101
|
von Zychlinski A, Kleffmann T, Krishnamurthy N, Sjölander K, Baginsky S, Gruissem W. Proteome analysis of the rice etioplast: metabolic and regulatory networks and novel protein functions. Mol Cell Proteomics 2005; 4:1072-84. [PMID: 15901827 DOI: 10.1074/mcp.m500018-mcp200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report an extensive proteome analysis of rice etioplasts, which were highly purified from dark-grown leaves by a novel protocol using Nycodenz density gradient centrifugation. Comparative protein profiling of different cell compartments from leaf tissue demonstrated the purity of the etioplast preparation by the absence of diagnostic marker proteins of other cell compartments. Systematic analysis of the etioplast proteome identified 240 unique proteins that provide new insights into heterotrophic plant metabolism and control of gene expression. They include several new proteins that were not previously known to localize to plastids. The etioplast proteins were compared with proteomes from Arabidopsis chloroplasts and plastid from tobacco Bright Yellow 2 cells. Together with computational structure analyses of proteins without functional annotations, this comparative proteome analysis revealed novel etioplast-specific proteins. These include components of the plastid gene expression machinery such as two RNA helicases, an RNase II-like hydrolytic exonuclease, and a site 2 protease-like metalloprotease all of which were not known previously to localize to the plastid and are indicative for so far unknown regulatory mechanisms of plastid gene expression. All etioplast protein identifications and related data were integrated into a data base that is freely available upon request.
Collapse
Affiliation(s)
- Anne von Zychlinski
- Institute of Plant Science and Functional Genomics Center Zurich, Swiss Federal Institute of Technology, Eidgenössische Technische Hochschule (ETH) Zurich, 8092 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
102
|
Filek M, Gzyl B, Laggner P, Kriechbaum M. Effect of indole-3-acetic acid on surface properties of the wheat plastid lipids. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:245-252. [PMID: 15832676 DOI: 10.1016/j.jplph.2004.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface parameters of polar lipids extracted from winter wheat plastids were investigated by the Langmuir and X-ray differentiation scattering methods. Highly purified plastids were isolated from non-embryogenic (NE) and embryogenic (E) calli initiated from inflorescences. NE plastids contained more monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) and less phospholipids (PL) fraction than E plastids. Moreover, in E calli, unsaturated fatty acids were detected in a higher proportion than in NE for both MGDG and DGDG. No significant differences in fatty acids saturation of PL between NE and E objects were detected. Aqueous surface monolayers were prepared from separate lipids and from mixtures of glycolipids and PL. In the case of MGDG, isotherms showed specific shoulders, contrary to continuous isotherms obtained for other investigated lipids. On the base of pi-A isotherms, the surface parameters: limiting area (A(lim)) and collapse pressure (pi(coll)) were calculated. Indole-3-acetic acid (IAA) increased the A(lim) of all separated lipids about 4-10 angstrom2/mol. However, for NE lipid mixture, the effect of IAA was much smaller (about 2 angstroms2/mol) than for other objects (usually about 5 angstroms2/mol). X-ray experiments for liposomes, obtained from mixtures of glycolipids and PL of NE and E plastids, showed continuous scattering curves with maxima characteristic for lipid bilayer membranes. Calculations of distance distribution functions indicated that bilayer thickness was 41 and 38 angstroms for NE and E, respectively. IAA influence on membrane structures was detected especially in E liposomes and increased the distance between head groups by about 2 angstroms. It is suggested that changes occur during embryogenesis in specific structure of plastid membranes determined also the formation of domains, similar to that suggested for plasmalemma (Plant Sci. 165 (2003) 265). IAA treatment influenced the membrane structure, especially E plastids increasing distances between polar groups.
