101
|
Guildford AL, Stewart HJS, Morris C, Santin M. Substrate-induced phenotypic switches of human smooth muscle cells: an in vitro study of in-stent restenosis activation pathways. J R Soc Interface 2010; 8:641-9. [PMID: 21106574 DOI: 10.1098/rsif.2010.0532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In-stent restenosis is a clinical complication following coronary angioplasty caused by the implantation of the metal device in the atherosclerotic vessel. Histological examination has shown a clear contribution of both inflammatory and smooth muscle cells (SMCs) to the deposition of an excess of neointimal tissue. However, the sequence of events leading to clinically relevant restenosis is unknown. This paper aims to study the phenotype of SMCs when adhering on substrates and exposed to biochemical stimuli typical of the early phases of stent implantation. In particular, human SMC phenotype was studied when adhering on extracellular matrix-like material (collagen-rich gel), thrombus-like material (fibrin gel) and stent material (stainless steel) in the presence or absence of a platelet-derived growth factor (PDGF) stimulus. Cells on the collagen and fibrin-rich substrates maintained their contractile phenotype. By contrast, cells on stainless steel acquired a secretory phenotype with a proliferation rate 50 per cent higher than cells on the natural substrates. Cells on stainless steel also showed an increase in PDGF-BB receptor expression, thus explaining the increase in proliferation observed when cells were subject to PDGF-BB stimuli. The stainless steel substrate also promoted a different pattern of β1-integrin localization and an altered expression of hyaluronan (HA) synthase isoforms where the synthesis of high-molecular-weight HA seemed to be favoured. These findings highlighted the induction of a phenotypic pattern in SMC by the stainless steel substrate whereby the formation of a HA-rich neointimal tissue is enhanced.
Collapse
Affiliation(s)
- Anna L Guildford
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | | | | | | |
Collapse
|
102
|
Aide N, Briand M, Bohn P, Dutoit S, Lasnon C, Chasle J, Rouvet J, Modzelewski R, Vela A, Deslandes E, Vera P, Poulain L, Carreiras F. αvβ3 imaging can accurately distinguish between mature teratoma and necrosis in 18F-FDG-negative residual masses after treatment of non-seminomatous testicular cancer: a preclinical study. Eur J Nucl Med Mol Imaging 2010; 38:323-33. [PMID: 20882281 DOI: 10.1007/s00259-010-1624-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE We assessed whether imaging α(v)β(3) integrin could distinguish mature teratoma from necrosis in human non-seminomatous germ cell tumour (NSGCT) post-chemotherapy residual masses. METHODS Human embryonal carcinoma xenografts (six/rat) were untreated (controls) or treated to form mature teratomas with low-dose cisplatin and all-trans retinoic acid (ATRA) over a period of 8 weeks. In another group, necrosis was induced in xenografts with high-dose cisplatin plus etoposide (two cycles). (18)F-Fluorodeoxyglucose ((18)F-FDG) small animal positron emission tomography (SA PET) imaging was performed in three rats (one control and two treated for 4 and 8 weeks with cisplatin+ATRA). Imaging of α(v)β(3) expression was performed in six rats bearing mature teratomas and two rats with necrotic lesions on a microSPECT/CT device after injection of the tracer [(99m)Tc]HYNIC-RGD [6-hydrazinonicotinic acid conjugated to cyclo(Arg-Gly-Asp-D-Phe-Lys)]. Correlative immunohistochemistry studies of human and mouse α(v)β(3) expression were performed. RESULTS Cisplatin+ATRA induced differentiation of the xenografts. After 8 weeks, some glandular structures and mesenchymal cells were visible; in contrast, control tumours showed undifferentiated tissues. SA PET imaging showed that mature teratoma had very low avidity for (18)F-FDG [mean standardised uptake value (SUV(mean)) = 0.48 ± 0.05] compared to untreated embryonal carcinoma (SUV(mean) = 0.92 ± 0.13) (p = 0.005). α(v)β(3) imaging accurately distinguished mature teratoma (tumour to muscle ratio = 4.29 ± 1.57) from necrosis (tumour to muscle ratio = 1.3 ± 0.26) (p = 0.0002). Immunohistochemistry studies showed that α(v)β(3) integrin expression was strong in the glandular structures of mature teratoma lesions and negative in host stroma. CONCLUSION Imaging α(v)β(3) integrin accurately distinguished mature teratoma from necrosis following cisplatin-based treatment in human NSGCT xenografts.
Collapse
Affiliation(s)
- Nicolas Aide
- EA1772, IFR 146 ICORE, GRECAN, François Baclesse Cancer Centre and Caen University, Caen, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Sevilla CA, Dalecki D, Hocking DC. Extracellular matrix fibronectin stimulates the self-assembly of microtissues on native collagen gels. Tissue Eng Part A 2010; 16:3805-19. [PMID: 20673131 DOI: 10.1089/ten.tea.2010.0316] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fibronectin is an adhesive glycoprotein that is polymerized into extracellular matrices via a tightly regulated, cell-dependent process. Here, we demonstrate that fibronectin matrix polymerization induces the self-assembly of multicellular structures in vitro, termed tissue bodies. Fibronectin-null mouse embryonic fibroblasts adherent to compliant gels of polymerized type I collagen failed to spread or proliferate. In contrast, addition of fibronectin to collagen-adherent fibronectin-null mouse embryonic fibroblasts resulted in a dose-dependent increase in cell number, and induced the formation of three-dimensional (3D) multicellular structures that remained adherent and well-spread on the native collagen substrate. An extensive fibrillar fibronectin matrix formed throughout the microtissue. Blocking fibronectin matrix polymerization inhibited both cell proliferation and microtissue formation, demonstrating the importance of fibronectin fibrillogenesis in triggering cellular self-organization. Cell proliferation, tissue body formation, and tissue body shape were dependent on both fibronectin and collagen concentrations, suggesting that the relative proportion of collagen and fibronectin fibrils polymerized into the extracellular matrix influences the extent of cell proliferation and the final shape of microtissues. These data demonstrate a novel role for cell-mediated fibronectin fibrillogenesis in the formation and vertical assembly of microtissues, and provide a novel approach for engineering complex tissue architecture.
Collapse
Affiliation(s)
- Carlos A Sevilla
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
104
|
Fredolini C, Meani F, Luchini A, Zhou W, Russo P, Ross M, Patanarut A, Tamburro D, Gambara G, Ornstein D, Odicino F, Ragnoli M, Ravaggi A, Novelli F, Collura D, D'Urso L, Muto G, Belluco C, Pecorelli S, Liotta L, Petricoin EF. Investigation of the ovarian and prostate cancer peptidome for candidate early detection markers using a novel nanoparticle biomarker capture technology. AAPS JOURNAL 2010; 12:504-18. [PMID: 20549403 DOI: 10.1208/s12248-010-9211-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 06/01/2010] [Indexed: 11/30/2022]
Abstract
Current efforts to identify protein biomarkers of disease use mainly mass spectrometry (MS) to analyze tissue and blood specimens. The low-molecular-weight "peptidome" is an attractive information archive because of the facile nature by which the low-molecular-weight information freely crosses the endothelial cell barrier of the vasculature, which provides opportunity to measure disease microenvironment-associated protein analytes secreted or shed into the extracellular interstitium and from there into the circulation. However, identifying useful protein biomarkers (peptidomic or not) which could be useful to detect early detection/monitoring of disease, toxicity, doping, or drug abuse has been severely hampered because even the most sophisticated, high-resolution MS technologies have lower sensitivities than those of the immunoassays technologies now routinely used in clinical practice. Identification of novel low abundance biomarkers that are indicative of early-stage events that likely exist in the sub-nanogram per milliliter concentration range of known markers, such as prostate-specific antigen, cannot be readily detected by current MS technologies. We have developed a new nanoparticle technology that can, in one step, capture, concentrate, and separate the peptidome from high-abundance blood proteins. Herein, we describe an initial pilot study whereby the peptidome content of ovarian and prostate cancer patients is investigated with this method. Differentially abundant candidate peptidome biomarkers that appear to be specific for early-stage ovarian and prostate cancer have been identified and reveal the potential utility for this new methodology.
Collapse
|
105
|
Fang Z, Yao W, Xiong Y, Zhang J, Liu L, Li J, Zhang C, Wan J. Functional elucidation and methylation-mediated downregulation of ITGA5 gene in breast cancer cell line MDA-MB-468. J Cell Biochem 2010; 110:1130-41. [DOI: 10.1002/jcb.22626] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
106
|
Caltagarone J, Hamilton RL, Murdoch G, Jing Z, DeFranco DB, Bowser R. Paxillin and hydrogen peroxide-inducible clone 5 expression and distribution in control and Alzheimer disease hippocampi. J Neuropathol Exp Neurol 2010; 69:356-71. [PMID: 20448481 PMCID: PMC2869219 DOI: 10.1097/nen.0b013e3181d53d98] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hydrogen peroxide-inducible clone 5 (Hic-5) and paxillin are members of the Group III LIM domain protein family that localize to both cell nuclei and focal adhesions and link integrin-mediated signaling to the actin cytoskeleton. Prior in vitro studies have implicated paxillin in beta-amyloid-induced cell death, but little is known about the expression and function of Hic-5 and paxillin in the brain. We performed a blinded retrospective cross-sectional study of Hic-5 and paxillin expression in the hippocampi of Alzheimer disease (AD) and control subjects using immunohistochemistry and laser scanning confocal microscopy. The analysis included assessment of the expression of phosphorylated isoforms of paxillin that reflect activation of distinct signaling pathways. We found changes in the subcellular distribution of Hic-5, paxillin, and specific phosphorylated isoforms of paxillin in the AD brains. The Hic-5 and phosphorylated isoforms of paxillin colocalized with neurofibrillary tangles. Paxillin was predominantly found in reactive astrocytes in the AD hippocampi, and activated paxillin was also detected in granulovacuolar degeneration bodies in AD. These data indicate that these important scaffolding proteins that link various intracellular signaling pathways to the extracellular matrix are modified and have altered subcellular distribution in AD.
