101
|
Sakumoto R. Pregnancy-associated changes in uterine-luteal relationships in cows: A mini-review. Reprod Biol 2016; 16:182-8. [DOI: 10.1016/j.repbio.2016.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/15/2016] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
|
102
|
Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016; 114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Joshua J Ziarek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Pierre-Arnaud Gauthier
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
103
|
Sousa-Vasconcelos PDS, Seguins WDS, Luz EDS, Pinho RTD. Pattern of cytokine and chemokine production by THP-1 derived macrophages in response to live or heat-killed Mycobacterium bovis bacillus Calmette-Guérin Moreau strain. Mem Inst Oswaldo Cruz 2016; 110:809-13. [PMID: 26517663 PMCID: PMC4667587 DOI: 10.1590/0074-02760140420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis has great public health impact with high rates of mortality and the only
prophylactic measure for it is the Mycobacterium bovisbacillus
Calmette-Guérin (BCG) vaccine. The present study evaluated the release of cytokines
[interleukin (IL)-1, tumour necrosis factor and IL-6] and chemokines [macrophage
inflammatory protein (MIP)-1α and MIP-1β] by THP-1 derived
macrophages infected with BCG vaccine obtained by growing mycobacteria in Viscondessa
de Moraes Institute medium medium (oral) or Sauton medium (intradermic) to compare
the effects of live and heat-killed (HK) mycobacteria. Because BCG has been reported
to lose viability during the lyophilisation process and during storage, we examined
whether exposing BCG to different temperatures also triggers differences in the
expression of some important cytokines and chemokines of the immune response.
Interestingly, we observed that HK mycobacteria stimulated cytokine and chemokine
production in a different pattern from that observed with live mycobacteria.
Collapse
Affiliation(s)
| | | | - Eduardo de Souza Luz
- Laboratório de Imunologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Rosa Teixeira de Pinho
- Laboratório de Imunologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
104
|
Wang J, Shu M, Wang Y, Hu Y, Wang Y, Luo Y, Lin Z. Identification of potential CCR5 inhibitors through pharmacophore-based virtual screening, molecular dynamics simulation and binding free energy analysis. MOLECULAR BIOSYSTEMS 2016; 12:3396-3406. [DOI: 10.1039/c6mb00577b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Employing the combined strategy to identify novel CCR5 inhibitors and provide a basis for rational drug design.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education)
- Research Center of Bioinspired Material Science and Engineering
- Bioengineering College
- Chongqing University
- Chongqing 400044
| | - Mao Shu
- School of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Yong Hu
- School of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education)
- Research Center of Bioinspired Material Science and Engineering
- Bioengineering College
- Chongqing University
- Chongqing 400044
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology (Ministry of Education)
- Research Center of Bioinspired Material Science and Engineering
- Bioengineering College
- Chongqing University
- Chongqing 400044
| | - Zhihua Lin
- School of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing 400054
- China
- College of Chemistry and Chemical Engineering
| |
Collapse
|
105
|
Anderson CA, Solari R, Pease JE. Biased agonism at chemokine receptors: obstacles or opportunities for drug discovery? J Leukoc Biol 2015; 99:901-9. [PMID: 26701135 DOI: 10.1189/jlb.2mr0815-392r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/01/2015] [Indexed: 01/14/2023] Open
Abstract
Chemokine receptors are typically promiscuous, binding more than one ligand, with the ligands themselves often expressed in different spatial localizations by multiple cell types. This is normally a tightly regulated process; however, in a variety of inflammatory disorders, dysregulation results in the excessive or inappropriate expression of chemokines that drives disease progression. Biased agonism, the phenomenon whereby different ligands of the same receptor are able to preferentially activate one signaling pathway over another, adds another level of complexity to an already complex system. In this minireview, we discuss the concept of biased agonism within the chemokine family and report that targeting single signaling axes downstream of chemokine receptors is not only achievable, but may well present novel opportunities to target chemokine receptors, allowing the fine tuning of receptor responses in the context of allergic inflammation and beyond.
Collapse
Affiliation(s)
- Caroline A Anderson
- Receptor Biology Group, Inflammation, Resolution and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom; and
| | - Roberto Solari
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, Norfolk Place, London, United Kingdom
| | - James E Pease
- Receptor Biology Group, Inflammation, Resolution and Development Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom; and
| |
Collapse
|
106
|
Yoshiura C, Ueda T, Kofuku Y, Matsumoto M, Okude J, Kondo K, Shiraishi Y, Shimada I. Elucidation of the CCR1- and CCR5-binding modes of MIP-1α by application of an NMR spectra reconstruction method to the transferred cross-saturation experiments. JOURNAL OF BIOMOLECULAR NMR 2015; 63:333-340. [PMID: 26472202 PMCID: PMC4662715 DOI: 10.1007/s10858-015-9992-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/10/2015] [Indexed: 05/14/2023]
Abstract
C-C chemokine receptor 1 (CCR1) and CCR5 are involved in various inflammation and immune responses, and regulate the progression of the autoimmune diseases differently. However, the number of residues identified at the binding interface was not sufficient to clarify the differences in the CCR1- and CCR5-binding modes to MIP-1α, because the NMR measurement time for CCR1 and CCR5 samples was limited to 24 h, due to their low stability. Here we applied a recently developed NMR spectra reconstruction method, Conservation of experimental data in ANAlysis of FOuRier, to the amide-directed transferred cross-saturation experiments of chemokine receptors, CCR1 and CCR5, embedded in lipid bilayers of the reconstituted high density lipoprotein, and MIP-1α. Our experiments revealed that the residues on the N-loop and β-sheets of MIP-1α are close to both CCR1 and CCR5, and those in the C-terminal helix region are close to CCR5. These results suggest that the genetic influence of the single nucleotide polymorphisms of MIP-1α that accompany substitution of residues in the C-terminal helix region, E57 and V63, would provide clues toward elucidating how the CCR5-MIP-1α interaction affects the progress of autoimmune diseases.
Collapse
Affiliation(s)
- Chie Yoshiura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takumi Ueda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Yutaka Kofuku
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masahiko Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Japan Biological Informatics Consortium, Aomi, Koto-ku, Tokyo, 135-8073, Japan
| | - Junya Okude
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Keita Kondo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yutaro Shiraishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
107
|
Melo GD, Silva JES, Grano FG, Souza MS, Machado GF. Leishmania infection and neuroinflammation: Specific chemokine profile and absence of parasites in the brain of naturally-infected dogs. J Neuroimmunol 2015; 289:21-9. [DOI: 10.1016/j.jneuroim.2015.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 12/29/2022]
|
108
|
Amarandi RM, Hjortø GM, Rosenkilde MM, Karlshøj S. Probing Biased Signaling in Chemokine Receptors. Methods Enzymol 2015; 570:155-86. [PMID: 26921946 DOI: 10.1016/bs.mie.2015.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptors occurs via two major routes, G protein- and β-arrestin-dependent, which can be preferentially modulated depending on the ligands or receptors involved, as well as the cell types or tissues in which the signaling event occurs. The preferential activation of a certain signaling pathway to the detriment of others has been termed signaling bias and can accordingly be grouped into ligand bias, receptor bias, and tissue bias. Bias has so far been broadly overlooked in the process of drug development. The low number of currently approved drugs targeting the chemokine system, as well as the broad range of failed clinical trials, reflects the need for a better understanding of the chemokine system. Thus, understanding the character, direction, and consequence of biased signaling in the chemokine system may aid the development of new therapeutics. This review describes experiments to assess G protein-dependent and -independent signaling in order to quantify chemokine system bias.
Collapse
Affiliation(s)
- Roxana-Maria Amarandi
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark; Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
| | - Gertrud Malene Hjortø
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie Karlshøj
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
109
|
Wang Z, Liu H, Shen Z, Wang X, Zhang H, Qin J, Xu J, Sun Y, Qin X. The prognostic value of CXC-chemokine receptor 2 (CXCR2) in gastric cancer patients. BMC Cancer 2015; 15:766. [PMID: 26497045 PMCID: PMC4619066 DOI: 10.1186/s12885-015-1793-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/15/2015] [Indexed: 12/15/2022] Open
Abstract
Background CXC chemokine receptor 2 (CXCR2) has been reported to play an important role in the proliferation and invasion of gastric cancer cells. The present study aims to investigate the impact of CXCR2 expression on the overall survival (OS) of gastric cancer patients after radical resection. Methods Intratumoral CXCR2 expression was evaluated with immunohistochemistry on tissue microarrays containing tumor samples of 357 gastric cancer patients from a single center. CXCR2 expression levels were correlated to clinicopathological variables and OS. Results CXCR2 expression was mainly located in the cytoplasm of gastric carcinoma cells. High CXCR2 expression was associated with poor tumor differentiation (p = 0.021), increased tumor depth (p < 0.001), lymph node metastasis (p < 0.001), advanced TNM stage (p < 0.001) and short OS (p = 0.001). CXCR2 expression was an independent prognostic factor for OS (p = 0.001) in multivariate analysis, and could be combined with TNM stage to generate a predictive nomogram for clinical outcome in patients with gastric cancer. Conclusion Intratumoral CXCR2 expression is a novel independent predictor for survival in gastric cancer patients. CXCR2 might be a promising therapeutic target of postoperative adjuvant treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1793-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenglin Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China. .,Department of Gastroenterological Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Zhenbin Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Jing Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, PO Box 103, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Yihong Sun
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| | - Xinyu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
| |
Collapse
|
110
|
Solari R, Pease JE. Targeting chemokine receptors in disease--a case study of CCR4. Eur J Pharmacol 2015; 763:169-77. [PMID: 25981299 PMCID: PMC4784718 DOI: 10.1016/j.ejphar.2015.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/17/2015] [Accepted: 05/12/2015] [Indexed: 01/14/2023]
Abstract
Since their early 1990s, the chemokine receptor family of G protein-coupled receptors (GPCRs) has been the source of much pharmacological endeavour. Best known for their key roles in recruiting leukocytes to sites of infection and inflammation, the receptors present themselves as plausible drug targets for therapeutic intervention. In this article, we will focus our attention upon CC Chemokine Receptor Four (CCR4) which has been implicated in diseases as diverse as allergic asthma and lymphoma. We will review the discovery of the receptors and their ligands, their perceived roles in disease and the successful targeting of CCR4 by both small molecule antagonists and monoclonal antibodies. We will also discuss future directions and strategies for drug discovery in this field.
