101
|
Stabilization of GABA(A) receptors at endocytic zones is mediated by an AP2 binding motif within the GABA(A) receptor β3 subunit. J Neurosci 2012; 32:2485-98. [PMID: 22396422 DOI: 10.1523/jneurosci.1622-11.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The strength of synaptic inhibition can be controlled by the stability and endocytosis of surface and synaptic GABA(A) receptors (GABA(A)Rs), but the surface receptor dynamics that underpin GABA(A)R recruitment to dendritic endocytic zones (EZs) have not been investigated. Stabilization of GABA(A)Rs at EZs is likely to be regulated by receptor interactions with the clathrin-adaptor AP2, but the molecular determinants of these associations remain poorly understood. Moreover, although surface GABA(A)R downmodulation plays a key role in pathological disinhibition in conditions such as ischemia and epilepsy, whether this occurs in an AP2-dependent manner also remains unclear. Here we report the characterization of a novel motif containing three arginine residues (405RRR407) within the GABA(A)R β3-subunit intracellular domain (ICD), responsible for the interaction with AP2 and GABA(A)R internalization. When this motif is disrupted, binding to AP2 is abolished in vitro and in rat brain. Using single-particle tracking, we reveal that surface β3-subunit-containing GABA(A)Rs exhibit highly confined behavior at EZs, which is dependent on AP2 interactions via this motif. Reduced stabilization of mutant GABA(A)Rs at EZs correlates with their reduced endocytosis and increased steady-state levels at synapses. By imaging wild-type or mutant super-ecliptic pHluorin-tagged GABA(A)Rs in neurons, we also show that, under conditions of oxygen-glucose deprivation to mimic cerebral ischemia, GABA(A)Rs are depleted from synapses in dendrites, depending on the 405RRR407 motif. Thus, AP2 binding to an RRR motif in the GABA(A)R β3-subunit ICD regulates GABA(A)R residency time at EZs, steady-state synaptic receptor levels, and pathological loss of GABA(A)Rs from synapses during simulated ischemia.
Collapse
|
102
|
Examining form and function of dendritic spines. Neural Plast 2012; 2012:704103. [PMID: 22577585 PMCID: PMC3345238 DOI: 10.1155/2012/704103] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/10/2012] [Indexed: 12/20/2022] Open
Abstract
The majority of fast excitatory synaptic transmission in the central nervous system takes place at protrusions along dendrites called spines. Dendritic spines are highly heterogeneous, both morphologically and functionally. Not surprisingly, there has been much speculation and debate on the relationship between spine structure and function. The advent of multi-photon laser-scanning microscopy has greatly improved our ability to investigate the dynamic interplay between spine form and function. Regulated structural changes occur at spines undergoing plasticity, offering a mechanism to account for the well-described correlation between spine size and synapse strength. In turn, spine structure can influence the degree of biochemical and perhaps electrical compartmentalization at individual synapses. Here, we review the relationship between dendritic spine morphology, features of spine compartmentalization and synaptic plasticity. We highlight emerging molecular mechanisms that link structural and functional changes in spines during plasticity, and also consider circumstances that underscore some divergence from a tight structure-function coupling. Because of the intricate influence of spine structure on biochemical and electrical signalling, activity-dependent changes in spine morphology alone may thus contribute to the metaplastic potential of synapses. This possibility asserts a role for structural dynamics in neuronal information storage and aligns well with current computational models.
Collapse
|
103
|
Borgonovo J, Capella P, Seltzer A, Sosa MA. Expression of coat proteins changes during postnatal development in selected areas of the rat brain. Int J Dev Neurosci 2012; 30:333-41. [PMID: 22306374 DOI: 10.1016/j.ijdevneu.2012.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/03/2012] [Accepted: 01/17/2012] [Indexed: 11/25/2022] Open
Abstract
It is well known that clathrin-mediated endocytosis is crucial for the normal functioning and integrity of neurons in the central nervous system. In this study we attempted to correlate the expression of coat proteins with development in different areas of rat brain. By Western blot, we studied the expression of AP-2, GGA1 and GGA2 in striatum, cerebellum, brain stem, cerebral cortex and hippocampus of newborn rats and during post-natal development; 5, 15, 30, 60, 90 or 150 days after birth. We observed that the expression of the α2 subunit of AP-2 increased substantially between the 15th and 30th day after birth in all areas studied, excepting the cerebellum and cortex. On the other hand, the expression of the α1 subunit does not change significantly during the development in any of the areas under study. We also noted that the expression of the μ2 subunit did not follow the pattern of α2 during development. In general terms, the expression of GGA1 and GGA2 followed a similar pattern to that of AP-2, although these proteins increased significantly in the cerebral cortex from the 15th day after birth. Moreover, presenilin-1, a protein associated with aging and neurodegeneration, shows an expression pattern similar to coat proteins in the striatum and cortex. These results suggest that proteins that conform the intracellular transport machinery in the brain cells seems to accompany development, according to the maturation of the different brain areas.
Collapse
Affiliation(s)
- Janina Borgonovo
- Laboratorio de Biología y Fisiología Celular "Dr. Francisco Bertini", Instituto de Histología y Embriología, FCM, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | |
Collapse
|
104
|
Goebel-Goody SM, Lombroso PJ. Taking STEPs forward to understand fragile X syndrome. Results Probl Cell Differ 2012; 54:223-41. [PMID: 22009355 DOI: 10.1007/978-3-642-21649-7_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A priority of fragile X syndrome (FXS) research is to determine the molecular mechanisms underlying the functional, behavioral, and structural deficits in humans and in the FXS mouse model. Given that metabotropic glutamate receptor (mGluR) long-term depression (LTD) is exaggerated in FXS mice, considerable effort has focused on proteins that regulate this form of synaptic plasticity. STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific phosphatase implicated as an "LTD protein" because it mediates AMPA receptor internalization during mGluR LTD. STEP also promotes NMDA receptor endocytosis and inactivates ERK1/2 and Fyn, thereby opposing synaptic strengthening. We hypothesized that dysregulation of STEP may contribute to the pathophysiology of FXS. We review how STEP's expression and activity are regulated by dendritic protein synthesis, ubiquitination, proteolysis, and phosphorylation. We also discuss implications for STEP in FXS and other disorders, including Alzheimer's disease. As highlighted here, pharmacological interventions targeting STEP may prove successful for FXS.
Collapse
|
105
|
Okabe S. Molecular Dynamics of the Excitatory Synapse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:131-52. [DOI: 10.1007/978-3-7091-0932-8_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
106
|
Heine M. Surface traffic in synaptic membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:197-219. [PMID: 22351057 DOI: 10.1007/978-3-7091-0932-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The precision of signal transmission in chemical synapses is highly dependent on the structural alignment between pre- and postsynaptic components. The thermal agitation of transmembrane signaling molecules by surrounding lipid molecules and activity-driven changes in the local protein interaction affinities indicate a dynamic molecular traffic of molecules within synapses. The observation of local protein surface dynamics starts to be a useful tool to determine the contribution of intracellular and extracellular structures in organizing a plastic synapse. Local rearrangements by lateral diffusion in the synaptic and perisynaptic membrane induce fast density changes of signaling molecules and enable the synapse to change efficacy in short time scales. The degree of lateral mobility is restricted by many passive and active interactions inside and outside the membrane. AMPAR at the glutamatergic synapse are the best explored receptors in this respect and reviewed here as an example molecule. In addition, transsynaptic adhesion molecule complexes also appear highly dynamically in the synapse and do further support the importance of local surface traffic in subcellular compartments like synapses.