Collapse
Affiliation(s)
- John Caltagarone
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
107
|
Ke H, Parron VI, Reece J, Zhang JY, Akiyama SK, French JE. BCL2 inhibits cell adhesion, spreading, and motility by enhancing actin polymerization. Cell Res 2010; 20:458-69. [PMID: 20142842 PMCID: PMC2848692 DOI: 10.1038/cr.2010.21] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BCL2 is best known as a multifunctional anti-apoptotic protein. However, little is known about its role in cell-adhesive and motility events. Here, we show that BCL2 may play a role in the regulation of cell adhesion, spreading, and motility. When BCL2 was overexpressed in cultured murine and human cell lines, cell spreading, adhesion, and motility were impaired. Consistent with these results, the loss of Bcl2 resulted in higher motility observed in Bcl2-null mouse embryonic fibroblast (MEF) cells compared to wild type. The mechanism of BCL2 regulation of cell adhesion and motility may involve formation of a complex containing BCL2, actin, and gelsolin, which appears to functionally decrease the severing activity of gelsolin. We have observed that the lysate from MCF-7 and NIH3T3 cells that overexpressed BCL2 enhanced actin polymerization in cell-free in vitro assays. Confocal immunofluorescent localization of BCL2 and F-actin during spreading consistently showed that increased expression of BCL2 resulted in increased F-actin polymerization. Thus, the formation of BCL2 and gelsolin complexes (which possibly contain other proteins) appears to play a critical role in the regulation of cell adhesion and migration. Given the established correlation of cell motility with cancer metastasis, this result may explain why the expression of BCL2 in some tumor cell types reduces the potential for metastasis and is associated with improved patient prognosis.
Collapse
Affiliation(s)
- Hengning Ke
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
108
|
Ferrari M. Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends Biotechnol 2010; 28:181-8. [PMID: 20079548 DOI: 10.1016/j.tibtech.2009.12.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 01/30/2023]
Abstract
The physics of mass transport within body compartments and across biological barriers differentiates cancers from healthy tissues. Variants of nanoparticles can be manufactured in combinatorially large sets, varying by only one transport-affecting design parameter at a time. Nanoparticles can also be used as building blocks for systems that perform sequences of coordinated actions, in accordance with a prescribed logic. We refer to these as Logic-Embedded Vectors (LEVs). Nanoparticles and LEVs are ideal probes for the determination of mass transport laws in tumors, acting as imaging contrast enhancers, and can be employed for lesion-selective delivery of therapy. Their size, shape, density and surface chemistry dominate convective transport in the bloodstream, margination, cell adhesion, selective cellular uptake, as well as sub-cellular trafficking and localization. As argued here, the understanding of transport differentials in cancer, termed 'transport oncophysics', reveals a promising new frontier in oncology: the development of lesion-specific delivery particulates that exploit mass transport differentials to deploy treatment of greater efficacy and reduced side effects.
Collapse
Affiliation(s)
- Mauro Ferrari
- University of Texas Health Science Center at Houston (UTHSC-H), Department of NanoMedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030, USA.
| |
Collapse
|
109
|
Dijkgraaf I, Boerman OC. Radionuclide imaging of tumor angiogenesis. Cancer Biother Radiopharm 2010; 24:637-47. [PMID: 20025543 DOI: 10.1089/cbr.2009.0694] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Angiogenesis is a multistep process regulated by pro- and antiangiogenic factors. In order to grow and metastasize, tumors need a constant supply of oxygen and nutrients. For growth beyond 1-2 mm in size, tumors are dependent on angiogenesis. Inhibition of angiogenesis is a new cancer treatment strategy that is now widely investigated clinically. Researchers have begun to search for objective measures that indicate pharmacologic responses to antiangiogenic drugs. Therefore, there is a great interest in techniques to visualize angiogenesis in growing tumors noninvasively. Several markers have been described that are preferentially expressed on newly formed blood vessels in tumors (alpha(v)beta(3) integrin, vascular endothelial growth factor, and its receptor, prostate-specific membrane antigen) and in the extracellular matrix surrounding newly formed blood vessels (extra domain B of fibronectin, Tenascin-C, matrix metalloproteinases, and Robo-4). Several ligands targeting these markers have been tested as a radiotracer for imaging angiogenesis in tumors. The potential of some of these tracers, such as radiolabeled cyclic RGD peptides and radiolabeled anti-PSMA antibodies, has already been tested in cancer patients, while for markers such as Robo-4, the ligand has not yet been identified. In this review, an overview on the currently used nuclear imaging probes for noninvasive visualization of tumor angiogenesis is given.
Collapse
Affiliation(s)
- Ingrid Dijkgraaf
- Department of Nuclear Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | |
Collapse
|
110
|
Integrin involvement in freeze resistance of androgen-insensitive prostate cancer. Prostate Cancer Prostatic Dis 2010; 13:151-61. [PMID: 20066006 PMCID: PMC2869388 DOI: 10.1038/pcan.2009.59] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cryoablation has emerged as a primary therapy to treat prostate cancer. While effective, the assumption that freezing serves as a ubiquitous lethal stress is challenged by clinical experience and experimental evidence demonstrating time-temperature related cell death dependence. The age-related transformation from an androgen-sensitive (AS) to an androgen-insensitive (AI) phenotype is a major challenge in the management of prostate cancer. AI cells exhibit morphological changes and treatment resistance to many therapies. Since this resistance has been linked with α6β4 integrin overexpression as a result of androgen receptor (AR) loss, we investigated whether α6β4 integrin expression, as a result AR loss, contributes to the reported increased freeze tolerance of AI prostate cancer. A series of studies using AS (LNCaP LP and PC-3 AR) and AI (LNCaP HP and PC-3) cell lines were designed to investigate the cellular mechanisms contributing to variations in freezing response. Investigation into α6β4 integrin expression revealed that AI cell lines overexpressed this protein, thereby altering morphological characteristics and increasing adhesion characteristics. Molecular investigations revealed a significant decrease in caspase 8, 9, and 3 levels AI cells following freezing. Inhibition of α6β4 integrin resulted in increased caspase activity following freezing (similar to AS cells) and enhanced cell death. These data demonstrate that AI cells show an increase in post-freeze susceptibility following inhibition of α6β4 integrin function. Further understanding the role of androgen-receptor related α6β4 integrin expression in prostate cancer cells responses to freezing might lead to novel options for neo-adjunctive treatments targeting the AR signaling pathway.
Collapse
|
111
|
Robertus J, Browne WR, Feringa BL. Dynamic control over cell adhesive properties using molecular-based surface engineering strategies. Chem Soc Rev 2010; 39:354-78. [DOI: 10.1039/b906608j] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
112
|
Peng L, Xing X, Li W, Qu L, Meng L, Lian S, Jiang B, Wu J, Shou C. PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin beta1-ERK1/2 and-MMP2 signaling. Mol Cancer 2009; 8:110. [PMID: 19930715 PMCID: PMC2792223 DOI: 10.1186/1476-4598-8-110] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/24/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Phosphatase of regenerating liver-3 (PRL-3) plays a causative role in tumor metastasis, but the underlying mechanisms are not well understood. In our previous study, we observed that PRL-3 could decrease tyrosine phosphorylation of integrin beta1 and enhance activation of ERK1/2 in HEK293 cells. Herein we aim to explore the association of PRL-3 with integrin beta1 signaling and its functional implications in motility, invasion, and metastasis of colon cancer cell LoVo. METHODS Transwell chamber assay and nude mouse model were used to study motility and invasion, and metastsis of LoVo colon cancer cells, respectively. Knockdown of integrin beta1 by siRNA or lentivirus were detected with Western blot and RT-PCR. The effect of PRL-3 on integrin beta1, ERK1/2, and MMPs that mediate motility, invasion, and metastasis were measured by Western blot, immunofluorencence, co-immunoprecipitation and zymographic assays. RESULTS We demonstrated that PRL-3 associated with integrin beta1 and its expression was positively correlated with ERK1/2 phosphorylation in colon cancer tissues. Depletion of integrin beta1 with siRNA, not only abrogated the activation of ERK1/2 stimulated by PRL-3, but also abolished PRL-3-induced motility and invasion of LoVo cells in vitro. Similarly, inhibition of ERK1/2 phosphorylation with U0126 or MMP activity with GM6001 also impaired PRL-3-induced invasion. In addition, PRL-3 promoted gelatinolytic activity of MMP2, and this stimulation correlated with decreased TIMP2 expression. Moreover, PRL-3-stimulated lung metastasis of LoVo cells in a nude mouse model was inhibited when integrin beta1 expression was interfered with shRNA. CONCLUSION Our results suggest that PRL-3's roles in motility, invasion, and metastasis in colon cancer are critically controlled by the integrin beta1-ERK1/2-MMP2 signaling.
