patient reported outcome database and subsequent retrospective review of electronic medical records was performed. Statistical analysis comparing baseline and postprocedural PROMIS outcome scores and correlation between these instruments was performed. Additionally, an exploratory investigation of minimal clinically important difference achievement rates was performed. RESULTS Analysis determined a statistically significant improvement in PROMIS PI (p=.017, 95% CI=-8.02 to -1.82) and PROMIS PF (p=.003, 95% CI=0.91-8.72) scores after treatment with TFESIs. At post treatment time points, TFESI had medium effect size on pain (d=0.55) and function (d=0.59). Change in PROMIS D scores (p=.488, 95% CI -1.74-3.54; d=.08) did not demonstrate statistical significance. Pearson correlation demonstrated a moderate negative correlation (r=-0.544, p=.004) between PROMIS PF with PROMIS PI. Correlation between PROMIS PF (r=-0.239, p=.24) and PROMIS PI (r=0.198, p=.33) with PROMIS D was not significant. Fourteen (53.8%) and 9 (34.6%) subjects achieved minimum clinically important difference (MCID) for PROMIS PI and PROMIS PF, respectively. Nine subjects (34.6%) achieved MCID for PROMIS D despite not otherwise reaching statistical significance otherwise. CONCLUSIONS Utilizing PROMIS as an outcome measure, discogenic axial lumbosacral back pain patients appear to benefit from TFESI in terms of pain and physical function. This study contributes to the growing body of literature utilizing PROMIS scores in patients with clinical sequelae of degenerative spinal pathology; however, prospective studies are needed.
Collapse
Affiliation(s)
- Adam J Michalik
- University of Utah School of Medicine, Division of Physical Medicine and Rehabilitation, Salt Lake City, UT, USA.
| | - Rajeev K Patel
- University of Rochester Medical Center, Department of Physical Medicine and Rehabilitation, Rochester, NY, USA
| |
Collapse
|
124
|
Binch ALA, Fitzgerald JC, Growney EA, Barry F. Cell-based strategies for IVD repair: clinical progress and translational obstacles. Nat Rev Rheumatol 2021; 17:158-175. [PMID: 33526926 DOI: 10.1038/s41584-020-00568-w] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain, a prevalent and chronic condition that has a striking effect on quality of life. Currently, no approved pharmacological interventions or therapies are available that prevent the progressive destruction of the IVD; however, regenerative strategies are emerging that aim to modify the disease. Progress has been made in defining promising new treatments for disc disease, but considerable challenges remain along the entire translational spectrum, from understanding disease mechanism to useful interpretation of clinical trials, which make it difficult to achieve a unified understanding. These challenges include: an incomplete appreciation of the mechanisms of disc degeneration; a lack of standardized approaches in preclinical testing; in the context of cell therapy, a distinct lack of cohesion regarding the cell types being tested, the tissue source, expansion conditions and dose; the absence of guidelines regarding disease classification and patient stratification for clinical trial inclusion; and an incomplete understanding of the mechanisms underpinning therapeutic responses to cell delivery. This Review discusses current approaches to disc regeneration, with a particular focus on cell-based therapeutic strategies, including ongoing challenges, and attempts to provide a framework to interpret current data and guide future investigational studies.
Collapse
Affiliation(s)
- Abbie L A Binch
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Joan C Fitzgerald
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Emily A Growney
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
125
|
Lyu FJ, Cui H, Pan H, MC Cheung K, Cao X, Iatridis JC, Zheng Z. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res 2021; 9:7. [PMID: 33514693 PMCID: PMC7846842 DOI: 10.1038/s41413-020-00125-x] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain (LBP), as a leading cause of disability, is a common musculoskeletal disorder that results in major social and economic burdens. Recent research has identified inflammation and related signaling pathways as important factors in the onset and progression of disc degeneration, a significant contributor to LBP. Inflammatory mediators also play an indispensable role in discogenic LBP. The suppression of LBP is a primary goal of clinical practice but has not received enough attention in disc research studies. Here, an overview of the advances in inflammation-related pain in disc degeneration is provided, with a discussion on the role of inflammation in IVD degeneration and pain induction. Puncture models, mechanical models, and spontaneous models as the main animal models to study painful disc degeneration are discussed, and the underlying signaling pathways are summarized. Furthermore, potential drug candidates, either under laboratory investigation or undergoing clinical trials, to suppress discogenic LBP by eliminating inflammation are explored. We hope to attract more research interest to address inflammation and pain in IDD and contribute to promoting more translational research.
Collapse
Affiliation(s)
- Feng-Juan Lyu
- grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, China
| | - Haowen Cui
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hehai Pan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XBreast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kenneth MC Cheung
- grid.194645.b0000000121742757Department of Orthopedics & Traumatology, The University of Hong Kong, Hong Kong, SAR China
| | - Xu Cao
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD USA
| | - James C. Iatridis
- grid.59734.3c0000 0001 0670 2351Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhaomin Zheng
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XPain Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
126
|
Wang H, Liu W, Yu B, Yu X, Chen B. Identification of Key Modules and Hub Genes of Annulus Fibrosus in Intervertebral Disc Degeneration. Front Genet 2021; 11:596174. [PMID: 33584795 PMCID: PMC7875098 DOI: 10.3389/fgene.2020.596174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Intervertebral disc degeneration impairs the quality of patients lives. Even though there has been development of many therapeutic strategies, most of them remain unsatisfactory due to the limited understanding of the mechanisms that underlie the intervertebral disc degeneration. Questions/purposes: This study is meant to identify the key modules and hub genes related to the annulus fibrosus in intervertebral disc degeneration (IDD) through: (1) constructing a weighted gene co-expression network; (2) identifying key modules and hub genes; (3) verifying the relationships of key modules and hub genes with IDD; and (4) confirming the expression pattern of hub genes in clinical samples. Methods: The Gene Expression Omnibus provided 24 sets of annulus fibrosus microarray data. Differentially expressed genes between the annulus fibrosus of degenerative and non-degenerative intervertebral disc samples have gone through the Gene Ontology (GO) and pathway analysis. The construction of a gene network and classification of genes into different modules were conducted through performing Weighted Gene Co-expression Network Analysis. The identification of modules and hub genes that were most related to intervertebral disc degeneration was proceeded. In order to verify the relationships of the module and hub genes with intervertebral disc degeneration, Ingenuity Pathway Analysis was operated. Clinical samples were adopted to help verify the hub gene expression profile. Results: One thousand one hundred ninety differentially expressed genes were identified. Terms and pathways associated with intervertebral disc degeneration were presented by GO and pathway analysis. The construction of a Weighted Gene Coexpression Network was completed and clustering differentially expressed genes into four modules was also achieved. The module with the lowest P-value and the highest absolute correlation coefficient was selected and its relationship with intervertebral disc degeneration was confirmed by Ingenuity Pathway Analysis. The identification of hub genes and the confirmation of their expression profile were also realized. Conclusions: This study generated a comprehensive overview of the gene networks underlying annulus fibrosus in intervertebral disc degeneration. Clinical Relevance: Modules and hub genes identified in this study are highly associated with intervertebral disc degeneration, and may serve as potential therapeutic targets for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Hantao Wang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Orthopedics, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Liu
