101
|
Choe J, Suresh S, Wisedchaisri G, Kennedy KJ, Gelb MH, Hol WGJ. Anomalous differences of light elements in determining precise binding modes of ligands to glycerol-3-phosphate dehydrogenase. CHEMISTRY & BIOLOGY 2002; 9:1189-97. [PMID: 12445769 DOI: 10.1016/s1074-5521(02)00243-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pathogenic protozoa such as Trypanosome and Leishmania species cause tremendous suffering worldwide. Because of their dependence on glycolysis for energy, the glycolytic enzymes of these organisms, including glycerol-3-phosphate dehydrogenase (GPDH), are considered attractive drug targets. Using the adenine part of NAD as a lead compound, several 2,6-disubstituted purines were synthesized as inhibitors of Leishmania mexicana GPDH (LmGPDH). The electron densities for the inhibitor 2-bromo-6-chloro-purine bound to LmGPDH using a "conventional" wavelength around 1 A displayed a quasisymmetric shape. The anomalous signals from data collected at 1.77 A clearly indicated the positions of the halogen atoms and revealed the multiple binding modes of this inhibitor. Intriguing differences in the observed binding modes of the inhibitor between very similarly prepared crystals illustrate the possibility of crystal-to-crystal variations in protein-ligand complex structures.
Collapse
Affiliation(s)
- Jungwoo Choe
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
102
|
Besteiro S, Biran M, Biteau N, Coustou V, Baltz T, Canioni P, Bringaud F. Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase. J Biol Chem 2002; 277:38001-12. [PMID: 12138089 DOI: 10.1074/jbc.m201759200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In all trypanosomatids, including Trypanosoma brucei, glycolysis takes place in peroxisome-like organelles called glycosomes. These are closed compartments wherein the energy and redox (NAD(+)/NADH) balances need to be maintained. We have characterized a T. brucei gene called FRDg encoding a protein 35% identical to Saccharomyces cerevisiae fumarate reductases. Microsequencing of FRDg purified from glycosome preparations, immunofluorescence, and Western blot analyses clearly identified this enzyme as a glycosomal protein that is only expressed in the procyclic form of T. brucei but is present in all the other trypanosomatids studied, i.e. Trypanosoma congolense, Crithidia fasciculata and Leishmania amazonensis. The specific inactivation of FRDg gene expression by RNA interference showed that FRDg is responsible for the NADH-dependent fumarate reductase activity detected in glycosomal fractions and that at least 60% of the succinate secreted by the T. brucei procyclic form (in the presence of d-glucose as the sole carbon source) is produced in the glycosome by FRDg. We conclude that FRDg plays a key role in the energy metabolism by participating in the maintenance of the glycosomal NAD(+)/NADH balance. We have also detected a significant pyruvate kinase activity in the cytosol of the T. brucei procyclic cells that was not observed previously. Consequently, we propose a revised model of glucose metabolism in procyclic trypanosomes that may also be valid for all other trypanosomatids except the T. brucei bloodstream form. Interestingly, H. Gest has hypothesized previously (Gest, H. (1980) FEMS Microbiol. Lett. 7, 73-77) that a soluble NADH-dependent fumarate reductase has been present in primitive organisms and evolved into the present day fumarate reductases, which are quinol-dependent. FRDg may have the characteristics of such an ancestral enzyme and is the only NADH-dependent fumarate reductase characterized to date.
Collapse
Affiliation(s)
- Sébastien Besteiro
- Laboratoire de Parasitologie Moléculaire, UMR-5016 CNRS, Université Victor Segalen Bordeaux II, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | |
Collapse
|
103
|
Schnaufer A, Domingo GJ, Stuart K. Natural and induced dyskinetoplastic trypanosomatids: how to live without mitochondrial DNA. Int J Parasitol 2002; 32:1071-84. [PMID: 12117490 DOI: 10.1016/s0020-7519(02)00020-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salivarian trypanosomes are the causative agents of several diseases of major social and economic impact. The most infamous parasites of this group are the African subspecies of the Trypanosoma brucei group, which cause sleeping sickness in humans and nagana in cattle. In terms of geographical distribution, however, Trypanosoma equiperdum and Trypanosoma evansi have been far more successful, causing disease in livestock in Africa, Asia, and South America. In these latter forms the mitochondrial DNA network, the kinetoplast, is altered or even completely lost. These natural dyskinetoplastic forms can be mimicked in bloodstream form T. brucei by inducing the loss of kinetoplast DNA (kDNA) with intercalating dyes. Dyskinetoplastic T. brucei are incapable of completing their usual developmental cycle in the insect vector, due to their inability to perform oxidative phosphorylation. Nevertheless, they are usually as virulent for their mammalian hosts as parasites with intact kDNA, thus questioning the therapeutic value of attempts to target mitochondrial gene expression with specific drugs. Recent experiments, however, have challenged this view. This review summarises the data available on dyskinetoplasty in trypanosomes and revisits the roles the mitochondrion and its genome play during the life cycle of T. brucei.
