101
|
Gao L, Wu J, Wang H, Yang Y, Zheng Z, Ni B, Wang X, Peng Y, Li Y. LMO1 Plays an Oncogenic Role in Human Glioma Associated With NF-kB Pathway. Front Oncol 2022; 12:770299. [PMID: 35280742 PMCID: PMC8907846 DOI: 10.3389/fonc.2022.770299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background LIM domain only protein1(LMO1), a nuclear transcription coregulator, is implicated in the pathogenesis of T-cell acute lymphoblastic leukemia and neuroblastoma. However, the clinical significance and potential mechanism of LMO1 in human gliomas remain to be determined. Methods In this study, expression level data and clinical information were obtained via three databases. The Cox proportional hazards regression model was used to predict outcomes for glioma patients. In vitro and in vivo assays were used to explore the function of LMO1 in human glioma. Gene set enrichment analysis (GSEA), RNA-seq and western blot were used to explore the potential molecular mechanisms. A prognostic model was built for predicting the overall survival(OS) of human glioma patients. Results High LMO1 expression was associated with a high tumor grade and a poor prognosis in patients. High levels of LMO1 mRNA were correlated with poor prognosis in patients with isocitrate dehydrogenase (IDH)-wild-type (wt) and 1p/19q non-codeletion gliomas. Gene silencing of LMO1 significantly inhibited tumor growth, invasion and migration in vitro. In contrast, LMO1 over-expression promoted tumor growth, invasion and migration. Mechanically, LMO1 may positively regulate the level of NGFR mRNA and protein. NGFR mediated the regulation between LMO1 and NF-kB activation. Consistently, the nude mice study further confirmed that knockdown of LMO1 blocked tumor growth via NGFR-NF-kB axis. Finally, The nomogram based on the LMO1 signature for overall survival (OS) prediction in human glioma patients exhibited good performance in the individual mortality risk. Conclusion This study provides new insights and evidences that high level expression of LMO1 is significantly correlated with progression and prognosis in human gliomas. LMO1 played a critical role in tumorigenesis and progression. The present study first investigated the LMO1–NGFR–NF-kB axis regulate cell growth and invasion in human glioma cells, whereby targeting this pathway may be a therapeutic target for glioma.
Collapse
Affiliation(s)
- Lei Gao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyu Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zongliao Zheng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bowen Ni
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiran Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuping Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaomin Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
102
|
Abstract
Proper innervation of peripheral organs helps to maintain physiological homeostasis and elicit responses to external stimuli. Disruptions to normal function can result in pathophysiological consequences. The establishment of connections and communication between the central nervous system and the peripheral organs is accomplished through the peripheral nervous system. Neuronal connections with target tissues arise from ganglia partitioned throughout the body. Organ innervation is initiated during development with stimuli being conducted through several types of neurons including sympathetic, parasympathetic, and sensory. While the physiological modulation of mature organs by these nerves is largely understood, their role in mammalian development is only beginning to be uncovered. Interactions with cells in target tissues can affect the development and eventual function of several organs, highlighting their significance. This chapter will cover the origin of peripheral neurons, factors mediating organ innervation, and the composition and function of organ-specific nerves during development. This emerging field aims to identify the functional contribution of innervation to development which will inform future investigations of normal and abnormal mammalian organogenesis, as well as contribute to regenerative and organ replacement efforts where nerve-derived signals may have significant implications for the advancement of such studies.
Collapse
Affiliation(s)
- Samuel E Honeycutt
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Pierre-Emmanuel Y N'Guetta
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lori L O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
103
|
Yeewa R, Chaiya P, Jantrapirom S, Shotelersuk V, Lo Piccolo L. Multifaceted roles of YEATS domain-containing proteins and novel links to neurological diseases. Cell Mol Life Sci 2022; 79:183. [PMID: 35279775 PMCID: PMC11071958 DOI: 10.1007/s00018-022-04218-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
The so-called Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins, hereafter referred to as YD proteins, take control over the transcription by multiple steps of regulation either involving epigenetic remodelling of chromatin or guiding the processivity of RNA polymerase II to facilitate elongation-coupled mRNA 3' processing. Interestingly, an increasing amount of evidence suggest a wider repertoire of YD protein's functions spanning from non-coding RNA regulation, RNA-binding proteins networking, post-translational regulation of a few signalling transduction proteins and the spindle pole formation. However, such a large set of non-canonical roles is still poorly characterized. Notably, four paralogous of human YEATS domain family members, namely eleven-nineteen-leukaemia (ENL), ALL1-fused gene from chromosome 9 protein (AF9), YEATS2 and glioma amplified sequence 41 (GAS41), have a strong link to cancer yet new findings also highlight a potential novel role in neurological diseases. Here, in an attempt to more comprehensively understand the complexity of four YD proteins and to gain more insight into the novel functions they may accomplish in the neurons, we summarized the YD protein's networks, systematically searched and reviewed the YD genetic variants associated with neurodevelopmental disorders and finally interrogated the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pawita Chaiya
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Salinee Jantrapirom
- Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Centre for Genomics and Precision Medicine, The Thai Red Cross Society, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Musculoskeletal Science and Translational Research Centre (MSTR), Faculty of Medicine, Chiang Mai University, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
104
|
Tessarollo L, Yanpallewar S. TrkB Truncated Isoform Receptors as Transducers and Determinants of BDNF Functions. Front Neurosci 2022; 16:847572. [PMID: 35321093 PMCID: PMC8934854 DOI: 10.3389/fnins.2022.847572] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family of secreted growth factors and binds with high affinity to the TrkB tyrosine kinase receptors. BDNF is a critical player in the development of the central (CNS) and peripheral (PNS) nervous system of vertebrates and its strong pro-survival function on neurons has attracted great interest as a potential therapeutic target for the management of neurodegenerative disorders such as Amyotrophic Lateral Sclerosis (ALS), Huntington, Parkinson's and Alzheimer's disease. The TrkB gene, in addition to the full-length receptor, encodes a number of isoforms, including some lacking the catalytic tyrosine kinase domain. Importantly, one of these truncated isoforms, namely TrkB.T1, is the most widely expressed TrkB receptor in the adult suggesting an important role in the regulation of BDNF signaling. Although some progress has been made, the mechanism of TrkB.T1 function is still largely unknown. Here we critically review the current knowledge on TrkB.T1 distribution and functions that may be helpful to our understanding of how it regulates and participates in BDNF signaling in normal physiological and pathological conditions.
Collapse
Affiliation(s)
- Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | | |
Collapse
|
105
|
Cramer T, Gill R, Thirouin ZS, Vaas M, Sampath S, Martineau F, Noya SB, Panzanelli P, Sudharshan TJJ, Colameo D, Chang PKY, Wu PY, Shi R, Barker PA, Brown SA, Paolicelli RC, Klohs J, McKinney RA, Tyagarajan SK. Cross-talk between GABAergic postsynapse and microglia regulate synapse loss after brain ischemia. SCIENCE ADVANCES 2022; 8:eabj0112. [PMID: 35245123 PMCID: PMC8896802 DOI: 10.1126/sciadv.abj0112] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Microglia interact with neurons to facilitate synapse plasticity; however, signal(s) contributing to microglia activation for synapse elimination in pathology are not fully understood. Here, using in vitro organotypic hippocampal slice cultures and transient middle cerebral artery occlusion (MCAO) in genetically engineered mice in vivo, we report that at 24 hours after ischemia, microglia release brain-derived neurotrophic factor (BDNF) to downregulate glutamatergic and GABAergic synapses within the peri-infarct area. Analysis of the cornu ammonis 1 (CA1) in vitro shows that proBDNF and mBDNF downregulate glutamatergic dendritic spines and gephyrin scaffold stability through p75 neurotrophin receptor (p75NTR) and tropomyosin receptor kinase B (TrkB) receptors, respectively. After MCAO, we report that in the peri-infarct area and in the corresponding contralateral hemisphere, similar neuroplasticity occurs through microglia activation and gephyrin phosphorylation at serine-268 and serine-270 in vivo. Targeted deletion of the Bdnf gene in microglia or GphnS268A/S270A (phospho-null) point mutations protects against ischemic brain damage, neuroinflammation, and synapse downregulation after MCAO.