- Plastic & Reconstructive Surgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Yu
- Department of Medicine, Lincoln Medical Center, Bronx, NY, United States
| | - Xiaosheng Yu
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Chen
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
127
|
Tavana S, Masouros SD, Baxan N, Freedman BA, Hansen UN, Newell N. The Effect of Degeneration on Internal Strains and the Mechanism of Failure in Human Intervertebral Discs Analyzed Using Digital Volume Correlation (DVC) and Ultra-High Field MRI. Front Bioeng Biotechnol 2021; 8:610907. [PMID: 33553116 PMCID: PMC7859352 DOI: 10.3389/fbioe.2020.610907] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
The intervertebral disc (IVD) plays a main role in absorbing and transmitting loads within the spinal column. Degeneration alters the structural integrity of the IVDs and causes pain, especially in the lumbar region. The objective of this study was to investigate non-invasively the effect of degeneration on human 3D lumbar IVD strains (n = 8) and the mechanism of spinal failure (n = 10) under pure axial compression using digital volume correlation (DVC) and 9.4 Tesla magnetic resonance imaging (MRI). Degenerate IVDs had higher (p < 0.05) axial strains (58% higher), maximum 3D compressive strains (43% higher), and maximum 3D shear strains (41% higher), in comparison to the non-degenerate IVDs, particularly in the lateral and posterior annulus. In both degenerate and non-degenerate IVDs, peak tensile and shear strains were observed close to the endplates. Inward bulging of the inner annulus was observed in all degenerate IVDs causing an increase in the AF compressive, tensile, and shear strains at the site of inward bulge, which may predispose it to circumferential tears (delamination). The endplate is the spine's “weak link” in pure axial compression, and the mechanism of human vertebral fracture is associated with disc degeneration. In non-degenerate IVDs the locations of failure were close to the endplate centroid, whereas in degenerate IVDs they were in peripheral regions. These findings advance the state of knowledge on mechanical changes during degeneration of the IVD, which help reduce the risk of injury, optimize treatments, and improve spinal implant designs. Additionally, these new data can be used to validate computational models.
Collapse
Affiliation(s)
- Saman Tavana
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Spyros D Masouros
- Royal British Legion Centre for Blast Injuries Studies, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Nicoleta Baxan
- Biological Imaging Centre, Central Biomedical Services, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Brett A Freedman
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ulrich N Hansen
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Nicolas Newell
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
128
|
Fu F, Bao R, Yao S, Zhou C, Luo H, Zhang Z, Zhang H, Li Y, Yan S, Yu H, Du W, Yang Y, Jin H, Tong P, Sun ZT, Yue M, Chen D, Wu C, Ruan H. Aberrant spinal mechanical loading stress triggers intervertebral disc degeneration by inducing pyroptosis and nerve ingrowth. Sci Rep 2021; 11:772. [PMID: 33437038 PMCID: PMC7804398 DOI: 10.1038/s41598-020-80756-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023] Open
Abstract
Aberrant mechanical factor is one of the etiologies of the intervertebral disc (IVD) degeneration (IVDD). However, the exact molecular mechanism of spinal mechanical loading stress-induced IVDD has yet to be elucidated due to a lack of an ideal and stable IVDD animal model. The present study aimed to establish a stable IVDD mouse model and evaluated the effect of aberrant spinal mechanical loading on the pathogenesis of IVDD. Eight-week-old male mice were treated with lumbar spine instability (LSI) surgery to induce IVDD. The progression of IVDD was evaluated by μCT and Safranin O/Fast green staining analysis. The metabolism of extracellular matrix, ingrowth of sensory nerves, pyroptosis in IVDs tissues were determined by immunohistological or real-time PCR analysis. The apoptosis of IVD cells was tested by TUNEL assay. IVDD modeling was successfully produced by LSI surgery, with substantial reductions in IVD height, BS/TV, Tb.N. and lower IVD score. LSI administration led to the histologic change of disc degeneration, disruption of the matrix metabolism, promotion of apoptosis of IVD cells and invasion of sensory nerves into annulus fibrosus, as well as induction of pyroptosis. Moreover, LSI surgery activated Wnt signaling in IVD tissues. Mechanical instability caused by LSI surgery accelerates the disc matrix degradation, nerve invasion, pyroptosis, and eventually lead to IVDD, which provided an alternative mouse IVDD model.
Collapse
Affiliation(s)
- Fangda Fu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Ronghua Bao
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, 311400, Zhejiang, China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Chengcong Zhou
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Huan Luo
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Huihao Zhang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Yan Li
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Shuxin Yan
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Huan Yu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.,Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310051, Zhejiang, China
| | - Weibin Du
- Research Institute of Orthopedics, the Affiliated JiangNan Hospital of Zhejiang Chinese Medical University, Hangzhou, 311200, Zhejiang, China
| | - Yanping Yang
- Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Zhi-Tao Sun
- Department of Orthopedics, Shenzhen Traditional Chinese Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518055, China
| | - Ming Yue
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China. .,Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
129
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
130
|
Zhang S, Hu B, Liu W, Wang P, Lv X, Chen S, Shao Z. The role of structure and function changes of sensory nervous system in intervertebral disc-related low back pain. Osteoarthritis Cartilage 2021; 29:17-27. [PMID: 33007412 DOI: 10.1016/j.joca.2020.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Low back pain (LBP) is a common musculoskeletal symptom, which can be developed in multiple clinical diseases. It is widely recognized that intervertebral disc (IVD) degeneration (IVDD) is one of the leading causes of LBP. However, the pathogenesis of IVD-related LBP is still controversial, and the treatment means are also insufficient to date. In recent decades, the role of structure and function changes of sensory nervous system in the induction and the maintenance of LBP is drawing more and more attention. With the progress of IVDD, IVD cell exhaustion and extracellular matrix degradation result in IVD structural damage, while neovascularization, innervation and inflammatory activation further deteriorate the microenvironment of IVD. New nerve ingrowth into degenerated IVD amplifies the impacts of IVD-derived nociceptive molecules on sensory endings. Moreover, IVDD is usually accompanied with disc herniation, which could injure and inflame affected nerves. Under mechanical and pro-inflammatory stimulation, the pain-transmitting pathway exhibits a sensitized function state and ultimately leads to LBP. Hence, relevant pathogenic factors, such as neurotrophins, ion channels, inflammatory factors, etc., are supposed to serve as promising therapeutic targets for LBP. The purpose of this review is to comprehensively summarize the current evidence on 1) the pathological changes of sensory nervous system during IVDD and their association with LBP, and 2) potential therapeutic strategies for LBP targeting relevant pathogenic factors.