Collapse
Affiliation(s)
- Achim Schnaufer
- Seattle Biomedical Research Institute, 4 Nickerson Street, Suite 200, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
104
|
Igamberdiev AU, Lea PJ. The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms. PHYTOCHEMISTRY 2002; 60:651-674. [PMID: 12127583 DOI: 10.1016/s0031-9422(02)00179-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The peroxisome is a metabolic compartment serving for the rapid oxidation of substrates, a process that is not coupled to energy conservation. In plants and algae, peroxisomes connect biosynthetic and oxidative metabolic routes and compartmentalize potentially lethal steps of metabolism such as the formation of reactive oxygen species and glyoxylate, thus preventing poisoning of the cell and futile recycling. Peroxisomes exhibit properties resembling inside-out vesicles and possess special systems for the import of specific proteins, which form multi-enzyme complexes (metabolons) linking numerous reactions to flavin-dependent oxidation, coupled to the decomposition of hydrogen peroxide by catalase. Hydrogen peroxide and superoxide originating in peroxisomes are important mediators in signal transduction pathways, particularly those involving salicylic acid. By contributing to the synthesis of oxalate, formate and other organic acids, peroxisomes regulate major fluxes of primary and secondary metabolism. The evolutionary diversity of algae has led to the presence of a wide range of enzymes in the peroxisomes that are only similar to higher plants in their direct predecessors, the Charophyceae. The appearance of seed plants was connected to the acquirement by storage tissues, of a peroxisomal fatty acid oxidation function linked to the glyoxylate cycle, which is induced during seed germination and maturation. Rearrangement of the peroxisomal photorespiratory function between different tissues of higher plants led to the appearance of different types of photosynthetic metabolism. The peroxisome may therefore have played a key role in the evolutionary formation of metabolic networks, via establishing interconnections between different metabolic compartments.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Plant Research Department, Risø National Laboratory, 4000, Roskilde, Denmark.
| | | |
Collapse
|
105
|
López C, Chevalier N, Hannaert V, Rigden DJ, Michels PAM, Ramirez JL. Leishmania donovani phosphofructokinase. Gene characterization, biochemical properties and structure-modeling studies. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3978-89. [PMID: 12180974 DOI: 10.1046/j.1432-1033.2002.03086.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The characterization of the gene encoding Leishmania donovani phosphofructokinase (PFK) and the biochemical properties of the expressed enzyme are reported. L. donovani has a single PFK gene copy per haploid genome that encodes a polypeptide with a deduced molecular mass of 53 988 and a pI of 9.26. The predicted amino acid sequence contains a C-terminal tripeptide that conforms to an established signal for glycosome targeting. L. donovani PFK showed most sequence similarity to inorganic pyrophosphate (PPi)-dependent PFKs, despite being ATP-dependent. It thereby resembles PFKs from other Kinetoplastida such as Trypanosoma brucei, Trypanoplasma borreli (characterized in this study), and a PFK found in Entamoeba histolytica. It exhibited hyperbolic kinetics with respect to ATP whereas the binding of the other substrate, fructose 6-phosphate, showed slight positive cooperativity. PPi, even at high concentrations, did not have any effect. AMP acted as an activator of PFK, shifting its kinetics for fructose 6-phosphate from slightly sigmoid to hyperbolic, and increasing considerably the affinity for this substrate, whereas GDP did not have any effect. Modelling studies and site-directed mutagenesis were employed to shed light on the structural basis for the AMP effector specificity and on ATP/PPi specificity among PFKs.