Collapse
Affiliation(s)
- Lirong Peng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing 100142, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
|
114
|
Schulte VA, Díez M, Möller M, Lensen MC. Surface Topography Induces Fibroblast Adhesion on Intrinsically Nonadhesive Poly(ethylene glycol) Substrates. Biomacromolecules 2009; 10:2795-801. [DOI: 10.1021/bm900631s] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vera A. Schulte
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Pauwelsstrasse 8, D-52056 Aachen, Germany
| | - Mar Díez
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Pauwelsstrasse 8, D-52056 Aachen, Germany
| | - Martin Möller
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Pauwelsstrasse 8, D-52056 Aachen, Germany
| | - Marga C. Lensen
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, Pauwelsstrasse 8, D-52056 Aachen, Germany
| |
Collapse
|
115
|
Ilagan BG, Amsden BG. Surface modifications of photocrosslinked biodegradable elastomers and their influence on smooth muscle cell adhesion and proliferation. Acta Biomater 2009; 5:2429-40. [PMID: 19375999 DOI: 10.1016/j.actbio.2009.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/17/2009] [Accepted: 03/20/2009] [Indexed: 10/25/2022]
Abstract
Photocrosslinked, biodegradable elastomers based on aliphatic polyesters have many desirable features as scaffolds for smooth muscle tissue engineering. However, they lack cell adhesion motifs. To address this shortcoming, two different modification procedures were studied utilizing a high and a low crosslink density elastomer: base etching and the incorporation of acryloyl-poly(ethylene glycol) (PEG)-Gly-Arg-Gly-Asp-Ser (GRGDS) into the elastomer network during photocrosslinking. Base etching improved surface hydrophilicity without altering surface topography, but did not improve bovine aortic smooth muscle cell adhesion. Incorporation of PEG-GRGDS into the elastomer network significantly improved cell adhesion for both high and low crosslink density elastomers, with a greater effect with the higher crosslink density elastomer. Incorporation of GRGDS into the high crosslink density elastomer also enhanced smooth muscle cell proliferation, while proliferation on the low crosslink density unmodified, base etched, and PEG-GRGDS incorporated elastomers was significantly greater than on the high crosslink density unmodified and base etched elastomer.
Collapse
|
116
|
Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 2009; 103:655-63. [PMID: 19472329 DOI: 10.1002/bit.22361] [Citation(s) in RCA: 1856] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Methods for culturing mammalian cells ex vivo are increasingly needed to study cell and tissue physiology and to grow replacement tissue for regenerative medicine. Two-dimensional culture has been the paradigm for typical in vitro cell culture; however, it has been demonstrated that cells behave more natively when cultured in three-dimensional environments. Permissive, synthetic hydrogels and promoting, natural hydrogels have become popular as three-dimensional cell culture platforms; yet, both of these systems possess limitations. In this perspective, we discuss the use of both synthetic and natural hydrogels as scaffolds for three-dimensional cell culture as well as synthetic hydrogels that incorporate sophisticated biochemical and mechanical cues as mimics of the native extracellular matrix. Ultimately, advances in synthetic-biologic hydrogel hybrids are needed to provide robust platforms for investigating cell physiology and fabricating tissue outside of the organism.
Collapse
Affiliation(s)
- Mark W Tibbitt
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | | |
Collapse
|
117
|
Abstract
The development of pulmonary metastasis is the major cause of death in osteosarcoma, and its molecular basis is poorly understood. In this study, we show that beta4 integrin is highly expressed in human osteosarcoma cell lines and tumor samples. Furthermore, highly metastatic MNNG-HOS cells have increased levels of beta4 integrin. Suppression of beta4 integrin expression by shRNA and disruption of beta4 integrin function by transfection of dominant-negative beta4 integrin was sufficient to revert this highly metastatic phenotype in the MNNG-HOS model without significantly affecting primary tumor growth. These findings suggest a role for beta4 integrin expression in the metastatic phenotype in human osteosarcoma cells. In addition, we identified a previously uncharacterized interaction between beta4 integrin and ezrin, a membrane-cytoskeletal linker protein that is implicated in the metastatic behavior of osteosarcoma. The beta4 integrin-ezrin interaction appears to be critical for maintenance of beta4 integrin expression. These data begin to integrate ezrin and beta4 integrin expression into a model of action for the mechanism of osteosarcoma metastases.
Collapse
|
118
|
Anamelechi CC, Clermont EC, Novak MT, Reichert WM. Dynamic seeding of perfusing human umbilical vein endothelial cells (HUVECs) onto dual-function cell adhesion ligands: Arg-Gly-Asp (RGD)-streptavidin and biotinylated fibronectin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:5725-30. [PMID: 19348476 PMCID: PMC4070296 DOI: 10.1021/la803963r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Surfaces decorated with high affinity ligands can be used to facilitate rapid attachment of endothelial cells; however, standard equilibrium cell detachment studies are poorly suited for assessing these initial adhesion events. Here, a dynamic seeding and cell retention method was used to examine the initial attachment of perfusing human umbilical vein endothelial cells (HUVECs) to bare Teflon-AF substrates, substrates pre-adsorbed with fibronectin alone, or substrates co-pre-adsorbed with two dual-function cell-adhesion ligands: biotinylated fibronectin (bFN) and RGD-streptavidin mutant (RGD-SA). Cell attachment was evaluated as a function of cell trypsinization (integrin digestion), surface protein formulation, and cell perfusion rate. Surfaces co-pre-adsorbed with bFN and RGD-SA showed the highest density of attached cells after 8 min of perfusion and the highest percent retention when subjected to shear flow at 60 dynes/cm2 for 2 min. Surfaces with no ligand treatment showed the lowest cell attachment and retention under flow in all cases. HUVECs trypsinized with mild 0.025% trypsin/ethylenediaminetetraacetic acid (EDTA) showed greater cell adhesion after perfusion and higher percent retention after shear flow than those trypsinized using harsher 0.05% trypsin/EDTA. The preferential affinities of the two dual-function ligands for alpha5beta1 and alphavbeta3 integrins were also examined by surface plasmon resonance (SPR) spectroscopy. The dynamic cell seeding studies confirmed that the dual-function ligand system promotes HUVEC adhesion and retention at short time points when tested using a perfusion assay. SPR studies showed that the two ligands exhibited equal affinity for both alpha5beta1 and alphavbeta3 integrins but that the combined ligands bound more total integrins than the two ligands tested separately.
Collapse
Affiliation(s)
- Charles C. Anamelechi
- Biomedical Engineering Department, Duke University, 136 Hudson Hall, Durham, North Carolina 27708
| | - Edward C. Clermont
- School of Medicine, Emory University, 1648 Pierce Drive, Atlanta, Georgia 30322
| | - Matthew T. Novak
- Biomedical Engineering Department, Duke University, 136 Hudson Hall, Durham, North Carolina 27708
| | - William M. Reichert
- Biomedical Engineering Department, Duke University, 136 Hudson Hall, Durham, North Carolina 27708
| |
Collapse
|
119
|
Abstract
The compliance of the extracellular matrix (ECM) regulates osteogenic differentiation by modulating extracellular signal-regulated kinase (ERK) activity. However, the molecular mechanism linking ECM compliance to the ERK-mitogen-activated protein kinase (MAPK) pathway remains unclear. Furthermore, RhoA has been widely implicated in integrin-mediated signaling and mechanotransduction. We studied the relationship between RhoA and ERK-MAPK signaling to determine their roles in the regulation of osteogenesis by ECM compliance. Inhibition of RhoA and ROCK in MC3T3-E1 pre-osteoblasts cultured on substrates of varying compliance reduced ERK activity, whereas constitutively active RhoA enhanced it. The expression of RUNX2, a potent osteogenic transcription factor, was increased on stiffer matrices and correlated with elevated ERK activity. Inhibition of RhoA, ROCK, or the MAPK pathway diminished RUNX2 activity and delayed the onset of osteogenesis as shown by altered osteocalcin (OCN) and bone sialoprotein (BSP) gene expression, alkaline phosphatase (ALP) activity, and matrix mineralization. These data establish that one possible mechanism by which ECM rigidity regulates osteogenic differentiation involves MAPK activation downstream of the RhoA-ROCK signaling pathway.