Collapse
Affiliation(s)
- Roberto Solari
- Airway Disease Infection Section, MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom
| | - James E Pease
- Leukocyte Biology Section, MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
111
|
Bachelerie F, Graham GJ, Locati M, Mantovani A, Murphy PM, Nibbs R, Rot A, Sozzani S, Thelen M. An atypical addition to the chemokine receptor nomenclature: IUPHAR Review 15. Br J Pharmacol 2015; 172:3945-9. [PMID: 25958743 PMCID: PMC4543604 DOI: 10.1111/bph.13182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/12/2015] [Accepted: 03/16/2015] [Indexed: 01/22/2023] Open
Abstract
Chemokines and their receptors are essential regulators of in vivo leukocyte migration and, some years ago, a systematic nomenclature system was developed for the chemokine receptor family. Chemokine receptor biology and biochemistry was recently extensively reviewed. In this review, we also highlighted a new component to the nomenclature system that incorporates receptors previously known as 'scavenging', or 'decoy', chemokine receptors on the basis of their lack of classical signalling responses to ligand binding and their general ability to scavenge, or sequester, their cognate chemokine ligands. These molecules are now collectively referred to as 'atypical chemokine receptors', or ACKRs, and play fundamental roles in regulating in vivo responses to chemokines. This commentary highlights this new addition to the chemokine receptor nomenclature system and provides brief information on the four receptors currently covered by this nomenclature.
Collapse
Affiliation(s)
- Françoise Bachelerie
- INSERM UMR-S996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-SudClamart, France
| | - Gerard J Graham
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of GlasgowGlasgow, UK
| | - Massimo Locati
- Department of Molecular Biotechnology and Translational Medicine, University of MilanMilan, Italy
- Istituto Clinico Humanitas, Humanitas UniversityRozzano, Milano, Italy
| | - Alberto Mantovani
- Department of Molecular Biotechnology and Translational Medicine, University of MilanMilan, Italy
- Istituto Clinico Humanitas, Humanitas UniversityRozzano, Milano, Italy
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD, USA
| | - Robert Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of GlasgowGlasgow, UK
| | - Antal Rot
- Medical Research Council Centre for Immune Regulation, Institute of Biomedical Research, School of Infection and Immunity, University of BirminghamBirmingham, UK
| | - Silvano Sozzani
- Istituto Clinico Humanitas, Humanitas UniversityRozzano, Milano, Italy
- Department of Molecular and Translational Medicine, University of BresciaBrescia, Italy
| | - Marcus Thelen
- Institute for Research in BiomedicineBellinzona, Switzerland
| |
Collapse
|
112
|
Bry KJK, Jacobsson B, Nilsson S, Bry K. Gastric fluid cytokines are associated with chorioamnionitis and white blood cell counts in preterm infants. Acta Paediatr 2015; 104:575-80. [PMID: 25640274 PMCID: PMC6680272 DOI: 10.1111/apa.12947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/30/2014] [Accepted: 01/22/2015] [Indexed: 11/29/2022]
Abstract
AIM The aim of this study was to determine whether the concentration of cytokines in the gastric fluid at birth was associated with chorioamnionitis or funisitis and with the white blood cell counts of very premature newborns. METHODS We retrieved gastric fluid from 27 preterm infants with a gestational age of <29 weeks within 1 h of birth and used enzyme-linked immunosorbent assay to measure the concentrations of interleukin (IL)-1beta, epithelial cell-derived neutrophil-activating peptide (ENA)-78, IL-8 and growth-related oncogene (Gro)-alpha. The presence of histologic chorioamnionitis or funisitis in the placentas and the highest white blood cell count of the infants during the first week of life were compared to the cytokine concentrations. RESULTS Gastric fluid concentrations of IL-1beta, ENA-78, IL-8 and Gro-alpha were strongly associated with chorioamnionitis and funisitis. In addition, chorioamnionitis and funisitis and gastric aspirate cytokine levels were associated with the highest white blood cell counts of the infants during the first week of life. CONCLUSION This study suggests that levels of inflammatory cytokines in the gastric fluid of premature infants at birth can be used to assess the exposure of the infants to antenatal inflammation.
Collapse
Affiliation(s)
- K J K Bry
- Department of Pediatrics Institute of Clinical Sciences University of Gothenburg Gothenburg Sweden
| | - B Jacobsson
- Department of Obstetrics and Gynecology Institute of Clinical Sciences University of Gothenburg Gothenburg Sweden
| | - S Nilsson
- Department of Mathematical Statistics Chalmers University of Technology Gothenburg Sweden
| | - K Bry
- Department of Pediatrics Institute of Clinical Sciences University of Gothenburg Gothenburg Sweden
| |
Collapse
|
113
|
Heo J, Dogra P, Masi TJ, Pitt EA, de Kruijf P, Smit MJ, Sparer TE. Novel Human Cytomegalovirus Viral Chemokines, vCXCL-1s, Display Functional Selectivity for Neutrophil Signaling and Function. THE JOURNAL OF IMMUNOLOGY 2015; 195:227-36. [PMID: 25987741 DOI: 10.4049/jimmunol.1400291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/27/2015] [Indexed: 12/16/2022]
Abstract
Human CMV (HCMV) uses members of the hematopoietic system including neutrophils for dissemination throughout the body. HCMV encodes a viral chemokine, vCXCL-1, that is postulated to attract neutrophils for dissemination within the host. The gene encoding vCXCL-1, UL146, is one of the most variable genes in the HCMV genome. Why HCMV has evolved this hypervariability and how this affects the virus' dissemination and pathogenesis is unknown. Because the vCXCL-1 hypervariability maps to important binding and activation domains, we hypothesized that vCXCL-1s differentially activate neutrophils, which could contribute to HCMV dissemination, pathogenesis, or both. To test whether these viral chemokines affect neutrophil function, we generated vCXCL-1 proteins from 11 different clades from clinical isolates from infants infected congenitally with HCMV. All vCXCL-1s were able to induce calcium flux at a concentration of 100 nM and integrin expression on human peripheral blood neutrophils, despite differences in affinity for the CXCR1 and CXCR2 receptors. In fact, their affinity for CXCR1 or CXCR2 did not correlate directly with chemotaxis, G protein-dependent and independent (β-arrestin-2) activation, or secondary chemokine (CCL22) expression. Our data suggest that vCXCL-1 polymorphisms affect the binding affinity, receptor usage, and differential peripheral blood neutrophil activation that could contribute to HCMV dissemination and pathogenesis.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996; and
| | - Pranay Dogra
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996; and
| | - Tom J Masi
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996; and
| | - Elisabeth A Pitt
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996; and
| | - Petra de Kruijf
- Division of Medicinal Chemistry, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, VU University Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Tim E Sparer
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996; and
| |
Collapse
|
114
|
Sozzani S, Del Prete A, Bonecchi R, Locati M. Chemokines as effector and target molecules in vascular biology. Cardiovasc Res 2015; 107:364-72. [PMID: 25969393 DOI: 10.1093/cvr/cvv150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/26/2015] [Indexed: 12/13/2022] Open
Abstract
Chemokines are key mediators of inflammation. In pathological tissues, the main roles of chemokines are to regulate leucocyte accumulation through the activation of oriented cell migration and the activation of limited programs of gene transcription. Through these activities, chemokines exert many crucial functions, including the regulation of angiogenesis. The 'chemokine system' is tightly regulated at several levels, such as the post-transcriptional processing of ligands, the regulation of the expression and function of the receptors and through the expression of molecules known as 'atypical chemokine receptors', proteins that function as chemokine scavenging and presenting molecules. Several experimental evidence obtained in vitro, in animal models and in human studies, has defined a crucial role of chemokines in cardiovascular diseases. An intense area of research is currently exploring the possibility to develop new effective therapeutic strategies through the identification of chemokine receptor antagonists.