Collapse
Affiliation(s)
- Martin Heine
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
| |
Collapse
|
107
|
Unoki T, Matsuda S, Kakegawa W, Van N, Kohda K, Suzuki A, Funakoshi Y, Hasegawa H, Yuzaki M, Kanaho Y. NMDA Receptor-Mediated PIP5K Activation to Produce PI(4,5)P2 Is Essential for AMPA Receptor Endocytosis during LTD. Neuron 2012; 73:135-48. [DOI: 10.1016/j.neuron.2011.09.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2011] [Indexed: 10/14/2022]
|
108
|
Abstract
Synaptic transmission is amongst the most sophisticated and tightly controlled biological phenomena in higher eukaryotes. In the past few decades, tremendous progress has been made in our understanding of the molecular mechanisms underlying multiple facets of neurotransmission, both pre- and postsynaptically. Brought under the spotlight by pioneer studies in the areas of secretion and signal transduction, phosphoinositides and their metabolizing enzymes have been increasingly recognized as key protagonists in fundamental aspects of neurotransmission. Not surprisingly, dysregulation of phosphoinositide metabolism has also been implicated in synaptic malfunction associated with a variety of brain disorders. In the present chapter, we summarize current knowledge on the role of phosphoinositides at the neuronal synapse and highlight some of the outstanding questions in this research field.
Collapse
Affiliation(s)
- Samuel G Frere
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, P&S 12-420C, 10032, New York, USA
| | | | | |
Collapse
|
109
|
Goebel-Goody SM, Baum M, Paspalas CD, Fernandez SM, Carty NC, Kurup P, Lombroso PJ. Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol Rev 2012; 64:65-87. [PMID: 22090472 PMCID: PMC3250079 DOI: 10.1124/pr.110.003053] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase that modulates key signaling molecules involved in synaptic plasticity and neuronal function. Targets include extracellular-regulated kinase 1 and 2 (ERK1/2), stress-activated protein kinase p38 (p38), the Src family tyrosine kinase Fyn, N-methyl-D-aspartate receptors (NMDARs), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). STEP-mediated dephosphorylation of ERK1/2, p38, and Fyn leads to inactivation of these enzymes, whereas STEP-mediated dephosphorylation of surface NMDARs and AMPARs promotes their endocytosis. Accordingly, the current model of STEP function posits that it opposes long-term potentiation and promotes long-term depression. Phosphorylation, cleavage, dimerization, ubiquitination, and local translation all converge to maintain an appropriate balance of STEP in the central nervous system. Accumulating evidence over the past decade indicates that STEP dysregulation contributes to the pathophysiology of several neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, fragile X syndrome, epileptogenesis, alcohol-induced memory loss, Huntington's disease, drug abuse, stroke/ischemia, and inflammatory pain. This comprehensive review discusses STEP expression and regulation and highlights how disrupted STEP function contributes to the pathophysiology of diverse neuropsychiatric disorders.
Collapse
Affiliation(s)
- Susan M Goebel-Goody
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth. Neuron 2011; 72:285-99. [PMID: 22017988 DOI: 10.1016/j.neuron.2011.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2011] [Indexed: 11/22/2022]
Abstract
VIDEO ABSTRACT During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites.
Collapse
|
111
|
Ologunde R, Ma D. Do inhalational anesthetics cause cognitive dysfunction? ACTA ACUST UNITED AC 2011; 49:149-53. [PMID: 22221688 DOI: 10.1016/j.aat.2011.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/03/2011] [Accepted: 12/05/2011] [Indexed: 11/28/2022]
Abstract
Increasing evidence indicates that inhalational anesthetics may cause or increase the risk of developing postoperative cognitive dysfunction (POCD), especially in the elderly population. POCD may exist as a transient or long-term complication of surgery and anesthesia and is associated with reduced quality of life. There remains great discrepancy between clinical studies investigating the prevalence of POCD and inhalational anesthetics as many fail to show an association. However, numerous animal studies have suggested that inhalational anesthetics may alter cognitive function via amyloid β accumulation, modified neurotransmission, synaptic changes and dysregulated calcium homeostasis. Other factors such as neuroinflammation and pro-inflammatory cytokines may also play a role. This paper reviews the role of inhalational anesthetics in the etiology and underlying mechanisms that result in POCD.
Collapse
Affiliation(s)
- Rele Ologunde
- Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | | |
Collapse
|
112
|
Abstract
In neurons L-type calcium currents function in gene regulation and synaptic plasticity, while excessive calcium influx leads to excitotoxicity and neurodegeneration. The major neuronal Ca(V)1.2 L-type channels are localized in clusters in dendritic shafts and spines. Whereas Ca(V)1.2 clusters remain stable during NMDA-induced synaptic depression, L-type calcium currents are rapidly downregulated during strong excitatory stimulation. Here we used fluorescence recovery after photobleaching (FRAP), live cell-labeling protocols, and single particle tracking (SPT) to analyze the turnover and surface traffic of Ca(V)1.2 in dendrites of mature cultured mouse and rat hippocampal neurons, respectively. FRAP analysis of channels extracellularly tagged with superecliptic pHluorin (Ca(V)1.2-SEP) demonstrated ∼20% recovery within 2 min without reappearance of clusters. Pulse-chase labeling showed that membrane-expressed Ca(V)1.2-HA is not internalized within1 h, while blocking dynamin-dependent endocytosis resulted in increased cluster density after 30 min. Together, these results suggest a turnover rate of clustered Ca(V)1.2s on the hour time scale. Direct recording of the lateral movement in the membrane using SPT demonstrated that dendritic Ca(V)1.2s show highly confined mobility with diffusion coefficients of ∼0.005 μm² s⁻¹. Consistent with the mobile Ca(V)1.2 fraction observed in FRAP, a ∼30% subpopulation of channels reversibly exchanged between confined and diffusive states. Remarkably, high potassium depolarization did not alter the recovery rates in FRAP or the diffusion coefficients in SPT analyses. Thus, an equilibrium of clustered and dynamic Ca(V)1.2s maintains stable calcium channel complexes involved in activity-dependent cell signaling, whereas the minor mobile channel pool in mature neurons allows limited capacity for short-term adaptations.
Collapse
|
113
|
Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci 2011; 48:308-20. [DOI: 10.1016/j.mcn.2011.05.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/20/2011] [Accepted: 05/01/2011] [Indexed: 11/23/2022] Open
|
114
|
Benson DL, Huntley GW. Synapse adhesion: a dynamic equilibrium conferring stability and flexibility. Curr Opin Neurobiol 2011; 22:397-404. [PMID: 22019151 DOI: 10.1016/j.conb.2011.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022]
Abstract
Cell adhesion molecules (CAMs) linked to cytoskeleton generate stable cell-cell junctions. Cadherins provide a canonical example, but paradoxically, they participate in a multitude of transient and regulatable interactions. Their extracellular binding generates weak adhesion that is modified by clustering; interactions with F-actin are regulated, can be transient, and can alter F-actin dynamics. Additionally, cadherin recycling from the cell surface can modify the size and location of junctions and strength of adhesion. In epithelial cells, this ongoing dynamic behavior is important for maintaining stable junctions. Recent work supports that cadherins act similarly at synapses where their actions are likely to be shared by integrins and other actin-linked CAMs. Together the collaborative activities of such CAMs provide a stable, but flexible structure that can promote and support changes in synapse shape and size while maintaining stable junctions to permit information flow.
Collapse
Affiliation(s)
- Deanna L Benson
- Department of Neuroscience and the Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, United States.
| | | |
Collapse
|
115
|
Krugers HJ, Zhou M, Joëls M, Kindt M. Regulation of excitatory synapses and fearful memories by stress hormones. Front Behav Neurosci 2011; 5:62. [PMID: 22013419 PMCID: PMC3190121 DOI: 10.3389/fnbeh.2011.00062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 09/05/2011] [Indexed: 12/18/2022] Open
Abstract
Memories for emotionally arousing and fearful events are generally well retained. From the evolutionary point of view this is a highly adaptive behavioral response aimed to remember relevant information. However, fearful memories can also be inappropriately and vividly (re)expressed, such as in posttraumatic stress disorder. The memory formation of emotionally arousing events is largely modulated by hormones, peptides, and neurotransmitters which are released during and after exposure to these conditions. One of the core reactions in response to a stressful situation is the rapid activation of the autonomic nervous system, which results in the release of norepinephrine in the brain. In addition, stressful events stimulate the hypothalamus-pituitary-adrenal axis which slowly increases the release of glucocorticoid hormones from the adrenal glands. Here we will review how glucocorticoids and norepinephrine regulate the formation of fearful memories in rodents and humans and how these hormones can facilitate the storage of information by regulating excitatory synapses.