Collapse
Affiliation(s)
- Claudia López
- Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | | | | | |
Collapse
|
106
|
Guerra-Giraldez C, Quijada L, Clayton CE. Compartmentation of enzymes in a microbody, the glycosome, is essential in Trypanosoma brucei. J Cell Sci 2002; 115:2651-8. [PMID: 12077356 DOI: 10.1242/jcs.115.13.2651] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All kinetoplastids contain membrane-bound microbodies known as glycosomes,in which several metabolic pathways including part of glycolysis are compartmentalized. Peroxin 2 is essential for the import of many proteins into the microbodies of yeasts and mammals. The PEX2 gene of Trypanosoma brucei was identified and its expression was silenced by means of tetracycline-inducible RNA interference. Bloodstream-form trypanosomes, which rely exclusively on glycolysis for ATP generation, died rapidly upon PEX2 depletion. Insect-form (procyclic) trypanosomes do not rely solely on glycolysis for ATP synthesis. PEX2 depletion in procyclic forms resulted in relocation of most tested matrix proteins to the cytosol, and these mutants also died. Compartmentation of microbody enzymes is therefore essential for survival of bloodstream and procyclic T. brucei. In contrast, yeasts and cultured mammalian cells grow normally in the absence of peroxisomal membranes unless placed on selective media.
Collapse
Affiliation(s)
- Cristina Guerra-Giraldez
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
107
|
Cornish-Bowden A, Hofmeyr JHS. The role of stoichiometric analysis in studies of metabolism: an example. J Theor Biol 2002; 216:179-91. [PMID: 12079370 DOI: 10.1006/jtbi.2002.2547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stoichiometric analysis uses matrix algebra to deduce the constraints implicit in metabolic networks. When applied to simple networks, it can often give the impression of being an unnecessarily complicated way of arriving at information that is obvious from inspection, for example, that the sum of the concentrations of the adenine nucleotides is constant. Applied to a more complicated example, that of glycolysis in Trypanosoma brucei, it yields information that is far from obvious and may have importance for developing therapeutic ways of eliminating this parasite. Even in simplified form, the network contains nine reactions or transport steps involving 11 metabolites. This immediately shows that there must be at least two stoichiometric constraints, and indeed two can be recognized by inspection: conservation of adenine nucleotides and conservation of the two forms of NAD. There is, however, a third, which involves eight different phosphorylated intermediates in non-obvious combinations and is very difficult to recognize by inspection. It is also difficult to recognize by inspection that no fourth stoichiometric constraint exists. Gaussian elimination provides a systematic way of analysing a network in such a way that all the stoichiometric relationships that it contains emerge automatically.
Collapse
Affiliation(s)
- Athel Cornish-Bowden
- Bioénergétique et Ingénierie des Protéines, Institut Fédératif Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, 31 Chemin Joseph-Aiguier, 13402 Marseille Cedex 20, France.
| | | |
Collapse
|
108
|
Cosenza LW, Bringaud F, Baltz T, Vellieux FMD. The 3.0 A resolution crystal structure of glycosomal pyruvate phosphate dikinase from Trypanosoma brucei. J Mol Biol 2002; 318:1417-32. [PMID: 12083528 DOI: 10.1016/s0022-2836(02)00113-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The crystal structure of the glycosomal enzyme pyruvate phosphate dikinase from the African protozoan parasite Trypanosoma brucei has been solved to 3.0 A resolution by molecular replacement. The search model was the 2.3 A resolution structure of the Clostridium symbiosum enzyme. Due to different relative orientations of the domains and sub-domains in the two structures, molecular replacement could be achieved only by positioning these elements (four bodies altogether) sequentially in the asymmetric unit of the P2(1)2(1)2 crystal, which contains one pyruvate phosphate dikinase (PPDK) subunit. The refined model, comprising 898 residues and 188 solvent molecules per subunit, has a crystallographic residual index Rf = 0.245 (cross-validation residual index Rfree = 0.291) and displays satisfactory stereochemistry. Eight regions, comprising a total of 69 amino acid residues at the surface of the molecule, are disordered in this crystal form. The PPDK subunits are arranged around the crystallographic 2-fold axis as a dimer, analogous to that observed in the C. symbiosum enzyme. Comparison of the two structures was carried out by superposition of the models. Although the fold of each domain or sub-domain is similar, the relative orientations of these constitutive elements are different in the two structures. The trypanosome enzyme is more "bent" than the bacterial enzyme, with bending increasing from the center of the molecule (close to the molecular 2-fold axis) towards the periphery where the N-terminal domain is located. As a consequence of this increased bending and of the differences in relative positions of subdomains, the nucleotide-binding cleft in the amino-terminal domain is wider in T. brucei PPDK: the N-terminal fragment of the amino-terminal domain is distant from the catalytic, phospho-transfer competent histidine 482 (ca 10 A away). Our observations suggest that the requirements of domain motion during enzyme catalysis might include widening of the nucleotide-binding cleft to allow access and departure of the AMP or ATP ligand.