Collapse
Affiliation(s)
- Silvano Sozzani
- Department of Molecular and Translational Medicine, Viale Europa, 11, University of Brescia, Brescia 25123, Italy Humanitas Clinical and Research Center, Rozzano, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, Viale Europa, 11, University of Brescia, Brescia 25123, Italy Humanitas Clinical and Research Center, Rozzano, Italy
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, Rozzano, Italy Humanitas University, Rozzano, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Rozzano, Italy Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
115
|
Li HS, Watowich SS. Innate immune regulation by STAT-mediated transcriptional mechanisms. Immunol Rev 2015; 261:84-101. [PMID: 25123278 DOI: 10.1111/imr.12198] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term innate immunity typically refers to a quick but non-specific host defense response against invading pathogens. The innate immune system comprises particular immune cell populations, epithelial barriers, and numerous secretory mediators including cytokines, chemokines, and defense peptides. Innate immune cells are also now recognized to play important contributing roles in cancer and pathological inflammatory conditions. Innate immunity relies on rapid signal transduction elicited upon pathogen recognition via pattern recognition receptors (PRRs) and cell:cell communication conducted by soluble mediators, including cytokines. A majority of cytokines involved in innate immune signaling use a molecular cascade encompassing receptor-associated Jak protein tyrosine kinases and STAT (signal transducer and activator of transcription) transcriptional regulators. Here, we focus on roles for STAT proteins in three major innate immune subsets: neutrophils, macrophages, and dendritic cells (DCs). While knowledge in this area is only now emerging, understanding the molecular regulation of these cell types is necessary for developing new approaches to treat human disorders such as inflammatory conditions, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
116
|
Panstruga R, Baumgarten K, Bernhagen J. Phylogeny and evolution of plant macrophage migration inhibitory factor/D-dopachrome tautomerase-like proteins. BMC Evol Biol 2015; 15:64. [PMID: 25888527 PMCID: PMC4407349 DOI: 10.1186/s12862-015-0337-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/19/2015] [Indexed: 02/02/2023] Open
Abstract
Background The human (Homo sapiens) chemokine-like protein macrophage migration inhibitory factor (HsMIF) is a pivotal mediator of inflammatory, infectious and immune diseases including septic shock, colitis, malaria, rheumatoid arthritis, and atherosclerosis, as well as tumorigenesis. HsMIF has been found to exhibit several sequential and three-dimensional sequence motifs that in addition to its receptor binding sites include catalytic sites for oxidoreductase and tautomerase activity, which provide this 12.5 kDa protein with a remarkable functional complexity. A human MIF paralog, D-dopachrome tautomerase (HsDDT), has been identified, but its physiological relevance is incompletely understood. MIF/DDT-like proteins have been described in animals, protists and bacteria. Although based on sequence data banks the presence of MIF/DDT-like proteins has also been recognized in the model plant species Arabidopsis thaliana, details on these plant proteins have not been reported. Results To broaden the understanding of the biological role of these proteins across kingdoms we performed a comprehensive in silico analysis of plant MIF/DDT-like (MDL) genes/proteins. We found that the A. thaliana genome harbors three MDL genes, of which two are chiefly constitutively expressed in aerial plant organs, while the third gene shows stress-inducible transcript accumulation. The product of the latter gene likely localizes to peroxisomes. Structure prediction suggests that all three Arabidopsis proteins resemble the secondary and tertiary structure of human MIF. MIF-like proteins are found in all species across the plant kingdom, with an increasing family complexity towards evolutionarily advanced plant taxa. Plant MDL proteins are predicted to lack oxidoreductase activity, but possibly share tautomerase activity with human MIF/DDT. Conclusions Peroxisome localization seems to be a specific feature of a subset of MIF/DDT orthologs found in dicotyledonous plant species, which together with its stress-inducible gene expression might point to convergent evolution in higher plants and vertebrates towards neofunctionalization of MIF/MDL proteins in stress response pathways including innate immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0337-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Institute of Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52074, Aachen, Germany.
| | - Kira Baumgarten
- RWTH Aachen University, Institute of Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52074, Aachen, Germany.
| | - Jürgen Bernhagen
- RWTH Aachen University, Institute of Biochemistry and Molecular Cell Biology, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
117
|
Pervaiz A, Ansari S, Berger MR, Adwan H. CCR5 blockage by maraviroc induces cytotoxic and apoptotic effects in colorectal cancer cells. Med Oncol 2015; 32:158. [PMID: 25840792 DOI: 10.1007/s12032-015-0607-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022]
Abstract
Alterations in the expression of C-C chemokine receptor type 5 (CCR5 or CD195) have been correlated with disease progression in different cancers. Recently, a few investigations have reported the blockage of this receptor by an antagonist (maraviroc) and its antineoplastic effects on tumor cell growth. However, little is known about the mechanistic reasons behind these antineoplastic effects of CCR5 blockage by maraviroc. In this study, we blocked the CCR5 receptor by maraviroc in SW480 and SW620 colorectal cancer cells to study the resulting changes in biological properties and related pathways. This blockage induced significantly reduced proliferation and a profound arrest in G1 phase of the cell cycle. Concomitantly, maraviroc caused significant signs of apoptosis at morphological level. Significant modulation of multiple apoptosis-relevant genes was also noticed at mRNA levels. In addition, we found remarkable increases in cleaved caspases at protein level. These modulations led us to propose a signaling pathway for the observed apoptotic effects. In conclusion, blocking the CCR5 by maraviroc induces significant cytotoxic and apoptotic effects in colorectal cancer cells. Thus, maraviroc can be considered a model compound, which may foster the development of further CCR5 antagonists to be used for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Asim Pervaiz
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
118
|
Ahmadzadeh A, Kast RE, Ketabchi N, Shahrabi S, Shahjahani M, Jaseb K, Saki N. Regulatory effect of chemokines in bone marrow niche. Cell Tissue Res 2015; 361:401-10. [DOI: 10.1007/s00441-015-2129-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/16/2015] [Indexed: 12/31/2022]
|
119
|
Gorbachev AV, Fairchild RL. Regulation of chemokine expression in the tumor microenvironment. Crit Rev Immunol 2015; 34:103-20. [PMID: 24940911 DOI: 10.1615/critrevimmunol.2014010062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chemokines are chemotactic cytokines critical for homeostatic and inflammation-induced trafficking of leukocytes during immune responses, hematopoesis, wound healing, and tumorigenesis. Despite three decades of intensive study of the chemokine network, the molecular mechanisms regulating chemokine expression during tumor growth are not well understood. In this review, we focus on the role of chemokines in both tumor growth and anti-tumor immune responses and on molecular mechanisms employed by tumor cells to regulate chemokine expression in the tumor microenvironment. Multiple mechanisms used by tumors to regulate chemokine production, including those revealed by very recent studies (such as DNA methylation or post-translational nitrosylation of chemokines) are discussed. Concluding the review, we discuss how understanding of these regulatory mechanisms can be used in cancer therapy to suppress tumor growth and/or to promote immune-mediated eradication of tumors.
Collapse
Affiliation(s)
| | - Robert L Fairchild
- Department of Immunology and Urological Institute, Cleveland Clinic Foundation, Cleveland, OH 44195 and Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| |
Collapse
|
120
|
Ong S, Ligons DL, Barin JG, Wu L, Talor MV, Diny N, Fontes JA, Gebremariam E, Kass DA, Rose NR, Čiháková D. Natural killer cells limit cardiac inflammation and fibrosis by halting eosinophil infiltration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:847-61. [PMID: 25622543 DOI: 10.1016/j.ajpath.2014.11.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/10/2014] [Accepted: 11/18/2014] [Indexed: 12/23/2022]
Abstract
Myocarditis is a leading cause of sudden cardiac failure in young adults. Natural killer (NK) cells, a subset of the innate lymphoid cell compartment, are protective in viral myocarditis. Herein, we demonstrated that these protective qualities extend to suppressing autoimmune inflammation. Experimental autoimmune myocarditis (EAM) was initiated in BALB/c mice by immunization with myocarditogenic peptide. During EAM, activated cardiac NK cells secreted interferon γ, perforin, and granzyme B, and expressed CD69, tumor necrosis factor-related apoptosis-inducing ligand treatment, and CD27 on their cell surfaces. The depletion of NK cells during EAM with anti-asialo GM1 antibody significantly increased myocarditis severity, and was accompanied by elevated fibrosis and a 10-fold increase in the percentage of cardiac-infiltrating eosinophils. The resultant influx of eosinophils to the heart was directly responsible for the increased disease severity in the absence of NK cells, because treatment with polyclonal antibody asialogangloside GM-1 did not augment myocarditis severity in eosinophil-deficient ΔdoubleGATA1 mice. We demonstrate that NK cells limit eosinophilic infiltration both indirectly, through altering eosinophil-related chemokine production by cardiac fibroblasts, and directly, by inducing eosinophil apoptosis in vitro. Altogether, we define a new pathway of eosinophilic regulation through interactions with NK cells.
Collapse
Affiliation(s)
- SuFey Ong
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - Davinna L Ligons
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jobert G Barin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Wu
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - Monica V Talor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicola Diny
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - Jillian A Fontes
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth Gebremariam
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David A Kass
- Department of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Noel R Rose
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniela Čiháková
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
121
|
Meng F, Li W, Li C, Gao Z, Guo K, Song S. CCL18 promotes epithelial-mesenchymal transition, invasion and migration of pancreatic cancer cells in pancreatic ductal adenocarcinoma. Int J Oncol 2014; 46:1109-20. [PMID: 25502147 DOI: 10.3892/ijo.2014.2794] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/20/2014] [Indexed: 11/05/2022] Open
Abstract
CCL18 is a chemokine that is primarily expressed in monocytes, macrophages and immature dendritic cells and plays a crucial role in immune and inflammation responses. Recently, CCL18 was found to play pivotal roles in the development of several kinds of cancers, but its expression status and role during the tumorigenesis of pancreatic cancer remain unknown. In this study, we performed immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) to evaluate the expression of CCL18 in human pancreatic ductal adenocarcinoma (PDAC) tissues and preoperative serum, respectively. The results showed that both cancer epithelial cells and mesenchymal macrophages in PDAC tissues positively expressed CCL18. Serum CCL18 levels were significantly higher in patients with PDAC in comparison to healthy controls. The expression of CCL18 in both cancer epithelial cells and mesenchymal cells was correlated with lymph node metastasis, histopathological grading and overall survival in 62 PDAC patients. In vitro assays showed that the gene and protein expression of CCL18 from U937 and THP-1 cell- derived macrophages were significantly higher than that from unstimulated U937 cells and THP-1 cells. In contrast, pancreatic cancer cell lines showed little to no CCL18 expression even after IL4 stimulation. Intriguingly, pancreatic cancer cell lines expressed the potential CCL18 receptors PITPNM3, CCR6 and GPR3. Furthermore, treatment with recombinant human CCL18 promoted the migration and invasion of pancreatic cancer cells, but had no effect on cell proliferation. Consistent with these results, CCL18 induced the expression of the epithelial-mesenchymal transition (EMT) related gene SNAIL1. Our findings suggest that the serum level of CCL18 is a potential biomarker for the diagnosis and prognosis of PDAC, and that the combined functions of CCL18 in mesenchymal and cancer cells might accelerate the progression of PDAC by promoting the epithelial-mesenchymal transition, invasion and migration of pancreatic cancer cells.