Collapse
Affiliation(s)
- Harm J. Krugers
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Ming Zhou
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Marian Joëls
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center UtrechtUtrecht, Netherlands
| | - Merel Kindt
- Department of Clinical Psychology, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
116
|
Bosch M, Hayashi Y. Structural plasticity of dendritic spines. Curr Opin Neurobiol 2011; 22:383-8. [PMID: 21963169 DOI: 10.1016/j.conb.2011.09.002] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 09/11/2011] [Indexed: 12/17/2022]
Abstract
Dendritic spines are small mushroom-like protrusions arising from neurons where most excitatory synapses reside. Their peculiar shape suggests that spines can serve as an autonomous postsynaptic compartment that isolates chemical and electrical signaling. How neuronal activity modifies the morphology of the spine and how these modifications affect synaptic transmission and plasticity are intriguing issues. Indeed, the induction of long-term potentiation (LTP) or depression (LTD) is associated with the enlargement or shrinkage of the spine, respectively. This structural plasticity is mainly controlled by actin filaments, the principal cytoskeletal component of the spine. Here we review the pioneering microscopic studies examining the structural plasticity of spines and propose how changes in actin treadmilling might regulate spine morphology.
Collapse
Affiliation(s)
- Miquel Bosch
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
117
|
New insights in endosomal dynamics and AMPA receptor trafficking. Semin Cell Dev Biol 2011; 22:499-505. [PMID: 21843653 DOI: 10.1016/j.semcdb.2011.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/15/2022]
Abstract
The trafficking mechanisms that control the density of synaptic AMPA-type glutamate receptors have received significant attention because of their importance for regulating excitatory synaptic transmission and synaptic plasticity in the hippocampus. AMPA receptors are synthesized in the neuronal cell body and reach their postsynaptic targets after a complex journey involving multiple transport steps along different cytoskeleton structures and through various stages of the endocytic pathway. Dendritic spines are important sites for AMPA receptor trafficking and contain the basic components of endosomal recycling. On induction of synaptic plasticity, internalized AMPA receptors undergo endosomal sorting and cycle through early endosomes and recycling endosomes back to the plasma membrane (model for long-term potentiation) or target for degradation to the lysosomes (model for long-term depression). Exciting new studies now provide insight in actin-mediated processes that controls endosomal tubule formation and receptor sorting. This review describes the path of AMPA receptor internalization up to sites of recycling and summarizes recent studies on actin-mediated endosomal receptor sorting.
Collapse
|
118
|
Li D, Specht CG, Waites CL, Butler-Munro C, Leal-Ortiz S, Foote JW, Genoux D, Garner CC, Montgomery JM. SAP97 directs NMDA receptor spine targeting and synaptic plasticity. J Physiol 2011; 589:4491-510. [PMID: 21768261 DOI: 10.1113/jphysiol.2011.215566] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
SAP97 is a multidomain scaffold protein implicated in the forward trafficking and synaptic localization of NMDA- and AMPA-type glutamate receptors. Alternative splicing of SAP97 transcripts gives rise to palmitoylated αSAP97 and L27-domain containing βSAP97 isoforms that differentially regulate the subsynaptic localization of GluR1 subunits of AMPA receptors. Here, we examined whether SAP97 isoforms regulate the mechanisms underlying long-term potentiation (LTP) and depression (LTD) and find that both α- and β-forms of SAP97 impair LTP but enhance LTD via independent isoform-specific mechanisms. Live imaging of α- and βSAP97 revealed that the altered synaptic plasticity was not due to activity-dependent changes in SAP97 localization or exchange kinetics. However, by recording from pairs of synaptically coupled hippocampal neurons, we show that αSAP97 occludes LTP by enhancing the levels of postsynaptic AMPA receptors, while βSAP97 blocks LTP by reducing the synaptic localization of NMDA receptors. Examination of the surface pools of AMPA and NMDA receptors indicates that αSAP97 selectively regulates the synaptic pool of AMPA receptors, whereas βSAP97 regulates the extrasynaptic pools of both AMPA and NMDA receptors. Knockdown of βSAP97 increases the synaptic localization of both AMPA and NMDA receptors, showing that endogenous βSAP97 restricts glutamate receptor expression at excitatory synapses. This isoform-dependent differential regulation of synaptic versus extrasynaptic pools of glutamate receptors will determine how many receptors are available for the induction and the expression of synaptic plasticity. Our data support a model wherein SAP97 isoforms can regulate the ability of synapses to undergo plasticity by controlling the surface distribution of AMPA and NMDA receptors.
Collapse
Affiliation(s)
- Dong Li
- Centre for Brain Research and Department of Physiology, University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
A network of networks: cytoskeletal control of compartmentalized function within dendritic spines. Curr Opin Neurobiol 2011; 20:578-87. [PMID: 20667710 DOI: 10.1016/j.conb.2010.06.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/04/2010] [Accepted: 06/26/2010] [Indexed: 12/19/2022]
Abstract
Almost 30 years ago, actin was identified as the major cytoskeletal component of dendritic spines. Since then, its role in the remarkable dynamics of spine morphology have been detailed with live-cell views establishing that spine shape dynamics are an important requirement for synaptogenesis and synaptic plasticity. However, the actin cytoskeleton is critical to numerous and varied processes within the spine which contribute to the maintenance and plasticity of synaptic function. Here, we argue that the spatial and temporal distribution of actin-dependent processes within spines suggests that the spine cytoskeleton should not be considered a single entity, but an interacting network of nodes or hubs that are independently regulated and balanced to maintain synapse function. Disruptions of this balance within the spine are likely to lead to psychiatric and neurological dysfunction.
Collapse
|
120
|
Abstract
We review mainly the work from our research group here. Our focus has been on the use of genetic methods to delineate the mechanisms of synaptic vesicle recycling and cellular trafficking. Acute temperature-sensitive paralytic mutants have been of particular value in this approach. We have primarily used screens for suppressor and enhancer mutations to identify genetic loci coding for proteins that interact with Dynamin in Drosophila. In addition, we have used reverse genetic approaches to investigate few other candidate molecules that may play a role in synaptic vesicle endocytosis. We have in particular discussed at some length the role of endocytic accessory proteins Stoned and Eps15 in vesicle recycling.
Collapse
Affiliation(s)
- Riddhi Majumder
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
121
|
Bard L, Groc L. Glutamate receptor dynamics and protein interaction: lessons from the NMDA receptor. Mol Cell Neurosci 2011; 48:298-307. [PMID: 21640188 DOI: 10.1016/j.mcn.2011.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 11/16/2022] Open
Abstract
The plasticity of excitatory glutamate synapses emerged over the last decades as a core cellular mechanism for the encoding and processing of various cognitive functions. This property relies in part on the ability to dynamically adjust the content of glutamate receptors in the postsynaptic membrane. Among these receptors, NMDA receptors (NMDAR), which are composed of two obligatory GluN1 and two regulatory GluN2/3 subunits, play a key role in the induction of many forms of plasticity processes. Understanding how NMDAR subtypes are trafficked and regulated in the synapse has thus captured considerable attention. It has emerged that NMDAR synaptic content relies on an equilibrium between intracellular trafficking and rapid lateral diffusion of the receptor within the synaptic area. Here, we review our current understanding of NMDAR trafficking, mostly the ones at the surface membrane, with a specific focus on the role of interacting PDZ-containing proteins during the journey of NMDAR to and around the synaptic area. The cellular and molecular lessons obtained from examining NMDAR dynamics and regulation by interacting proteins appear to apply to other ionotropic neurotransmitter receptors, and thus shed new light on the modulation of excitatory, inhibitory, and modulatory transmission. This article is part of a Special Issue entitled 'Neuronal Function'.