Collapse
|
120
|
Hancox RA, Allen MD, Holliday DL, Edwards DR, Pennington CJ, Guttery DS, Shaw JA, Walker RA, Pringle JH, Jones JL. Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Res 2009; 11:R24. [PMID: 19405959 PMCID: PMC2688953 DOI: 10.1186/bcr2251] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 01/15/2009] [Accepted: 04/30/2009] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION The stromal microenvironment has a profound influence on tumour cell behaviour. In tumours, the extracellular matrix (ECM) composition differs from normal tissue and allows novel interactions to influence tumour cell function. The ECM protein tenascin-C (TNC) is frequently up-regulated in breast cancer and we have previously identified two novel isoforms - one containing exon 16 (TNC-16) and one containing exons 14 plus 16 (TNC-14/16). METHODS The present study has analysed the functional significance of this altered TNC isoform profile in breast cancer. TNC-16 and TNC-14/16 splice variants were generated using PCR-ligation and over-expressed in breast cancer cells (MCF-7, T47D, MDA-MD-231, MDA-MB-468, GI101) and human fibroblasts. The effects of these variants on tumour cell invasion and proliferation were measured and compared with the effects of the large (TNC-L) and fully spliced small (TNC-S) isoforms. RESULTS TNC-16 and TNC-14/16 significantly enhanced tumour cell proliferation (P < 0.05) and invasion, both directly (P < 0.01) and as a response to transfected fibroblast expression (P < 0.05) with this effect being dependent on tumour cell interaction with TNC, because TNC-blocking antibodies abrogated these responses. An analysis of 19 matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases 1 to 4 (TIMP 1 to 4) revealed that TNC up-regulated expression of MMP-13 and TIMP-3 two to four fold relative to vector, and invasion was reduced in the presence of MMP inhibitor GM6001. However, this effect was not isoform-specific but was elicited equally by all TNC isoforms. CONCLUSIONS These results demonstrate a dual requirement for TNC and MMP in enhancing breast cancer cell invasion, and identify a significant role for the tumour-associated TNC-16 and TNC-14/16 in promoting tumour invasion, although these isoform-specific effects appear to be mediated through MMP-independent mechanisms.
Collapse
Affiliation(s)
- Rachael A Hancox
- Department of Cancer Studies and Molecular Medicine, Infirmary Close, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE1 5WW, UK
| | - Michael D Allen
- Centre for Tumour Biology, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Deborah L Holliday
- Centre for Tumour Biology, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Dylan R Edwards
- School of Biological Sciences, University Drive, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Caroline J Pennington
- School of Biological Sciences, University Drive, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - David S Guttery
- Department of Cancer Studies and Molecular Medicine, Infirmary Close, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE1 5WW, UK
| | - Jacqueline A Shaw
- Department of Cancer Studies and Molecular Medicine, Infirmary Close, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE1 5WW, UK
| | - Rosemary A Walker
- Department of Cancer Studies and Molecular Medicine, Infirmary Close, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE1 5WW, UK
| | - J Howard Pringle
- Department of Cancer Studies and Molecular Medicine, Infirmary Close, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, LE1 5WW, UK
| | - J Louise Jones
- Centre for Tumour Biology, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
121
|
Abstract
Regeneration following axonal injury of the adult peripheral sensory nervous system is heavily influenced by factors located in a neuron's extracellular environment. These factors include neurotrophins, such as Nerve Growth Factor (NGF) and the extracellular matrix, such as laminin. The presence of these molecules in the peripheral nervous system (PNS) is a major contributing factor for the dichotomy between regenerative capacities of central vs. peripheral neurons. Although PNS neurons are capable of spontaneous regeneration, this response is critically dependent on many different factors including the type, location and severity of the injury. In this article, we will focus on the plasticity of adult dorsal root ganglion (DRG) sensory neurons and how trophic factors and the extracellular environment stimulate the activation of intracellular signaling cascades that promote axonal growth in adult dorsal root ganglion neurons.
Collapse
|
122
|
Davidson B. New diagnostic and molecular characteristics of malignant mesothelioma. Ultrastruct Pathol 2009; 32:227-40. [PMID: 19117264 DOI: 10.1080/01913120802454298] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malignant mesothelioma is a primary cancer of the serosal cavities, an anatomic site that is also frequently affected by metastatic disease, predominantly from primary carcinomas of the lung, breast, and ovary. Advances in immunohistochemistry have resulted in improved diagnostic sensitivity and specificity in the differential diagnosis between metastatic adenocarcinoma and malignant mesothelioma in both cytological and histological material. Recently, the author's group applied high throughput technology to the identification of new markers that may aid in differentiating malignant mesothelioma from ovarian and peritoneal serous carcinoma, tumors with closely related histogenesis and antigenic profile. In addition to the improved tools available for serosal cancer diagnosis, knowledge regarding the biology of malignant mesothelioma has been accumulating in recent years. This review presents current data regarding the diagnostic and biological aspects of malignant mesothelioma.
Collapse
Affiliation(s)
- Ben Davidson
- Division of Pathology, Norwegian Radium Hospital, Rikshospitalet University Hospital, Oslo, Norway.
| |
Collapse
|
123
|
Paxillin nuclear-cytoplasmic localization is regulated by phosphorylation of the LD4 motif: evidence that nuclear paxillin promotes cell proliferation. Biochem J 2009; 418:173-84. [DOI: 10.1042/bj20080170] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paxillin, a major focal-adhesion complex component belongs to the subfamily of LIM domain proteins and participates in cell adhesion-mediated signal transduction. It is implicated in cell-motility responses upon activation of cell-surface receptors and can recruit, among others, the GIT1 [GRK (G-protein-coupled-receptor kinase)-interacting ARF (ADP-ribosylation factor) GAP (GTPase-activating protein)]–PIX [PAK (p21-activated kinase)-interacting exchange factor]–PAK1 complex. Several adhesion proteins including zyxin, Hic5 and Trip6 are also nuclear and can exert transcriptional effects. In the present study we show that endogenous paxillin shuttles between the cytoplasm and nucleus, and we have used a variety of tagged paxillin constructs to map the nuclear export signal. This region overlaps an important LD4 motif that binds GIT1 and FAK1 (focal-adhesion kinase 1). We provide evidence that phosphorylation of Ser272 within LD4 blocks nuclear export, and we show that this modification also reduces GIT1, but not FAK1, binding; however, Ser272 phosphorylation does not appear to be mediated by PAK1 as previously suggested. Expression of nuclear-localized paxillin LIM domains stimulate DNA synthesis and cell proliferation. By real-time PCR analysis we have established that overexpression of either full-length paxillin or a truncated nuclear form suppresses expression of the parental imprinted gene H19, and modulation of this locus probably affects the rate of NIH-3T3 cell proliferation.
Collapse
|
124
|
Liu Y, Chattopadhyay N, Qin S, Szekeres C, Vasylyeva T, Mahoney ZX, Taglienti M, Bates CM, Chapman HA, Miner JH, Kreidberg JA. Coordinate integrin and c-Met signaling regulate Wnt gene expression during epithelial morphogenesis. Development 2009; 136:843-53. [PMID: 19176588 DOI: 10.1242/dev.027805] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Integrin receptors for the extracellular matrix and receptor tyrosine kinase growth factor receptors represent two of the major families of receptors that transduce into cells information about the surrounding environment. Wnt proteins are a major family of signaling molecules that regulate morphogenetic events. There is presently little understanding of how the expression of Wnt genes themselves is regulated. In this study, we demonstrate that alpha3beta1 integrin, a major laminin receptor involved in the development of the kidney, and c-Met, the receptor for hepatocyte growth factor, signal coordinately to regulate the expression of Wnt7b in the mouse. Wnt signals in turn appear to regulate epithelial cell survival in the papilla of the developing kidney, allowing for the elongation of epithelial tubules to form a mature papilla. Together, these results demonstrate how signals from integrins and growth factor receptors can be integrated to regulate the expression of an important family of signaling molecules so as to regulate morphogenetic events.
Collapse
Affiliation(s)
- Yingjie Liu
- Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Seidler DG, Dreier R. Decorin and its galactosaminoglycan chain: extracellular regulator of cellular function? IUBMB Life 2009; 60:729-33. [PMID: 18800386 DOI: 10.1002/iub.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A molecular network of extracellular matrix molecules determines the tissue architecture and accounts for mechanical properties like compressibility or stretch resistance. It is widely accepted that the elements of the cellular microenvironment are important regulators of the cellular behavior in vitro and in vivo. One large group comprising these molecules is the family of proteoglycans. Both, the core proteins and, in particular, the attached galactosaminoglycans, contribute to the regulation network as they bind a variety of signaling molecules, e.g. cytokines, chemokines, growth, and differentiation factors. We would like to emphasize specific patterns of epimerization and sulfation within the galactosaminoglycans chains, because these result in "motifs" that are responsible for the modulation of signal factor binding, release and activity. This property is crucial in physiological and pathological conditions, for example development and wound healing.
Collapse
Affiliation(s)
- Daniela G Seidler
- Department of Physiological Chemistry and Pathobiochemistry, University Hospital Münster, University Münster, 48149 Münster, Germany.
| | | |
Collapse
|
126
|
Cho W, Messing A. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice. Exp Cell Res 2008; 315:1260-72. [PMID: 19146851 DOI: 10.1016/j.yexcr.2008.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/12/2008] [Accepted: 12/14/2008] [Indexed: 11/29/2022]
Abstract
Alexander disease is a fatal leukoencephalopathy caused by dominantly-acting coding mutations in GFAP. Previous work has also implicated elevations in absolute levels of GFAP as central to the pathogenesis of the disease. However, identification of the critical astrocyte functions that are compromised by mis-expression of GFAP has not yet been possible. To provide new tools for investigating the nature of astrocyte dysfunction in Alexander disease, we have established primary astrocyte cultures from two mouse models of Alexander disease, a transgenic that over-expresses wild type human GFAP, and a knock-in at the endogenous mouse locus that mimics a common Alexander disease mutation. We find that mutant GFAP, as well as excess wild type GFAP, promotes formation of cytoplasmic inclusions, disrupts the cytoskeleton, decreases cell proliferation, increases cell death, reduces proteasomal function, and compromises astrocyte resistance to stress.