Collapse
Affiliation(s)
- Fanbin Meng
- Department of General Surgery, Pancreatic Surgery, The First Affiliated Hospital of China Medical University, Heping District, Shenyang 110001, P.R. China
| | - Wan Li
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Heping District, Shenyang 110001, P.R. China
| | - Changling Li
- Department of Experimental Medicine, General Hospital of Shenyang Military Area Command, Shenhe District, Shenyang 110016, P.R. China
| | - Zhigang Gao
- Department of General Surgery, Pancreatic Surgery, The First Affiliated Hospital of China Medical University, Heping District, Shenyang 110001, P.R. China
| | - Kejian Guo
- Department of General Surgery, Pancreatic Surgery, The First Affiliated Hospital of China Medical University, Heping District, Shenyang 110001, P.R. China
| | - Shaowei Song
- Department of General Surgery, Pancreatic Surgery, The First Affiliated Hospital of China Medical University, Heping District, Shenyang 110001, P.R. China
| |
Collapse
|
122
|
Nomiyama H, Yoshie O. Functional roles of evolutionary conserved motifs and residues in vertebrate chemokine receptors. J Leukoc Biol 2014; 97:39-47. [PMID: 25416815 DOI: 10.1189/jlb.2ru0614-290r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemokine receptors regulate cell migration and homing. They belong to the rhodopsin-like family of GPCRs. Their ancestor genes emerged in the early stages of vertebrate evolution. Since then, the family has been greatly expanded through whole and segmental genome duplication events. During evolution, many amino acid changes have been introduced in individual chemokine receptors, but certain motifs and residues are highly conserved. Previously, we proposed a nomenclature system of the vertebrate chemokine receptors based on their evolutionary history and phylogenetic analyses. With the use of this classification system, we are now able to confidently assign the species orthologs of vertebrate chemokine receptors. Here, we systematically analyze conserved motifs and residues of each group of orthologous chemokine receptors that may play important roles in their signaling and biologic functions. Our present analysis may provide useful information on how individual chemokine receptors are activated upon ligand binding.
Collapse
Affiliation(s)
- Hisayuki Nomiyama
- *Department of Molecular Enzymology, Kumamoto University Graduate School of Medical Sciences, Honjo, Kumamoto, Japan; and Department of Microbiology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Osamu Yoshie
- *Department of Molecular Enzymology, Kumamoto University Graduate School of Medical Sciences, Honjo, Kumamoto, Japan; and Department of Microbiology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
123
|
Sakumoto R, Hayashi KG, Hosoe M, Iga K, Kizaki K, Okuda K. Gene expression profiles in the bovine corpus luteum (CL) during the estrous cycle and pregnancy: possible roles of chemokines in regulating CL function during pregnancy. J Reprod Dev 2014; 61:42-8. [PMID: 25382605 PMCID: PMC4354230 DOI: 10.1262/jrd.2014-101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To determine functional differences between the corpus luteum (CL) of the estrous cycle and pregnancy in cows, gene expression profiles were compared using a 15 K bovine oligo DNA microarray. In the pregnant CL at days 20–25, 40–45 and 150–160, the expressions of 138, 265 and 455 genes differed by a factor of > 2-fold (P < 0.05) from their expressions in the cyclic CL (days 10–12 of the estrous cycle). Messenger RNA expressions of chemokines (eotaxin, lymphotactin and ENA-78) and their receptors (CCR3, XCR1 and CXCR2) were validated by quantitative real-time PCR. Transcripts of eotaxin were more abundant in the CL at days 40–45 and 150–160 of pregnancy than in the cyclic CL (P < 0.01). In contrast, the mRNA expressions of lymphotactin, ENA-78 and XCR1 were lower in the CL of pregnancy (P <
0.05). Messenger RNAs of CCR3 and CXCR2 were similarly detected both in the cyclic and pregnant CL. Tissue protein levels of eotaxin were significantly higher in the CL at days 150–160 of pregnancy than in the CL at other stages, whereas the lymphotactin protein levels in the CL at days 20–25 of pregnancy were lower (P < 0.05). Immunohistochemical staining showed that CCR3 was expressed in the luteal cells and that XCR1 was expressed in both the luteal cells and endothelial cells. Collectively, the different gene expression profiles may contribute to functional differences between the cyclic and pregnant CL, and chemokines including eotaxin and lymphotactin may regulate CL function during pregnancy in cows.
Collapse
Affiliation(s)
- Ryosuke Sakumoto
- Animal Physiology Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-0901, Japan
| | | | | | | | | | | |
Collapse
|
124
|
Haase D, Rieger JK, Witten A, Stoll M, Bornberg-Bauer E, Kalbe M, Reusch TBH. Specific gene expression responses to parasite genotypes reveal redundancy of innate immunity in vertebrates. PLoS One 2014; 9:e108001. [PMID: 25254967 PMCID: PMC4177871 DOI: 10.1371/journal.pone.0108001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/08/2014] [Indexed: 11/27/2022] Open
Abstract
Vertebrate innate immunity is the first line of defense against an invading pathogen and has long been assumed to be largely unspecific with respect to parasite/pathogen species. However, recent phenotypic evidence suggests that immunogenetic variation, i.e. allelic variability in genes associated with the immune system, results in host-parasite genotype-by-genotype interactions and thus specific innate immune responses. Immunogenetic variation is common in all vertebrate taxa and this reflects an effective immunological function in complex environments. However, the underlying variability in host gene expression patterns as response of innate immunity to within-species genetic diversity of macroparasites in vertebrates is unknown. We hypothesized that intra-specific variation among parasite genotypes must be reflected in host gene expression patterns. Here we used high-throughput RNA-sequencing to examine the effect of parasite genotypes on gene expression patterns of a vertebrate host, the three-spined stickleback (Gasterosteus aculeatus). By infecting naïve fish with distinct trematode genotypes of the species Diplostomum pseudospathaceum we show that gene activity of innate immunity in three-spined sticklebacks depended on the identity of an infecting macroparasite genotype. In addition to a suite of genes indicative for a general response against the trematode we also find parasite-strain specific gene expression, in particular in the complement system genes, despite similar infection rates of single clone treatments. The observed discrepancy between infection rates and gene expression indicates the presence of alternative pathways which execute similar functions. This suggests that the innate immune system can induce redundant responses specific to parasite genotypes.
Collapse
Affiliation(s)
- David Haase
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- * E-mail:
| | - Jennifer K. Rieger
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Anika Witten
- Genetic Epidemiology of Vascular Disorders, Leibniz Institute for Arteriosclerosis Research at the University Münster, Münster, Germany
| | - Monika Stoll
- Genetic Epidemiology of Vascular Disorders, Leibniz Institute for Arteriosclerosis Research at the University Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Martin Kalbe
- Department Evolutionary Ecology, Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thorsten B. H. Reusch
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
125
|
Umasuthan N, Wan Q, Revathy KS, Whang I, Noh JK, Kim S, Park MA, Lee J. Molecular aspects, genomic arrangement and immune responsive mRNA expression profiles of two CXC chemokine receptor homologs (CXCR1 and CXCR2) from rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2014; 40:304-318. [PMID: 24945570 DOI: 10.1016/j.fsi.2014.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/07/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Abstract
The CXCR1 and CXCR2 are the prototypical receptors and are the only known receptors for mammalian ELR+ (Glu-Leu-Arg) CXC chemokines, including CXCL8 (interleukin 8). These receptors transduce the ELR+ chemokine signals and operate the downstream signaling pathways in inflammation and innate immunity. In this study, we report the identification and characterization of CXCR1 and CXCR2 genes from rock bream fish (OfCXCR1 and OfCXCR2) at the molecular level. The cDNA and genomic DNA sequences of the OfCXCR1 and OfCXCR2 were identified from a transcriptome library and a custom-constructed BAC library, respectively. Both OfCXCR genes consisted of two exons, separated by an intron. The 5'-flanking regions of OfCXCR genes possessed multiple putative transcription factor binding sites related to immune response. The coding sequences of OfCXCR1 and OfCXCR2 encoded putative peptides of 355 and 360 amino acids (aa), respectively. The deduced aa sequences of OfCXCR1 and OfCXCR2 comprised of a G-protein coupled receptors (GPCR) family 1 profile with a GPCR signature and a DRY motif. In addition, seven conserved transmembrane regions were predicted in both OfCXCRs. While our multiple alignment study revealed the functionally significant conserved elements of the OfCXCR1 and OfCXCR2, phylogeny analyses further confirmed their position in teleost sub clade, in which they manifested an evolutionary relatedness with other fish counterparts. Based on comparative analyses, teleost CXC chemokine receptors appear to be distinct from their non-fish orthologs in terms of evolution (both CXCR1 and CXCR2) and genomic organization (CXCR2). Quantitative real-time PCR (qPCR) detected the transcripts of OfCXCR1 and OfCXCR2 in eleven examined tissues, with higher levels in head kidney, kidney and spleen highlighting their crucial importance in immunity. In vitro stimulation of peripheral blood leukocytes (PBLs) with concanavalin A (Con A) resulted in modulation of OfCXCR2 transcription, but not that of OfCXCR1. In addition, the magnitude of the OfCXCR1 and OfCXCR2 transcripts in head kidney and spleen was differentially increased after the in vivo administration of immune stimulants, LPS and poly I:C and in the infection models injected with rock bream irido virus, Edwardsiella tarda and Streptococcus iniae. These lines of evidence suggest that these receptors may play an important role(s) in immune responsive signaling during pathogenesis of rock bream.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Kasthuri Saranya Revathy
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Fisheries Research & Development Institute, Geoje 656-842, Republic of Korea
| | - Seokryel Kim
- Aquatic Life Disease Control Division, National Fisheries and Research & Developmental Institute, Busan 619-705, Republic of Korea
| | - Myoung-Ae Park
- Aquatic Life Disease Control Division, National Fisheries and Research & Developmental Institute, Busan 619-705, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
126
|
Savino B, Caronni N, Anselmo A, Pasqualini F, Borroni EM, Basso G, Celesti G, Laghi L, Tourlaki A, Boneschi V, Brambilla L, Nebuloni M, Vago G, Mantovani A, Locati M, Bonecchi R. ERK-dependent downregulation of the atypical chemokine receptor D6 drives tumor aggressiveness in Kaposi sarcoma. Cancer Immunol Res 2014; 2:679-89. [PMID: 24844911 DOI: 10.1158/2326-6066.cir-13-0202] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
D6 is an atypical chemokine receptor acting as a decoy and scavenger for inflammatory CC chemokines expressed in lymphatic endothelial cells. Here, we report that D6 is expressed in Kaposi sarcoma (KS), a tumor ontogenetically related to the lymphatic endothelium. Both in human tumors and in an experimental model, D6 expression levels were inversely correlated with tumor aggressiveness and increased infiltration of proangiogenic macrophages. Inhibition of monocyte recruitment reduced the growth of tumors, while adoptive transfer of wild-type, but not CCR2(-/-) macrophages, increased the growth rate of D6-competent neoplasms. In the KS model with the B-Raf V600E-activating mutation, inhibition of B-Raf or the downstream ERK pathway induced D6 expression; in progressing human KS tumors, the activation of ERK correlates with reduced levels of D6 expression. These results indicate that activation of the K-Ras-B-Raf-ERK pathway during KS progression downregulates D6 expression, which unleashes chemokine-mediated macrophage recruitment and their acquisition of an M2-like phenotype supporting angiogenesis and tumor growth. Combined targeting of CCR2 and the ERK pathway should be considered as a therapeutic option for patients with KS.