Collapse
Affiliation(s)
- Lucie Bard
- Univ. de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France
| | | |
Collapse
|
122
|
Tao-Cheng JH, Crocker VT, Winters CA, Azzam R, Chludzinski J, Reese TS. Trafficking of AMPA receptors at plasma membranes of hippocampal neurons. J Neurosci 2011; 31:4834-43. [PMID: 21451021 PMCID: PMC3138201 DOI: 10.1523/jneurosci.4745-10.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/09/2011] [Accepted: 01/22/2011] [Indexed: 11/21/2022] Open
Abstract
The number of AMPA receptors at synapses depends on receptor cycling. Because receptors diffuse rapidly in plasma membranes, their exocytosis and endocytosis need not occur near synapses. Here, pre-embedding immunogold electron microscopy is applied to dissociated rat hippocampal cultures to provide sensitive, high-resolution snapshots of the distribution of surface AMPA receptors in spines, dendrites, and cell bodies that will be informative about trafficking of AMPA receptors. The density of the label for GluR2 varies, but is consistent throughout cell body and dendrites in each individual neuron, except at postsynaptic densities (PSDs), where it is typically higher. Glutamate receptor 2 (GluR2) labels at PSDs significantly increase after synaptic activation by glycine treatment and increase further upon depolarization by high K(+). Islands of densely packed labels have consistent size and density but vary in frequency under different experimental conditions. These patches of label, which occur on plasma membranes of cell bodies and dendrites but not near PSDs, are taken to be the aftermath of exocytosis of AMPA receptors. A subpopulation of clathrin-coated pits in cell bodies and dendrites label for GluR2, and the number and amount of label in individual pits increase after NMDA treatment. Coated pits near synapses typically lack GluR2 label under basal conditions, but ∼40% of peri-PSD pits label for GluR2 after NMDA treatment. Thus, exocytosis and endocytosis of AMPA receptors occur mainly at extrasynaptic locations on cell bodies and dendrites. Receptors are not preferentially exocytosed near PSDs, but may be removed via endocytosis at peri-PSD locations after activation of NMDA receptors.
Collapse
Affiliation(s)
| | | | - Christine A. Winters
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD 20892
| | | | - John Chludzinski
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD 20892
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD 20892
| |
Collapse
|
123
|
Shieh JC, Schaar BT, Srinivasan K, Brodsky FM, McConnell SK. Endocytosis regulates cell soma translocation and the distribution of adhesion proteins in migrating neurons. PLoS One 2011; 6:e17802. [PMID: 21445347 PMCID: PMC3062553 DOI: 10.1371/journal.pone.0017802] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 02/14/2011] [Indexed: 11/21/2022] Open
Abstract
Newborn neurons migrate from their birthplace to their final location to form a properly functioning nervous system. During these movements, young neurons must attach and subsequently detach from their substrate to facilitate migration, but little is known about the mechanisms cells use to release their attachments. We show that the machinery for clathrin-mediated endocytosis is positioned to regulate the distribution of adhesion proteins in a subcellular region just proximal to the neuronal cell body. Inhibiting clathrin or dynamin function impedes the movement of migrating neurons both in vitro and in vivo. Inhibiting dynamin function in vitro shifts the distribution of adhesion proteins to the rear of the cell. These results suggest that endocytosis may play a critical role in regulating substrate detachment to enable cell body translocation in migrating neurons.
Collapse
Affiliation(s)
- Jennifer C. Shieh
- Department of Biology, Stanford University, Stanford, California, United States of America
- Program in Neuroscience, Stanford University, Stanford, California, United States of America
| | - Bruce T. Schaar
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Karpagam Srinivasan
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Frances M. Brodsky
- Departments of Bioengineering and Therapeutic Sciences, Pharmaceutical Chemistry, and Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Susan K. McConnell
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
124
|
Abstract
Dendritic exocytosis is required for a broad array of neuronal functions including retrograde signaling, neurotransmitter release, synaptic plasticity, and establishment of neuronal morphology. While the details of synaptic vesicle exocytosis from presynaptic terminals have been intensely studied for decades, the mechanisms of dendritic exocytosis are only now emerging. Here we review the molecules and mechanisms of dendritic exocytosis and discuss how exocytosis from dendrites influences neuronal function and circuit plasticity.
Collapse
Affiliation(s)
- Matthew J. Kennedy
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Pfizer Global Research and Development, Neuroscience Research Unit, Groton CT, USA
| |
Collapse
|
125
|
Puchkov D, Leshchyns'ka I, Nikonenko AG, Schachner M, Sytnyk V. NCAM/spectrin complex disassembly results in PSD perforation and postsynaptic endocytic zone formation. ACTA ACUST UNITED AC 2011; 21:2217-32. [PMID: 21339376 DOI: 10.1093/cercor/bhq283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mechanisms inducing perforation of the postsynaptic density (PSD) are poorly understood. We show that neural cell adhesion molecule- deficient (NCAM-/-) hippocampal neurons have an abnormally high percentage of synapses with perforated PSDs. The percentage of synapses with perforated PSDs is also increased in wild-type (NCAM+/+) neurons after the disruption of the NCAM/spectrin complex indicating that the NCAM-assembled spectrin cytoskeleton maintains the structural integrity of PSDs. We demonstrate that PSD perforations contain endocytic zones involved in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization. Induction of long-term potentiation in NCAM+/+ neurons accompanied by insertion of AMPAR into the neuronal cell surface is subsequently followed by formation of perforated synapses and AMPAR endocytosis suggesting that perforation of PSDs is important for membrane homeostasis in activated synapses. In NCAM-/- or NCAM+/+ neurons with dissociated spectrin meshwork, AMPAR endocytosis is enhanced under conditions of basal activity. An abnormally high rate of postsynaptic membrane endocytosis may thus contribute to brain pathologies associated with mutations in NCAM or spectrin.
Collapse
Affiliation(s)
- Dmytro Puchkov
- Zentrum für Molekulare Neurobiologie, Universitätskrankenhaus Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
126
|
Kelly EE, Horgan CP, McCaffrey MW, Young P. The role of endosomal-recycling in long-term potentiation. Cell Mol Life Sci 2011; 68:185-94. [PMID: 20820847 PMCID: PMC11114889 DOI: 10.1007/s00018-010-0516-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 08/06/2010] [Accepted: 08/17/2010] [Indexed: 11/26/2022]
Abstract
Long-term potentiation (LTP) defines persistent increases in neurotransmission strength at synapses that are triggered by specific patterns of neuronal activity. LTP, the most widely accepted molecular model for learning, is best characterised at glutamatergic synapses on dendritic spines. In this context, LTP involves increases in dendritic spine size and the insertion of glutamate receptors into the post-synaptic spine membrane, which together boost post-synaptic responsiveness to neurotransmitters. In dendrites, the material required for LTP is sourced from an organelle termed the endosomal-recycling compartment (ERC), which is localised to the base of dendritic spines. When LTP is induced, material derived from the recycling compartment, which contains α-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptors (AMPARs), is mobilised into dendritic spines feeding the increased need for receptors and membrane at the spine neck and head. In this review, we discuss the importance of endosomal-recycling and the role of key proteins which control these processes in the context of LTP.