Collapse
Affiliation(s)
- Woosung Cho
- Waisman Center, Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | |
Collapse
|
127
|
Burgess JK, Ceresa C, Johnson SR, Kanabar V, Moir LM, Nguyen TTB, Oliver BGG, Schuliga M, Ward J. Tissue and matrix influences on airway smooth muscle function. Pulm Pharmacol Ther 2008; 22:379-87. [PMID: 19135163 DOI: 10.1016/j.pupt.2008.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 11/14/2008] [Accepted: 12/10/2008] [Indexed: 01/01/2023]
Abstract
Asthma is characterized by structural changes in the airways - airway remodelling. These changes include an increase in the bulk of the airway smooth muscle (ASM) and alterations in the profile of extracellular matrix (ECM) proteins in the airway wall. The mechanisms leading to airway remodelling are not well understood. ASM cells have the potential to play a key role in these processes through the production and release of ECM proteins. The ASM cells and ECM proteins are each able to influence the behaviour and characteristics of the other. The modified ECM profile in the asthmatic airway may contribute to the altered behaviour of the ASM cells, such responses to ECM proteins are modulated through the cell surface expression of integrin receptors. ASM cells from asthmatic individuals express different levels of some integrin subunits compared to nonasthmatic ASM cells, which have the potential to further influence their responses to the ECM proteins in the airways. ECM homeostasis requires the presence and activation of matrix metalloproteinases and their tissue inhibitors, which in turn modulate the interaction of the ASM cells and the ECM proteins. Furthermore, the complex interactions of the ASM cells and the ECM in the asthmatic airways and the role played by external stimuli, such as viral infections, to modulate airway remodelling are currently unknown. This review summarises our current understanding of the influence of the ECM on ASM function.
Collapse
Affiliation(s)
- Janette K Burgess
- Discipline of Pharmacology, Bosch Institute, University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Liu J, Gurpur PB, Kaufman SJ. Genetically determined proteolytic cleavage modulates alpha7beta1 integrin function. J Biol Chem 2008; 283:35668-78. [PMID: 18940796 PMCID: PMC2602887 DOI: 10.1074/jbc.m804661200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/14/2008] [Indexed: 01/07/2023] Open
Abstract
The dystrophin-glycoprotein complex and the alpha7beta1 integrin are trans-sarcolemmal linkage systems that connect and transduce contractile forces between muscle fibers and the extracellular matrix. alpha7beta1 is the major laminin binding integrin in skeletal muscle. Different functional variants of this integrin are generated by alternative splicing and post-translational modifications such as glycosylation and ADP-ribosylation. Here we report a species-specific difference in alpha7 chains that results from an intra-peptide proteolytic cleavage, by a serine protease, at the 603RRQ605 site. Site-directed mutagenesis of RRQ to GRQ prevents this cleavage. This RRQ sequence in the alpha7 integrin chain is highly conserved among vertebrates but it is absent in mice. Protein structure modeling indicates this cleavage site is located in an open region between the beta-propeller and thigh domains of the alpha7 chain. Compared with the non-cleavable alpha7 chain, the cleaved form enhances cell adhesion and spreading on laminin. Cleavage of the alpha7 chain is elevated upon myogenic differentiation, and this cleavage may be mediated by urokinase-type plasminogen activator. These results suggest proteolytic cleavage is a novel mechanism that regulates alpha7 integrin functions in skeletal muscle, and that the generation of such cleavage sites is another evolutionary mechanism for expanding and modifying protein functions.
Collapse
Affiliation(s)
- Jianming Liu
- Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
129
|
Willis ND, Przyborski SA, Hutchison CJ, Wilson RG. Colonic and colorectal cancer stem cells: progress in the search for putative biomarkers. J Anat 2008; 213:59-65. [PMID: 18638071 DOI: 10.1111/j.1469-7580.2008.00917.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The maintenance of healthy colonic crypts is dependent on the integrity of the adult epithelial stem cells located within them. Perturbations in stem cell dynamics are generally believed to represent the first step towards colorectal tumorigenesis. Experimental manipulation of intestinal stem cells has greatly increased our understanding of them, but further progress has been slowed due to the absence of a reliable stem cell biomarker. In this review we discuss the candidate colonic stem cell biomarkers which have been proposed. Furthermore, we investigate the putative biomarkers for so-called colorectal cancer stem cells, a highly aggressive subpopulation of cells considered to drive tumour development.
Collapse
Affiliation(s)
- Naomi D Willis
- School of Biological and Biomedical Sciences, Durham University, Durham, UK.
| | | | | | | |
Collapse
|
130
|
Erler JT, Weaver VM. Three-dimensional context regulation of metastasis. Clin Exp Metastasis 2008; 26:35-49. [PMID: 18814043 DOI: 10.1007/s10585-008-9209-8] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 09/01/2008] [Indexed: 02/04/2023]
Abstract
Tumor progression ensues within a three-dimensional microenvironment that consists of cellular and non-cellular components. The extracellular matrix (ECM) and hypoxia are two non-cellular components that potently influence metastasis. ECM remodeling and collagen cross-linking stiffen the tissue stroma to promote transformation, tumor growth, motility and invasion, enhance cancer cell survival, enable metastatic dissemination, and facilitate the establishment of tumor cells at distant sites. Matrix degradation can additionally promote malignant progression and metastasis. Tumor hypoxia is functionally linked to altered stromal-epithelial interactions. Hypoxia additionally induces the expression of pro-migratory, survival and invasion genes, and up-regulates expression of ECM components and modifying enzymes, to enhance tumor progression and metastasis. Synergistic interactions between matrix remodeling and tumor hypoxia influence common mechanisms that maximize tumor progression and cooperate to drive metastasis. Thus, clarifying the molecular pathways by which ECM remodeling and tumor hypoxia intersect to promote tumor progression should identify novel therapeutic targets.
Collapse
Affiliation(s)
- Janine T Erler
- Hypoxia and Metastasis Team, Section of Cell and Molecular Biology, The Institute of Cancer Research, London, UK.
| | | |
Collapse
|
131
|
Gonzalez AM, Claiborne J, Jones JCR. Integrin cross-talk in endothelial cells is regulated by protein kinase A and protein phosphatase 1. J Biol Chem 2008; 283:31849-60. [PMID: 18806263 DOI: 10.1074/jbc.m801345200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In endothelial cells (ECs) beta1 integrin function-blocking antibodies inhibit alphavbeta3 integrin-mediated adhesion to a recombinant alpha4-laminin fragment (ralpha4LN fragment). beta1 integrin sequestration of talin is not the mechanism by which beta1 integrin modulates alphavbeta3 integrin ligand binding. Rather, treatment of the ECs with beta1 integrin function-blocking antibodies enhances cAMP-dependent protein kinase (PKA) activity and increases beta3 integrin serine phosphorylation. The PKA inhibitor H-89 abrogates the effect of beta1 integrin function-blocking antibodies on beta3 integrin serine phosphorylation and EC-ralpha4LN fragment binding. beta3 integrin contains a serine residue at position 752. To confirm the importance of this residue in alphavbeta3 integrin-ralpha4LN fragment binding, we mutated it to alanine (beta3S752A) or aspartic acid (beta3S752D). Chinese hamster ovary (CHO) cells expressing wild type or beta3S752A integrin attach robustly to ligand. CHO cells expressing beta3S752D integrin do not. Because the beta3 cytoplasmic tail lacks a PKA consensus site, it is unlikely that PKA acts directly on beta3 integrin. Instead, we have tested an hypothesis that PKA regulates beta3 integrin serine phosphorylation indirectly through phosphorylation of inhibitor-1, which, when phosphorylated, inhibits protein phosphatase 1 (PP1). Treatment of ECs with beta1 integrin function-blocking antibodies significantly increases phosphorylation of inhibitor-1. Furthermore, blocking PP1 activity pharmacologically inhibits alphavbeta3-mediated cell adhesion to the ralpha4LN fragment when both PKA and beta1 integrin function are inhibited. Concomitantly, there is an increase in serine phosphorylation of the beta3 integrin cytoplasmic tail. These results indicate a novel mechanism by which beta1 integrin negatively modulates alphavbeta3 integrin-ligand binding via activation of PKA and inhibition of PP1 activity.
Collapse
Affiliation(s)
- Annette M Gonzalez
- Department of Cell and Molecular Biology, The Feinberg School of Medicine at Northwestern University, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
132
|
Liu Y, Wang B, Wang J, Wan W, Sun R, Zhao Y, Zhang N. Down-regulation of PKCzeta expression inhibits chemotaxis signal transduction in human lung cancer cells. Lung Cancer 2008; 63:210-8. [PMID: 18701187 DOI: 10.1016/j.lungcan.2008.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 04/19/2008] [Accepted: 05/11/2008] [Indexed: 12/25/2022]
Abstract
Metastasis is the major cause of mortality in lung cancer. Chemotaxis plays a vital role in cancer cell metastasis. In the current study, we reported that epidermal growth factor (EGF) induced a robust chemotaxis of A549 and H1299 cells, two representative human non-small cell lung cancer (NSCLC) cells. Chelerythrine chloride, an inhibitor of all protein kinase C (PKC) isozymes, significantly reduced the chemotactic capacity of NSCLC cells while inhibitors of classical or novel PKC isozymes, such as Gö6976, calphostin C, or Gö6850, showed no effect, which suggested that atypical PKC might be involved in the chemotactic process of NSCLC cells. EGF-elicited translocation and phosphorylation of atypical PKCzeta, indicating that EGF could activate PKCzeta. Treatment with a PKCzeta specific inhibitor, a myristoylated pseudosubstrate, blocked the chemotaxis in a dose-dependent manner, further confirming that atypical PKCzeta was required for NSCLC chemotaxis. Mechanistic studies suggested that PKCzeta was regulated by phosphatidylinositol 3 kinase (PI3K)/Akt. Furthermore, PKCzeta-mediated chemotaxis by regulating actin polymerization and cell adhesion. Taken together, our study suggested that PKCzeta was required in NSCLC cell chemotaxis, thus could be used as a target to develop anti-lung cancer metastasis therapies.