Collapse
Affiliation(s)
- Teresa Cramer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Raminder Gill
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
| | - Zahra S. Thirouin
- Research Institute of the McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada
| | - Markus Vaas
- Clinical Trials Center, University Hospital Zurich, Rämistrasse 100/MOU2, CH 8044 Zürich, Switzerland
| | - Suchita Sampath
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Fanny Martineau
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, CH 1005 Lausanne, Switzerland
| | - Sara B. Noya
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Tania J. J. Sudharshan
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - David Colameo
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Philip K.-Y. Chang
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
| | - Roy Shi
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
| | - Philip A. Barker
- Department of Biology, University of British Columbia, 3187 University Way, ASC 413, Kelowna, BC V1V 1V7, Canada
| | - Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Rosa C. Paolicelli
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, CH 1005 Lausanne, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Wolfgang-Pauli-Strasse 27, CH 8093 Zürich, Switzerland
| | - Rebecca Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
- Corresponding author. (S.K.T.); (R.A.M.)
| | - Shiva K. Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
- Department of Pharmacology and Therapeutics, McGill University, 3649 Prom. Sir-William-Osler, Montreal, QC H3G 0B1, Canada
- Corresponding author. (S.K.T.); (R.A.M.)
| |
Collapse
|
106
|
Conroy JN, Coulson EJ. High-affinity TrkA and p75 neurotrophin receptor complexes: A twisted affair. J Biol Chem 2022; 298:101568. [PMID: 35051416 PMCID: PMC8889134 DOI: 10.1016/j.jbc.2022.101568] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 10/27/2022] Open
Abstract
Neurotrophin signaling is essential for normal nervous system development and adult function. Neurotrophins are secreted proteins that signal via interacting with two neurotrophin receptor types: the multifaceted p75 neurotrophin receptor and the tropomyosin receptor kinase receptors. In vivo, neurons compete for the limited quantities of neurotrophins, a process that underpins neural plasticity, axonal targeting, and ultimately survival of the neuron. Thirty years ago, it was discovered that p75 neurotrophin receptor and tropomyosin receptor kinase A form a complex and mediate high-affinity ligand binding and survival signaling; however, despite decades of functional and structural research, the mechanism of modulation that yields this high-affinity complex remains unclear. Understanding the structure and mechanism of high-affinity receptor generation will allow development of pharmaceuticals to modulate this function for treatment of the many nervous system disorders in which altered neurotrophin expression or signaling plays a causative or contributory role. Here we re-examine the key older literature and integrate it with more recent studies on the topic of how these two receptors interact. We also identify key outstanding questions and propose a model of inside-out allosteric modulation to assist in resolving the elusive high-affinity mechanism and complex.
Collapse
Affiliation(s)
- Jacinta N Conroy
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth J Coulson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Clem Jones Centre for Ageing and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
107
|
Som S, Antony J, Dhanabal SP, Ponnusankar S. Neuroprotective role of Diosgenin, a NGF stimulator, against Aβ (1-42) induced neurotoxicity in animal model of Alzheimer's disease. Metab Brain Dis 2022; 37:359-372. [PMID: 35023028 DOI: 10.1007/s11011-021-00880-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/05/2021] [Indexed: 01/24/2023]
Abstract
Diosgenin is a neurosteroid derived from the plants and has been previously reported for its numerous health beneficial properties, such as anti-arrhythmic, hypolipidemic, and antiproliferative effects. Although several studies conducted earlier suggested cognition enhancement actions of diosgenin against neurodegenerative disorders, but the molecular mechanisms underlying are not clearly understood. In the present study, we investigated the neuroprotective effect of diosgenin in the Wistar rats that received an intracerebroventricular injection of Amyloid-β (1-42) peptides, representing a rodent model of Alzheimer's disease (AD). Animals were treated with 100 and 200 mg/kg/p.o of diosgenin for 28 days, followed by Amyloid-β (1-42) peptides infusion. Animals were assessed for the spatial learning and memory by using radial arm maze and passive avoidance task. Subsequently, animals were euthanized and brains were collected for biochemical estimations and histopathological studies. Our results revealed that, diosgenin administration dose dependently improved the spatial learning and memory and protected the animals from Amyloid-β (1-42) peptides induced disrupted cognitive functions. Further, biochemical analysis showed that diosgenin successfully attenuated Amyloid-β (1-42) mediated plaque load, oxidative stress, neuroinflammation and elevated acetylcholinesterase activity. In addition, histopathological evaluation also supported neuroprotective effects of diosgenin in hippocampus of rat brain when assessed using hematoxylin-eosin and Cresyl Violet staining. Thus, the aforementioned effects suggested protective action of diosgenin against Aβ (1-42) induced neuronal damage and thereby can serve as a potential therapeutic candidate for AD.
Collapse
Affiliation(s)
- Swati Som
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India
| | - Justin Antony
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India
| | - SPalanisamy Dhanabal
- Department of Pharmacognosy and Phytochemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India.
| |
Collapse
|
108
|
Xu C, Ge S, Cheng J, Gao H, Zhang F, Han A. Pathological and Prognostic Characterization of Craniopharyngioma Based on the Expression of TrkA, β-Catenin, Cell Cycle Markers, and BRAF V600E Mutation. Front Endocrinol (Lausanne) 2022; 13:859381. [PMID: 35707464 PMCID: PMC9190302 DOI: 10.3389/fendo.2022.859381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022] Open
Abstract
We collected 61 craniopharyngioma (CP) specimens to investigate the expression of TrkA, β-catenin, BRAF gene mutation, and NTRK1 fusion in CP. There were 37 male and 24 female individuals with a median age of 34 years (range, 4-75 years). Histologically, there were 46 cases of adamantinomatous craniopharyngioma (ACP), 14 cases of papillary craniopharyngioma (PCP), and 1 case with a mixed adamantinomatous and papillary pattern. By immunohistochemistry, we found that moderate/high TrkA expression was detected in 47% (28/60) CP and was significantly higher in adult patients (p = 0.018). Interestingly, TrkA is more expressed in "whorled epithelium" cells in ACP, similar to the localization of abnormal β-catenin. The abnormal expression rate of β-catenin was 70% (43/61), and the medium/high cyclin D1 expression rate was 73% (44/60), both of which were significantly higher in ACP than in PCP. Of the CP, 41% (21/51) had a moderate/strong P16-positive signal; 58% (34/59) showed a high Ki-67 expression, and there was a significant correlation between high Ki-67 L.I. and high tumor recurrence (p = 0.021). NTRK1 fusion was not found in CP by fluorescence in situ hybridization (FISH). By PCR, 26% (15/58) CP showed BRAF V600E gene mutation, which mainly occurred in PCP (100%, 14/14) except one case of mixed CP. Moreover, TrkA expression was negatively correlated with Ki-67 index and positively correlated with P16 expression. There was a significantly negative correlation between BRAF V600E mutation and abnormal β-catenin expression. Our results demonstrate for the first time that TrkA expression might occur in CP, especially in adult CP patients, and suggest that cyclin D1 could be used for ACP histological classification in addition to β-catenin and BRAF V600E mutation, while Ki-67 could be used as a marker to predict CP recurrence.