Collapse
Affiliation(s)
- Eoin E Kelly
- Department of Biochemistry, BioSciences Institute, University College Cork, Ireland.
| | | | | | | |
Collapse
|
127
|
Ottersen OP. How hardwired is the brain? Technological advances provide new insight into brain malleability and neurotransmission. Nutr Rev 2010; 68 Suppl 2:S60-4. [DOI: 10.1111/j.1753-4887.2010.00350.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
128
|
Sanz-Clemente A, Matta JA, Isaac JT, Roche KW. Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 2010; 67:984-96. [PMID: 20869595 PMCID: PMC2947143 DOI: 10.1016/j.neuron.2010.08.011] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors (NMDARs) play a central role in development, synaptic plasticity, and neurological disease. NMDAR subunit composition defines their biophysical properties and downstream signaling. Casein kinase 2 (CK2) phosphorylates the NR2B subunit within its PDZ-binding domain; however, the consequences for NMDAR localization and function are unclear. Here we show that CK2 phosphorylation of NR2B regulates synaptic NR2B and NR2A in response to activity. We find that CK2 phosphorylates NR2B, but not NR2A, to drive NR2B-endocytosis and remove NR2B from synapses resulting in an increase in synaptic NR2A expression. During development there is an activity-dependent switch from NR2B to NR2A at cortical synapses. We observe an increase in CK2 expression and NR2B phosphorylation over this same critical period and show that the acute activity-dependent switch in NR2 subunit composition at developing hippocampal synapses requires CK2 activity. Thus, CK2 plays a central role in determining the NR2 subunit content of synaptic NMDARs.
Collapse
Affiliation(s)
- Antonio Sanz-Clemente
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD 20892
| | - Jose A. Matta
- Synaptic Plasticity Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD 20892
| | - John T.R. Isaac
- Synaptic Plasticity Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD 20892
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
129
|
Frost NA, Shroff H, Kong H, Betzig E, Blanpied TA. Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 2010; 67:86-99. [PMID: 20624594 PMCID: PMC2904347 DOI: 10.1016/j.neuron.2010.05.026] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
Abstract
Within dendritic spines, actin is presumed to anchor receptors in the postsynaptic density and play numerous roles regulating synaptic transmission. However, the submicron dimensions of spines have hindered examination of actin dynamics within them and prevented live-cell discrimination of perisynaptic actin filaments. Using photoactivated localization microscopy, we measured movement of individual actin molecules within living spines. Velocity of single actin molecules along filaments, an index of filament polymerization rate, was highly heterogeneous within individual spines. Most strikingly, molecular velocity was elevated in discrete, well-separated foci occurring not principally at the spine tip, but in subdomains throughout the spine, including the neck. Whereas actin velocity on filaments at the synapse was substantially elevated, at the endocytic zone there was no enhanced polymerization activity. We conclude that actin subserves spatially diverse, independently regulated processes throughout spines. Perisynaptic actin forms a uniquely dynamic structure well suited for direct, active regulation of the synapse.
Collapse
Affiliation(s)
- Nicholas A. Frost
- Department of Physiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hari Shroff
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, 20892, USA
| | - Huihui Kong
- Department of Physiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Eric Betzig
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Thomas A. Blanpied
- Department of Physiology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
130
|
Batchelder EM, Yarar D. Differential requirements for clathrin-dependent endocytosis at sites of cell-substrate adhesion. Mol Biol Cell 2010; 21:3070-9. [PMID: 20631253 PMCID: PMC2929999 DOI: 10.1091/mbc.e09-12-1044] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the influences of cell–substrate attachment in clathrin-mediated endocytosis. We find that cell–substrate adhesion reduces the rate of endocytosis. In addition, we demonstrate that actin assembly is differentially required for efficient endocytosis, with a stronger requirement for actin dynamics at sites of adhesion. Clathrin-dependent endocytosis is a major route for the cellular import of macromolecules and occurs at the interface between the cell and its surroundings. However, little is known about the influences of cell–substrate attachment in clathrin-coated vesicle formation. Using biochemical and imaging-based methods, we find that cell–substrate adhesion reduces the rate of endocytosis. Clathrin-coated pits (CCPs) in proximity to substrate contacts exhibit slower dynamics in comparison to CCPs found more distant from adhesions. Direct manipulation of the extracellular matrix (ECM) to modulate adhesion demonstrates that tight adhesion dramatically reduces clathrin-dependent endocytosis and extends the lifetimes of clathrin structures. This reduction is in part mediated by integrin-matrix engagement. In addition, we demonstrate that actin cytoskeletal dynamics are differentially required for efficient endocytosis, with a stronger requirement for actin polymerization in areas of adhesion. Together, these results reveal that cell–substrate adhesion regulates clathrin-dependent endocytosis and suggests that actin assembly facilitates vesicle formation at sites of adhesion.
Collapse
Affiliation(s)
- Erika M Batchelder
- The Whitehead Institute for Biomedical Research and the Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
131
|
|
132
|
Jurado S, Benoist M, Lario A, Knafo S, Petrok CN, Esteban JA. PTEN is recruited to the postsynaptic terminal for NMDA receptor-dependent long-term depression. EMBO J 2010; 29:2827-40. [PMID: 20628354 DOI: 10.1038/emboj.2010.160] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 06/24/2010] [Indexed: 01/10/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is an important regulator of phosphatidylinositol-(3,4,5,)-trisphosphate signalling, which controls cell growth and differentiation. However, PTEN is also highly expressed in the adult brain, in which it can be found in dendritic spines in hippocampus and other brain regions. Here, we have investigated specific functions of PTEN in the regulation of synaptic function in excitatory hippocampal synapses. We found that NMDA receptor activation triggers a PDZ-dependent association between PTEN and the synaptic scaffolding molecule PSD-95. This association is accompanied by PTEN localization at the postsynaptic density and anchoring within the spine. On the other hand, enhancement of PTEN lipid phosphatase activity is able to drive depression of AMPA receptor-mediated synaptic responses. This activity is specifically required for NMDA receptor-dependent long-term depression (LTD), but not for LTP or metabotropic glutamate receptor-dependent LTD. Therefore, these results reveal PTEN as a regulated signalling molecule at the synapse, which is recruited to the postsynaptic membrane upon NMDA receptor activation, and is required for the modulation of synaptic activity during plasticity.
Collapse
Affiliation(s)
- Sandra Jurado
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
133
|
Bürli T, Baer K, Ewers H, Sidler C, Fuhrer C, Fritschy JM. Single particle tracking of alpha7 nicotinic AChR in hippocampal neurons reveals regulated confinement at glutamatergic and GABAergic perisynaptic sites. PLoS One 2010; 5:e11507. [PMID: 20634896 PMCID: PMC2901346 DOI: 10.1371/journal.pone.0011507] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 06/18/2010] [Indexed: 01/05/2023] Open
Abstract
Alpha7 neuronal nicotinic acetylcholine receptors (alpha7-nAChR) form Ca(2+)-permeable homopentameric channels modulating cortical network activity and cognitive processing. They are located pre- and postsynaptically and are highly abundant in hippocampal GABAergic interneurons. It is unclear how alpha7-nAChRs are positioned in specific membrane microdomains, particularly in cultured neurons which are devoid of cholinergic synapses. To address this issue, we monitored by single particle tracking the lateral mobility of individual alpha7-nAChRs labeled with alpha-bungarotoxin linked to quantum dots in live rat cultured hippocampal interneurons. Quantitative analysis revealed different modes of lateral diffusion of alpha7-nAChR dependent on their subcellular localization. Confined receptors were found in the immediate vicinity of glutamatergic and GABAergic postsynaptic densities, as well as in extrasynaptic clusters of alpha-bungarotoxin labeling on dendrites. alpha7-nAChRs avoided entering postsynaptic densities, but exhibited reduced mobility and long dwell times at perisynaptic locations, indicative of regulated confinement. Their diffusion coefficient was lower, on average, at glutamatergic than at GABAergic perisynaptic sites, suggesting differential, synapse-specific tethering mechanisms. Disruption of the cytoskeleton affected alpha7-nAChR mobility and cell surface expression, but not their ability to form clusters. Finally, using tetrodotoxin to silence network activity, as well as exposure to a selective alpha7-nAChR agonist or antagonist, we observed that alpha7-nAChRs cell surface dynamics is modulated by chronic changes in neuronal activity. Altogether, given their high Ca(2+)-permeability, our results suggest a possible role of alpha7-nAChR on interneurons for activating Ca(2+)-dependent signaling in the vicinity of GABAergic and glutamatergic synapses.