Collapse
Affiliation(s)
- Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Department of Chemical Biology, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
133
|
Little L, Healy KE, Schaffer D. Engineering biomaterials for synthetic neural stem cell microenvironments. Chem Rev 2008; 108:1787-96. [PMID: 18476674 DOI: 10.1021/cr078228t] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lauren Little
- Department of Chemical Engineering, University of California, Berkeley, California 94720-1760, USA
| | | | | |
Collapse
|
134
|
Alexandrova AY. Evolution of cell interactions with extracellular matrix during carcinogenesis. BIOCHEMISTRY (MOSCOW) 2008; 73:733-41. [DOI: 10.1134/s0006297908070018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
135
|
Chung J, Kim TH. Integrin-dependent translational control: Implication in cancer progression. Microsc Res Tech 2008; 71:380-6. [PMID: 18300291 DOI: 10.1002/jemt.20566] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The importance of translational control in cancer progression has been underscored by a number of recent studies. However, little is known how cancer cells maintain their high efficiency of translation. Here, we summarize studies that support the role of integrins in translational control, especially at the initiation step, and discuss the various mechanisms by which integrins regulate the recruitment of translational machinery. This review also examines the hypothesis that integrins contribute to various aspects of cancer progression such as proliferation, survival, angiogenesis, and invasion through translational control.
Collapse
Affiliation(s)
- Jun Chung
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA.
| | | |
Collapse
|
136
|
Integrins alpha1beta1 and alpha2beta1 are receptors for the rotavirus enterotoxin. Proc Natl Acad Sci U S A 2008; 105:8811-8. [PMID: 18587047 DOI: 10.1073/pnas.0803934105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rotavirus NSP4 is a viral enterotoxin capable of causing diarrhea in neonatal mice. This process is initiated by the binding of extracellular NSP4 to target molecule(s) on the cell surface that triggers a signaling cascade leading to diarrhea. We now report that the integrins alpha1beta1 and alpha2beta1 are receptors for NSP4. NSP4 specifically binds to the alpha1 and alpha2 I domains with apparent K(d) = 1-2.7 muM. Binding is mediated by the I domain metal ion-dependent adhesion site motif, requires Mg(2+) or Mn(2+), is abolished with EDTA, and an NSP4 point mutant, E(120)A, fails to bind alpha2 integrin I domain. NSP4 has two distinct integrin interaction domains. NSP4 amino acids 114-130 are essential for binding to the I domain, and NSP4 peptide 114-135 blocks binding of the natural ligand, collagen I, to integrin alpha2. NSP4 amino acids 131-140 are not associated with the initial binding to the I domain, but elicit signaling that leads to the spreading of attached C2C12-alpha2 cells, mouse myoblast cells stably expressing the human alpha2 integrin. NSP4 colocalizes with integrin alpha2 on the basolateral surface of rotavirus-infected polarized intestinal epithelial (Caco-2) cells as well as surrounding noninfected cells. NSP4 mutants that fail to bind or signal through integrin alpha2 were attenuated in diarrhea induction in neonatal mice. These results indicate that NSP4 interaction with integrin alpha1 and alpha2 is an important component of enterotoxin function and rotavirus pathogenesis, further distinguishing this viral virulence factor from other microbial enterotoxins.
Collapse
|
137
|
Willey CD, Palanisamy AP, Johnston RK, Mani SK, Shiraishi H, Tuxworth WJ, Zile MR, Balasubramanian S, Kuppuswamy D. STAT3 activation in pressure-overloaded feline myocardium: role for integrins and the tyrosine kinase BMX. Int J Biol Sci 2008; 4:184-99. [PMID: 18612371 PMCID: PMC2443357 DOI: 10.7150/ijbs.4.184] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 06/24/2008] [Indexed: 11/23/2022] Open
Abstract
Growth, survival and cytoskeletal rearrangement of cardiomyocytes are critical for cardiac hypertrophy. Signal transducer and activator of transcription-3 (STAT3) activation is an important cardioprotective factor associated with cardiac hypertrophy. Although STAT3 activation has been reported via signaling through Janus Kinase 2 (JAK2) in several cardiac models of hypertrophy, the importance of other nonreceptor tyrosine kinases (NTKs) has not been explored. Utilizing an in vivo feline right ventricular pressure-overload (RVPO) model of hypertrophy, we demonstrate that in 48 h pressure-overload (PO) myocardium, STAT3 becomes phosphorylated and redistributed to detergent-insoluble fractions with no accompanying JAK2 activation. PO also caused increased levels of phosphorylated STAT3 in both cytoplasmic and nuclear fractions. To investigate the role of other NTKs, we used our established in vitro cell culture model of hypertrophy where adult feline cardiomyocytes are embedded three-dimensionally (3D) in type-I collagen and stimulated with an integrin binding peptide containing an Arg-Gly-Asp (RGD) motif that we have previously shown to recapitulate the focal adhesion complex (FAC) formation of 48 h RVPO. RGD stimulation of adult cardiomyocytes in vitro caused both STAT3 redistribution and activation that were accompanied by the activation and redistribution of c-Src and the TEC family kinase, BMX, but not JAK2. However, infection with dominant negative c-Src adenovirus was unable to block RGD-stimulated changes on either STAT3 or BMX. Further analysis in vivo in 48 h PO myocardium showed the presence of both STAT3 and BMX in the detergent-insoluble fraction with their complex formation and phosphorylation. Therefore, these studies indicate a novel mechanism of BMX-mediated STAT3 activation within a PO model of cardiac hypertrophy that might contribute to cardiomyocyte growth and survival.
Collapse
Affiliation(s)
- Christopher D Willey
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Shi F, Sottile J. Caveolin-1-dependent beta1 integrin endocytosis is a critical regulator of fibronectin turnover. J Cell Sci 2008; 121:2360-71. [PMID: 18577581 DOI: 10.1242/jcs.014977] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta1 integrins are major cell surface receptors for fibronectin. Some integrins, including beta1 integrins, are known to undergo constitutive endocytosis and recycling. Integrin endocytosis/recycling has been implicated in the regulation of cell migration. However, the mechanisms by which integrin endocytosis/recycling regulates cell migration, and other biological consequences of integrin trafficking are not completely understood. We previously showed that turnover of extracellular matrix (ECM) fibronectin occurs via receptor-mediated endocytosis. Here, we investigate the biological relevance of beta1 integrin endocytosis to fibronectin matrix turnover. First, we demonstrate that beta1 integrins, including alpha5beta1 play an important role in endocytosis and turnover of matrix fibronectin. Second, we show that caveolin-1 constitutively regulates endocytosis of alpha5beta1 integrins, and that alpha5beta1 integrin endocytosis can occur in the absence of fibronectin and fibronectin matrix. We also show that downregulation of caveolin-1 expression by siRNA results in marked reduction of beta1 integrin and fibronectin endocytosis. Hence, caveolin-1-dependent beta1 integrin and fibronectin endocytosis plays a critical role in fibronectin matrix turnover, and may contribute to abnormal ECM remodeling that occurs in fibrotic disorders.
Collapse
Affiliation(s)
- Feng Shi
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, West Henrietta, NY 14586, USA
| | | |
Collapse
|
139
|
Abstract
Medulloblastoma is the most common malignant brain tumor of childhood. Surgery, radiation therapy, and chemotherapy successfully cure many patients, but survivors can suffer long-term toxicities affecting their neurocognitive and growth potential; furthermore, there is no curative therapy in up to 30% of cases, mainly because of our incomplete understanding of many of the underlying molecular and cellular processes. Angiogenesis is a hallmark of the progression of medulloblastoma and, over the last years, investigators have sought to develop effective and less toxic antiangiogenic strategies, including the inhibition or destruction of abnormal blood vessels using either antiangiogenic or vascular disrupting agents. However, the results are conflicting principally because of the complex biology of tumor vasculature and the irregular geometry of the vascular system in real space. In addition, current targets of antiangiogenic therapy, such as vascular endothelial growth factor (VEGF), are thought to be critical for both physiologic and pathologic angiogenesis, and clinical side effects of anti-VEGF therapy are beginning to emerge. We here review the state-of-the-art concerning antiangiogenic targets for medulloblastoma treatment, and discuss the complexity of the vascular system that intrinsically limits the efficacy of current strategies.