Collapse
|
109
|
Almulla AYH, Mogulkoc R, Baltaci AK, Dasdelen D. Learning, Neurogenesis and Effects of Flavonoids on Learning. Mini Rev Med Chem 2022; 22:355-364. [PMID: 34238155 DOI: 10.2174/1389557521666210707120719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Learning and memory are two of our mind's most magical abilities. Different brain regions have roles to process and store different types of memories. The hippocampus is the part of the brain responsible for receiving information and storing it in the neocortex. One of the most impressive characteristics of the hippocampus is its capacity for neurogenesis which is a process, new neurons are produced and then transformed into mature neurons and integrated into neural circuits. The neurogenesis process in the hippocampus, an example of neuroplasticity in the adult brain, is believed to aid hippocampal-dependent learning and memory. New neurons are constantly produced in the hippocampus and integrated into the pre-existing neuronal network, this allows old memories already stored in the neocortex to be removed from the hippocampus and replaced with new ones. Factors affecting neurogenesis in the hippocampus may also affect hippocampal-dependent learning and memory. The flavonoids can exert particularly powerful actions in mammalian cognition and improve hippocampaldependent learning and memory by positively affecting hippocampal neurogenesis.
Collapse
Affiliation(s)
| | - Rasim Mogulkoc
- Department of Physiology, Medical School, Selcuk University, Konya, Turkey
| | | | - Dervis Dasdelen
- Department of Physiology, Medical School, Selcuk University, Konya, Turkey
| |
Collapse
|
110
|
Gorgulu Y, Caliyurt O, Kose Cinar R, Sonmez MB. Acute sleep deprivation immediately increases serum GDNF, BDNF and VEGF levels in healthy subjects. Sleep Biol Rhythms 2022; 20:73-79. [PMID: 38469072 PMCID: PMC10897642 DOI: 10.1007/s41105-021-00341-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
Acute sleep deprivation upregulates hippocampal neurogenesis. Neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) are mediators of neuronal plasticity and neurogenesis. These neurotrophins are involved in sleep and sleep disorders and are associated with sleep deprivation. In this study, it is aimed to investigate the changes of neurotrophin levels with total sleep deprivation in healthy individuals. Seventeen healthy young adults with a mean age of 19.8 (SD = 1.0) years underwent an experimental protocol consisting of 36 h of total sleep deprivation. Venous blood samples were obtained on Day1 at 09.00, on Day2 at 09.00, and at 21.00. Serum levels of neurotrophins were detected using the ELISA method. The participants were asked to mark the scores corresponding to their subjective energy, happiness, depression, tension levels on the visual analog scale; and sleepiness level on the Epworth Sleepiness Scale; during the course of the study. As a result of 36 h of sleep deprivation, serum GDNF, BDNF, and VEGF levels showed a statistically significant increase compared to the baseline values in the participants included in the study (P < 0.0001). While this increase was evident in 24 h, it continued after 36 h. In parallel, sleepiness levels, subjective depression, and tension levels increased, on the other hand, subjective energy and happiness scores decreased at a statistically significant level at the end of the study compared to basal values (P < 0.0001). The results show that acute sleep deprivation significantly affects and increases serum levels of neurotrophic factors, and it seems that these effects are likely to occur as an immediate response to the stress and disruption caused by sleep deprivation.
Collapse
Affiliation(s)
- Yasemin Gorgulu
- Department of Psychiatry, Faculty of Medicine, Trakya University, Balkan Campus, 22030 Edirne, Turkey
| | - Okan Caliyurt
- Department of Psychiatry, Faculty of Medicine, Trakya University, Balkan Campus, 22030 Edirne, Turkey
| | - Rugul Kose Cinar
- Department of Psychiatry, Faculty of Medicine, Trakya University, Balkan Campus, 22030 Edirne, Turkey
| | - Mehmet Bulent Sonmez
- Department of Psychiatry, Faculty of Medicine, Trakya University, Balkan Campus, 22030 Edirne, Turkey
| |
Collapse
|
111
|
Lin PH, Kuo LT, Luh HT. The Roles of Neurotrophins in Traumatic Brain Injury. LIFE (BASEL, SWITZERLAND) 2021; 12:life12010026. [PMID: 35054419 PMCID: PMC8780368 DOI: 10.3390/life12010026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Neurotrophins are a collection of structurally and functionally related proteins. They play important roles in many aspects of neural development, survival, and plasticity. Traumatic brain injury (TBI) leads to different levels of central nervous tissue destruction and cellular repair through various compensatory mechanisms promoted by the injured brain. Many studies have shown that neurotrophins are key modulators of neuroinflammation, apoptosis, blood–brain barrier permeability, memory capacity, and neurite regeneration. The expression of neurotrophins following TBI is affected by the severity of injury, genetic polymorphism, and different post-traumatic time points. Emerging research is focused on the potential therapeutic applications of neurotrophins in managing TBI. We conducted a comprehensive review by organizing the studies that demonstrate the role of neurotrophins in the management of TBI.
Collapse
Affiliation(s)
- Ping-Hung Lin
- Department of Medical Education, School of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Hui-Tzung Luh
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, New Taipei City 235, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-956279587
| |
Collapse
|
112
|
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 2021; 23:14. [PMID: 35008440 PMCID: PMC8744548 DOI: 10.3390/ijms23010014] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurorehabilitation Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
113
|
Naletova I, Greco V, Sciuto S, Attanasio F, Rizzarelli E. Ionophore Ability of Carnosine and Its Trehalose Conjugate Assists Copper Signal in Triggering Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Activation In Vitro. Int J Mol Sci 2021; 22:13504. [PMID: 34948299 PMCID: PMC8706131 DOI: 10.3390/ijms222413504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
l-carnosine (β-alanyl-l-histidine) (Car hereafter) is a natural dipeptide widely distributed in mammalian tissues and reaching high concentrations (0.7-2.0 mM) in the brain. The molecular features of the dipeptide underlie the antioxidant, anti-aggregating and metal chelating ability showed in a large number of physiological effects, while the biological mechanisms involved in the protective role found against several diseases cannot be explained on the basis of the above-mentioned properties alone, requiring further research efforts. It has been reported that l-carnosine increases the secretion and expression of various neurotrophic factors and affects copper homeostasis in nervous cells inducing Cu cellular uptake in keeping with the key metal-sensing system. Having in mind this l-carnosine ability, here we report the copper-binding and ionophore ability of l-carnosine to activate tyrosine kinase cascade pathways in PC12 cells and stimulate the expression of BDNF. Furthermore, the study was extended to verify the ability of the dipeptide to favor copper signaling inducing the expression of VEGF. Being aware that the potential protective action of l-carnosine is drastically hampered by its hydrolysis, we also report on the behavior of a conjugate of l-carnosine with trehalose that blocks the carnosinase degradative activity. Overall, our findings describe a copper tuning effect on the ability of l-carnosine and, particularly its conjugate, to activate tyrosine kinase cascade pathways.
Collapse
Affiliation(s)
- Irina Naletova
- Institute of Crystallography, National Council of Research—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
- National Inter-University Consortium Metals Chemistry in Biological Systems (CIRCMSB), Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
- National Inter-University Consortium Metals Chemistry in Biological Systems (CIRCMSB), Via Celso Ulpiani 27, 70126 Bari, Italy
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
114
|
Molecular Studies on the Nephroprotective Potential of Celastrus paniculatus against Lead-Acetate-Induced Nephrotoxicity in Experimental Rats: Role of the PI3K/AKT Signaling Pathway. Molecules 2021; 26:molecules26216647. [PMID: 34771053 PMCID: PMC8587739 DOI: 10.3390/molecules26216647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
Chemicals can induce nephrotoxicity, with damage to different segments of the nephron and deterioration of renal function. Nephrotoxicity due to exposure to a toxin such as carbon tetrachloride, sodium oxalate, or heavy metals is the most common cause of kidney injury. The current study aimed to evaluate the protective effects of Celastrus paniculatus seed extract against lead-acetate-induced nephrotoxicity by evaluating the histopathology, immunohistochemistry, ultrastructure, and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Twenty-four rats were divided into four groups (n = 6 per group): group 1 contained normal animals and served as the control; group 2 received lead acetate (30 mg/kg body weight (b.w.)/day, oral); group 3 received lead acetate and the standard drug N-acetylcysteine (NAC, 200 mg/kg b.w./day, oral); and group 4 received lead acetate and the ethanolic extract of C. paniculatus seed (EECP; 800 mg/kg b.w./day, oral). Treatment was given for 28 consecutive days. The data were analyzed using one-way analysis of variance with SIGMA PLOT 13 using SYSTAT software followed by Newman–Keul’s test for comparison between the groups. EECP ameliorated the adverse changes caused by lead acetate. PI3K and AKT messenger RNA (mRNA) levels were diminished in lead-acetate-treated rats. Treatment with EECP inhibited the occurrence of shrunken cells, the atrophy of glomeruli, and degenerative changes in renal tubules caused by lead acetate. Interestingly, the PI3K and AKT mRNA levels were significantly increased in EECP-treated animals. Our results clearly evidence for the first time that C. paniculatus seed extract inhibits lead-acetate-induced detrimental changes in kidneys by regulating PI3K/AKT signaling pathways.