Collapse
Affiliation(s)
- Thomas Bürli
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Kristin Baer
- School of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Helge Ewers
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Corinne Sidler
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Christian Fuhrer
- Department of Neurochemistry, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
134
|
Low CM, Wee KSL. New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function. Mol Pharmacol 2010; 78:1-11. [PMID: 20363861 DOI: 10.1124/mol.110.064006] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The NR3 subunits (NR3A and NR3B) are new players in a well established field of N-methyl-d-aspartate (NMDA) receptors, previously involving the NR1 and NR2 subunits. Their incorporation into conventional NMDA receptors forms glutamate-activated NR1/NR2/NR3 triheteromers, whereas the omission of the glutamate-binding NR2 subunits results in excitatory glycine-activated NR1/NR3 diheteromers. These NR3-containing NMDA receptors exhibit several differences in receptor properties compared with the conventional NR1/NR2 receptors. This review highlights the major landmarks that have been achieved in the past decade or so involving NR3 subunit research in four key areas: the spatiotemporal mapping of NR3 protein, the structural elucidation of NR3 domains, pharmacological characterization of NR3-containing receptors, and the successful generation of NR3 knockout/transgenic animals. It is expected that further characterization of their functional roles coupled with the identification of endogenous and exogenous ligands will eventually advance the understanding of the basic pharmacology and the complex role of NMDA receptors in higher brain functions and neurological disorders.
Collapse
Affiliation(s)
- Chian-Ming Low
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Room 04-06, Centre for Life Sciences, 28 Medical Drive S117456, Republic of Singapore.
| | | |
Collapse
|
135
|
Goswami C, Rademacher N, Smalla KH, Kalscheuer V, Ropers HH, Gundelfinger ED, Hucho T. TRPV1 acts as a synaptic protein and regulates vesicle recycling. J Cell Sci 2010; 123:2045-57. [PMID: 20483957 DOI: 10.1242/jcs.065144] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Electrophysiological studies demonstrate that transient receptor potential vanilloid subtype 1 (TRPV1) is involved in neuronal transmission. Although it is expressed in the peripheral as well as the central nervous system, the questions remain whether TRPV1 is present in synaptic structures and whether it is involved in synaptic processes. In the present study we gathered evidence that TRPV1 can be detected in spines of cortical neurons, that it colocalizes with both pre- and postsynaptic proteins, and that it regulates spine morphology. Moreover, TRPV1 is also present in biochemically prepared synaptosomes endogenously. In F11 cells, a cell line derived from dorsal-root-ganglion neurons, TRPV1 is enriched in the tips of elongated filopodia and also at sites of cell-cell contact. In addition, we also detected TRPV1 in synaptic transport vesicles, and in transport packets within filopodia and neurites. Using FM4-64 dye, we demonstrate that recycling and/or fusion of these vesicles can be rapidly modulated by TRPV1 activation, leading to rapid reorganization of filopodial structure. These data suggest that TRPV1 is involved in processes such as neuronal network formation, synapse modulation and release of synaptic transmitters.
Collapse
Affiliation(s)
- Chandan Goswami
- Signal Transduction in Pain and Mental Retardation, Department for Molecular Human Genetics, Max-Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses and are major sites of information processing and storage in the brain. Changes in the shape and size of dendritic spines are correlated with the strength of excitatory synaptic connections and heavily depend on remodeling of its underlying actin cytoskeleton. Emerging evidence suggests that most signaling pathways linking synaptic activity to spine morphology influence local actin dynamics. Therefore, specific mechanisms of actin regulation are integral to the formation, maturation, and plasticity of dendritic spines and to learning and memory.
Collapse
Affiliation(s)
- Pirta Hotulainen
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland.
| | | |
Collapse
|
137
|
The phosphoinositide 3-phosphatase MTMR2 interacts with PSD-95 and maintains excitatory synapses by modulating endosomal traffic. J Neurosci 2010; 30:5508-18. [PMID: 20410104 DOI: 10.1523/jneurosci.4283-09.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
MTMR2 is a 3-phosphatase specific for the phosphoinositides PI(3)P and PI(3,5)P(2), which are mainly present on endosomes. Mutations in the MTMR2 gene in Schwann cells lead to a severe demyelinating peripheral neuropathy known as Charcot-Marie-Tooth disease type 4B1. MTMR2 expression is also detected in peripheral and central neurons, but neural functions of MTMR2 remain unclear. Here, we report that MTMR2 is localized to excitatory synapses of central neurons via direct interaction with PSD-95, a postsynaptic scaffolding protein abundant at excitatory synapses. Knockdown of MTMR2 in cultured neurons markedly reduces excitatory synapse density and function. This effect is rescued by wild-type MTMR2 but not by a mutant MTMR2 lacking PSD-95 binding or 3-phosphatase activity. MTMR2 knockdown leads to a decrease in the intensity of EEA1-positive early endosomes in dendrites but increases the intensity in the cell body region. Moreover, MTMR2 suppression promotes endocytosis, but not recycling, of the GluR2 subunit of AMPA receptors, which is an endosomal cargo. In addition, colocalization of internalized GluR2 with Lamp1-positive late endosomes/lysosomes is enhanced in the cell body area but not in dendrites. These results suggest that PSD-95-interacting MTMR2 contributes to the maintenance of excitatory synapses by inhibiting excessive endosome formation and destructive endosomal traffic to lysosomes.
Collapse
|
138
|
Kennedy MJ, Davison IG, Robinson CG, Ehlers MD. Syntaxin-4 defines a domain for activity-dependent exocytosis in dendritic spines. Cell 2010; 141:524-35. [PMID: 20434989 PMCID: PMC2874581 DOI: 10.1016/j.cell.2010.02.042] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 12/10/2009] [Accepted: 02/22/2010] [Indexed: 11/16/2022]
Abstract
Changes in postsynaptic membrane composition underlie many forms of learning-related synaptic plasticity in the brain. At excitatory glutamatergic synapses, fusion of intracellular vesicles at or near the postsynaptic plasma membrane is critical for dendritic spine morphology, retrograde synaptic signaling, and long-term synaptic plasticity. Whereas the molecular machinery for exocytosis in presynaptic terminals has been defined in detail, little is known about the location, kinetics, regulation, or molecules involved in postsynaptic exocytosis. Here, we show that an exocytic domain adjacent to the postsynaptic density (PSD) enables fusion of large, AMPA receptor-containing recycling compartments during elevated synaptic activity. Exocytosis occurs at microdomains enriched in the plasma membrane t-SNARE syntaxin 4 (Stx4), and disruption of Stx4 impairs both spine exocytosis and long-term potentiation (LTP) at hippocampal synapses. Thus, Stx4 defines an exocytic zone that directs membrane fusion for postsynaptic plasticity, revealing a novel specialization for local membrane traffic in dendritic spines.
Collapse
Affiliation(s)
- Matthew J. Kennedy
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ian G. Davison
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Camenzind G. Robinson
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
139
|
Vizi ES, Fekete A, Karoly R, Mike A. Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 2010; 160:785-809. [PMID: 20136842 DOI: 10.1111/j.1476-5381.2009.00624.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Beyond direct synaptic communication, neurons are able to talk to each other without making synapses. They are able to send chemical messages by means of diffusion to target cells via the extracellular space, provided that the target neurons are equipped with high-affinity receptors. While synaptic transmission is responsible for the 'what' of brain function, the 'how' of brain function (mood, attention, level of arousal, general excitability, etc.) is mainly controlled non-synaptically using the extracellular space as communication channel. It is principally the 'how' that can be modulated by medicine. In this paper, we discuss different forms of non-synaptic transmission, localized spillover of synaptic transmitters, local presynaptic modulation and tonic influence of ambient transmitter levels on the activity of vast neuronal populations. We consider different aspects of non-synaptic transmission, such as synaptic-extrasynaptic receptor trafficking, neuron-glia communication and retrograde signalling. We review structural and functional aspects of non-synaptic transmission, including (i) anatomical arrangement of non-synaptic release sites, receptors and transporters, (ii) intravesicular, intra- and extracellular concentrations of neurotransmitters, as well as the spatiotemporal pattern of transmitter diffusion. We propose that an effective general strategy for efficient pharmacological intervention could include the identification of specific non-synaptic targets and the subsequent development of selective pharmacological tools to influence them.