Collapse
Affiliation(s)
- Benedetta Savino
- Authors' Affiliations: Humanitas Clinical and Research Center; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano
| | - Nicoletta Caronni
- Authors' Affiliations: Humanitas Clinical and Research Center; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano
| | - Achille Anselmo
- Authors' Affiliations: Humanitas Clinical and Research Center
| | | | - Elena Monica Borroni
- Authors' Affiliations: Humanitas Clinical and Research Center; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano
| | - Gianluca Basso
- Authors' Affiliations: Humanitas Clinical and Research Center
| | | | - Luigi Laghi
- Authors' Affiliations: Humanitas Clinical and Research Center
| | - Athanasia Tourlaki
- UO Dermatologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Vinicio Boneschi
- UO Dermatologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Lucia Brambilla
- UO Dermatologia, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Manuela Nebuloni
- Department of Clinical Sciences "Luigi Sacco," Università degli Studi di Milano; and
| | - Gianluca Vago
- Department of Clinical Sciences "Luigi Sacco," Università degli Studi di Milano; and
| | - Alberto Mantovani
- Authors' Affiliations: Humanitas Clinical and Research Center; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano
| | - Massimo Locati
- Authors' Affiliations: Humanitas Clinical and Research Center; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano
| | - Raffaella Bonecchi
- Authors' Affiliations: Humanitas Clinical and Research Center; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Rozzano;
| |
Collapse
|
127
|
Affiliation(s)
- Wakiro Sato
- Department of Immunology; National Institute of Neuroscience; National Center of Neurology and Psychiatry (NCNP); Tokyo Japan
| |
Collapse
|
128
|
Zhu S, Bing Y, Wang X, Yu Q, Wang Y, Xu S, Song L, Wang X, Xia B, Zhu Y, Zhou R. CCL25/CCR9 interactions regulate the function of iNKT cells in oxazolone-induced colitis in mice. PLoS One 2014; 9:e100167. [PMID: 24936795 PMCID: PMC4061108 DOI: 10.1371/journal.pone.0100167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Natural killer T (NKT) cells share phenotypic and functional properties with both conventional natural killer cells and T cells. These cells might have an important role in the pathogenesis of ulcerative colitis (UC). The interaction of chemokine ligand 25 (CCL25) with chemokine receptor 9 (CCR9) is involved in gut-specific migration of leukocytes and induces regulatory T cells (Tregs) to migrate to the intestine in chronic ileitis. METHODOLOGY/FINDINGS In UC patients, NKT receptor CD161, CCL25, and CCR9 expression levels were evaluated by qRT-PCR. A murine model of oxazolone-induced colitis was induced in BALB/c mice. The mRNA levels of NK1.1, CCL25 and CCR9, and pro-inflammatory cytokines in mice were evaluated. The CCR9 expression on Type I or invariant NKT (iNKT) cells, and the iNKT cells chemotaxis are observed according to flow cytometry. NKT receptor CD161, CCL25 and CCR9 expression levels were significantly increased in UC patients. And, the mRNA expression levels of NK1.1, CCL25 and CCR9 were increased in oxazolone-induced colitis in mice. The production of pro-inflammatory cytokines was significantly increased, especially interleukin 4 (IL-4), IL-10 and IL-13. We observed significantly increased CCR9 expression on iNKT cells. Furthermore, we found an increased iNKT population and enhanced chemotaxis during oxazolone-induced colitis. CONCLUSIONS/SIGNIFICANCE Our study suggests that CCL25/CCR9 interactions may promote the induction and function of iNKT cells during oxazolone-induced colitis. These findings may have important implications for UC treatment and suggest a role for CCR9 inhibitors.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Blotting, Western
- Cells, Cultured
- Chemokines, CC/genetics
- Chemokines, CC/metabolism
- Colitis/chemically induced
- Colitis/immunology
- Colitis/metabolism
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/pathology
- Female
- Flow Cytometry
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Middle Aged
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Oxazolone/toxicity
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, CCR/genetics
- Receptors, CCR/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Young Adult
Collapse
Affiliation(s)
- Siying Zhu
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Yuntao Bing
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Xiaobing Wang
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Qiao Yu
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Yipeng Wang
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shufang Xu
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Lu Song
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Xintao Wang
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Bing Xia
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
| | - Youqing Zhu
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
- * E-mail: (RZ); (YZ)
| | - Rui Zhou
- Department of Gastroenterology/Hepatology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, Hubei, P. R. China
- * E-mail: (RZ); (YZ)
| |
Collapse
|
129
|
Stephens B, Handel TM. Chemokine receptor oligomerization and allostery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 115:375-420. [PMID: 23415099 DOI: 10.1016/b978-0-12-394587-7.00009-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oligomerization of chemokine receptors has been reported to influence many aspects of receptor function through allosteric communication between receptor protomers. Allosteric interactions within chemokine receptor hetero-oligomers have been shown to cause negative cooperativity in the binding of chemokines and to inhibit receptor activation in the case of some receptor pairs. Other receptor pairs can cause enhanced signaling and even activate entirely new, hetero-oligomer-specific signaling complexes and responses downstream of receptor activation. Many mechanisms contribute to these effects including direct allosteric coupling between the receptors, G protein-mediated allostery, G protein stealing, ligand sequestration, and recruitment of new intracellular proteins by exposing unique binding interfaces on the oligomerized receptors. These effects present both challenges as well as exciting opportunities for drug discovery. One of the most difficult challenges will involve determining if and when hetero-oligomers versus homomeric receptors are involved in specific disease states.
Collapse
Affiliation(s)
- Bryan Stephens
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
130
|
Abstract
UNLABELLED The encephalitic response to viral infection requires local chemokine production and the ensuing recruitment of immune and inflammatory leukocytes. Accordingly, chemokine receptors present themselves as plausible therapeutic targets for drugs aimed at limiting encephalitic responses. However, it remains unclear which chemokines are central to this process and whether leukocyte recruitment is important for limiting viral proliferation and survival in the brain or whether it is predominantly a driver of coincident inflammatory pathogenesis. Here we examine chemokine expression and leukocyte recruitment in the context of avirulent and virulent Semliki Forest virus (SFV) as well as West Nile virus infection and demonstrate rapid and robust expression of a variety of inflammatory CC and CXC chemokines in all models. On this basis, we define a chemokine axis involved in leukocyte recruitment to the encephalitic brain during SFV infection. CXCR3 is the most active; CCR2 is also active but less so, and CCR5 plays only a modest role in leukocyte recruitment. Importantly, inhibition of each of these receptors individually and the resulting suppression of leukocyte recruitment to the infected brain have no effect on viral titer or survival following infection with a virulent SFV strain. In contrast, simultaneous blockade of CXCR3 and CCR2 results in significantly reduced mortality in response to virulent SFV infection. In summary, therefore, our data provide an unprecedented level of insight into chemokine orchestration of leukocyte recruitment in viral encephalitis. Our data also highlight CXCR3 and CCR2 as possible therapeutic targets for limiting inflammatory damage in response to viral infection of the brain. IMPORTANCE Brain inflammation (encephalitis) in response to viral infection can lead to severe illness and even death. This therefore represents an important clinical problem and one that requires the development of new therapeutic approaches. Central to the pathogenesis of encephalitis is the recruitment of inflammatory leukocytes to the infected brain, a process driven by members of the chemokine family. Here we provide an in-depth analysis of the chemokines involved in leukocyte recruitment to the virally infected brain and demonstrate that simultaneous blockade of two of these receptors, namely, CXCR3 and CCR2, does not alter viral titers within the brain but markedly reduces inflammatory leukocyte recruitment and enhances survival in a murine model of lethal viral encephalitis. Our results therefore highlight chemokine receptors as plausible therapeutic targets in treating viral encephalitis.
Collapse
|
131
|
Le Brocq ML, Fraser AR, Cotton G, Woznica K, McCulloch CV, Hewitt KD, McKimmie CS, Nibbs RJB, Campbell JDM, Graham GJ. Chemokines as novel and versatile reagents for flow cytometry and cell sorting. THE JOURNAL OF IMMUNOLOGY 2014; 192:6120-6130. [PMID: 24850722 DOI: 10.4049/jimmunol.1303371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell therapy regimens are frequently compromised by low-efficiency cell homing to therapeutic niches. Improvements in this regard would enhance effectiveness of clinically applicable cell therapy. The major regulators of tissue-specific cellular migration are chemokines, and therefore selection of therapeutic cellular populations for appropriate chemokine receptor expression would enhance tissue-homing competence. A number of practical considerations preclude the use of Abs in this context, and alternative approaches are required. In this study, we demonstrate that appropriately labeled chemokines are at least as effective in detecting their cognate receptors as commercially available Abs. We also demonstrate the utility of biotinylated chemokines as cell-sorting reagents. Specifically, we demonstrate, in the context of CCR7 (essential for lymph node homing of leukocytes), the ability of biotinylated CCL19 with magnetic bead sorting to enrich for CCR7-expressing cells. The sorted cells demonstrate improved CCR7 responsiveness and lymph node-homing capability, and the sorting is effective for both T cells and dendritic cells. Importantly, the ability of chemokines to detect CCR7, and sort for CCR7 positivity, crosses species being effective on murine and human cells. This novel approach to cell sorting is therefore inexpensive, versatile, and applicable to numerous cell therapy contexts. We propose that this represents a significant technological advance with important therapeutic implications.