Collapse
Affiliation(s)
- Maria Filek
- Institute of Plant Physiology, Polish Academy of Sciences, Podłuzna 3, 30-239 Krakow, Poland.
| | | | | | | |
Collapse
|
103
|
Biehl A, Richly E, Noutsos C, Salamini F, Leister D. Analysis of 101 nuclear transcriptomes reveals 23 distinct regulons and their relationship to metabolism, chromosomal gene distribution and co-ordination of nuclear and plastid gene expression. Gene 2005; 344:33-41. [PMID: 15656970 DOI: 10.1016/j.gene.2004.09.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
Post-endosymbiotic evolution of the proto-chloroplast was characterized by gene transfer to the nucleus. Hence, most chloroplast proteins are nuclear-encoded and the regulation of chloroplast functions includes nuclear transcriptional control. The expression profiles of 3292 nuclear Arabidopsis genes, most of them encoding chloroplast proteins, were determined from 101 different conditions and have been deposited at the GEO database (http://www.ncbi.nih.gov/geo/) under . The 1590 most-regulated genes fell into 23 distinct groups of co-regulated genes (regulons). Genes of some regulons are not evenly distributed among the five Arabidopsis chromosomes and pairs of adjacent, co-expressed genes exist. Except regulons 1 and 2, regulons are heterogeneous and consist of genes coding for proteins with different subcellular locations or contributing to several biochemical functions. This implies that different organelles and/or metabolic pathways are co-ordinated at the nuclear transcriptional level, and a prototype for this is regulon 12 which contains genes with functions in amino acid and carbohydrate metabolism, as well as genes associated with transport or transcription. The co-expression of nuclear genes coding for subunits of the photosystems or encoding proteins involved in the transcription/translation of plastome genes (particularly ribosome polypeptides) (regulons 1 and 2, respectively) implies the existence of a novel mechanism that co-ordinates plastid and nuclear gene expression and involves nuclear control of plastid ribosome abundance. The co-regulation of genes for photosystem and plastid ribosome proteins escapes a previously described general control of nuclear chloroplast proteins imposed by a transcriptional master switch, highlighting a mode of transcriptional regulation of photosynthesis which is different compared to other chloroplast functions. From the evolutionary standpoint, the results provided indicate that functional integration of the proto-chloroplast into the eukaryotic cell was associated with the establishment of different layers of nuclear transcriptional control.
Collapse
Affiliation(s)
- Alexander Biehl
- Abteilung für Pflanzenzüchtung und Ertragsphysiologie, Germany
| | | | | | | | | |
Collapse
|
104
|
Wang Q, Sullivan RW, Kight A, Henry RL, Huang J, Jones AM, Korth KL. Deletion of the chloroplast-localized Thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. PLANT PHYSIOLOGY 2004; 136:3594-604. [PMID: 15516501 PMCID: PMC527158 DOI: 10.1104/pp.104.049841] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 09/01/2004] [Accepted: 09/07/2004] [Indexed: 05/18/2023]
Abstract
Development of thylakoid membranes depends upon the transport of membrane vesicles from the chloroplast inner envelope and subsequent fusion of vesicles within the interior of the plastid. The Arabidopsis (Arabidopsis thaliana) Thylakoid formation1 (Thf1) gene product is shown here to control an important step required for the normal organization of these vesicles into mature thylakoid stacks and ultimately for leaf development. The Arabidopsis Thf1 gene encodes an imported chloroplast protein, as shown by in vitro import and localization of a Thf1-green fluorescent protein fusion product in transgenic plants. This gene is conserved in oxygenic photoautotrophs ranging from cyanobacteria to flowering land plants. Transcript levels for Thf1 are induced in the light and decrease under dark conditions, paralleling profiles of light-regulated nuclear genes involved in chloroplast function. Disruption of the Thf1 gene via T-DNA insertion results in plants that are severely stunted with variegated leaf patterns. Nongreen sectors of variegated leaves lacking Thf1 expression contain plastids that accumulate membrane vesicles on the interior and lack organized thylakoid structures. Green sectors of Thf1-disrupted leaves contain some chloroplasts that form organized thylakoid membranes, indicating that an inefficient compensatory mechanism supports thylakoid formation in the absence of Thf1. Genetic complementation of a Thf1 knockout line confirms the role of this gene in chloroplast and leaf development. Transgenic plants expressing the Thf1 gene in antisense orientation are stunted with altered thylakoid organization, especially in young seedlings. The data indicate that the Thf1 gene product plays a crucial role in a dynamic process of vesicle-mediated thylakoid membrane biogenesis.