Collapse
|
115
|
Exhaustive Plant Profile of “Dimocarpus longan Lour” with Significant Phytomedicinal Properties: A Literature Based-Review. Processes (Basel) 2021. [DOI: 10.3390/pr9101803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: “Dimocarpus longan Lour” is a tropical and subtropical evergreen tree species mainly found in China, India, and Thailand; this plant, found naturally in Bangladesh, even locally, is used as “kaviraj” medication for treating different diseases, such as gastrointestinal disorders, wounds, fever, snake bites, menstrual problem, chickenpox, bone fractures, neurological disorders, and reproductive health. Different parts of this plant, especially juice pulp, pericarp, seeds, leaves, and flowers, contain a diverse group of botanical phytocompounds, and nutrient components which are directly related to alleviating numerous diseases. This literature-based review provides the most up-to-date data on the ethnomedicinal usages, phytochemical profiling, and bio-pharmacological effects of D. longan Lour based on published scientific articles. Methodology: A literature-based review was conducted by collecting information from various published papers in reputable journals and cited organizations. ChemDraw, a commercial software package, used to draw the chemical structure of the phytochemicals. Results: Various phytochemicals such as flavonoids, tannins, and polyphenols were collected from the various sections of the plant, and other compounds like vitamins and minerals were also obtained from this plant. As a treating agent, this plant displayed many biologicals activities, such as anti-proliferative, antioxidant, anti-cancer, anti-tyrosinase, radical scavenging activity, anti-inflammatory activity, anti-microbial, activation of osteoblast differentiation, anti-fungal, immunomodulatory, probiotic, anti-aging, anti-diabetic, obesity, neurological issues, and suppressive effect on macrophages cells. Different plant parts have displayed better activity in different disease conditions. Still, the compounds, such as gallic acid, ellagic acid, corilagin acid, quercetin, 4-O-methyl gallic acid, and (-)-epicatechin showed better activity in the biological system. Gallic acid, corilagin, and ellagic acid strongly exhibited anti-cancer activity in the HepG2, A549, and SGC 7901 cancer cell lines. Additionally, 4-O-methyl gallic acid and (-)-epicatechin have displayed outstanding antioxidant activity as well as anti-cancer activity. Conclusion: This plant species can be considered an alternative source of medication for some diseases as it contains a potential group of chemical constituents.
Collapse
|
116
|
Galindo-Romero C, Vidal-Villegas B, Asís-Martínez J, Lucas-Ruiz F, Gallego-Ortega A, Vidal-Sanz M. 7,8-Dihydroxiflavone Protects Adult Rat Axotomized Retinal Ganglion Cells through MAPK/ERK and PI3K/AKT Activation. Int J Mol Sci 2021; 22:ijms221910896. [PMID: 34639236 PMCID: PMC8509499 DOI: 10.3390/ijms221910896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
We analyze the 7,8-dihydroxyflavone (DHF)/TrkB signaling activation of two main intracellular pathways, mitogen-activated protein kinase (MAPK)/ERK and phosphatidylinositol 3 kinase (PI3K)/AKT, in the neuroprotection of axotomized retinal ganglion cells (RGCs). Methods: Adult albino Sprague-Dawley rats received left intraorbital optic nerve transection (IONT) and were divided in two groups. One group received daily intraperitoneal DHF (5 mg/kg) and another vehicle (1%DMSO in 0.9%NaCl) from one day before IONT until processing. Additional intact rats were employed as control (n = 4). At 1, 3 or 7 days (d) after IONT, phosphorylated (p)AKT, p-MAPK, and non-phosphorylated AKT and MAPK expression levels were analyzed in the retina by Western blotting (n = 4/group). Radial sections were also immunodetected for the above-mentioned proteins, and for Brn3a and vimentin to identify RGCs and Müller cells (MCs), respectively (n = 3/group). Results: IONT induced increased levels of p-MAPK and MAPK at 3d in DHF- or vehicle-treated retinas and at 7d in DHF-treated retinas. IONT induced a fast decrease in AKT in retinas treated with DHF or vehicle, with higher levels of phosphorylation in DHF-treated retinas at 7d. In intact retinas and vehicle-treated groups, no p-MAPK or MAPK expression in RGCs was observed. In DHF- treated retinas p-MAPK and MAPK were expressed in the ganglion cell layer and in the RGC nuclei 3 and 7d after IONT. AKT was observed in intact and axotomized RGCs, but the signal intensity of p-AKT was stronger in DHF-treated retinas. Finally, MCs expressed higher quantities of both MAPK and AKT at 3d in both DHF- and vehicle-treated retinas, and at 7d the phosphorylation of p-MAPK was higher in DHF-treated groups. Conclusions: Phosphorylation and increased levels of AKT and MAPK through MCs and RGCs in retinas after DHF-treatment may be responsible for the increased and long-lasting RGC protection afforded by DHF after IONT.
Collapse
Affiliation(s)
- Caridad Galindo-Romero
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
- Correspondence: ; Tel.: +34-8-688-893-09
| | - Beatriz Vidal-Villegas
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
- Servicio de Oftalmología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Javier Asís-Martínez
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| | - Fernando Lucas-Ruiz
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| | - Alejandro Gallego-Ortega
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Campus de CC de la Salud, Universidad de Murcia e Instituto Murciano de Investigación Biosanitaria (IMIB) Virgen de la Arrixaca, El Palmar, 30120 Murcia, Spain; (B.V.-V.); (J.A.-M.); (F.L.-R.); (A.G.-O.); (M.V.-S.)
| |
Collapse
|
117
|
Shiri E, Pasbakhsh P, Borhani-Haghighi M, Alizadeh Z, Nekoonam S, Mojaverrostami S, Pirhajati Mahabadi V, Mehdi A, Zibara K, Kashani IR. Mesenchymal Stem Cells Ameliorate Cuprizone-Induced Demyelination by Targeting Oxidative Stress and Mitochondrial Dysfunction. Cell Mol Neurobiol 2021; 41:1467-1481. [PMID: 32594382 PMCID: PMC11448649 DOI: 10.1007/s10571-020-00910-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. The main causes of MS disease progression, demyelination, and tissue damage are oxidative stress and mitochondrial dysfunction. Hence, the latter are considered as important therapeutic targets. Recent studies have demonstrated that mesenchymal stem cells (MSCs) possess antioxidative properties and are able to target mitochondrial dysfunction. Therefore, we investigated the effect of transplanting Wharton's jelly-derived MSCs in a demyelination mouse model of MS in which mice were fed cuprizone (CPZ) for 12 weeks. CPZ is a copper chelator that impairs the activity of cytochrome oxidase, decreases oxidative phosphorylation, and produces degenerative changes in oligodendrocytes, leading to toxic demyelination similar to those found in MS patients. Results showed that MSCs caused a significant increase in the percentage of myelinated areas and in the number of myelinated fibers in the corpus callosum of the CPZ + MSC group, compared to the CPZ group, as assessed by Luxol fast blue staining and transmission electron microscopy. In addition, transplantation of MSCs significantly increased the number of oligodendrocytes while decreasing astrogliosis and microgliosis in the corpus callosum of the CPZ + MSC group, evaluated by immunofluorescence. Moreover, the mechanism by which MSCs exert these physiological effects was found to be through abolishing the effect of CPZ on oxidative stress markers and mitochondrial dysfunction. Indeed, malondialdehyde significantly decreased while glutathione and superoxide dismutase significantly increased in CPZ + MSC mice group, in comparison witth the CPZ group alone. Furthermore, cell therapy with MSC transplantation increased the expression levels of mitochondrial biogenesis transcripts PGC1α, NRF1, MFN2, and TFAM. In summary, these results demonstrate that MSCs may attenuate MS by promoting an antioxidant response, reducing oxidative stress, and improving mitochondrial homeostasis.