Collapse
Affiliation(s)
- Lawrence W Cosenza
- Laboratoire de Biophysique Moleculaire, Institut de Biologie Structurale J.-P. Ebel CEA CNRS UJF, Grenoble, France
| | | | | | | |
Collapse
|
109
|
Wilkinson SR, Meyer DJ, Taylor MC, Bromley EV, Miles MA, Kelly JM. The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin. J Biol Chem 2002; 277:17062-71. [PMID: 11842085 DOI: 10.1074/jbc.m111126200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trypanosoma cruzi glutathione-dependent peroxidase I (TcGPXI) can reduce fatty acid, phospholipid, and short chain organic hydroperoxides utilizing a novel redox cycle in which enzyme activity is linked to the reduction of trypanothione, a parasite-specific thiol, by glutathione. Here we show that TcGPXI activity can also be linked to trypanothione reduction by an alternative pathway involving the thioredoxin-like protein tryparedoxin. The presence of this new pathway was first detected using dialyzed soluble fractions of parasite extract. Tryparedoxin was identified as the intermediate molecule following purification, sequence analysis, antibody studies, and reconstitution of the redox cycle in vitro. The system can be readily saturated by trypanothione, the rate-limiting step being the interaction of trypanothione with the tryparedoxin. Both tryparedoxin and TcGPXI operate by a ping-pong mechanism. Overexpression of TcGPXI in transfected parasites confers increased resistance to exogenous hydroperoxides. TcGPXI contains a carboxyl-terminal tripeptide (ARI) that could act as a targeting signal for the glycosome, a kinetoplastid-specific organelle. Using immunofluorescence, tagged fluorescent proteins, and biochemical fractionation, we have demonstrated that TcGPXI is localized to both the glycosome and the cytosol. The ability of TcGPXI to use alternative electron donors may reflect their availability at the corresponding subcellular sites.
Collapse
Affiliation(s)
- Shane R Wilkinson
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
110
|
Henze K, Horner DS, Suguri S, Moore DV, Sánchez LB, Müller M, Embley TM. Unique phylogenetic relationships of glucokinase and glucosephosphate isomerase of the amitochondriate eukaryotes Giardia intestinalis, Spironucleus barkhanus and Trichomonas vaginalis. Gene 2001; 281:123-31. [PMID: 11750134 DOI: 10.1016/s0378-1119(01)00773-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glucokinase (GK) and glucosephosphate isomerase (GPI), the first two enzymes of the glycolytic pathway of the diplomonads Giardia intestinalis and Spironucleus barkhanus, Type I amitochondriate eukaryotes, were sequenced. GPI of the parabasalid Trichomonas vaginalis was also sequenced. The diplomonad GKs belong to a family of specific GKs present in cyanobacteria, in some proteobacteria and also in T. vaginalis, a Type II amitochondriate protist. These enzymes are not part of the hexokinase family, which is broadly distributed among eukaryotes, including the Type I amitochondriate parasite Entamoeba histolytica. G. intestinalis GK expressed in Escherichia coli was specific for glucose and glucosamine, as are its eubacterial homologs. The sequence of diplomonad and trichomonad GPIs formed a monophyletic group more closely related to cyanobacterial and chloroplast sequences than to cytosolic GPIs of other eukaryotes and prokaryotes. The findings show that certain enzymes of the energy metabolism of these amitochondriate protists originated from sources different than those of other eukaryotes. The observation that the two diplomonads and T. vaginalis share the same unusual GK and GPI is consistent with gene trees that suggest a close relationship between diplomonads and parabasalids. The intriguing relationships of these enzymes to cyanobacterial (and chloroplast) enzymes might reflect horizontal gene transfer between the common ancestor of the diplomonad and parabasalid lineages and the ancestor of cyanobacteria.