Collapse
Affiliation(s)
- E S Vizi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | |
Collapse
|
140
|
SNAP-25 is a target of protein kinase C phosphorylation critical to NMDA receptor trafficking. J Neurosci 2010; 30:242-54. [PMID: 20053906 DOI: 10.1523/jneurosci.4933-08.2010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein kinase C (PKC) enhances NMDA receptor (NMDAR)-mediated currents and promotes NMDAR delivery to the cell surface via SNARE-dependent exocytosis. Although the mechanisms of PKC potentiation are established, the molecular target of PKC is unclear. Here we show that synaptosomal-associated protein of 25 kDa (SNAP-25), a SNARE protein, is functionally relevant to PKC-dependent NMDAR insertion, and identify serine residue-187 as the molecular target of PKC phosphorylation. Constitutively active PKC delivered via the patch pipette potentiated NMDA (but not AMPA) whole-cell currents in hippocampal neurons. Expression of RNAi targeting SNAP-25 or mutant SNAP-25(S187A) and/or acute disruption of the SNARE complex by treatment with BoNT A, BoNT B or SNAP-25 C-terminal blocking peptide abolished NMDAR potentiation. A SNAP-25 peptide and function-blocking antibody suppressed PKC potentiation of NMDA EPSCs at mossy fiber-CA3 synapses. These findings identify SNAP-25 as the target of PKC phosphorylation critical to PKC-dependent incorporation of synaptic NMDARs and document a postsynaptic action of this major SNARE protein relevant to synaptic plasticity.
Collapse
|
141
|
Marín MP, Esteban-Pretel G, Ponsoda X, Romero AM, Ballestín R, López C, Megías L, Timoneda J, Molowny A, Canales JJ, Renau-Piqueras J. Endocytosis in Cultured Neurons Is Altered by Chronic Alcohol Exposure. Toxicol Sci 2010; 115:202-13. [DOI: 10.1093/toxsci/kfq040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
142
|
Petralia RS, Wang YX, Hua F, Yi Z, Zhou A, Ge L, Stephenson FA, Wenthold RJ. Organization of NMDA receptors at extrasynaptic locations. Neuroscience 2010; 167:68-87. [PMID: 20096331 DOI: 10.1016/j.neuroscience.2010.01.022] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/14/2009] [Accepted: 01/13/2010] [Indexed: 12/14/2022]
Abstract
NMDA receptors are found in neurons both at synapses and in extrasynaptic locations. Extrasynaptic locations are poorly characterized. Here we used preembedding immunoperoxidase and postembedding immunogold electron microscopy and fluorescence light microscopy to characterize extrasynaptic NMDA receptor locations in dissociated hippocampal neurons in vitro and in the adult and postnatal hippocampus in vivo. We found that extrasynaptic NMDA receptors on neurons in vivo and in vitro were usually concentrated at points of contact with adjacent processes, which were mainly axons, axon terminals, or glia. Many of these contacts were shown to contain adhesion factors such as cadherin and catenin. We also found associations of extrasynaptic NMDA receptors with the membrane associated guanylate kinase (MAGUKs), postsynaptic density (PSD)-95 and SAP102. Developmental differences were also observed. At postnatal day 2 in vivo, extrasynaptic NMDA receptors could often be found at sites with distinct densities whereas dense material was seen only rarely at sites of extrasynaptic NMDA receptors in the adult hippocampus in vivo. This difference probably indicates that many sites of extrasynaptic NMDA receptors in early postnatal ages represent synapse formation or possibly sites for synapse elimination. At all ages, as suggested in both in vivo and in vitro studies, extrasynaptic NMDA receptors on dendrites or the sides of spines may form complexes with other proteins, in many cases, at stable associations with adjacent cell processes. These associations may facilitate unique functions for extrasynaptic NMDA receptors.
Collapse
Affiliation(s)
- R S Petralia
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders/National Institutes of Health (NIDCD/NIH), Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Kumar A, Bodhinathan K, Foster TC. Susceptibility to Calcium Dysregulation during Brain Aging. Front Aging Neurosci 2009; 1:2. [PMID: 20552053 PMCID: PMC2874411 DOI: 10.3389/neuro.24.002.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/27/2009] [Indexed: 01/06/2023] Open
Abstract
Calcium (Ca(2+)) is a highly versatile intracellular signaling molecule that is essential for regulating a variety of cellular and physiological processes ranging from fertilization to programmed cell death. Research has provided ample evidence that brain aging is associated with altered Ca(2+) homeostasis. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review takes a broader perspective, assessing age-related changes in Ca(2+) sources, Ca(2+) sequestration, and Ca(2+) binding proteins throughout the nervous system. The nature of altered Ca(2+) homeostasis is cell specific and may represent a deficit or a compensatory mechanism, producing complex patterns of impaired cellular function. Incorporating the knowledge of the complexity of age-related alterations in Ca(2+) homeostasis will positively shape the development of highly effective therapeutics to treat brain disorders.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | | | | |
Collapse
|
144
|
Zhong L, Cherry T, Bies CE, Florence MA, Gerges NZ. Neurogranin enhances synaptic strength through its interaction with calmodulin. EMBO J 2009; 28:3027-39. [PMID: 19713936 PMCID: PMC2736013 DOI: 10.1038/emboj.2009.236] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 07/23/2009] [Indexed: 11/09/2022] Open
Abstract
Learning-correlated plasticity at CA1 hippocampal excitatory synapses is dependent on neuronal activity and NMDA receptor (NMDAR) activation. However, the molecular mechanisms that transduce plasticity stimuli to postsynaptic potentiation are poorly understood. Here, we report that neurogranin (Ng), a neuron-specific and postsynaptic protein, enhances postsynaptic sensitivity and increases synaptic strength in an activity- and NMDAR-dependent manner. In addition, Ng-mediated potentiation of synaptic transmission mimics and occludes long-term potentiation (LTP). Expression of Ng mutants that lack the ability to bind to, or dissociate from, calmodulin (CaM) fails to potentiate synaptic transmission, strongly suggesting that regulated Ng-CaM binding is necessary for Ng-mediated potentiation. Moreover, knocking-down Ng blocked LTP induction. Thus, Ng-CaM interaction can provide a mechanistic link between induction and expression of postsynaptic potentiation.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tiffani Cherry
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christine E Bies
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew A Florence
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nashaat Z Gerges
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
145
|
Petrini EM, Lu J, Cognet L, Lounis B, Ehlers MD, Choquet D. Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron 2009; 63:92-105. [PMID: 19607795 PMCID: PMC2847611 DOI: 10.1016/j.neuron.2009.05.025] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 03/02/2009] [Accepted: 05/15/2009] [Indexed: 11/21/2022]
Abstract
At excitatory glutamatergic synapses, postsynaptic endocytic zones (EZs), which are adjacent to the postsynaptic density (PSD), mediate clathrin-dependent endocytosis of surface AMPA receptors (AMPAR) as a first step to receptor recycling or degradation. However, it remains unknown whether receptor recycling influences AMPAR lateral diffusion and whether EZs are important for the expression of synaptic potentiation. Here, we demonstrate that the presence of both EZs and AMPAR recycling maintain a large pool of mobile AMPARs at synapses. In addition, we find that synaptic potentiation is accompanied by an accumulation and immobilization of AMPARs at synapses resulting from both their exocytosis and stabilization at the PSD. Displacement of EZs from the postsynaptic region impairs the expression of synaptic potentiation by blocking AMPAR recycling. Thus, receptor recycling is crucial for maintaining a mobile population of surface AMPARs that can be delivered to synapses for increases in synaptic strength.