Collapse
Affiliation(s)
- Elham Shiri
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Zohreh Alizadeh
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saied Nekoonam
- Department of Anatomy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vahid Pirhajati Mahabadi
- Neuroscience Research Center, Vice-Chancellor for Research and Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mehdi
- PRASE and Faculty of Agriculture, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- ER045, PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | | |
Collapse
|
118
|
Liu ZJ, Liu YH, Huang SY, Zang ZJ. Insights into the Regulation on Proliferation and Differentiation of Stem Leydig Cells. Stem Cell Rev Rep 2021; 17:1521-1533. [PMID: 33598893 DOI: 10.1007/s12015-021-10133-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Male hypogonadism is a clinical syndrome caused by testosterone deficiency. Hypogonadism can be caused by testicular disease (primary hypogonadism) or hypothalamic-pituitary dysfunction (secondary hypogonadism). The present strategy for treating hypogonadism is the administration of exogenous testosterone. But exogenous testosterone is reported to have negative side effects including adverse cardiovascular events and disruption of physiological spermatogenesis probably due to its inability to mimic the physiological circadian rhythm of testosterone secretion in vivo. In recent years, a growing number of articles demonstrated that stem Leydig cells (SLCs) can not only differentiate into functional Leydig cells (LCs) in vivo to replace chemically disrupted LCs, but also secrete testosterone in a physiological pattern. The proliferation and differentiation of SLCs are regulated by various factors. However, the mechanisms involved in regulating the development of SLCs remain to be summarized. Factors involved in the regulation of SLCs can be divided into environmental pollutants, growth factors, cytokine and hormones. Environmental pollutants such as Perfluorooctanoic acid (PFOA) and Triphenyltin (TPT) could suppress SLCs proliferation or differentiation. Growth factors including FGF1, FGF16, NGF and activin A are essential for the maintenance of SLCs self-renewal and differentiation. Interleukin 6 family could inhibit differentiation of SLCs. Among hormones, dexamethasone suppresses SLCs differentiation, while aldosterone suppresses their proliferation. The present review focuses on new progress about factors regulating SLC's proliferation and differentiation which will undoubtedly deepen our insights into SLCs and help make better clinical use of them. Different factors affect on the proliferation and differentiation of stem Leydig cells. Firstly, each rat was intraperitoneally injected EDS so as to deplete Leydig cells from the adult testis. Secondly, the CD51+ or CD90+ cells from the testis of rats are SLCs, and the p75+ cells from human adult testes are human SLCs. These SLCs in the testis start to proliferate and some of them differentiate into LCs. Thirdly, during the SLCs regeneration period, researchers could explore different function of those factors (pollutants, growth factors, cytokines and hormones) towards SLCs.
Collapse
Affiliation(s)
- Zhuo-Jie Liu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Yong-Hui Liu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Sheng-Yu Huang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Zhi-Jun Zang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China.
| |
Collapse
|
119
|
An J, Chen B, Tian D, Guo Y, Yan Y, Yang H. Regulation of Neurogenesis and Neuronal Differentiation by Natural Compounds. Curr Stem Cell Res Ther 2021; 17:756-771. [PMID: 34493197 DOI: 10.2174/1574888x16666210907141447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
Neuronal damage or degeneration is the main feature of neurological diseases. Regulation of neurogenesis and neuronal differentiation is important in developing therapies to promote neuronal regeneration or synaptic network reconstruction. Neurogenesis is a multistage process in which neurons are generated and integrated into existing neuronal circuits. Neuronal differentiation is extremely complex because it can occur in different cell types and can be caused by a variety of inducers. Recently, natural compounds that induce neurogenesis and neuronal differentiation have attracted extensive attention. In this paper, the potential neural induction effects of medicinal plant-derived natural compounds on neural stem/progenitor cells (NS/PCs), the cultured neuronal cells, and mesenchymal stem cells (MSCs) are reviewed. The natural compounds that are efficacious in inducing neurogenesis and neuronal differentiation include phenolic acids, polyphenols, flavonoids, glucosides, alkaloids, terpenoids, quinones, coumarins, and others. They exert neural induction effects by regulating signal factors and cell-specific genes involved in the process of neurogenesis and neuronal differentiation, including specific proteins (β-tubulin III, MAP-2, tau, nestin, neurofilaments, GFAP, GAP-43, NSE), related genes and proteins (STAT3, Hes1, Mash1, NeuroD1, notch, cyclin D1, SIRT1, reggie-1), transcription factors (CREB, Nkx-2.5, Ngn1), neurotrophins (BDNF, NGF, NT-3) and signaling pathways (JAK/STAT, Wnt/β-catenin, MAPK, PI3K/Akt, GSK-3β/β-catenin, Ca2+/CaMKII/ATF1, Nrf2/HO-1, BMP). The natural compounds with neural induction effects are of great value for neuronal regenerative medicine and provide promising prevention and treatment strategies for neurological diseases.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Ding Tian
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Yunshan Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Yuzhu Yan
- Clinical Lab, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| |
Collapse
|
120
|
Gupta GL, Samant NP. Current druggable targets for therapeutic control of Alzheimer's disease. Contemp Clin Trials 2021; 109:106549. [PMID: 34464763 DOI: 10.1016/j.cct.2021.106549] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disorder that has an increasingly large burden on health and social care systems. The pathophysiology involves the accumulation of extracellular amyloid-beta plaques (Aβ) and intracellular neurofibrillary tangles contributing to neuronal death and leading to cognition impairment. However, its cause remains poorly understood, and there is no cure for AD despite extensive research and billions of dollars spent over decades. Currently, there are only four US Food and Drug Administration (FDA) approved drugs and one combination therapy available in the market for the symptomatic relief of AD. Since 2003, no new drug has been approved by the FDA for the treatment of AD. Researchers continue to explore new treatments and therapeutic strategies to treat AD. The need for novel discoveries on therapeutic targets and the development of new therapeutic approaches is imminent when considering the current expectations regarding the increased number of AD cases each year and the huge financial cost amounted to healthcare. This review focused on the current status of drugs in the clinical pipeline targeting β-amyloid, tau phosphorylation, or neurotransmitter dysfunction for therapeutic control of Alzheimer's disease.
Collapse
Affiliation(s)
- Girdhari Lal Gupta
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur Campus, Shirpur 425 405, Maharashtra, India; Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| | - Nikita Patil Samant
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| |
Collapse
|
121
|
Kim Y, Kim J, He M, Lee A, Cho E. Apigenin Ameliorates Scopolamine-Induced Cognitive Dysfunction and Neuronal Damage in Mice. Molecules 2021; 26:5192. [PMID: 34500626 PMCID: PMC8433809 DOI: 10.3390/molecules26175192] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023] Open
Abstract
We investigated the protective effect and mechanisms of apigenin against cognitive impairments in a scopolamine-injected mouse model. Our results showed that intraperitoneal (i.p.) injection of scopolamine leads to learning and memory dysfunction, whereas the administration of apigenin (synthetic compound, 100 and 200 mg/kg/day) improved cognitive ability, which was confirmed by behavioral tests such as the T-maze test, novel objective recognition test, and Morris water maze test in mice. In addition, scopolamine-induced lipid peroxidation in the brain was attenuated by administration of apigenin. To further evaluate the protective mechanisms of apigenin on cognitive and memory function, Western blot analysis was carried out. Administration of apigenin decreased the B-cell lymphoma 2-associated X/B-cell lymphoma 2 (Bax/Bcl-2) ratio and suppressed caspase-3 and poly ADP ribose polymerase cleavage. Furthermore, apigenin down-regulated the β-site amyloid precursor protein-cleaving enzyme, along with presenilin 1 (PS1) and PS2 protein levels. Apigenin-administered mice showed lower protein levels of a receptor for advanced glycation end-products, whereas insulin-degrading enzyme, brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) expression were promoted by treatment with apigenin. Therefore, this study demonstrated that apigenin is an active substance that can improve cognitive and memory functions by regulating apoptosis, amyloidogenesis, and BDNF/TrkB signaling pathways.