Collapse
Affiliation(s)
- S Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - B Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - W Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - P Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - X Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - S Chen
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Z Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
131
|
Translational Studies on Biologic Fusion of a Vertebral Segment as a Novel Treatment Modality for Low Back Pain. Spine (Phila Pa 1976) 2020; 45:E1636-E1644. [PMID: 32947496 DOI: 10.1097/brs.0000000000003699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Preclinical studies: Efficacy and toxicological studies on lactic acid (LA)-induced sclerozation in pig lumbar discs. Clinical study: Prospective, randomized, double-blinded, placebo-controlled, single ascending dose study investigating the safety and local tolerability of LA. OBJECTIVE To determine if LA produces sclerozation of the porcine nucleus pulposus (NP) followed by a phase Ib study to evaluate preliminary safety, tolerability, and efficacy of LA in patients with chronic discogenic low back pain. SUMMARY OF BACKGROUND DATA Surgical stabilization of a motion segment harboring a painful degenerated disc often affords symptomatic relief. In the present study, the hypothesis was tested that LA can produce sclerozation and stabilization of the NP. METHODS LA (0.2 mL; 60, 120, or 240 mg/mL) or vehicle was injected into the NP or close to the extra spinal region of spinal nerves of young female pigs. The size of the NP, MRI changes, flexural stiffness, and histology of the disc was studied after up to 84 days of survival. Fifteen patients injected intra discally with placebo (iohexol, 1.5 mL, n = 6) or iohexol plus LA (30, 60, or 120 mg/mL; three patients in each group) were followed for up to 12 months. RESULTS Injection of LA in the pig reproducibly induced sclerozation of the NP and increased flexural rigidity. Histological changes included generation of connective tissue and increased expression of collagen I. No safety concerns were raised. Adverse events in patients were limited to transiently increased low back pain with no obvious difference between treatment groups. There was indication of lower water content of NP injected with the two highest doses of LA. CONCLUSION LA has a sclerozing effect on the NP in pigs and patients and is therefore a candidate for further clinical studies powered to determine its potential as a treatment of chronic discogenic low back pain. LEVEL OF EVIDENCE 2.
Collapse
|
132
|
Gushcha AO, Yusupova AR. [Modern concepts of intervertebral disc degeneration]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 84:112-117. [PMID: 33306308 DOI: 10.17116/neiro202084061112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The widespread prevalence of degenerative spine diseases and achievements in the treatment of these lesions have not yet led to an answer the main question: «What is the etiology of spine degeneration?» Treatment will remain symptomatic if primary cause of disease will be unclear. However, improvement of genetic and molecular survey gradually clarifies the mechanisms underlying degenerative processes. The latest knowledge in regenerative medicine seem promising. Nevertheless, further advances in understanding the fundamental processes in human organism are followed by additional questions and unsolved problems. The authors analyzed the best-studied modern theories of degeneration in this brief review devoted to current concepts of intervertebral disc degeneration.
Collapse
Affiliation(s)
- A O Gushcha
- Neurology Research Center, Moscow, Russia.,Russian Medical Academy of Continuing Postgraduate Education, Moscow, Russia
| | - A R Yusupova
- Russian Medical Academy of Continuing Postgraduate Education, Moscow, Russia
| |
Collapse
|
133
|
Buch MH, Eyre S, McGonagle D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis. Nat Rev Rheumatol 2020; 17:17-33. [PMID: 33293696 DOI: 10.1038/s41584-020-00541-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Despite nearly three decades of advances in the management of rheumatoid arthritis (RA), a substantial minority of patients are exposed to multiple DMARDs without necessarily benefitting from them; a group of patients variously designated as having 'difficult to treat', 'treatment-resistant' or 'refractory' RA. This Review of refractory RA focuses on two types of patients: those for whom multiple targeted therapies lack efficacy and who have persistent inflammatory pathology, which we designate as persistent inflammatory refractory RA (PIRRA); and those with supposed refractory RA who have continued disease activity that is predominantly independent of objective evidence of inflammation, which we designate as non-inflammatory refractory RA (NIRRA). These two types of disease are not mutually exclusive, but identifying those individuals with predominant PIRRA or NIRRA is important, as it informs distinct treatment and management approaches. This Review outlines the clinical differences between PIRRA and NIRRA, the genetic and epigenetic mechanisms and immune pathways that might contribute to the immunopathogenesis of recalcitrant synovitis in PIRRA, and a possible basis for non-inflammatory symptomatology in NIRRA. Future approaches towards the definition of refractory RA and the application of single-cell and integrated omics technologies to the identification of refractory RA endotypes are also discussed.
Collapse
Affiliation(s)
- Maya H Buch
- Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK. .,NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University Foundation Trust, Manchester, UK. .,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
| | - Stephen Eyre
- Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University Foundation Trust, Manchester, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
134
|
Alexeev D, Cui S, Grad S, Li Z, Ferguson SJ. Mechanical and biological characterization of a composite annulus fibrosus repair strategy in an endplate delamination model. JOR Spine 2020; 3:e1107. [PMID: 33392447 PMCID: PMC7770194 DOI: 10.1002/jsp2.1107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/08/2020] [Accepted: 06/21/2020] [Indexed: 12/23/2022] Open
Abstract
This study compares the mechanical response of the commonly used annulus fibrosus (AF) puncture injury model of the intervertebral disc (IVD) and a newly proposed AF failure at the endplate junction (delamination) on ex vivo bovine IVDs. Biocompatibility and mechanics of a newly developed repair strategy comprising of electrospun polycaprolactone (PCL) scaffold and fibrin-genipin (FibGen) adhesive was tested on the delamination model. The study found no significant difference in the mechanical response to compressive loading between the two models. Primary goals of the repair strategy to create a tight seal on the damage area and restore mechanical properties, while showing minimal cytotoxicity, were broadly achieved. Postrepair, the IVDs showed a significant restoration of mechanical properties compared to the injured samples for the delamination model. The FibGen glue showed a limited toxicity in the AF and produced a resilient and mechanically stable seal on the damaged area.