Collapse
Affiliation(s)
- Enrica Maria Petrini
- Laboratoire Physiologie Cellulaire de la Synapse, University of Bordeaux and CNRS, 33077 Bordeaux, France
- Department of Neuroscience and Brain Technology, Italian Institute of Technology, Genoa, Italy
| | - Jiuyi Lu
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Laurent Cognet
- Centre de Physique Moléculaire Optique et Hertzienne, University of Bordeaux and CNRS, 33405 Talence, France
| | - Brahim Lounis
- Centre de Physique Moléculaire Optique et Hertzienne, University of Bordeaux and CNRS, 33405 Talence, France
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Daniel Choquet
- Laboratoire Physiologie Cellulaire de la Synapse, University of Bordeaux and CNRS, 33077 Bordeaux, France
| |
Collapse
|
146
|
Eriksen J, Rasmussen SGF, Rasmussen TN, Vaegter CB, Cha JH, Zou MF, Newman AH, Gether U. Visualization of dopamine transporter trafficking in live neurons by use of fluorescent cocaine analogs. J Neurosci 2009; 29:6794-808. [PMID: 19474307 PMCID: PMC3849467 DOI: 10.1523/jneurosci.4177-08.2009] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 04/06/2009] [Accepted: 04/15/2009] [Indexed: 11/21/2022] Open
Abstract
The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. Here we use novel fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled ligands had high binding affinity for DAT and enabled specific labeling of DAT in live neurons and visualization by confocal imaging. In the dopaminergic neurons, DAT was uniformly distributed in the plasma membrane of the soma, the neuronal extensions, and varicosities along these extensions. FRAP (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than approximately 30%). DAT was constitutively internalized into vesicular structures likely representing intracellular transporter pools. The internalization was blocked by lentiviral-mediated expression of dominant-negative dynamin and internalized DAT displayed partial colocalization with the early endosomal marker EGFP-Rab5 and with the transferrin receptor. DAT internalization and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular distribution of endogenous DAT is subject to regulation by PKC.
Collapse
Affiliation(s)
- Jacob Eriksen
- Molecular Neuropharmacology Group and Center for Pharmacogenomics, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark, and
| | - Søren G. F. Rasmussen
- Molecular Neuropharmacology Group and Center for Pharmacogenomics, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark, and
| | - Trine Nygaard Rasmussen
- Molecular Neuropharmacology Group and Center for Pharmacogenomics, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark, and
| | - Christian Bjerggaard Vaegter
- Molecular Neuropharmacology Group and Center for Pharmacogenomics, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark, and
| | - Joo Hwan Cha
- Medicinal Chemistry Section, National Institute on Drug Abuse–Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224
| | - Mu-Fa Zou
- Medicinal Chemistry Section, National Institute on Drug Abuse–Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse–Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224
| | - Ulrik Gether
- Molecular Neuropharmacology Group and Center for Pharmacogenomics, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark, and
| |
Collapse
|
147
|
Bressloff PC, Earnshaw BA. A dynamic corral model of receptor trafficking at a synapse. Biophys J 2009; 96:1786-802. [PMID: 19254538 DOI: 10.1016/j.bpj.2008.12.3889] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 12/01/2008] [Indexed: 11/29/2022] Open
Abstract
The postsynaptic density (PSD) is a cytoskeletal specialization within the postsynaptic membrane of a neuron that helps to concentrate and organize neurotransmitter receptors at a chemical synapse. The total number of receptors within the PSD, which is a major factor in determining the physiological strength or weight of a synapse, fluctuates due to the surface diffusion of receptors into and out of the PSD, and the interactions of receptors with scaffolding proteins and cytoskeletal elements within the PSD. In this article, we present a stochastic model of protein receptor trafficking at the PSD that takes into account these various processes. The PSD is treated as a stochastically gated corral, which contributes a source of extrinsic or environmental noise that supplements the intrinsic noise arising from small receptor numbers. Using a combination of stochastic analysis and Monte Carlo simulations, we determine the time-dependent variation in the mean and variance of synaptic receptor numbers for a variety of initial conditions that simulate fluorescence recovery after photobleaching experiments, and indicate how such data might be used to infer certain properties of the PSD.
Collapse
Affiliation(s)
- Paul C Bressloff
- Department of Mathematics, University of Utah, Salt Lake City, Utah, USA.
| | | |
Collapse
|
148
|
Newpher TM, Ehlers MD. Spine microdomains for postsynaptic signaling and plasticity. Trends Cell Biol 2009; 19:218-27. [PMID: 19328694 DOI: 10.1016/j.tcb.2009.02.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/14/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Changes in the molecular composition and signaling properties of excitatory glutamatergic synapses onto dendritic spines mediate learning-related plasticity in the mammalian brain. This molecular adaptation serves as the most celebrated cell biological model for learning and memory. Within their micron-sized dimensions, dendritic spines restrict the diffusion of signaling molecules and spatially confine the activation of signal transduction pathways. Much of this local regulation occurs by spatial compartmentalization of glutamate receptors. Here, we review recently identified cell biological mechanisms regulating glutamate receptor mobility within individual dendritic spines. We discuss the emerging functions of glutamate receptors residing within sub-spine microdomains and propose a model for distinct signaling platforms with specialized functions in synaptic plasticity.
Collapse
Affiliation(s)
- Thomas M Newpher
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
149
|
Jaskolski F, Mayo-Martin B, Jane D, Henley JM. Dynamin-dependent membrane drift recruits AMPA receptors to dendritic spines. J Biol Chem 2009; 284:12491-503. [PMID: 19269965 PMCID: PMC2673315 DOI: 10.1074/jbc.m808401200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/13/2009] [Indexed: 12/31/2022] Open
Abstract
The surface expression and localization of AMPA receptors (AMPARs) at dendritic spines are tightly controlled to regulate synaptic transmission. Here we show that de novo exocytosis of the GluR2 AMPAR subunit occurs at the dendritic shaft and that new AMPARs diffuse into spines by lateral diffusion in the membrane. However, membrane topology restricts this lateral diffusion. We therefore investigated which mechanisms recruit AMPARs to spines from the shaft and demonstrated that inhibition of dynamin GTPase activity reduced lateral diffusion of membrane-anchored green fluorescent protein and super-ecliptic pHluorin (SEP)-GluR2 into spines. In addition, the activation of synaptic N-methyl-d-aspartate (NMDA) receptors enhanced lateral diffusion of SEP-GluR2 and increased the number of endogenous AMPARs in spines. The NMDA-invoked effects were prevented by dynamin inhibition, suggesting that activity-dependent dynamin-mediated endocytosis within spines generates a net inward membrane drift that overrides lateral diffusion barriers to enhance membrane protein delivery into spines. These results provide a novel mechanistic explanation of how AMPARs and other membrane proteins are recruited to spines by synaptic activity.
Collapse
Affiliation(s)
- Frédéric Jaskolski
- Department of Anatomy and Physiology, Medical Research Council Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|
150
|
Bressloff PC. Cable theory of protein receptor trafficking in a dendritic tree. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:041904. [PMID: 19518253 DOI: 10.1103/physreve.79.041904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Indexed: 05/27/2023]
Abstract
We develop an application of linear cable theory to protein receptor trafficking in the surface membrane of a neuron's dendritic tree. We assume that receptors diffuse freely in the dendritic membrane but exhibit periods of confined motion through interactions with small mushroomlike protrusions known as dendritic spines. We use cable theory to determine how receptor trafficking depends on the geometry of the dendritic tree and various important biophysical parameters such as membrane diffusivity, the density of spines, the strength of diffusive coupling between dendrites and spines, and the rates of constitutive recycling of receptors between the surface of spines and intracellular pools. We also use homogenization theory to determine corrections to cable theory arising from the discrete nature of spines.
Collapse
Affiliation(s)
- Paul C Bressloff
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|