Collapse
Affiliation(s)
- Yeojin Kim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Korea; (Y.K.); (J.K.); (M.H.)
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Jihyun Kim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Korea; (Y.K.); (J.K.); (M.H.)
| | - Meitong He
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Korea; (Y.K.); (J.K.); (M.H.)
| | - Ahyoung Lee
- Department of Food Science, Gyeongsang National University, Jinju 52725, Korea
| | - Eunju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Korea; (Y.K.); (J.K.); (M.H.)
| |
Collapse
|
122
|
Kropf E, Fahnestock M. Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer's Disease. Cells 2021; 10:cells10081983. [PMID: 34440751 PMCID: PMC8392605 DOI: 10.3390/cells10081983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nerve growth factor (NGF) and its precursor form, proNGF, are critical for neuronal survival and cognitive function. In the brain, proNGF is the only detectable form of NGF. Dysregulation of proNGF in the brain is implicated in age-related memory loss and Alzheimer’s disease (AD). AD is characterized by early and progressive degeneration of the basal forebrain, an area critical for learning, memory, and attention. Learning and memory deficits in AD are associated with loss of proNGF survival signalling and impaired retrograde transport of proNGF to the basal forebrain. ProNGF transport and signalling may be impaired by the increased reactive oxygen and nitrogen species (ROS/RNS) observed in the aged and AD brain. The current literature suggests that ROS/RNS nitrate proNGF and reduce the expression of the proNGF receptor tropomyosin-related kinase A (TrkA), disrupting its downstream survival signalling. ROS/RNS-induced reductions in TrkA expression reduce cell viability, as proNGF loses its neurotrophic function in the absence of TrkA and instead generates apoptotic signalling via the pan-neurotrophin receptor p75NTR. ROS/RNS also interfere with kinesin and dynein motor functions, causing transport deficits. ROS/RNS-induced deficits in microtubule motor function and TrkA expression and signalling may contribute to the vulnerability of the basal forebrain in AD. Antioxidant treatments may be beneficial in restoring proNGF signalling and axonal transport and reducing basal forebrain neurodegeneration and related deficits in cognitive function.
Collapse
Affiliation(s)
- Erika Kropf
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
123
|
Tsuchimochi A, Endo C, Motoyoshi M, Tamura M, Hitomi S, Hayashi Y, Shinoda M. Effect of low-intensity pulsed ultrasound on orofacial sensory disturbance following inferior alveolar nerve injury: Role of neurotrophin-3 signaling. Eur J Oral Sci 2021; 129:e12810. [PMID: 34236109 DOI: 10.1111/eos.12810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/27/2022]
Abstract
Percutaneous treatment of low-intensity pulsed ultrasound (LIPUS) to the site of inferior alveolar nerve (IAN) transection promotes functional regeneration, but the detailed mechanism is unknown. We examined the involvement of neurotrophin-3 (NT-3), which primarily binds with tropomyosin receptor kinase C (TrkC), in functional transected IAN regeneration following LIPUS treatment in rats. Daily LIPUS treatment to the transected IAN was performed, and the mechanical sensitivity of the facial skin was measured for 14 d. On day 5 after IAN transection, the expression of NT-3 in the transected IAN and TrkC-positive trigeminal ganglion neurons were immunohistochemically examined. Further, the effect of TrkC neutralization on the acceleration of facial mechanosensory disturbance restoration due to LIPUS treatment was analyzed. LIPUS treatment to the site of IAN transection significantly facilitated functional recovery from sensory disturbance on facial skin. Schwann cells in the transected IAN expressed NT-3, and LIPUS treatment increased the amount of NT-3. The facilitated recovery from the mechanosensory disturbance by continuous LIPUS treatment was inhibited by the ongoing TrkC neutralization at the IAN transection site. These results suggest that LIPUS treatment accelerates the recovery of orofacial mechanosensory function following IAN transection through the enhancement of NT-3 signaling in the transected IAN.
Collapse
Affiliation(s)
- Akane Tsuchimochi
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Chitose Endo
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Miki Tamura
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
124
|
Koizumi Y, Mizutari K, Kawauchi S, Sato S, Shiotani A, Kakehata S. Y-27632, a ROCK inhibitor, improved laser-induced shock wave (LISW)-induced cochlear synaptopathy in mice. Mol Brain 2021; 14:105. [PMID: 34217338 PMCID: PMC8254252 DOI: 10.1186/s13041-021-00819-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
Recently, a pathological condition called cochlear synaptopathy has been clarified, and as a disorder of the auditory nerve synapses that occurs prior to failure of hair cells, it has been recognized as a major cause of sensorineural hearing loss. However, cochlear synaptopathy is untreatable. Inhibition of rho-associated coiled-coil containing protein kinase (ROCK), a serine-threonine protein kinase, has been reported to have neuroprotective and regenerative effects on synaptic pathways in the nervous system, including those in the inner ear. We previously demonstrated the regenerative effect of the ROCK inhibitor, Y-27632, on an excitotoxic cochlear nerve damage model in vitro. In this study, we aimed to validate the effect of ROCK inhibition on mice with cochlear synaptopathy induced by laser-induced shock wave (LISW) in vivo. After the elevation of ROCK1/2 expression in the damaged cochlea was confirmed, we administered Y-27632 locally via the middle ear. The amplitude of wave I in the auditory brainstem response and the number of synapses in the Y-27632-treated cochlea increased significantly. These results clearly demonstrate that ROCK inhibition has a promising clinical application in the treatment of cochlear synaptopathy, which is the major pathology of sensorineural hearing loss.
Collapse
Affiliation(s)
- Yutaka Koizumi
- Department of Otolaryngology-Head and Neck Surgery, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Kunio Mizutari
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Saitama, 359-8513, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Saitama, 359-8513, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Seiji Kakehata
- Department of Otolaryngology-Head and Neck Surgery, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| |
Collapse
|
125
|
Asuni GP, Speidell A, Mocchetti I. Neuronal apoptosis induced by morphine withdrawal is mediated by the p75 neurotrophin receptor. J Neurochem 2021; 158:169-181. [PMID: 33742683 PMCID: PMC10176599 DOI: 10.1111/jnc.15355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 01/01/2023]
Abstract
Morphine withdrawal evokes neuronal apoptosis through mechanisms that are still under investigation. We have previously shown that morphine withdrawal increases the levels of pro-brain-derived neurotrophic factor (BDNF), a proneurotrophin that promotes neuronal apoptosis through the binding and activation of the pan-neurotrophin receptor p75 (p75NTR). In this work, we sought to examine whether morphine withdrawal increases p75NTR-driven signaling events. We employed a repeated morphine treatment-withdrawal paradigm in order to investigate biochemical and histological indicators of p75NTR-mediated neuronal apoptosis in mice. We found that repeated cycles of spontaneous morphine withdrawal promote an accumulation of p75NTR in hippocampal synapses. At the same time, TrkB, the receptor that is crucial for BDNF-mediated synaptic plasticity in the hippocampus, was decreased, suggesting that withdrawal alters the neurotrophin receptor environment to favor synaptic remodeling and apoptosis. Indeed, we observed evidence of neuronal apoptosis in the hippocampus, including activation of c-Jun N-terminal kinase (JNK) and increased active caspase-3. These effects were not seen in saline or morphine-treated mice which had not undergone withdrawal. To determine whether p75NTR was necessary in promoting these outcomes, we repeated these experiments in p75NTR heterozygous mice. The lack of one p75NTR allele was sufficient to prevent the increases in phosphorylated JNK and active caspase-3. Our results suggest that p75NTR participates in the neurotoxic and proinflammatory state evoked by morphine withdrawal. Because p75NTR activation negatively influences synaptic repair and promotes cell death, preventing opioid withdrawal is crucial for reducing neurotoxic mechanisms accompanying opioid use disorders.