Collapse
Affiliation(s)
| | - Shangbin Cui
- AO Research Institute DavosDavosSwitzerland
- The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Sibylle Grad
- ETH Zürich, Institute for BiomechanicsZürichSwitzerland
- AO Research Institute DavosDavosSwitzerland
| | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| | | |
Collapse
|
135
|
In vitro model of distinct catabolic and inflammatory response patterns of endothelial cells to intervertebral disc cell degeneration. Sci Rep 2020; 10:20596. [PMID: 33244116 PMCID: PMC7691345 DOI: 10.1038/s41598-020-77785-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/17/2020] [Indexed: 01/23/2023] Open
Abstract
To evaluate dominant cell-to-cell paracrine interactions, including those of human annulus fibrosus (AF), nucleus pulposus (NP), and endothelial cells (ECs), in the production of inflammatory mediators and catabolic enzymes, ECs was cultured in soluble factors derived from AF or NP cells (AFCM or NPCM, respectively) and vice versa. We analysed IL-6 and -8, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-1 and -3, nerve growth factor (NGF)-β, and brain-derived neurotrophic factors (BDNFs) with qRT-PCR and ELISA. We implement a microfluidic platform to analyse migration properties of AF and NP cells and ECs in 3D cultures. Our results show that IL-1β-stimulated AF cells produced significantly higher levels of IL-6 and -8, VEGF, and MMP-1 than IL-1β-stimulated NP cells. However, production of IL-6 and -8, VEGF, and MMP-3 was significantly higher in NP cells than in AF cells, under the presence of ECs conditioned medium. We observed considerable migration of NP cells co-cultured with ECs through the microfluidic platform. These results suggest that AF cells may play a major role in the initial degeneration of intervertebral disc. Furthermore, it was found that interactions between NP cells and ECs may play a significant role in the development or progression of diseases.
Collapse
|
136
|
Mern DS, Walsen T, Beierfuß A, Thomé C. Animal models of regenerative medicine for biological treatment approaches of degenerative disc diseases. Exp Biol Med (Maywood) 2020; 246:483-512. [PMID: 33175609 DOI: 10.1177/1535370220969123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Degenerative disc disease (DDD) is a painful, chronic and progressive disease, which is characterized by inflammation, structural and biological deterioration of the intervertebral disc (IVD) tissues. DDD is specified as cell-, age-, and genetic-dependent degenerative process that can be accelerated by environmental factors. It is one of the major causes of chronic back pain and disability affecting millions of people globally. Current treatment options, such as physical rehabilitation, pain management, and surgical intervention, can provide only temporary pain relief. Different animal models have been used to study the process of IVD degeneration and develop therapeutic options that may restore the structure and function of degenerative discs. Several research works have depicted considerable progress in understanding the biological basis of disc degeneration and the therapeutic potentials of cell transplantation, gene therapy, applications of supporting biomaterials and bioactive factors, or a combination thereof. Since animal models play increasingly significant roles in treatment approaches of DDD, we conducted an electronic database search on Medline through June 2020 to identify, compare, and discuss publications regarding biological therapeutic approaches of DDD that based on intradiscal treatment strategies. We provide an up-to-date overview of biological treatment strategies in animal models including mouse, rat, rabbit, porcine, bovine, ovine, caprine, canine, and primate models. Although no animal model could profoundly reproduce the clinical conditions in humans; animal models have played important roles in specifying our knowledge about the pathophysiology of DDD. They are crucial for developing new therapy approaches for clinical applications.
Collapse
Affiliation(s)
| | - Tanja Walsen
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Anja Beierfuß
- Laboratory Animal Facility, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
137
|
The neuropathic phenotype of the K/BxN transgenic mouse with spontaneous arthritis: pain, nerve sprouting and joint remodeling. Sci Rep 2020; 10:15596. [PMID: 32973194 PMCID: PMC7515905 DOI: 10.1038/s41598-020-72441-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/13/2020] [Indexed: 01/11/2023] Open
Abstract
The adult K/BxN transgenic mouse develops spontaneous autoimmune arthritis with joint remodeling and profound bone loss. We report that both males and females display a severe sustained tactile allodynia which is reduced by gabapentin but not the potent cyclooxygenase inhibitor ketorolac. In dorsal horn, males and females show increased GFAP+ astrocytic cells; however, only males demonstrate an increase in Iba1+ microglia. In dorsal root ganglia (DRG), there is an increase in CGRP+, TH+, and Iba1+ (macrophage) labeling, but no increase in ATF3+ cells. At the ankle there is increased CGRP+, TH+, and GAP-43+ fiber synovial innervation. Thus, based on the changes in dorsal horn, DRG and peripheral innervation, we suggest that the adult K/BxN transgenic arthritic mice display a neuropathic phenotype, an assertion consistent with the analgesic pharmacology seen in this animal. These results indicate the relevance of this model to our understanding of the nociceptive processing which underlies the chronic pain state that evolves secondary to persistent joint inflammation.
Collapse
|
138
|
Suntsov V, Jovanovic F, Knezevic E, Candido KD, Knezevic NN. Can Implementation of Genetics and Pharmacogenomics Improve Treatment of Chronic Low Back Pain? Pharmaceutics 2020; 12:pharmaceutics12090894. [PMID: 32967120 PMCID: PMC7558486 DOI: 10.3390/pharmaceutics12090894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Etiology of back pain is multifactorial and not completely understood, and for the majority of people who suffer from chronic low back pain (cLBP), the precise cause cannot be determined. We know that back pain is somewhat heritable, chronic pain more so than acute. The aim of this review is to compile the genes identified by numerous genetic association studies of chronic pain conditions, focusing on cLBP specifically. Higher-order neurologic processes involved in pain maintenance and generation may explain genetic contributions and functional predisposition to formation of cLBP that does not involve spine pathology. Several genes have been identified in genetic association studies of cLBP and roughly, these genes could be grouped into several categories, coding for: receptors, enzymes, cytokines and related molecules, and transcription factors. Treatment of cLBP should be multimodal. In this review, we discuss how an individual's genotype could affect their response to therapy, as well as how genetic polymorphisms in CYP450 and other enzymes are crucial for affecting the metabolic profile of drugs used for the treatment of cLBP. Implementation of gene-focused pharmacotherapy has the potential to deliver select, more efficacious drugs and avoid unnecessary, polypharmacy-related adverse events in many painful conditions, including cLBP.