Collapse
Affiliation(s)
- Michelle L Le Brocq
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Alasdair R Fraser
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Graham Cotton
- Almac Sciences (Scotland) Ltd, Elvingston Science Centre, By Gladsmuir, East Lothian EH33 1EH, UK
| | - Kerry Woznica
- Almac Sciences (Scotland) Ltd, Elvingston Science Centre, By Gladsmuir, East Lothian EH33 1EH, UK
| | - Clare V McCulloch
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Kay D Hewitt
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Clive S McKimmie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Robert J B Nibbs
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - John D M Campbell
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.,Clinical Science and Cell Analysis Group, Miltenyi Biotec Ltd
| | - Gerard J Graham
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
132
|
Rajnochová Svobodová A, Galandáková A, Palíková I, Doležal D, Kylarová D, Ulrichová J, Vostálová J. Effects of oral administration of Lonicera caerulea berries on UVB-induced damage in SKH-1 mice. A pilot study. Photochem Photobiol Sci 2014; 12:1830-40. [PMID: 23896761 DOI: 10.1039/c3pp50120e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solar ultraviolet radiation is a major environmental factor that has serious adverse effects on the structure and function of the skin. Although the UVB waveband (295-315 nm) represents only 5-10% of incoming UV light, it is very damaging to the skin. The aim of this study was to investigate the effect of Lonicera caerulea berries on UVB-induced damage to SKH-1 hairless mice. Mice were fed a L. caerulea berry-enriched diet (10%, w/w) for 14 days before a single UVB (1000 mJ cm(-2)) treatment. Effects on health status, antioxidant enzyme activity and expression, and DNA damage were evaluated. The bioavailability of L. caerulea phenolic components was also assessed. We found that feeding with L. caerulea berries prevented a decrease in catalase activity and stimulated NADPH quinone oxidoreductase-1, heme oxygenase-1, and gamma-glutamylcysteine synthetase catalytic and modulatory subunit expression in UVB exposed mice. Administration of the L. caerulea berry-enriched diet led to an increase in UVB-reduced interleukin-17 levels and a decrease in keratinocyte-derived chemokine protein expression that was enhanced after UVB treatment. Further, L. caerulea berries reduced UVB-induced DNA damage evaluated as number of single strand breaks, cyclobutane-pyrimidine dimer formation and H2AX phosphorylation, a marker of double strand breaks. Taken together, we provide evidence that oral administration of L. caerulea berries to mice affords at least partial protection from the adverse effects of a single UVB exposure via modulation of antioxidant enzyme activity/expression and reduction of DNA damage.
Collapse
Affiliation(s)
- Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
133
|
Role of fractalkine/CX3CL1 and its receptor in the pathogenesis of inflammatory and malignant diseases with emphasis on B cell malignancies. Mediators Inflamm 2014; 2014:480941. [PMID: 24799766 PMCID: PMC3985314 DOI: 10.1155/2014/480941] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 12/16/2022] Open
Abstract
Fractalkine/CX3CL1, the only member of the CX3C chemokine family, exists as a membrane-anchored molecule as well as in soluble form, each mediating different biological activities. It is constitutively expressed in many hematopoietic and nonhematopoietic tissues such as endothelial and epithelial cells, lymphocytes, neurons, microglial osteoblasts. The biological activities of CX3CL1 are mediated by CX3CR1, that is expressed on different cell types such as NK cells, CD14+ monocytes, cytotoxic effector T cells, B cells, neurons, microglia, smooth muscle cells, and tumor cells. The CX3CL1/CX3CR1 axis is involved in the pathogenesis of several inflammatory cancer including various B cell malignancies. In tumors the interaction between cancer cells and cellular microenvironment creates a context that may promote tumor growth, increase tumor survival, and facilitate metastasis. Therefore the role of the CX3CL1/CX3CR1 has attracted interest as to the development of potential therapeutic approaches. Here we review the different effects of the CX3CL1/CX3CR1 axis in several inflammatory and neurodegenerative diseases and in cancer, with emphasis on human B cell lymphomas.
Collapse
|
134
|
Hewit KD, Fraser A, Nibbs RJB, Graham GJ. The N-terminal region of the atypical chemokine receptor ACKR2 is a key determinant of ligand binding. J Biol Chem 2014; 289:12330-42. [PMID: 24644289 PMCID: PMC4007430 DOI: 10.1074/jbc.m113.534545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The atypical chemokine receptor, ACKR2 is a pivotal regulator of chemokine-driven inflammatory responses and works by binding, internalizing, and degrading inflammatory CC-chemokines. ACKR2 displays promiscuity of ligand binding and is capable of interacting with up to 14 different inflammatory CC-chemokines. Despite its prominent biological role, little is known about the structure/function relationship within ACKR2, which regulates ligand binding. Here we demonstrate that a conserved tyrosine motif at the N terminus of ACKR2 is essential for ligand binding, internalization, and scavenging. In addition we demonstrate that sulfation of this motif contributes to ligand internalization. Furthermore, a peptide derived from this region is capable of binding inflammatory chemokines and inhibits their interaction with their cognate signaling receptors. Importantly, the peptide is only active in the sulfated form, further confirming the importance of the sulfated tyrosines for function. Finally, we demonstrate that the bacterial protease, staphopain A, can cleave the N terminus of ACKR2 and suppress its ligand internalization activity. Overall, these results shed new light on the nature of the structural motifs in ACKR2 that are responsible for ligand binding. The study also highlights ACKR2-derived N-terminal peptides as being of potential therapeutic significance.
Collapse
Affiliation(s)
- Kay D Hewit
- From the Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
135
|
Viney JM, Andrew DP, Phillips RM, Meiser A, Patel P, Lennartz-Walker M, Cousins DJ, Barton NP, Hall DA, Pease JE. Distinct conformations of the chemokine receptor CCR4 with implications for its targeting in allergy. THE JOURNAL OF IMMUNOLOGY 2014; 192:3419-27. [PMID: 24563252 DOI: 10.4049/jimmunol.1300232] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CC chemokine receptor 4 (CCR4) is expressed by Th2 and regulatory T cells and directs their migration along gradients of the chemokines CCL17 and CCL22. Both chemokines and receptor are upregulated in allergic disease, making CCR4 a therapeutic target for the treatment of allergy. We set out to assess the mechanisms underlying a previous report that CCL22 is a dominant ligand of CCR4, which may have implications for its therapeutic targeting. Human T cells expressing endogenous CCR4 and transfectants engineered to express CCR4 were assessed for receptor function, using assays of calcium release, chemotaxis, receptor endocytosis, and ligand binding. Despite the two ligands having equal potency in calcium flux and chemotaxis assays, CCL22 showed dominance in both receptor endocytosis assays and heterologous competitive binding assays. Using two different CCR4-specific Abs, we showed that CCR4 exists in at least two distinct conformations, which are differentially activated by ligand. A major population is activated by both CCL17 and CCL22, whereas a minor population is activated only by CCL22. Mutation of a single C-terminal residue K310 within a putative CCR4 antagonist binding site ablated activation of CCR4 by CCL17, but not by CCL22, despite having no effect on the binding of either ligand. We conclude that CCL17 and CCL22 are conformationally selective ligands of CCR4 and interact with the receptor by substantially different mechanisms. This finding suggests that the selective blockade of CCR4 in allergy may be feasible when one CCR4 ligand dominates, allowing the inhibition of Th2 signaling via one ligand while sparing regulatory T cell recruitment via another.
Collapse
Affiliation(s)
- Jonathan M Viney
- Leukocyte Biology Section, Medical Research Council-Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute Division, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
Experimental and human studies have shown that proteinuria contributes to the progression of renal disease. Overexposure to filtered proteins promotes the expression and release of chemokines by tubular epithelial cells, thus leading to inflammatory cell recruitment and renal impairment. This review focuses on recent progress in cellular and molecular understanding of the role of chemokines in the pathogenesis of proteinuria-induced renal injury, as well as their clinical implications and therapeutic potential.
Collapse
|
137
|
CC chemokine receptor 5: the interface of host immunity and cancer. DISEASE MARKERS 2014; 2014:126954. [PMID: 24591756 PMCID: PMC3925608 DOI: 10.1155/2014/126954] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/30/2013] [Indexed: 01/17/2023]
Abstract
Solid tumors are embedded in a stromal microenvironment consisting of immune cells, such as macrophages and lymphocytes, as well as nonimmune cells, such as endothelial cells and fibroblasts. Chemokines are a type of small secreted chemotactic cytokine and together with their receptors play key roles in the immune defense. Critically, they regulate cancer cellular migration and also contribute to their proliferation and survival. The CCR5 chemokine receptor is involved in leucocytes chemotaxis to sites of inflammation and plays an important role in the macrophages, T cells, and monocytes recruitment. Additionally, CCR5 may have an indirect effect on cancer progression by controlling the antitumor immune response, since it has been demonstrated that its expression could promote tumor growth and contribute to tumor metastasis, in different types of malignant tumors. Furthermore, it was demonstrated that a CCR5 antagonist may inhibit tumor growth, consisting of a possible therapeutic target. In this context, the present review focuses on the establishment of CCR5 within the interface of host immunity, tumor microenvironment, and its potential as a targeting to immunotherapy.