Collapse
Affiliation(s)
- Gino P. Asuni
- Laboratory of Preclinical Neurobiology, Georgetown University Medical Center, Washington DC, USA
| | - Andrew Speidell
- Laboratory of Preclinical Neurobiology, Georgetown University Medical Center, Washington DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Georgetown University Medical Center, Washington DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
126
|
Sachana M, Willett C, Pistollato F, Bal-Price A. The potential of mechanistic information organised within the AOP framework to increase regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of assays. Reprod Toxicol 2021; 103:159-170. [PMID: 34147625 PMCID: PMC8279093 DOI: 10.1016/j.reprotox.2021.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
Current in vivo DNT testing for regulatory purposes is not effective. In vitro assays anchored to key neurodevelopmental processes are available. Development of Adverse Outcome Pathways is required to increase mechanistic understanding of DNT effects. DNT Integrated Approaches to Testing and Assessment for various regulatory purposes should be developed. The OECD Guidance Document on use of in vitro DNT battery of assays is currently under development.
A major challenge in regulatory developmental neurotoxicity (DNT) assessment is lack of toxicological information for many compounds. Therefore, the Test Guidelines programme of the Organisation for Economic Cooperation and Development (OECD) took the initiative to coordinate an international collaboration between diverse stakeholders to consider integration of alternative approaches towards improving the current chemical DNT testing. During the past few years, a series of workshops was organized during which a consensus was reached that incorporation of a DNT testing battery that relies on in vitro assays anchored to key neurodevelopmental processes should be developed. These key developmental processes include neural progenitor cell proliferation, neuronal and oligodendrocyte differentiation, neural cell migration, neurite outgrowth, synaptogenesis and neuronal network formation, as well key events identified in the existing Adverse Outcome Pathways (AOPs). AOPs deliver mechanistic information on the causal links between molecular initiating event, intermediate key events and an adverse outcome of regulatory concern, providing the biological context to facilitate development of Integrated Approaches to Testing and Assessment (IATA) for various regulatory purposes. Developing IATA case studies, using mechanistic information derived from AOPs, is expected to increase scientific confidence for the use of in vitro methods within an IATA, thereby facilitating regulatory uptake. This manuscript summarizes the current state of international efforts to enhance DNT testing by using an in vitro battery of assays focusing on the role of AOPs in informing the development of IATA for different regulatory purposes, aiming to deliver an OECD guidance document on use of in vitro DNT battery of assays that include in vitro data interpretation.
Collapse
Affiliation(s)
- Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-Operation and Development (OECD), 75775, Paris Cedex 16, France
| | - Catherine Willett
- Humane Society International, 1255 23rd Street NW, Washington, DC, 20037, USA
| | | | - Anna Bal-Price
- European Commission Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
127
|
Hossain MM, Richardson JR. Nerve Growth Factor Protects Against Pyrethroid-Induced Endoplasmic Reticulum (ER) Stress in Primary Hippocampal Neurons. Toxicol Sci 2021; 174:147-158. [PMID: 31841155 DOI: 10.1093/toxsci/kfz239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurotrophins are a family of growth factors crucial for growth and survival of neurons in the developing and adult brain. Reduction in neurotrophin levels is associated with reduced neurogenesis and cognitive deficits in rodents. Recently, we demonstrated that long-term exposure to low levels of the pyrethroid pesticide deltamethrin causes hippocampal endoplasmic reticulum (ER) stress and learning deficits in mice. Here, we found that nerve growth factor (NGF) mRNA and protein were selectively reduced in the hippocampus of deltamethrin-treated mice. To explore potential mechanisms responsible for this observation, we employed mouse primary hippocampal neurons. Exposure of neurons to deltamethrin (1-5 μM) caused ER stress as indicated by increased levels of C/EBP-homologous protein (CHOP) and glucose-regulated protein 78 (GRP78). These changes were accompanied by increased levels of caspase-12, activated caspase-3, and decreased levels of NGF. Inhibition of ER stress with the eukaryotic initiation factor 2 alpha (eIF2α) inhibitor salubrinal abolished deltamethrin-induced activation of caspase-12 and caspase-3, and restored NGF levels. Furthermore, deltamethrin decreased Akt (protein kinase B) phosphorylation, which was significantly prevented by co-treatment with NGF or SC-79 in cells. Collectively, these results demonstrate that the loss of NGF following ER stress may contribute to deltamethrin-induced apoptosis in the hippocampus through the Akt signaling pathway, and that this may provide a plausible mechanism for impaired learning and memory observed following exposure of mice to deltamethrin.
Collapse
Affiliation(s)
- Muhammad M Hossain
- Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey.,Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, Florida
| | - Jason R Richardson
- Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey.,Department of Environmental Health Sciences, Robert Stempel School of Public Health & Social Work, Florida International University, Miami, Florida
| |
Collapse
|
128
|
Wang HK, Chen JS, Hsu CY, Su YT, Sung TC, Liang CL, Kwan AL, Wu CC. A Novel NGF Receptor Agonist B355252 Ameliorates Neuronal Loss and Inflammatory Responses in a Rat Model of Cerebral Ischemia. J Inflamm Res 2021; 14:2363-2376. [PMID: 34103967 PMCID: PMC8179829 DOI: 10.2147/jir.s303833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/13/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction Cerebral ischemia is a leading cause of disability and death worldwide. However, an effective therapeutic approach for the condition remains undiscovered. The previously proposed growth factor-based therapy has been inefficient due to its inability to pass through the blood–brain barrier. B355252, a newly developed small molecule, exhibited a potential neuroprotective effect in vivo. However, its exact efficacy in cerebral ischemia remains unclear. Methods We adopt an endothelin-1 stereotaxic intracranial injection to induced cerebral ischemia in rat. We further conducted 2,3,5-triphenyltetrazolium chloride (TTC) staining, immunofluorescent staining, enzyme-linked immunosorbent assay (ELISA), and behavioral tests to evaluate the efficacy of B355252 in neuroprotection, anti-inflammation, and behavioral outcome improvements. Results We identified that B355252 could protect ischemic neurons from neuronal loss by attenuating DNA damage, reducing ROS production and the LDH level, and preventing neuronal apoptosis. Moreover, inflammatory responses in astrocytic and microglial gliosis, as well as IL-1β and TNF-α levels, were ameliorated. Consequently, the behavioral outcomes of ischemic rats in neurologic responses and fore paw function recovery were improved. Discussion Overall, our study verified the in vivo therapeutic potential of B355252. The study findings further support its application in the development of a therapeutic approach for stroke.
Collapse
Affiliation(s)
- Hao-Kuang Wang
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jui-Sheng Chen
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Yu Hsu
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Ting Su
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Ching Sung
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Loong Liang
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
129
|
Colardo M, Martella N, Pensabene D, Siteni S, Di Bartolomeo S, Pallottini V, Segatto M. Neurotrophins as Key Regulators of Cell Metabolism: Implications for Cholesterol Homeostasis. Int J Mol Sci 2021; 22:5692. [PMID: 34073639 PMCID: PMC8198482 DOI: 10.3390/ijms22115692] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Neurotrophins constitute a family of growth factors initially characterized as predominant mediators of nervous system development, neuronal survival, regeneration and plasticity. Their biological activity is promoted by the binding of two different types of receptors, leading to the generation of multiple and variegated signaling cascades in the target cells. Increasing evidence indicates that neurotrophins are also emerging as crucial regulators of metabolic processes in both neuronal and non-neuronal cells. In this context, it has been reported that neurotrophins affect redox balance, autophagy, glucose homeostasis and energy expenditure. Additionally, the trophic support provided by these secreted factors may involve the regulation of cholesterol metabolism. In this review, we examine the neurotrophins' signaling pathways and their effects on metabolism by critically discussing the most up-to-date information. In particular, we gather experimental evidence demonstrating the impact of these growth factors on cholesterol metabolism.