Collapse
Affiliation(s)
- Fabio Grizzi
- Laboratories of Quantitative Medicine, Istituto Clinico Humanitas IRCCS, 20089 Rozzano, Milan, Italy.
| | | | | |
Collapse
|
140
|
Pysher MD, Chen QM, Vaillancourt RR. Arsenic alters vascular smooth muscle cell focal adhesion complexes leading to activation of FAK-src mediated pathways. Toxicol Appl Pharmacol 2008; 231:135-41. [PMID: 18486177 DOI: 10.1016/j.taap.2008.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/30/2008] [Accepted: 04/04/2008] [Indexed: 12/31/2022]
Abstract
Chronic exposure to arsenic has been linked to tumorigenesis, cardiovascular disease, hypertension, atherosclerosis, and peripheral vascular disease; however, the molecular mechanisms underlying its pathological effects remain elusive. In this study, we investigated arsenic-induced alteration of focal adhesion protein complexes in normal, primary vascular smooth muscle cells. We demonstrate that exposure to environmentally relevant concentrations of arsenic (50 ppb As(3+)) can alter focal adhesion protein co-association leading to activation of downstream pathways. Co-associated proteins were identified and quantitated via co-immunoprecipitation, SDS-PAGE, and Western blot analysis followed by scanning densitometry. Activation of MAPK pathways in total cell lysates was evaluated using phosphor-specific antibodies. In our model, arsenic treatment caused a sustained increase in FAK-src association and activation, and induced the formation of unique signaling complexes (beginning after 3-hour As(3+) exposure and continuing throughout the 12-hour time course studied). The effects of these alterations were manifested as chronic stimulation of downstream PAK, ERK and JNK pathways. Past studies have demonstrated that these pathways are involved in cellular survival, growth, proliferation, and migration in VSMCs.
Collapse
Affiliation(s)
- Michele D Pysher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA.
| | | | | |
Collapse
|
141
|
Stadlinger B, Pilling E, Mai R, Bierbaum S, Berhardt R, Scharnweber D, Eckelt U. Effect of biological implant surface coatings on bone formation, applying collagen, proteoglycans, glycosaminoglycans and growth factors. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1043-9. [PMID: 17701311 DOI: 10.1007/s10856-007-3077-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 04/03/2007] [Indexed: 05/16/2023]
Abstract
OBJECTIVES The aim of the present study was to evaluate six different implant surface coatings with respect to bone formation. Being major structural components of the extracellular matrix, collagen, the non-collagenous components decorin/chondroitin sulphate (CS) and the growth factors TGF-beta1/BMP-4 served in different combinations as coatings of experimental titanium implants. MATERIALS AND METHODS Eight miniature pigs received each six implants in the mandible. The implant design showed two circular recesses along the length axis. Three, four, five and six weeks after implant placement, the animals were sacrificed in groups of two. Bone-implant contact (BIC) was evaluated along the outer implant surface and within the recesses. Bone volume was determined by synchrotron radiation micro computed tomography (SRmicroCT) for one implant of each surface state, 6 weeks after placement. RESULTS At each week of observation, collagen/CS or collagen/CS/BMP-4 coated implants showed the highest BIC of all surface states. This was statistically significant at week five (p=0.030, p=0.040) and six (p=0.025, p=0.005). SRmicroCT measurements determined the highest bone volume for a collagen/CS coated implant. CONCLUSION The results indicate that collagen/CS and collagen/CS/BMP-4 lead to a higher degree of bone formation compared to other ECM components.
Collapse
Affiliation(s)
- Bernd Stadlinger
- Department of Oral & Maxillofacial Surgery, Faculty of Medicine, University of Technology Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
142
|
Canonici A, Steelant W, Rigot V, Khomitch-Baud A, Boutaghou-Cherid H, Bruyneel E, Van Roy F, Garrouste F, Pommier G, André F. Insulin-like growth factor-I receptor, E-cadherin and alpha v integrin form a dynamic complex under the control of alpha-catenin. Int J Cancer 2008; 122:572-82. [PMID: 17955485 DOI: 10.1002/ijc.23164] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic crosstalk between cell adhesion molecules, extracellular matrix and soluble informative factors is essential for cancer cell migration and invasion. Here, we investigated the mechanisms by which the E-cadherin/catenin complex and alpha v integrin can modulate insulin-like growth factor-I (IGF-I)-induced cell migration. Human colon mucosa, human colon cancer cell lines, HT29-D4 and HCT-8 derivatives that differ in their expression of alpha-catenin, were used as models. Interactions between E-cadherin, alpha v integrin and IGF-I receptor (IGF-IR) were analyzed by coimmunoprecipitation and immunolocalization experiments. The impact of these interactions on cell mobility was determined by haptotaxis assays. We report that alpha v integrin, E-cadherin and IGF-IR form a ternary complex in both cultured cancer cells and human normal colonic mucosa. alpha-Catenin regulates the scaffolding of this complex. IGF-IR ligation by IGF-I induces the disruption of the complex and the relocalization of alpha v integrin from cell-cell contacts to focal contact sites. This perturbation is correlated with the observed increase in cell migration. These results suggest that regulation of the alpha v integrin/E-cadherin/IGF-IR scaffolding is essential for the modulation of cell mobility. Its alteration could be of major importance to sustain alterations in cell adhesion that occur during cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Alexandra Canonici
- CISMET, FRE CNRS 2737, Universités d'Aix-Marseille I et II, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Pidgeon GP, Lysaght J, Krishnamoorthy S, Reynolds JV, O'Byrne K, Nie D, Honn KV. Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev 2008; 26:503-24. [PMID: 17943411 DOI: 10.1007/s10555-007-9098-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The metabolism of arachidonic acid through lipoxygenase pathways leads to the generation of various biologically active eicosanoids. The expression of these enzymes vary throughout the progression of various cancers, and thereby they have been shown to regulate aspects of tumor development. Substantial evidence supports a functional role for lipoxygenase-catalyzed arachidonic and linoleic acid metabolism in cancer development. Pharmacologic and natural inhibitors of lipoxygenases have been shown to suppress carcinogenesis and tumor growth in a number of experimental models. Signaling of hydro[peroxy]fatty acids following arachidonic or linoleic acid metabolism potentially effect diverse biological phenomenon regulating processes such as cell growth, cell survival, angiogenesis, cell invasion, metastatic potential and immunomodulation. However, the effects of distinct LOX isoforms differ considerably with respect to their effects on both the individual mechanisms described and the tumor being examined. 5-LOX and platelet type 12-LOX are generally considered pro-carcinogenic, with the role of 15-LOX-1 remaining controversial, while 15-LOX-2 suppresses carcinogenesis. In this review, we focus on the molecular mechanisms regulated by LOX metabolism in some of the major cancers. We discuss the effects of LOXs on tumor cell proliferation, their roles in cell cycle control and cell death induction, effects on angiogenesis, migration and the immune response, as well as the signal transduction pathways involved in these processes. Understanding the molecular mechanisms underlying the anti-tumor effect of specific, or general, LOX inhibitors may lead to the design of biologically and pharmacologically targeted therapeutic strategies inhibiting LOX isoforms and/or their biologically active metabolites, that may ultimately prove useful in the treatment of cancer, either alone or in combination with conventional therapies.
Collapse
Affiliation(s)
- Graham P Pidgeon
- Department of Clinical Surgery, Trinity College Dublin, St. James Hospital, Dublin 8, Ireland.
| | | | | | | | | | | | | |
Collapse
|
144
|
Jia B, Liu Z, Shi J, Yu Z, Yang Z, Zhao H, He Z, Liu S, Wang F. Linker effects on biological properties of 111In-labeled DTPA conjugates of a cyclic RGDfK dimer. Bioconjug Chem 2007; 19:201-10. [PMID: 18069778 DOI: 10.1021/bc7002988] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this report, we present in vitro and in vivo evaluation of three 111 In-labeled DTPA conjugates of a cyclic RGDfK dimer: DTPA-Bn-SU016 (SU016 = E[c(RGDfK)] 2; DTPA-Bn = 2-( p-isothioureidobenzyl)diethylenetriaminepentaacetic acid), DTPA-Bn-E-SU016 ( E = glutamic acid) and DTPA-Bn-Cys-SU016 (Cys = cysteic acid). The integrin alpha vbeta 3 binding affinities of SU016, DTPA-Bn-SU016, DTPA-Bn-E-SU016, and DTPA-Bn-Cys-SU016 were determined to be 5.0 +/- 0.7 nM, 7.9 +/- 0.6 nM, 5.8 +/- 0.6 nM, and 6.9 +/- 0.9 nM, respectively, against 125 I-c(RGDyK) in binding to integrin alpha vbeta3, suggesting that E or Cys residue has little effect on the integrin alpha vbeta3 affinity of E[c(RGDfK)] 2. It was also found that the 111 In-labeling efficiency of DTPA-Bn-SU016 and DTPA-Bn-E-SU016 is 3-5 times better than that of DOTA analogues due to fast chelation kinetics and high-yield 111 In-labeling under mild conditions (e.g., room temperature). Biodistribution studies were performed using BALB/c nude mice bearing U87MG human glioma xenografts. 111 In-DTPA-Bn-SU016, 111 In-DTPA-Bn-E-SU016, and 111 In-DTPA-Bn-Cys-SU016 all displayed rapid blood clearance. Their tumor uptake was comparable between 0.5 and 4 h postinjection (p.i.) within experimental error. 111 In-DTPA-Bn-E-SU016 had a significantly lower ( p < 0.01) kidney uptake than 111 In-DTPA-Bn-SU016 and 111 In-DTPA-Bn-Cys-SU016. The liver uptake of 111 In-DTPA-Bn-SU016 was 1.69 +/- 0.18% ID/g at 24 h p.i., while the liver uptake values of 111 In-DTPA-Bn-E-SU016 and 111 In-DTPA-Bn-Cys-SU016 were 0.55 +/- 0.11% ID/g and 0.79 +/- 0.15% ID/g at 24 h p.i., respectively. Among the three 111 In radiotracers evaluated in this study, 111 In-DTPA-Bn-E-SU016 has the lowest liver and kidney uptake and the best tumor/liver and tumor/kidney ratios. Results from metabolism studies indicated that there is little metabolism (<10%) for three 111 In radiotracers at 1 h p.i. Imaging data showed that tumors can be clearly visualized at 4 h p.i. with good contrast in the tumor-bearing mice administered with 111 In-DTPA-Bn-E-SU016. It is concluded that using a glutamic acid linker can significantly improve excretion kinetics of the 111 In-labeled E[c(RGDfK)] 2 from liver and kidneys.