Collapse
Affiliation(s)
- Qin Wang
- Department of Plant Pathology , University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Aseeva E, Ossenbühl F, Eichacker LA, Wanner G, Soll J, Vothknecht UC. Complex formation of Vipp1 depends on its alpha-helical PspA-like domain. J Biol Chem 2004; 279:35535-41. [PMID: 15210715 DOI: 10.1074/jbc.m401750200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vipp1 (vesicle-inducing protein in plastids 1) is found in Cyanobacteria and chloroplasts of photosynthetic eukaryotes where it is essential for the formation of the thylakoid membrane. Vipp1 is closely related to the phage shock protein A (PspA), a bacterial protein induced under diverse stress conditions. Vipp1 proteins differ from PspA by an additional C-terminal domain that is required for Vipp1 function in thylakoid biogenesis. We show here that in Cyanobacteria, green algae, and vascular plants, Vipp1 is part of a high molecular mass complex. The complex is formed by multiple copies of Vipp1, and complex formation involves interaction of the central alpha-helical domain that is common to Vipp1 as well as to PspA proteins. In chloroplasts of vascular plants, the Vipp1 complex can be visualized by green fluorescent protein fusion in discrete locations at the inner envelope. Green fluorescent protein fusion analysis furthermore revealed that complex formation is important for proper positioning of Vipp1 at the inner envelope of chloroplasts.
Collapse
Affiliation(s)
- Elena Aseeva
- Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Strasse 67, München D-80638, Germany
| | | | | | | | | | | |
Collapse
|
106
|
Gutiérrez-Nava MDLL, Gillmor CS, Jiménez LF, Guevara-García A, León P. CHLOROPLAST BIOGENESIS genes act cell and noncell autonomously in early chloroplast development. PLANT PHYSIOLOGY 2004; 135:471-82. [PMID: 15133149 PMCID: PMC429399 DOI: 10.1104/pp.103.036996] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2003] [Revised: 02/03/2004] [Accepted: 02/11/2004] [Indexed: 05/17/2023]
Abstract
In order to identify nuclear genes required for early chloroplast development, a collection of photosynthetic pigment mutants of Arabidopsis was assembled and screened for lines with extremely low levels of chlorophyll. Nine chloroplast biogenesis (clb) mutants that affect proplastid growth and thylakoid membrane formation and result in an albino seedling phenotype were identified. These mutations identify six new genes as well as a novel allele of cla1. clb mutants have less than 2% of wild-type chlorophyll levels, and little or no expression of nuclear and plastid-encoded genes required for chloroplast development and function. In all but one mutant, proplastids do not differentiate enough to form elongated stroma thylakoid membranes. Analysis of mutants during embryogenesis allows differentiation between CLB genes that act noncell autonomously, where partial maternal complementation of chloroplast development is observed in embryos, and those that act cell autonomously, where complementation during embryogenesis is not observed. Molecular characterization of the noncell autonomous clb4 mutant established that the CLB4 gene encodes for hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS), the next to the last enzyme of the methylerythritol 4-phosphate (MEP) pathway for the synthesis of plastidic isoprenoids. The noncell autonomous nature of the clb4 mutant suggests that products of the MEP pathway can travel between tissues, and provides in vivo evidence that some movement of MEP intermediates exists from the cytoplasm to the plastid. The isolation and characterization of clb mutants represents the first systematic study of genes required for early chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- María de la Luz Gutiérrez-Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos 62271, Mexico
| | | | | | | | | |
Collapse
|
107
|
Bissonnette EY, Proulx LI, Turmel V, Drouin R, Purcell M. PCT-233, a novel modulator of pro- and anti-inflammatory cytokine production. Clin Exp Immunol 2004; 135:440-7. [PMID: 15008976 PMCID: PMC1808968 DOI: 10.1111/j.1365-2249.2004.02397.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Plant extracts have been implicated in various immunoregulatory effects that are poorly understood. Thus, we investigated the modulatory activity of PureCell Complex (PCT)-233, an active molecular complex from mesophyll tissue of Spinacia oleacea on the inflammatory process. Alveolar macrophages (AM) were treated with PCT-233 and/or budesonide, a well-known anti-inflammatory agent, before or after being stimulated with lipopolysaccharides (LPS). Pro- and anti-inflammatory cytokine production, tumour necrosis factor (TNF) and interleukin (IL)-10, respectively, were measured in cell-free supernatants at different times after the treatment. PCT-233 increased unstimulated AM release of both TNF and IL-10, whereas heat- and light-inactivated PCT-233 stimulated only the release of TNF without affecting IL-10 production, suggesting that different mechanisms are involved in the modulation of TNF and IL-10 release by PCT-233. The presence of LPS did not modify PCT-233-stimulated TNF production, but the ratio TNF/IL-10 production by LPS-stimulated AM was reduced significantly in the presence of PCT-233. Pretreatment of AM with PCT-233 and budesonide before LPS stimulation reduced TNF production at both protein and mRNA levels, whereas IL-10 production was increased. Moreover, TNF/IL-10 ratio was reduced further with the combination PCT-233/budesonide. Interestingly, AM treatment with PCT-233 and budesonide 18 h after LPS stimulation did not modulate TNF release significantly but it did increase IL-10 production, and a synergistic effect was observed with the combination PCT-233/budesonide. These exciting data suggest that PCT-233 possesses some anti-inflammatory properties, even when added during the inflammatory process, and could potentiate the effect of other anti-inflammatory agents.