Collapse
Affiliation(s)
- K Henze
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Concepción JL, Adjé CA, Quiñones W, Chevalier N, Dubourdieu M, Michels PA. The expression and intracellular distribution of phosphoglycerate kinase isoenzymes in Trypanosoma cruzi. Mol Biochem Parasitol 2001; 118:111-21. [PMID: 11704279 DOI: 10.1016/s0166-6851(01)00381-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, we report the subcellular distribution of phosphoglycerate kinase (PGK) in epimastigotes of Trypanosoma cruzi. Approximately 80% of the PGK activity was found in the cytosol, 20% in the glycosomes. Western blot analysis suggested that two isoenzymes of 56 and 48 kDa, respectively, are responsible for the glycosomal PGK activity, whereas the cytosolic activity should be attributed to a single PGK of 48 kDa. In analogy to the situation previously reported for PGK in Trypanosoma brucei, these isoenzymes were called PGKA, C and B, respectively. However, in T. cruzi, PGKA seems not to be a minor enzyme like its counterpart in T. brucei. Whereas PGKC behaved as a soluble glycosomal matrix protein, PGKA appeared to be present at the inner surface of the organelle's membrane. After alkaline carbonate treatment, the enzyme remained associated with the particulate fraction of the organelles. Upon solubilization of glycosomes with Triton X-114, PGKA was recovered from the detergent phase, indicating its (partial) hydrophobic character and therefore, a possible hydrophobic interaction with the membrane. The PGKA gene was cloned and sequenced, but the predicted amino-acid sequence did not reveal an obvious clue as to the mechanism by which the enzyme is attached to the glycosomal membrane.
Collapse
Affiliation(s)
- J L Concepción
- Unidad de Bioquimica de Parasitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | | | | | | | | | | |
Collapse
|
112
|
Helfert S, Estévez AM, Bakker B, Michels P, Clayton C. Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei. Biochem J 2001; 357:117-25. [PMID: 11415442 PMCID: PMC1221934 DOI: 10.1042/0264-6021:3570117] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kinetoplastid protozoa compartmentalize the first seven enzymes of glycolysis and two enzymes of glycerol metabolism in a microbody, the glycosome. While in its mammalian host, Trypanosoma brucei depends entirely on glucose for ATP generation. Under aerobic conditions, most of the glucose is metabolized to pyruvate. Aerobic metabolism depends on the activities of glycosomal triosephosphate isomerase and a mitochondrial glycerophosphate oxidase, and on glycerophosphate<-->dihydroxyacetone phosphate exchange across the glycosomal membrane. Using a combination of genetics and computer modelling, we show that triosephosphate isomerase is probably essential for bloodstream trypanosome survival, but not for the insect-dwelling procyclics, which preferentially use amino acids as an energy source. When the enzyme level decreased to about 15% of that of the wild-type, the growth rate was halved. Below this level, a lethal rise in dihydroxyacetone phosphate was predicted. Expression of cytosolic triosephosphate isomerase inhibited cell growth. Attempts to knockout the trypanosome alternative oxidase genes (which are needed for glycerophosphate oxidase activity) were unsuccessful, but when we lowered the level of the corresponding mRNA by expressing a homologous double-stranded RNA, oxygen consumption was reduced fourfold and the rate of trypanosome growth was halved.
Collapse
Affiliation(s)
- S Helfert
- Zentrum für Molekularbiologie der Universität Heidelberg (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
113
|
Suresh S, Bressi JC, Kennedy KJ, Verlinde CL, Gelb MH, Hol WG. Conformational changes in Leishmania mexicana glyceraldehyde-3-phosphate dehydrogenase induced by designed inhibitors. J Mol Biol 2001; 309:423-35. [PMID: 11371162 DOI: 10.1006/jmbi.2001.4588] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The glycolytic enzymes of trypanosomes are attractive drug targets, since the blood-stream form of Trypanosoma brucei lacks a functional citric acid cycle and is dependent solely on glycolysis for its energy requirements. Glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from the pathogenic trypanosomatids T. brucei, Trypanosoma cruzi and Leishmania mexicana are quite similar to each other, and yet have sufficient structural differences compared to the human enzyme to enable the structure-based design of compounds that selectively inhibit all three trypanosomatid enzymes but not the human homologue. Adenosine analogs with substitutions on N-6 of the adenine ring and on the 2' position of the ribose moiety were designed, synthesized and tested for inhibition. Two crystal structures of L. mexicana glyceraldehyde-3-phosphate dehydrogenase in complex with high-affinity inhibitors that also block parasite growth were solved at a resolution of 2.6 A and 3.0 A. The complexes crystallized in the same crystal form, with one and a half tetramers in the crystallographic asymmetric unit. There is clear electron density for the inhibitor in all six copies of the binding site in each of the two structures. The L. mexicana GAPDH subunit exhibits substantial structural plasticity upon binding the inhibitor. Movements of the protein backbone, in response to inhibitor binding, enlarge a cavity at the binding site to accommodate the inhibitor in a classic example of induced fit. The extensive hydrophobic interactions between the protein and the two substituents on the adenine scaffold of the inhibitor provide a plausible explanation for the high affinity of these inhibitors for trypanosomatid GAPDHs.