Collapse
|
138
|
Exploring the CXCR3 Chemokine Receptor with Small-Molecule Antagonists and Agonists. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
139
|
Baldwin HM, Pallas K, King V, Jamieson T, McKimmie CS, Nibbs RJB, Carballido JM, Jaritz M, Rot A, Graham GJ. Microarray analyses demonstrate the involvement of type I interferons in psoriasiform pathology development in D6-deficient mice. J Biol Chem 2013; 288:36473-83. [PMID: 24194523 PMCID: PMC3868760 DOI: 10.1074/jbc.m113.491563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/30/2013] [Indexed: 01/18/2023] Open
Abstract
The inflammatory response is normally limited by mechanisms regulating its resolution. In the absence of resolution, inflammatory pathologies can emerge, resulting in substantial morbidity and mortality. We have been studying the D6 chemokine scavenging receptor, which played an indispensable role in the resolution phase of inflammatory responses and does so by facilitating removal of inflammatory CC chemokines. In D6-deficient mice, otherwise innocuous cutaneous inflammatory stimuli induce a grossly exaggerated inflammatory response that bears many similarities to human psoriasis. In the present study, we have used transcriptomic approaches to define the molecular make up of this response. The data presented highlight potential roles for a number of cytokines in initiating and maintaining the psoriasis-like pathology. Most compellingly, we provide data indicating a key role for the type I interferon pathway in the emergence of this pathology. Neutralizing antibodies to type I interferons are able to ameliorate the psoriasis-like pathology, confirming a role in its development. Comparison of transcriptional data generated from this mouse model with equivalent data obtained from human psoriasis further demonstrates the strong similarities between the experimental and clinical systems. As such, the transcriptional data obtained in this preclinical model provide insights into the cytokine network active in exaggerated inflammatory responses and offer an excellent tool to evaluate the efficacy of compounds designed to therapeutically interfere with inflammatory processes.
Collapse
Affiliation(s)
- Helen M. Baldwin
- From the Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Kenneth Pallas
- From the Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Vicky King
- From the Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Thomas Jamieson
- the Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Clive S. McKimmie
- From the Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Robert J. B. Nibbs
- From the Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - José M. Carballido
- the Novartis Institutes for Biomedical Research, Brunner Str. 59, A-1235 Vienna, Austria
- the Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland, and
| | - Marcus Jaritz
- the Novartis Institutes for Biomedical Research, Brunner Str. 59, A-1235 Vienna, Austria
| | - Antal Rot
- the Novartis Institutes for Biomedical Research, Brunner Str. 59, A-1235 Vienna, Austria
- the University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gerard J. Graham
- From the Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| |
Collapse
|
140
|
de Matos AL, Lanning DK, Esteves PJ. Genetic characterization of CCL3, CCL4 and CCL5 in leporid genera Oryctolagus, Sylvilagus and Lepus. Int J Immunogenet 2013; 41:154-8. [PMID: 24103103 DOI: 10.1111/iji.12095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/13/2013] [Accepted: 08/25/2013] [Indexed: 01/04/2023]
Abstract
The genetic diversity of C-C motif chemokine receptor 5 (CCR5) ligands CCL3, CCL4 and CCL5 in the leporid genera Oryctolagus, Sylvilagus and Lepus was studied. Our results demonstrate that the three CCR5 chemokine ligands are under strong purifying selection as a result of possible functional binding constraints.
Collapse
Affiliation(s)
- A Lemos de Matos
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos/InBio Laboratório Associado, Universidade do Porto, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal; Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | | |
Collapse
|
141
|
Genome diversification mechanism of rodent and Lagomorpha chemokine genes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:856265. [PMID: 23991422 PMCID: PMC3749542 DOI: 10.1155/2013/856265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022]
Abstract
Chemokines are a large family of small cytokines that are involved in host defence and body homeostasis through recruitment of cells expressing their receptors. Their genes are known to undergo rapid evolution. Therefore, the number and content of chemokine genes can be quite diverse among the different species, making the orthologous relationships often ambiguous even between closely related species. Given that rodents and rabbit are useful experimental models in medicine and drug development, we have deduced the chemokine genes from the genome sequences of several rodent species and rabbit and compared them with those of human and mouse to determine the orthologous relationships. The interspecies differences should be taken into consideration when experimental results from animal models are extrapolated into humans. The chemokine gene lists and their orthologous relationships presented here will be useful for studies using these animal models. Our analysis also enables us to reconstruct possible gene duplication processes that generated the different sets of chemokine genes in these species.
Collapse
|
142
|
Gonzalez J, Mouttalib S, Delage C, Calise D, Maoret JJ, Pradère JP, Klein J, Buffin-Meyer B, Van der Veen B, Charo IF, Heeringa P, Duchene J, Bascands JL, Schanstra JP. Dual effect of chemokine CCL7/MCP-3 in the development of renal tubulointerstitial fibrosis. Biochem Biophys Res Commun 2013; 438:257-63. [PMID: 23872063 DOI: 10.1016/j.bbrc.2013.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 12/15/2022]
Abstract
Most end-stage renal disease kidneys display accumulation of extracellular matrix (ECM) in the renal tubular compartment (tubular interstitial fibrosis - TIF) which is strongly correlated with the future loss of renal function. Although inflammation is a key event in the development of TIF, it can also have a beneficial anti-fibrotic role depending in particular on the stage of the pathology. Chemokines play an important role in monocyte extravasation in the inflammatory process. CCL2 has already been shown to be involved in the development of TIF but CCL7, a close relative of CCL2 and able to bind to similar receptors, has not been studied in renal disease. We therefore studied chemokine CCL7 in a model of unilateral ureteral obstruction (UUO)-induced TIF. We observed that the role of CCL7 differs depending on the stage of the pathology. In early stages (0-8 days), CCL7 deficient (CCL7-KO) mice displayed attenuated TIF potentially involving two mechanisms: an early (0-3 days) decrease of inflammatory cell infiltration followed (3-8 days) by a decrease in tubular ECM production independent of inflammation. In contrast, during later stages of obstruction (10-14 days), CCL7-KO mice displayed increased TIF which was again associated with reduced inflammation. Interestingly, the switch between this anti- to profibrotic effect was accompanied by an increased influx of immunosuppressive regulatory T cells. In conclusion, these results highlight for the first time a dual role for CCL7 in the development of renal TIF, deleterious in early stages but beneficial during later stages.
Collapse
Affiliation(s)
- Julien Gonzalez
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Qu J, Jakobs TC. The Time Course of Gene Expression during Reactive Gliosis in the Optic Nerve. PLoS One 2013; 8:e67094. [PMID: 23826199 PMCID: PMC3694957 DOI: 10.1371/journal.pone.0067094] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/15/2013] [Indexed: 01/05/2023] Open
Abstract
Reactive gliosis is a complex process that involves changes in gene expression and morphological remodeling. The mouse optic nerve, where astrocytes, microglia and oligodendrocytes interact with retinal ganglion cell axons and each other, is a particularly suitable model for studying the molecular mechanisms of reactive gliosis. We triggered gliosis at the mouse optic nerve head by retro orbital nerve crush. We followed the expression profiles of 14,000 genes from 1 day to 3 months, as the optic nerve formed a glial scar. The transcriptome showed profound changes. These were greatest shortly after injury; the numbers of differentially regulated genes then dropped, returning nearly to resting levels by 3 months. Different genes were modulated with very different time courses, and functionally distinct groups of genes responded in partially overlapping waves. These correspond roughly to two quick waves of inflammation and cell proliferation, a slow wave of tissue remodeling and debris removal, and a final stationary phase that primarily reflects permanent structural changes in the axons. Responses from astrocytes, microglia and oligodendrocytes were distinctively different, both molecularly and morphologically. Comparisons to other models of brain injury and to glaucoma indicated that the glial responses depended on both the tissue and the injury. Attempts to modulate glial function after axonal injuries should consider different mechanistic targets at different times following the insult.
Collapse
Affiliation(s)
- Juan Qu
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tatjana C. Jakobs
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
144
|
Tourniaire F, Romier-Crouzet B, Lee JH, Marcotorchino J, Gouranton E, Salles J, Malezet C, Astier J, Darmon P, Blouin E, Walrand S, Ye J, Landrier JF. Chemokine Expression in Inflamed Adipose Tissue Is Mainly Mediated by NF-κB. PLoS One 2013; 8:e66515. [PMID: 23824685 PMCID: PMC3688928 DOI: 10.1371/journal.pone.0066515] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 05/10/2013] [Indexed: 01/08/2023] Open
Abstract
Immune cell infiltration of expanding adipose tissue during obesity and its role in insulin resistance has been described and involves chemokines. However, studies so far have focused on a single chemokine or its receptor (especially CCL2 and CCL5) whereas redundant functions of chemokines have been described. The objective of this work was to explore the expression of chemokines in inflamed adipose tissue in obesity. Human and mouse adipocytes were analyzed for expression of chemokines in response to inflammatory signal (TNF-α) using microarrays and gene set enrichment analysis. Gene expression was verified by qRT-PCR. Chemokine protein was determined in culture medium with ELISA. Chemokine expression was investigated in human subcutaneous adipose tissue biopsies and mechanism of chemokine expression was investigated using chemical inhibitors and cellular and animal transgenic models. Chemokine encoding genes were the most responsive genes in TNF-α treated human and mouse adipocytes. mRNA and protein of 34 chemokine genes were induced in a dose-dependent manner in the culture system. Furthermore, expression of those chemokines was elevated in human obese adipose tissue. Finally, chemokine expression was reduced by NF-κB inactivation and elevated by NF-κB activation. Our data indicate that besides CCL2 and CCL5, numerous other chemokines such as CCL19 are expressed by adipocytes under obesity-associated chronic inflammation. Their expression is regulated predominantly by NF-κB. Those chemokines could be involved in the initiation of infiltration of leukocytes into obese adipose tissue.