Collapse
Affiliation(s)
- Vladislav Suntsov
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
| | - Filip Jovanovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
| | - Emilija Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
| | - Kenneth D. Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; (V.S.); (F.J.); (E.K.); (K.D.C.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-773-296-5619; Fax: +1-773-296-5362
| |
Collapse
|
139
|
Ding F, Li X. Apigenin Mitigates Intervertebral Disc Degeneration through the Amelioration of Tumor Necrosis Factor α (TNF-α) Signaling Pathway. Med Sci Monit 2020; 26:e924587. [PMID: 32949455 PMCID: PMC7523418 DOI: 10.12659/msm.924587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a common spinal disease affected by environmental and lifestyle factors that has a significant pathological cascade toward inflammation and partial disability. There is currently no therapy that can completely restore the cellular derangement in IDD. Hence, in this study, the therapeutic effects of apigenin on IDD were evaluated using a rat model. Material/Methods Animals were separated into 4 groups: Grp 1, sham-operated control; Grp 2, IDD-induced; Grp 3, IDD-induced+apigenin treatment; Grp 4, apigenin control. The animals were assessed for inflammatory cytokines, chemokines, and prostaglandin signaling. Results There were significant increases in the inflammatory cytokines IL-1β, IL-2, IL-6, IL-8 and IL-17 in the IDD-induced group compared to that of control. Moreover, with increased levels of MMP-3, MMP-9, ADAMTS-4, and syndecan-4, the levels of TNF-α, IFN-γ, prostaglandin E2, and cyclooxygenase 2 were directly increased in the IDD-induced group. In contrast, apigenin protectively restored levels of prostaglandin signaling and reduced cytokine levels. In addition, nucleus pulposus cells cultured separately with either TNF-α inhibitor or apigenin significantly attenuated the levels of extracellular matrix proteins. Conclusions The reduction of cytokine levels under apigenin treatment suggests it may be a promising target drug therapy for the treatment of deleterious IDD conditions.
Collapse
Affiliation(s)
- Fan Ding
- Department of Orthopaedic Surgery, The First People's Hospital of Jingmen, Jingmen, Hubei, China (mainland)
| | - Xia Li
- Department of Ophthalmology, The First People's Hospital of Jingmen, Jingmen, Hubei, China (mainland)
| |
Collapse
|
140
|
Shen C, Li Y, Chen Y, Huang L, Zhang F, Wu W. Melatonin prevents the binding of vascular endothelial growth factor to its receptor and promotes the expression of extracellular matrix-associated genes in nucleus pulposus cells. Exp Ther Med 2020; 20:106. [PMID: 32989385 PMCID: PMC7517348 DOI: 10.3892/etm.2020.9227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanisms of intervertebral disc degeneration (IDD) involve numerous factors, including loss of the extracellular matrix (ECM) and vascular ingrowth. Melatonin has been reported to protect intervertebral discs (IVDs) from degeneration and to exert a potential anti-angiogenic effect. The aim of the present study was to investigate the anti-angiogenic and anabolic effects of melatonin in IVDs. Human nucleus pulposus (NP) and degenerative nucleus pulposus (DNP) cells were isolated and treated with melatonin. The results indicated that melatonin promoted ECM synthesis and NP cell proliferation. In addition, an NP/DNP and human umbilical vein endothelial cell (HUVEC) co-culture model was used to investigate the anti-angiogenesis effect of melatonin. Melatonin was indicated to suppress tube formation and migration of HUVECs in culture with NP cell-conditioned medium, as well as in an NP cell co-culture model. Fluorescence-labeled vascular endothelial growth factor (VEGF) was used to study the binding between VEGF and its receptor. The results of the present study indicated that melatonin exerts an angiogenic effect via inhibition of the binding of VEGF to its receptor in HUVECs. Taken together, these results suggest that melatonin is a potential agent to prevent IDD.
Collapse
Affiliation(s)
- Chengchun Shen
- Department of Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yan Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Ningbo, Zhejiang 315010, P.R. China
| | - Yunlin Chen
- Department of Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Lei Huang
- Department of Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Feng Zhang
- Department of Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Wei Wu
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
141
|
Schmitz TC, Salzer E, Crispim JF, Fabra GT, LeVisage C, Pandit A, Tryfonidou M, Maitre CL, Ito K. Characterization of biomaterials intended for use in the nucleus pulposus of degenerated intervertebral discs. Acta Biomater 2020; 114:1-15. [PMID: 32771592 DOI: 10.1016/j.actbio.2020.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Biomaterials for regeneration of the intervertebral disc must meet complex requirements conforming to biological, mechanical and clinical demands. Currently no consensus on their characterization exists. It is crucial to identify parameters and their method of characterization for accurate assessment of their potential efficacy, keeping in mind the translation towards clinical application. This review systematically analyses the characterization techniques of biomaterial systems that have been used for nucleus pulposus (NP) restoration and regeneration. Substantial differences in the approach towards assessment became evident, hindering comparisons between different materials with respect to their suitability for NP restoration and regeneration. We have analysed the current approaches and identified parameters necessary for adequate biomaterial characterization, with the clinical goal of functional restoration and biological regeneration of the NP in mind. Further, we provide guidelines and goals for their measurement. STATEMENT OF SIGNIFICANCE: Biomaterials intended for restoration of regeneration of the nucleus pulposus within the intervertebral disc must meet biological, biomechanical and clinical demands. Many materials have been investigated, but a lack of consensus on which parameters to evaluate leads to difficulties in comparing materials as well as mostly partial characterization of the materials in question. A gap between current methodology and clinically relevant and meaningful characterization is prevalent. In this article, we identify necessary methods and their implementation for complete biomaterial characterization in the context of clinical applicability. This will allow for a more unified approach to NP-biomaterials research within the field as a whole and enable comparative analysis of novel materials yet to be developed.