Collapse
Affiliation(s)
- S Suresh
- Departments of Biological Structure, Biomolecular Structure Center, Howard Hughes Medical Institute, Seattle, WA 98915, USA
| | | | | | | | | | | |
Collapse
|
114
|
Abstract
The African trypanosomes remain well recognised for their role as an interesting model eukaryote for basic science, but are loosing ground in their ability to contribute to understanding common cellular mechanisms. At the same time, the diseases they cause remain as prevalent as ever, but appear increasingly irrelevant in their wider medical, social, economic and political context. What can be done to keep trypanosome biology relevant and vigorous in the 21st century?
Collapse
Affiliation(s)
- G A Cross
- Laboratory of Molecular Parasitology, The Rockefeller University, Box 185, 1230 York Avenue, 10021-6399, New York, NY, USA.
| |
Collapse
|
115
|
Kumar A, Roach C, Hirsh IS, Turley S, deWalque S, Michels PA, Hol WG. An unexpected extended conformation for the third TPR motif of the peroxin PEX5 from Trypanosoma brucei. J Mol Biol 2001; 307:271-82. [PMID: 11243819 DOI: 10.1006/jmbi.2000.4465] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of helix-rich protein motifs are involved in a variety of critical protein-protein interactions in living cells. One of these is the tetratrico peptide repeat (TPR) motif that is involved, amongst others, in cell cycle regulation, chaperone function and post-translation modifications. So far, these helix-rich TPR motifs have always been observed to be a compact unit of two helices interacting with each other in antiparallel fashion. Here, we describe the structure of the first three TPR-motifs of the peroxin PEX5 from Trypanosoma brucei, the causative agent of sleeping sickness. Peroxins are proteins involved in peroxisome, glycosome and glyoxysome biogenesis. PEX5 is the receptor of the proteins targeted to these organelles by the "peroxisomal targeting signal-1", a C-terminal tripeptide called PTS-1. The first two of the three TPR-motifs of T. brucei PEX5 appear to adopt the canonical antiparallel helix hairpin structure. In contrast, the third TPR motif of PEX5 has a dramatically different conformation in our crystals: the two helices that were supposed to form a hairpin are folded into one single 44 A long continuous helix. Such a conformation has never been observed before for a TPR motif. This raises interesting questions including the potential functional importance of a "jack-knife" conformational change in TPR motifs.
Collapse
Affiliation(s)
- A Kumar
- Departments of Biological Structure and Biochemistry, Biomolecular Structure Center and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Verlinde CL, Hannaert V, Blonski C, Willson M, Périé JJ, Fothergill-Gilmore LA, Opperdoes FR, Gelb MH, Hol WG, Michels PA. Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist Updat 2001; 4:50-65. [PMID: 11512153 DOI: 10.1054/drup.2000.0177] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Glycolysis is perceived as a promising target for new drugs against parasitic trypanosomatid protozoa because this pathway plays an essential role in their ATP supply. Trypanosomatid glycolysis is unique in that it is compartmentalized, and many of its enzymes display unique structural and kinetic features. Structure- and catalytic mechanism-based approaches are applied to design compounds that inhibit the glycolytic enzymes of the parasites without affecting the corresponding proteins of the human host. For some trypanosomatid enzymes, potent and selective inhibitors have already been developed that affect only the growth of cultured trypanosomatids, and not mammalian cells.
Collapse
Affiliation(s)
- C L Verlinde
- Department of Biological Structure, Biomolecular Structure Center, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Kita K, Miyadera H, Saruta F, Miyoshi H. Parasite Mitochondria as a Target for Chemotherapy. ACTA ACUST UNITED AC 2001. [DOI: 10.1248/jhs.47.219] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Hiroko Miyadera
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Fumiko Saruta
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo
| | - Hideto Miyoshi
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University
| |
Collapse
|