Collapse
Affiliation(s)
- E Y Bissonnette
- Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, Québec, Canada.
| | | | | | | | | |
Collapse
|
108
|
Eggink LL, LoBrutto R, Brune DC, Brusslan J, Yamasato A, Tanaka A, Hoober JK. Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC PLANT BIOLOGY 2004; 4:5. [PMID: 15086960 PMCID: PMC406501 DOI: 10.1186/1471-2229-4-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 04/15/2004] [Indexed: 05/24/2023]
Abstract
BACKGROUND Assembly of stable light-harvesting complexes (LHCs) in the chloroplast of green algae and plants requires synthesis of chlorophyll (Chl) b, a reaction that involves oxygenation of the 7-methyl group of Chl a to a formyl group. This reaction uses molecular oxygen and is catalyzed by chlorophyllide a oxygenase (CAO). The amino acid sequence of CAO predicts mononuclear iron and Rieske iron-sulfur centers in the protein. The mechanism of synthesis of Chl b and localization of this reaction in the chloroplast are essential steps toward understanding LHC assembly. RESULTS Fluorescence of a CAO-GFP fusion protein, transiently expressed in young pea leaves, was found at the periphery of mature chloroplasts and on thylakoid membranes by confocal fluorescence microscopy. However, when membranes from partially degreened cells of Chlamydomonas reinhardtii cw15 were resolved on sucrose gradients, full-length CAO was detected by immunoblot analysis only on the chloroplast envelope inner membrane. The electron paramagnetic resonance spectrum of CAO included a resonance at g = 4.3, assigned to the predicted mononuclear iron center. Instead of a spectrum of the predicted Rieske iron-sulfur center, a nearly symmetrical, approximately 100 Gauss peak-to-trough signal was observed at g = 2.057, with a sensitivity to temperature characteristic of an iron-sulfur center. A remarkably stable radical in the protein was revealed by an isotropic, 9 Gauss peak-to-trough signal at g = 2.0042. Fragmentation of the protein after incorporation of 125I- identified a conserved tyrosine residue (Tyr-422 in Chlamydomonas and Tyr-518 in Arabidopsis) as the radical species. The radical was quenched by chlorophyll a, an indication that it may be involved in the enzymatic reaction. CONCLUSION CAO was found on the chloroplast envelope and thylakoid membranes in mature chloroplasts but only on the envelope inner membrane in dark-grown C. reinhardtii cells. Such localization provides further support for the envelope membranes as the initial site of Chl b synthesis and assembly of LHCs during chloroplast development. Identification of a tyrosine radical in the protein provides insight into the mechanism of Chl b synthesis.
Collapse
Affiliation(s)
- Laura L Eggink
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
- Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Russell LoBrutto
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
- Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Daniel C Brune
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
- Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Judy Brusslan
- Department of Biological Science, California State University, Long Beach, California 90840-3702, USA
| | - Akihiro Yamasato
- The Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Ayumi Tanaka
- The Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - J Kenneth Hoober
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
- Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
109
|
Affiliation(s)
- Jürgen Soll
- Department für Biologie I, Botanik, Ludwig-Maximilians-Universität München, Menzingerstrasse 67, D-80638 Munich, Germany.