Collapse
Affiliation(s)
- Tara C Schmitz
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - Georgina Targa Fabra
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, 7WQJ+8F Galway, Ireland.
| | - Catherine LeVisage
- Université de Nantes, INSERM UMR 1229, Regenerative Medicine and Skeleton, RMeS School of Dental Surgery, University of Nantes, 1 Place Ricordeau, 44300 Nantes, France.
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, 7WQJ+8F Galway, Ireland.
| | - Marianna Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, Netherlands.
| | - Christine Le Maitre
- Biomolecular Sciences Research Centre Sheffield Hallam University, City Campus, Howard Street, S1 1WB Sheffield, United Kingdom.
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| |
Collapse
|
142
|
Drug delivery in intervertebral disc degeneration and osteoarthritis: Selecting the optimal platform for the delivery of disease-modifying agents. J Control Release 2020; 328:985-999. [PMID: 32860929 DOI: 10.1016/j.jconrel.2020.08.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
Osteoarthritis (OA) and intervertebral disc degeneration (IVDD) as major cause of chronic low back pain represent the most common degenerative joint pathologies and are leading causes of pain and disability in adults. Articular cartilage (AC) and intervertebral discs are cartilaginous tissues with a similar biochemical composition and pathophysiological aspects of degeneration. Although treatments directed at reversing these conditions are yet to be developed, many promising disease-modifying drug candidates are currently under investigation. Given the localized nature of these chronic diseases, drug delivery systems have the potential to enhance therapeutic outcomes by providing controlled and targeted release of bioactives, minimizing the number of injections needed and increasing drug concentration in the affected areas. This review provides a comprehensive overview of the currently most promising disease-modifying drugs as well as potential drug delivery systems for OA and IVDD therapy.
Collapse
|
143
|
Cherif H, Bisson DG, Mannarino M, Rabau O, Ouellet JA, Haglund L. Senotherapeutic drugs for human intervertebral disc degeneration and low back pain. eLife 2020; 9:54693. [PMID: 32821059 PMCID: PMC7442487 DOI: 10.7554/elife.54693] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence is a contributor to intervertebral disc (IVD) degeneration and low back pain. Here, we found that RG-7112, a potent mouse double-minute two protein inhibitor, selectively kills senescent IVD cells through apoptosis. Gene expression pathway analysis was used to compare the functional networks of genes affected by RG-7112, a pure synthetic senolytic with o-Vanillin a natural and anti-inflammatory senolytic. Both affected a functional gene network related to cell death and survival. O-Vanillin also affected networks related to cell cycle progression as well as connective tissue development and function. Both senolytics effectively decreased the senescence-associated secretory phenotype (SASP) of IVD cells. Furthermore, bioavailability and efficacy were verified ex vivo in the physiological environment of degenerating intact human discs where a single dose improved disc matrix homeostasis. Matrix improvement correlated with a reduction in senescent cells and SASP, supporting a translational potential of targeting senescent cells as a therapeutic intervention. Pain in the lower back affects about four in five people during their lifetime. Over time, the discs that provide cushioning between the vertebrae of the spine can degenerate, which can be one of the major causes of lower back pain. It has been shown that when the cells of these discs are exposed to different stress factors, they stop growing and become irreversibly dormant. Such ‘senescent’ cells release a range of proteins and small molecules that lead to painful inflammation and further degeneration of the discs. Moreover, it is thought that a high number of senescent cells may be linked to other degenerative diseases such as arthritis. Current treatments can only reduce the severity of the symptoms, but they cannot prevent the degeneration from progressing. Now, Cherif et al. set out to test the effects of two different compounds on human disc cells grown in the laboratory. One of the molecules studied, RG-7112, is a synthetic drug that has been approved for safety by the US Food and Drug Administration and has been shown to remove senescent cells. The other, o-Vanillin, is a natural compound that has anti-inflammatory and anti-senescence properties. The results showed that both compounds were able to trigger changes to that helped new, healthy cells to grow and at the same time kill senescent cells. They also reduced the production of molecules linked to inflammation and pain. Further analyses revealed that the compounds were able to strengthen the fibrous matrix that surrounds and supports the discs. Cherif et al. hope that this could form the basis for a new family of drugs for back pain to slow the degeneration of the discs and reduce pain. This may also have benefits for other similar degenerative diseases caused by cell senescence, such as arthritis.
Collapse
Affiliation(s)
- Hosni Cherif
- Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Daniel G Bisson
- Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Matthew Mannarino
- Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Oded Rabau
- McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Canada
| | - Jean A Ouellet
- McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Canada
| | - Lisbet Haglund
- Orthopaedic Research Lab, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,McGill Scoliosis and Spine Group, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Canada.,Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Canada
| |
Collapse
|
144
|
Effects of photobiomodulation on annulus fibrosus cells derived from degenerative disc disease patients exposed to microvascular endothelial cells conditioned medium. Sci Rep 2020; 10:9655. [PMID: 32541845 PMCID: PMC7296027 DOI: 10.1038/s41598-020-66689-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration with chronic low back pain is associated with neo-vascularisation into the deeper IVD regions. During this process, endothelial cells (ECs), which are primarily responsible for angiogenesis, interact with the adjacent annulus fibrosus (AF) cells, which are the first line of defence against the invasion of vascular structures into deeper IVD regions. However, the accumulation of inflammatory and catabolic enzymes that results from this interaction promotes matrix degradation and an inflammatory response. Thus, regulating the production of these mediators and catabolic enzymes could ameliorate IVD degeneration. Photobiomodulation (PBM) therapy is a non-invasive stimulation known to have biologically beneficial effects on wound healing, tissue repair, and inflammation. Here, we examined the effects of PBM, administered at various wavelengths (645, 525, and 465 nm) and doses (16, 32, and 64 J/cm2), on EC-stimulated human AF cells. Our results show that PBM selectively inhibited the EC-mediated production of inflammatory mediators, catabolic enzymes, and neurotrophins by human AF cells in a dose- and wavelength-dependent manner. These results suggest that PBM could be a superior and advanced treatment strategy for IVD degeneration.