Collapse
Affiliation(s)
- Franck Tourniaire
- INRA, UMR 1260, Marseille, France
- INSERM, UMR 1062, « Nutrition, Obésité et Risque Thrombotique », Marseille, France
- Université d’Aix-Marseille, Faculté de Médecine, Marseille, France
| | - Beatrice Romier-Crouzet
- INRA, UMR 1260, Marseille, France
- INSERM, UMR 1062, « Nutrition, Obésité et Risque Thrombotique », Marseille, France
- Université d’Aix-Marseille, Faculté de Médecine, Marseille, France
| | - Jong Han Lee
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Julie Marcotorchino
- INRA, UMR 1260, Marseille, France
- INSERM, UMR 1062, « Nutrition, Obésité et Risque Thrombotique », Marseille, France
- Université d’Aix-Marseille, Faculté de Médecine, Marseille, France
| | - Erwan Gouranton
- INRA, UMR 1260, Marseille, France
- INSERM, UMR 1062, « Nutrition, Obésité et Risque Thrombotique », Marseille, France
- Université d’Aix-Marseille, Faculté de Médecine, Marseille, France
| | - Jerome Salles
- UMR INRA 1019 Unité de nutrition humaine, Centre de Recherches INRA de Clermont-Ferrand/Theix, St Genès Champanelle, France
| | - Christiane Malezet
- INRA, UMR 1260, Marseille, France
- INSERM, UMR 1062, « Nutrition, Obésité et Risque Thrombotique », Marseille, France
- Université d’Aix-Marseille, Faculté de Médecine, Marseille, France
| | - Julien Astier
- INRA, UMR 1260, Marseille, France
- INSERM, UMR 1062, « Nutrition, Obésité et Risque Thrombotique », Marseille, France
- Université d’Aix-Marseille, Faculté de Médecine, Marseille, France
| | - Patrice Darmon
- INRA, UMR 1260, Marseille, France
- INSERM, UMR 1062, « Nutrition, Obésité et Risque Thrombotique », Marseille, France
- Université d’Aix-Marseille, Faculté de Médecine, Marseille, France
| | | | - Stephane Walrand
- UMR INRA 1019 Unité de nutrition humaine, Centre de Recherches INRA de Clermont-Ferrand/Theix, St Genès Champanelle, France
| | - Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, United States of America
| | - Jean-Francois Landrier
- INRA, UMR 1260, Marseille, France
- INSERM, UMR 1062, « Nutrition, Obésité et Risque Thrombotique », Marseille, France
- Université d’Aix-Marseille, Faculté de Médecine, Marseille, France
- * E-mail:
| |
Collapse
|
145
|
Loomis-King H, Flaherty KR, Moore BB. Pathogenesis, current treatments and future directions for idiopathic pulmonary fibrosis. Curr Opin Pharmacol 2013; 13:377-85. [PMID: 23602652 PMCID: PMC3686907 DOI: 10.1016/j.coph.2013.03.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/02/2013] [Accepted: 03/28/2013] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease (ILD) of unknown origin characterized by epithelial cell dysfunctions, accumulation of fibroblasts and myofibroblasts and relentless deposition of extracellular matrix (ECM). Improved diagnostic accuracy and better trial design have provided important insights from recent clinical trials. Perhaps the most important insight was the realization that 'standard therapy' was actually harmful! This review summarizes the current understanding of the cell types that are altered in IPF and the pathogenic mechanisms that have been identified. It also reviews recent clinical trial results and interpretations. Finally, we highlight attractive biologic targets and therapies in development with recommendations for future therapeutic avenues.
Collapse
Affiliation(s)
- Hillary Loomis-King
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA 48109
| | - Kevin R. Flaherty
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA 48109
| | - Bethany B. Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA 48109
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA 48109
| |
Collapse
|
146
|
Rot A, McKimmie C, Burt CL, Pallas KJ, Jamieson T, Pruenster M, Horuk R, Nibbs RJB, Graham GJ. Cell-autonomous regulation of neutrophil migration by the D6 chemokine decoy receptor. THE JOURNAL OF IMMUNOLOGY 2013; 190:6450-6456. [PMID: 23670187 DOI: 10.4049/jimmunol.1201429] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemokines, acting on their cognate receptors on infiltrating leukocytes, drive the inflammatory response. We have been interested in determining roles and potential mechanisms for the atypical chemokine-scavenging receptor D6 in the regulation of inflammation. In this study, we show that a psoriasis-like pathology that arises in inflamed skins of D6-deficient mice is characterized by a massive and aberrant localization of neutrophils to the dermal/epidermal junction, which is associated with development of the pathology. Such misplacement of neutrophils is also seen with D6-deficient mice in other inflammatory models, suggesting a role for D6 in the spatial positioning of neutrophils within inflamed sites. We further show that D6 functions cell autonomously in this context and that D6, expressed by neutrophils, limits their migrational responses to CCR1 ligands such as CCL3. Our data therefore indicate that D6 is able to play a cell-autonomous role as a migratory rheostat restricting migration of D6-expressing cells such as neutrophils toward ligands for coexpressed inflammatory chemokine receptors. These data have important implications for our understanding of the roles for D6 in regulating inflammation and for our understanding of the control of spatial positioning of leukocytes at inflamed sites.
Collapse
Affiliation(s)
- Antal Rot
- NIBR, Brunnerstrasse 59, Vienna A1235, Austria.,MRC Centre for Immune Regulation, University of Birmingham, Birmingham, B15 2TT, UK
| | - Clive McKimmie
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Claire L Burt
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Kenneth J Pallas
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Thomas Jamieson
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | | | - Richard Horuk
- Berlex Biosciences 2600 Hilltop Drive, Richmond, CA 94806, USA
| | - Robert J B Nibbs
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Gerard J Graham
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
147
|
McKimmie CS, Singh MD, Hewit K, Lopez-Franco O, Le Brocq M, Rose-John S, Lee KM, Baker AH, Wheat R, Blackbourn DJ, Nibbs RJB, Graham GJ. An analysis of the function and expression of D6 on lymphatic endothelial cells. Blood 2013; 121:3768-77. [PMID: 23479571 DOI: 10.1182/blood-2012-04-425314] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms by which CC chemokine receptor (CCR)7 ligands are selectively presented on lymphatic endothelium in the presence of inflammatory chemokines are poorly understood. The chemokine-scavenging receptor D6 is expressed on lymphatic endothelial cells (LEC) and contributes to selective presentation of CCR7 ligands by suppressing inflammatory chemokine binding to LEC surfaces. As well as preventing inappropriate inflammatory cell attachment to LECs, D6 is specifically involved in regulating the ability of LEC to discriminate between mature and immature dendritic cells (DCs). D6 overexpression reduces immature DC (iDC) adhesion to LECs, whereas D6 knockdown increases adhesion of iDCs that displace mature DCs. LEC D6 expression is regulated by growth factors, cytokines, and tumor microenvironments. In particular, interleukin-6 and interferon-γ are potent inducers, indicating a preferential role for D6 in inflamed contexts. Expression of the viral interleukin-6 homolog from Kaposi sarcoma-associated herpesvirus is also sufficient to induce significant D6 upregulation both in vitro and in vivo, and Kaposi sarcoma and primary effusion lymphoma cells demonstrate high levels of D6 expression. We therefore propose that D6, which is upregulated in both inflammatory and tumor contexts, is an essential regulator of inflammatory leukocyte interactions with LECs and is required for immature/mature DC discrimination by LECs.
Collapse
Affiliation(s)
- Clive S McKimmie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Teles A, Zenclussen AC, Schumacher A. Regulatory T cells are baby's best friends. Am J Reprod Immunol 2013; 69:331-9. [PMID: 23289369 DOI: 10.1111/aji.12067] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/05/2012] [Indexed: 01/18/2023] Open
Abstract
Regulatory T cells (Treg) are one of the most and best studied immune cell population during human and murine pregnancy, and there is a general consent about their expansion during pregnancy. However, the identification of new and more reliable Treg markers during the last years resulted in some controversies about the kinetics of various Treg subsets at different pregnancy stages. No doubt exists regarding the importance of Treg for a normal pregnancy as pregnancy complications like spontaneous abortion and preeclampsia could be associated with a reduced Treg number and activity. In future, more attention should be paid to bring established data from the bench to the bedside to force the development of adequate therapies for treatment of pregnancy complications. In this article, we summarize previous and recent data on several aspects of Treg biology during human and murine pregnancy.
Collapse
Affiliation(s)
- Ana Teles
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
149
|
Lee KM, Nibbs RJB, Graham GJ. D6: the 'crowd controller' at the immune gateway. Trends Immunol 2013; 34:7-12. [PMID: 22921835 DOI: 10.1016/j.it.2012.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/25/2012] [Accepted: 08/01/2012] [Indexed: 01/22/2023]
Abstract
The chemokine-scavenging receptor, D6, is reported to regulate resolution of inflammatory responses. However, recent data also point to an unanticipated role for D6 in coordinating innate and adaptive immune responses. Here, we propose that D6 is essential for preventing inflammatory leukocyte association with lymphatic vasculature. In the absence of D6, inappropriate inflammatory leukocyte accumulation around lymphatic endothelium congests the lymphatic system, impairing fluid and cellular flow from inflamed sites to lymph nodes and reducing efficiency of antigen presentation. Thus, the inability of D6-deficient mice to resolve inflammation may be a byproduct of impaired fluid drainage from inflamed sites and thus we provide a model unifying D6 function in innate and adaptive immune responses.
Collapse
Affiliation(s)
- Kit Ming Lee
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
150
|
Graham GJ, Locati M. Regulation of the immune and inflammatory responses by the 'atypical' chemokine receptor D6. J Pathol 2013; 229:168-75. [PMID: 23125030 DOI: 10.1002/path.4123] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 01/19/2023]
Abstract
Chemokines and their receptors are key regulators of leukocyte migration and intra-tissue accumulation under both homeostatic and inflammatory conditions. Regulation of chemokine-dependent responses, particularly those relating to inflammation, is essential to avoid the development of inflammatory and autoimmune pathologies. Recently, a new subfamily of chemokine receptors referred to as the 'atypical' chemokine receptors has emerged, members of which have been shown to play important roles in controlling in vivo chemokine biology. Here we review the basic biology of the chemokine and chemokine receptor family, introduce the topic of 'atypical' chemokine receptor biology and focus specifically on the best-characterized of the 'atypical' chemokine receptors, D6. D6 is a 'scavenging' receptor for inflammatory CC chemokines and plays a central role in the resolution of in vivo inflammatory responses. We describe the biology, biochemistry and pathological relevance of D6 and outline emerging data suggesting that it has additional important roles in integrating innate and adaptive immune responses.
Collapse
Affiliation(s)
- Gerard J Graham
- Institute of Infection, Immunity and Inflammation, University of Glasgow, UK.
| | | |
Collapse
|