Collapse
Affiliation(s)
- Bing Jia
- Medical Isotopes Research Center, Peking University, Beijing 100083, China
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Chen K, Tu Y, Zhang Y, Blair HC, Zhang L, Wu C. PINCH-1 regulates the ERK-Bim pathway and contributes to apoptosis resistance in cancer cells. J Biol Chem 2007; 283:2508-17. [PMID: 18063582 DOI: 10.1074/jbc.m707307200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Resistance to apoptosis is a hallmark of cancer cells. We report here that PINCH-1, a cytoplasmic component of cell-extracellular matrix adhesions, is required for protection of multiple types of cancer cells from apoptosis. Furthermore, using HT-1080 fibrosarcoma cells as a model system, we have investigated the signaling pathway through which PINCH-1 contributes to apoptosis resistance. Loss of PINCH-1 markedly increases the level of Bim and promotes Bim translocation to mitochondria, resulting in activation of the intrinsic apoptosis pathway. Depletion of Bim completely blocked apoptosis induced by the loss of PINCH-1. Thus, PINCH-1 contributes to apoptosis resistance through suppression of Bim. Mechanistically, PINCH-1 suppresses Bim not only transcriptionally but also post-transcriptionally. PINCH-1 promotes activating phosphorylation of Src family kinase and ERK1/2. Consistent with this, ERK1/2-mediated Ser(69) phosphorylation of Bim, a key signal for turnover of Bim, is suppressed by the removal of PINCH-1. Our results demonstrate a strong dependence of multiple types of apoptosis-resistant cancer cells on PINCH-1 and provide new insights into the molecular mechanism by which cancer cells are protected from apoptosis.
Collapse
Affiliation(s)
- Ka Chen
- Departments of Pathology and Pharmacology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
146
|
Gerstner ER, Duda DG, Tomaso ED, Sorensen G, Jain RK, Batchelor TT. Antiangiogenic agents for the treatment of glioblastoma. Expert Opin Investig Drugs 2007; 16:1895-908. [DOI: 10.1517/13543784.16.12.1895] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
147
|
Abstract
Integrins are a family of heterodimeric, cell-surface receptors that mediate interactions between the cytoskeleton and the extracellular matrix. We have used electron microscopy and single-particle image analysis combined with molecular modeling to investigate the structures of the full-length integrin alpha(IIb)beta(3) and the ectodomain of alpha(V)beta(3) in a complex with fibronectin. The full-length integrin alpha(IIb)beta(3) is purified from human platelets by ion exchange and gel filtration chromatography in buffers containing the detergent octyl-beta-D-glucopyranoside, whereas the recombinant ectodomain of alpha(V)beta(3) is soluble in aqueous buffer. Transmission electron microscopy is performed either in negative stain, where the protein is embedded in a heavy metal such as uranyl acetate, or in the frozen-hydrated state, where the sample is flash-frozen such that the buffer is vitrified and native conditions are preserved. Individual integrin particles are selected from low-dose micrographs, either by manual identification or an automated method using a cross-correlation search of the micrograph against a set of reference images. Due to the small size of integrin heterodimers (approximately 250 kDa) and the low electron dose required to minimize beam damage, the signal-to-noise level of individual particles is quite low, both by negative-stain electron microscopy and electron cryomicroscopy. Consequently, it is necessary to average many particle images with equivalent views. The particle images are subjected to reference-free alignment and classification, in which the particles are aligned to a common view and further grouped by statistical methods into classes with common orientations. Assessment of the structure from a set of two-dimensional averaged projections is often difficult, and a further three-dimensional (3D) reconstruction analysis is performed to classify each particle as belonging to a specific projection from a single 3D model. The 3D reconstruction algorithm is an iterative projection-matching routine in which the classified particles are used to construct a new, 3D map for the next iteration. Docking of known high-resolution structures of individual subdomains within the molecular envelope of the 3D EM map is used to derive a pseudoatomic model of the integrin complex. This approach of 3D EM image analysis and pseudoatomic modeling is a powerful strategy for exploring the structural biology of transmembrane signaling by integrins because it is likely that multiple conformational states will be difficult to crystallize, whereas the different states should be amenable to electron cryomicroscopy.
Collapse
Affiliation(s)
- Brian D Adair
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
148
|
Mierke CT, Kollmannsberger P, Zitterbart DP, Smith J, Fabry B, Goldmann WH. Mechano-coupling and regulation of contractility by the vinculin tail domain. Biophys J 2007; 94:661-70. [PMID: 17890382 PMCID: PMC2481521 DOI: 10.1529/biophysj.107.108472] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vinculin binds to multiple focal adhesion and cytoskeletal proteins and has been implicated in transmitting mechanical forces between the actin cytoskeleton and integrins or cadherins. It remains unclear to what extent the mechano-coupling function of vinculin also involves signaling mechanisms. We report the effect of vinculin and its head and tail domains on force transfer across cell adhesions and the generation of contractile forces. The creep modulus and the adhesion forces of F9 mouse embryonic carcinoma cells (wild-type), vinculin knock-out cells (vinculin −/−), and vinculin −/− cells expressing either the vinculin head domain, tail domain, or full-length vinculin (rescue) were measured using magnetic tweezers on fibronectin-coated super-paramagnetic beads. Forces of up to 10 nN were applied to the beads. Vinculin −/− cells and tail cells showed a slightly higher incidence of bead detachment at large forces. Compared to wild-type, cell stiffness was reduced in vinculin −/− and head cells and was restored in tail and rescue cells. In all cell lines, the cell stiffness increased by a factor of 1.3 for each doubling in force. The power-law exponent of the creep modulus was force-independent and did not differ between cell lines. Importantly, cell tractions due to contractile forces were suppressed markedly in vinculin −/− and head cells, whereas tail cells generated tractions similar to the wild-type and rescue cells. These data demonstrate that vinculin contributes to the mechanical stability under large external forces by regulating contractile stress generation. Furthermore, the regulatory function resides in the tail domain of vinculin containing the paxillin-binding site.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Center for Medical Physics and Technology, Department of Physics, Biophysics, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
149
|
Terentiev AA, Moldogazieva NT. Cell adhesion proteins and α-fetoprotein. Similar structural motifs as prerequisites for common functions. BIOCHEMISTRY (MOSCOW) 2007; 72:920-35. [DOI: 10.1134/s0006297907090027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
150
|
Welser JV, Lange N, Singer CA, Elorza M, Scowen P, Keef KD, Gerthoffer WT, Burkin DJ. Loss of the alpha7 integrin promotes extracellular signal-regulated kinase activation and altered vascular remodeling. Circ Res 2007; 101:672-81. [PMID: 17704212 DOI: 10.1161/circresaha.107.151415] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration are underlying factors in the development and progression of cardiovascular disease. Studies have shown that altered expression of vascular integrins and extracellular matrix proteins may contribute to the vascular remodeling observed after arterial injury and during disease. We have recently shown that loss of the alpha7beta1 integrin results in VSMC hyperplasia. To investigate the cellular mechanisms underlying this phenotype, we have examined changes in cell signaling pathways associated with VSMC proliferation. Several studies have demonstrated the mitogen-activated protein kinase signaling pathway is activated in response to vascular injury and disease. In this study, we show that loss of the alpha7 integrin in VSMCs results in activation of the extracellular signal-regulated kinase and translocation of the activated kinase to the nucleus. Forced expression of the alpha7 integrin or use of the mitogen-activated protein kinase kinase 1 inhibitor U0126 in alpha7 integrin-deficient VSMCs suppressed extracellular signal-regulated kinase activation and restored the differentiated phenotype to alpha7 integrin-null cells in a manner dependent on Ras signaling. Alpha7 integrin-null mice displayed profound vascular remodeling in response to injury with pronounced neointimal formation and reduced vascular compliance. These findings demonstrate that the alpha7beta1 integrin negatively regulates extracellular signal-regulated kinase activation and suggests an important role for this integrin as part of a signaling complex regulating VSMC phenotype switching.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/genetics
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Blood Vessels/metabolism
- Blood Vessels/pathology
- Blood Vessels/physiopathology
- Cells, Cultured
- Enzyme Activation/genetics
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Integrin alpha Chains/deficiency
- Integrin alpha Chains/genetics
- Integrin alpha Chains/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Rats
Collapse
Affiliation(s)
- Jennifer V Welser
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | | | | | |
Collapse
|