Collapse
|
145
|
Li Z, Gehlen Y, Heizmann F, Grad S, Alini M, Richards RG, Kubosch D, Südkamp N, Izadpanah K, Kubosch EJ, Lang G. Preclinical ex-vivo Testing of Anti-inflammatory Drugs in a Bovine Intervertebral Degenerative Disc Model. Front Bioeng Biotechnol 2020; 8:583. [PMID: 32587853 PMCID: PMC7298127 DOI: 10.3389/fbioe.2020.00583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/13/2020] [Indexed: 01/06/2023] Open
Abstract
Discogenic low back pain (LBP) is a main cause of disability and inflammation is presumed to be a major driver of symptomatic intervertebral disc degeneration (IDD). Anti-inflammatory agents are currently under investigation as they demonstrated to alleviate symptoms in patients having IDD. However, their underlying anti-inflammatory and regenerative activity is poorly explored. The present study sought to investigate the potential of Etanercept and Tofacitinib for maintaining disc homeostasis in a preclinical intervertebral disc (IVD) organ culture model within IVD bioreactors allowing for dynamic loading and nutrient exchange. Bovine caudal IVDs were cultured in a bioreactor system for 4 days to simulate physiological or degenerative conditions: (1) Phy—physiological loading (0.02–0.2 MPa; 0.2 Hz; 2 h/day) and high glucose DMEM medium (4.5 g/L); (2) Deg+Tumor necrosis factor α (TNF-α)—degenerative loading (0.32–0.5 MPa; 5 Hz; 2 h/day) and low glucose DMEM medium (2 g/L), with TNF-α injection. Etanercept was injected intradiscally while Tofacitinib was supplemented into the culture medium. Gene expression in the IVD tissue was measured by RT-qPCR. Release of nitric oxide (NO), interleukin 8 (IL-8) and glycosaminoglycan (GAG) into the IVD conditioned medium were analyzed. Cell viability in the IVD was assessed using lactate dehydrogenase and ethidium homodimer-1 staining. Immunohistochemistry was performed to assess protein expression of IL-1β, IL-6, IL-8, and collagen type II in the IVD tissue. Etanercept and Tofacitinib downregulated the expression of IL-1β, IL-6, IL-8, Matrix metalloproteinase 1 (MMP1), and MMP3 in the nucleus pulposus (NP) tissue and IL-1β, MMP3, Cyclooxygenase-2 (COX2), and Nerve growth factor (NGF) in the annulus fibrosus (AF) tissue. Furthermore, Etanercept significantly reduced the IL-1β positively stained cells in the outer AF and NP regions. Tofacitinib significantly reduced IL-1β and IL-8 positively stained cells in the inner AF region. Both, Etanercept and Tofacitinib reduced the GAG loss to the level under physiological culture condition. Etanercept and Tofacitinib are able to neutralize the proinflammatory and catabolic environment in the IDD organ culture model. However, combined anti-inflammatory and anabolic treatment may be required to constrain accelerated IDD and relieving inflammation-induced back pain.
Collapse
Affiliation(s)
- Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | - Yannik Gehlen
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Fabian Heizmann
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - R Geoff Richards
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - David Kubosch
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Norbert Südkamp
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kaywan Izadpanah
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Eva Johanna Kubosch
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Gernot Lang
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
146
|
Coblation annuloplasty in cervical discogenic pain without radiculopathy. Wideochir Inne Tech Maloinwazyjne 2020; 15:305-312. [PMID: 32489491 PMCID: PMC7233163 DOI: 10.5114/wiitm.2019.89394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction The nerve fibers innervating the annulus fibrosus are the major origin of degeneration-associated discogenic pain. Coblation is a tissue-dissociating technique in which the nerve fibers in the degenerative disc tissue are ablated. We hypothesized that coblation annuloplasty would be an effective maneuver for cervical discogenic pain without radiculopathy. Aim To observe the therapeutic efficacy of coblation annuloplasty in patients with cervical discogenic pain without radiculopathy. Material and methods Forty patients diagnosed with cervical discogenic pain without radiculopathy were screened for coblation annuloplasty therapy. The patient-rated visual analog scale (VAS) score for pain, significant pain relief rate, and Modified MacNab pain-relieving effect were adopted to evaluate the therapeutic effect within a 1-year follow-up period. Results Thirty-three patients eventually completed the study. The average pain duration was 4.6 ±1.6 years (range: 0.5–8 years). The mean VAS pain score decreased from preoperative 6.8 ±0.9 to postoperative 2.5 ±1.3 (p < 0.01). For all participants, the immediate pain relief rate was 78.7% (26/33), which continued to postoperative 6 months. One year later, 22 (66.6%) subjects reported that their pain was significantly alleviated. According to the Modified MacNab criteria, 63.6–82.1% considered the effect of surgery for their pain therapy as “excellent” during the 1-year follow-up period. No significant complications such as hemorrhage, paresthesia, or infection were observed. Conclusions This study is the first to demonstrate that coblation annuloplasty is an effective intervention providing significant alleviation of neck pain from cervical discogenic injury without radiculopathy.
Collapse
|
147
|
Lee S, Millecamps M, Foster DZ, Stone LS. Long-term histological analysis of innervation and macrophage infiltration in a mouse model of intervertebral disc injury-induced low back pain. J Orthop Res 2020; 38:1238-1247. [PMID: 31814143 DOI: 10.1002/jor.24560] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023]
Abstract
Low back pain (LBP) is a leading cause of global disability. Multiple anatomical, cellular, and molecular factors are implicated in LBP, including the degeneration of lumbar intervertebral discs (IVDs). We previously described a mouse model that displays behavioral symptoms of chronic LBP. Here, we investigated the development of pathological innervation and macrophage infiltration into injured IVDs following a puncture injury in mice over 12 months. 2-month old CD1 female mice underwent a single puncture of the ventral L4/5 IVD using a 30G needle, and were sacrificed 4 days and 0.5-, 3-, 6- and 12-months post-injury. Severity of disc degeneration was assessed using colorimetric staining. IVD innervation was measured by PGP9.5-immunoreactivity (-ir) and calcitonin gene-related peptide-ir (CGRP-ir). Macrophage accumulation into IVDs was detected by F4/80-ir. Mechanical IVD injury resulted in severe degeneration and increased PGP9.5-ir nerve fiber density starting at 4 days that persisted for up to 12 months and dorsal herniations began to occur at 3 months. CGRP-ir was also upregulated in injured IVDs, with the largest increase at 12 months after injury. Infiltration of F4/80-ir macrophages was observed in injured IVDs by day 4 both dorsally and ventrally, with the latter diminishing in the later stage. Persistent LBP is a complex disease with multiple underlying pathologies. By highlighting pathological changes in IVD innervation and inflammation, our study suggests that strategies targeting these mechanisms might be useful therapeutically.