| | | |
Collapse
|
110
|
Schünemann D. Structure and function of the chloroplast signal recognition particle. Curr Genet 2003; 44:295-304. [PMID: 14569414 DOI: 10.1007/s00294-003-0450-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 09/05/2003] [Accepted: 09/07/2003] [Indexed: 10/26/2022]
Abstract
The targeting of proteins, including the insertion and translocation of proteins in or across membranes, is a fundamental process within a cell, and a variety of specialized mechanisms for protein transport have been developed during evolution. The signal recognition particle (SRP) is found in the cytoplasm of most, if not all, eukaryotes and prokaryotes where it plays a central role in the co-translational insertion of membrane proteins into the endoplasmic reticulum and plasma membrane, respectively. SRP is a ribonucleoprotein consisting of an RNA and at least one polypeptide of approximately 54 kDa (SRP54). Interestingly, chloroplasts contain a specialized type of signal recognition particle. Chloroplast SRP (cpSRP) contains a SRP54 homologue but differs strikingly from cytosolic SRP in various aspects of structure and function. In contrast to cytosolic SRP, it contains a novel protein subunit (cpSRP43) and lacks RNA. CpSRP is also distinctive in its ability to interact with its substrate, light-harvesting chlorophyll a/ b-binding protein, post-translationally. Furthermore, it is remarkable that the 54 kDa subunit of cpSRP is also involved in the co-translational transport of chloroplast-encoded thylakoid proteins, and is therefore able to switch between the co- and post-translational means of interaction with its respective substrate proteins.
Collapse
Affiliation(s)
- Danja Schünemann
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
111
|
Woitsch S, Römer S. Expression of xanthophyll biosynthetic genes during light-dependent chloroplast differentiation. PLANT PHYSIOLOGY 2003; 132:1508-17. [PMID: 12857831 PMCID: PMC167089 DOI: 10.1104/pp.102.019364] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Revised: 02/04/2003] [Accepted: 02/23/2003] [Indexed: 05/20/2023]
Abstract
In higher plants, etioplast to chloroplast differentiation is characterized by dramatic ultrastructural changes of the plastid and a concomitant increase in chlorophylls and carotenoids. Whereas the formation and function of carotenes and their oxygenated derivatives, the xanthophylls, have been well studied, little is known about the regulation of the genes involved in xanthophyll biosynthesis. Here, we analyze the expression of three xanthophyll biosynthetic genes (i.e. beta-carotene hydroxylase [bhy], zeaxanthin epoxidase [zep], and violaxanthin de-epoxidase [vde]) during de-etiolation of seedlings of tobacco (Nicotiana tabacum L. cv Samsun) under different light conditions. White-light illumination caused an increase in the amount of all corresponding mRNAs. The expression profiles of bhy and zep not only resembled each other but were also similar to the pattern of a gene encoding a major light-harvesting protein of photosystem II. This finding indicates a coordinated synthesis during formation of the antenna complex. In contrast, the expression pattern of vde was clearly different. Furthermore, the gene expression of bhy was shown to be modulated after illumination with different white-light intensities. The expression of all xanthophyll biosynthetic genes under examination was up-regulated upon exposure to red, blue, and white light. Gene expression of bhy and vde but not of zep was more pronounced under red-light illumination, pointing at an involvement of the phytochrome system. Expression analysis in the presence of the photosynthetic electron transport inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone indicated a redox control of transcription of two of the xanthophyll biosynthetic genes (bhy and zep).