Collapse
Affiliation(s)
- Seunghwan Lee
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,The Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Magali Millecamps
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,The Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Daniel Z Foster
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,The Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada
| | - Laura S Stone
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,The Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada.,Departments of Anesthesiology, Pharmacology & Therapeutics, Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
148
|
Ma J, Stefanoska D, Stone LS, Hildebrand M, van Donkelaar CC, Zou X, Basoli V, Grad S, Alini M, Peroglio M. Hypoxic stress enhances extension and branching of dorsal root ganglion neuronal outgrowth. JOR Spine 2020; 3:e1090. [PMID: 32613165 PMCID: PMC7323469 DOI: 10.1002/jsp2.1090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/27/2022] Open
Abstract
It has been shown that painful intervertebral discs (IVDs) were associated with a deeper innervation. However, the effect of the disc's degenerative microenvironment on neuronal outgrowth remains largely unknown. The focus of this study was to determine the influence of hypoxia on dorsal root ganglion (DRG) neurite outgrowth. Toward this aim, the DRG-derived cell line ND7/23 was either directly subjected to 2% or 20% oxygen conditions or exposed to conditioned medium (CM) collected from IVDs cultured under 2% or 20% oxygen. Viability and outgrowth analysis were performed following 3 days of exposure. Results obtained with the cell line were further validated on cultures of rabbit spinal DRG explants and dissociated DRG neurons. Results showed that hypoxia significantly increased neurite outgrowth length in ND7/23 cells, which was also validated in DRG explant and primary cell culture, although hypoxia conditioned IVD did not significantly increase ND7/23 neurite outgrowth. While hypoxia dramatically decreased the outgrowth frequency in explant cultures, it significantly increased collateral sprouting of dissociated neurons. Importantly, the hypoxia-induced decrease of outgrowth frequency at the explant level was not due to inhibition of outgrowth branching but rather to neuronal necrosis. In summary, hypoxia in DRG promoted neurite sprouting, while neuronal necrosis may reduce the density of neuronal outgrowth at the tissue level. These findings may help to explain the deeper neo-innervation found in the painful disc tissue. HIGHLIGHTS Hypoxia promoted elongation and branching of neurite outgrowth at single cell level, but reduced outgrowth density at tissue level, possibly due to hypoxia-induced neuronal necrosis; these findings may help to explain the deeper neo-innervation found in clinically painful tissues.
Collapse
Affiliation(s)
- Junxuan Ma
- AO Research Institute DavosDavosSwitzerland
| | - Despina Stefanoska
- AO Research Institute DavosDavosSwitzerland
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Laura S. Stone
- Alan Edwards Centre for Research on Pain, Faculty of DentistryMcGill UniversityMontreal, QuebecCanada
| | | | | | - Xuenong Zou
- Department of Spine Surgery, Orthopedic Research InstituteThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | | | | | | | | |
Collapse
|
149
|
Cianci F, Ferraccioli G, Ferraccioli ES, Gremese E. Comprehensive review on intravertebral intraspinal, intrajoint, and intradiscal vacuum phenomenon: From anatomy and physiology to pathology. Mod Rheumatol 2020; 31:303-311. [PMID: 32374204 DOI: 10.1080/14397595.2020.1764744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The term 'vacuum phenomenon' (VP), is characterized by gas-like density areas due to a rapid increase in the joint space volume ('acute VP') or represent a chronic gas collection. It can occur within a collapsed vertebral body, the spinal canal, joints but mainly the intervertebral disc. Studies support that VP is originated by a dynamic process involving the balance between tissues' liquid and gaseous components, influenced by the duration and the depth of mechanical and metabolic alterations, by the nature of neighboring tissues and the variability in both pressure and permeability of disc or vertebral or joint structures. Prevalence of VP in the general population is about 2%, reaching 20% in the elderly with disc degeneration. Although it's often a random finding in asymptomatic patients, VP is an eventually painful expression of disc degeneration, or disc or vertebral fracture, or bone lesions. In sporadic cases, intradiscal gas can be expelled (all-in-one or gradually), resulting in a gaseous cyst, causing pain and neurological symptoms. Considering that spontaneous resolution and recurrence after surgery are both possible, most of the authors recommend conservative treatment in patients with intradiscal and intravertebral VP; occasionally percutaneous CT(computed tomography) -guided aspiration or vertebral stabilization.
Collapse
Affiliation(s)
- Francesco Cianci
- Istitute of Rheumatology, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | | | - Elisa Gremese
- Istitute of Rheumatology, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
150
|
Romereim SM, Johnston CA, Redwine AL, Wachs RA. Development of an in vitro intervertebral disc innervation model to screen neuroinhibitory biomaterials. J Orthop Res 2020; 38:1016-1026. [PMID: 31825104 PMCID: PMC7244214 DOI: 10.1002/jor.24557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/30/2019] [Indexed: 02/04/2023]
Abstract
Pain originating from an intervertebral disc (discogenic pain) is a major source of chronic low back pain. Pathological innervation of the disc by pain-sensing nerve fibers is thought to be a key component of discogenic pain, so treatment with biomaterials that have the ability to inhibit neurite growth will greatly benefit novel disc therapeutics. Currently, disc therapeutic biomaterials are rarely screened for their ability to modulate nerve growth, mainly due to a lack of models to screen neuromodulation. To address this deficit, our lab has engineered a three dimensional in vitro disc innervation model that mimics the interface between primary sensory nerves and the intervertebral disc. Further, herein we have demonstrated the utility of this model to screen the efficacy of chondroitin sulfate biomaterials to inhibit nerve fiber invasion into the model disc. Biomaterials containing chondroitin-4-sulfate (CS-A) decrease neurite growth in a uniform gel and at an interface between a growth-permissive and a growth-inhibitory gel, while chondroitin-6-sulfate (CS-C) is less neuroinhibitory. This in vitro model holds great potential for screening inhibitors of nerve fiber growth to further improve intervertebral disc replacements and therapeutics. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1016-1026, 2020.
Collapse
Affiliation(s)
- Sarah M Romereim
- Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, Nebraska, 68583-0726
| | - Caleb A Johnston
- Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, Nebraska, 68583-0726
| | - Adan L Redwine
- Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, Nebraska, 68583-0726
| | - Rebecca A Wachs
- Biological Systems Engineering, University of Nebraska-Lincoln, P.O. Box 830726, Lincoln, Nebraska, 68583-0726
| |
Collapse
|