Collapse
Affiliation(s)
- Sonja Woitsch
- Fachbereich Biologie, Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, Universitätsstrasse 10, 78434 Konstanz, Germany
| | | |
Collapse
|
112
|
Kroth PG. Protein transport into secondary plastids and the evolution of primary and secondary plastids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:191-255. [PMID: 12455749 DOI: 10.1016/s0074-7696(02)21013-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are key organelles in algae and plants due to their photosynthetic abilities. They are thought to have evolved from prokaryotic cyanobacteria taken up by a eukaryotic host cell in a process termed primary endocytobiosis. In addition, a variety of organisms have evolved by subsequent secondary endocytobioses, in which a heterotrophic host cell engulfed a eukaryotic alga. Both processes dramatically enhanced the complexity of the resulting cells. Since the first version of the endosymbiotic theory was proposed more than 100 years ago, morphological, physiological, biochemical, and molecular data have been collected substantiating the emerging picture about the origin and the relationship of individual organisms with different primary or secondary chloroplast types. Depending on their origin, plastids in different lineages may have two, three, or four envelope membranes. The evolutionary success of endocytobioses depends, among other factors, on the specific exchange of molecules between the host and endosymbiont. This raises questions concerning how targeting of nucleus-encoded proteins into the different plastid types occurs and how these processes may have developed. Most studies of protein translocation into plastids have been performed on primary plastids, but in recent years more complex protein-translocation systems of secondary plastids have been investigated. Analyses of transport systems in different algal lineages with secondary plastids reveal that during evolution existing translocation machineries were recycled or recombined rather than being developed de novo. This review deals with current knowledge about the evolution and function of primary and secondary plastids and the respective protein-targeting systems.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
113
|
Herrmann RG, Maier RM, Schmitz-Linneweber C. Eukaryotic genome evolution: rearrangement and coevolution of compartmentalized genetic information. Philos Trans R Soc Lond B Biol Sci 2003; 358:87-97; discussion 97. [PMID: 12594919 PMCID: PMC1693106 DOI: 10.1098/rstb.2002.1177] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The plant cell operates with an integrated, compartmentalized genome consisting of nucleus/cytosol, plastids and mitochondria that, in its entirety, is regulated in time, quantitatively, in multicellular organisms and also in space. This genome, as do genomes of eukaryotes in general, originated in endosymbiotic events, with at least three cells, and was shaped phylogenetically by a massive and highly complex restructuring and intermixing of the genetic potentials of the symbiotic partners and by lateral gene transfer. This was accompanied by fundamental changes in expression signals in the entire system at almost all regulatory levels. The gross genome rearrangements contrast with a highly specific compartmental interplay, which becomes apparent in interspecific nuclear-plastid cybrids or hybrids. Organelle exchanges, even between closely related species, can greatly disturb the intracellular genetic balance ("hybrid bleaching"), which is indicative of compartmental coevolution and is of relevance for speciation processes. The photosynthetic machinery of plastids, which is embedded in that genetic machinery, is an appealing model to probe into genomic and organismic evolution and to develop functional molecular genomics. We have studied the reciprocal Atropa belladonna-Nicotiana tabacum cybrids, which differ markedly in their phenotypes, and found that transcriptional and post-transcriptional processes can contribute to genome/plastome incompatibility. Allopolyploidy can influence this phenomenon by providing an increased, cryptic RNA editing potential and the capacity to maintain the integrity of organelles of different taxonomic origins.
Collapse
Affiliation(s)
- Reinhold G Herrmann
- Department für Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzinger Strasse 67, D-80638 Munich, Germany.
| | | | | |
Collapse
|
114
|
Leister D, Schneider A. From Genes to Photosynthesis in Arabidopsis thaliana. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:31-83. [PMID: 14667042 DOI: 10.1016/s0074-7696(03)28002-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although photosynthesis in higher plants is of cyanobacterial descent, it differs strikingly in organization and regulation from the prokaryotic process. Genomics, proteomics, and comparative genome analysis are now providing powerful new tools for the molecular dissection of photosynthesis in higher plants. Mutant screens and reverse genetics identify an increasing number of gene-function relationships that have a bearing on photosynthesis, revealing a marked interdependency between photosynthesis and other cellular processes. Photosynthesis-related functions are mostly located in the chloroplast, but can also be located in other compartments of the plant cell. The analysis by DNA-array hybridization of mRNA expression patterns both in the chloroplast and the nucleus, under various environmental conditions and/or in different genetic backgrounds that affect the function of the plastid, is rapidly improving our understanding of how photosynthesis is regulated, and it reveals that plastid-to-nucleus signaling plays a central role in its control.
Collapse
Affiliation(s)
- Dario Leister
- Abteilung für Pflanzenzüchtung und Ertragsphysiologie, Max-Planck-Institut für Züchtungsforschung, D-50829 Köln, Germany
| | | |
Collapse
|
115
|
Osteryoung KW. Chloroplast division: a work of ARTEMIS. Curr Biol 2002; 12:R844-5. [PMID: 12498703 DOI: 10.1016/s0960-9822(02)01349-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chloroplasts contain three membrane systems that constrict together during division of the organelle. A newly identified protein, ARTEMIS, may shed light on the nuclear control of chloroplast division, and also on the mechanism of thylakoid membrane fission and how this is coordinated with fission of the two envelope membranes.
Collapse
Affiliation(s)
- Katherine W Osteryoung
- Department of Plant Biology, 166 Plant Biology Building, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|