Collapse
Affiliation(s)
- Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Silvia Siteni
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy;
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano 64, 00143 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy; (M.C.); (N.M.); (D.P.); (S.D.B.)
| |
Collapse
|
130
|
Driving effect of BDNF in the spinal dorsal horn on neuropathic pain. Neurosci Lett 2021; 756:135965. [PMID: 34022262 DOI: 10.1016/j.neulet.2021.135965] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Neuropathic pain (NP) is caused by direct or indirect damage to the nervous system and is a common symptom of many diseases. The mechanisms underlying the onset and persistence of NP are unclear. Therefore, research concerning these mechanisms has become an important focus in the medical field. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. BDNF is an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity, which are essential for nerve maintenance and repair. However, BDNF is upregulated in the spinal dorsal horn and can promote NP by activating glial cells, reducing inhibitory functions and enhancing excitement after nociceptive stimulation. This review considers the relationship between NP and BDNF signaling in the spinal dorsal horn and discusses potentially related pathological mechanisms.
Collapse
|
131
|
Regua AT, Aguayo NR, Jalboush SA, Doheny DL, Manore SG, Zhu D, Wong GL, Arrigo A, Wagner CJ, Yu Y, Thomas A, Chan MD, Ruiz J, Jin G, Strowd R, Sun P, Lin J, Lo HW. TrkA Interacts with and Phosphorylates STAT3 to Enhance Gene Transcription and Promote Breast Cancer Stem Cells in Triple-Negative and HER2-Enriched Breast Cancers. Cancers (Basel) 2021; 13:2340. [PMID: 34066153 PMCID: PMC8150921 DOI: 10.3390/cancers13102340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 01/15/2023] Open
Abstract
JAK2-STAT3 and TrkA signaling pathways have been separately implicated in aggressive breast cancers; however, whether they are co-activated or undergo functional interaction has not been thoroughly investigated. Herein we report, for the first time that STAT3 and TrkA are significantly co-overexpressed and co-activated in triple-negative breast cancer (TNBC) and HER2-enriched breast cancer, as shown by immunohistochemical staining and data mining. Through immunofluorescence staining-confocal microscopy and immunoprecipitation-Western blotting, we found that TrkA and STAT3 co-localize and physically interact in the cytoplasm, and the interaction is dependent on STAT3-Y705 phosphorylation. TrkA-STAT3 interaction leads to STAT3 phosphorylation at Y705 by TrkA in breast cancer cells and cell-free kinase assays, indicating that STAT3 is a novel substrate of TrkA. β-NGF-mediated TrkA activation induces TrkA-STAT3 interaction, STAT3 nuclear transport and transcriptional activity, and the expression of STAT3 target genes, SOX2 and MYC. The co-activation of both pathways promotes breast cancer stem cells. Finally, we found that TNBC and HER2-enriched breast cancer with JAK2-STAT3 and TrkA co-activation are positively associated with poor overall metastasis-free and organ-specific metastasis-free survival. Collectively, our study uncovered that TrkA is a novel activating kinase of STAT3, and their co-activation enhances gene transcription and promotes breast cancer stem cells in TNBC and HER2-enriched breast cancer.
Collapse
Affiliation(s)
- Angelina T. Regua
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Noah R. Aguayo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Sara Abu Jalboush
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Daniel L. Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Sara G. Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Dongqin Zhu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Austin Arrigo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Calvin J. Wagner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Yang Yu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
| | - Alexandra Thomas
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.); (J.R.)
- Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
| | - Michael D. Chan
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Jimmy Ruiz
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.); (J.R.)
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
| | - Roy Strowd
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (A.T.R.); (N.R.A.); (S.A.J.); (D.L.D.); (S.G.M.); (D.Z.); (G.L.W.); (A.A.); (C.J.W.); (Y.Y.); (G.J.); (P.S.)
- Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (M.D.C.); (R.S.)
| |
Collapse
|
132
|
Yu Z, Wang H, Song Q, Huang J, Xu J, Su J, Wang H, Tan L, Wang X, Jiang Z, Chen W, Jiang D, Hou Y. Prognostic value and characterization of NTRK1 variation by fluorescence in situ hybridization in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2021; 147:3113-3121. [PMID: 33963905 DOI: 10.1007/s00432-021-03578-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Rearrangement of the neurotrophic tyrosine kinase receptor (NTRK) 1 gene is a target of tropomyosin receptor kinase A (TRKA) inhibitors, and its targeted drug (larotrectinib) has been approved by the US Food and Drug Administration. We investigated the existence and prognostic importance of NTRK1 variation in esophageal squamous cell carcinoma (ESCC). METHODS Fluorescence in situ hybridization of a NTRK1 rearrangement was conducted on 523 ESCC samples through tissue microarrays. Kaplan-Meier curves with log-rank tests were used to evaluate survival. RESULTS We identified 8 (1.5%), 35(6.7%) and 109 (20.8%) cases with a NTRK1 rearrangement using 15%, 10% and 5% as cut-off values, respectively. We observed copy number (CN) variation of NTRK1 in some cases: 79 (15.1%) cases had a gain in NTRK1 CN ≥ 3, and 24 (4.6%) cases had NTRK1 CN ≥ 4. A NTRK1 rearrangement at the above-mentioned thresholds was not related to disease-free survival (DFS, P = 0.45, 0.47, 0.87) and overall survival (OS, P = 0.80, 0.74, 0.57), respectively. Gain in NTRK1 CN was associated with a poor prognosis irrespective of whether NTRK1 CN ≥ 4 (DFS, P = 0.015; OS, P = 0.035) or NTRK1 CN ≥ 3 (DFS, P = 0.039; OS, P = 0.025). CONCLUSION A NTRK1 rearrangement occurred rarely in ESCC. The increased CN of NTRK1 might be a prognostic indicator for DFS and OS in patients with ESCC.
Collapse
Affiliation(s)
- Zixiang Yu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jianfang Xu
- Department of Pathology, Xiamen Branch of Zhongshan Hospital, Fudan University, Xiamen, Fujian, 361015, People's Republic of China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xin Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Zhengzeng Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Weijie Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China. .,Department of Pathology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China. .,Department of Pathology, Xiamen Branch of Zhongshan Hospital, Fudan University, Xiamen, Fujian, 361015, People's Republic of China.
| |
Collapse
|
133
|
Baranowski BJ, Hayward GC, Marko DM, MacPherson REK. Examination of BDNF Treatment on BACE1 Activity and Acute Exercise on Brain BDNF Signaling. Front Cell Neurosci 2021; 15:665867. [PMID: 34017238 PMCID: PMC8129185 DOI: 10.3389/fncel.2021.665867] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022] Open
Abstract
Perturbations in metabolism results in the accumulation of beta-amyloid peptides, which is a pathological feature of Alzheimer’s disease. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate limiting enzyme responsible for beta-amyloid production. Obesogenic diets increase BACE1 while exercise reduces BACE1 activity, although the mechanisms are unknown. Brain-derived neurotropic factor (BDNF) is an exercise inducible neurotrophic factor, however, it is unknown if BDNF is related to the effects of exercise on BACE1. The purpose of this study was to determine the direct effect of BDNF on BACE1 activity and to examine neuronal pathways induced by exercise. C57BL/6J male mice were assigned to either a low (n = 36) or high fat diet (n = 36) for 10 weeks. To determine the direct effect of BDNF on BACE1, a subset of mice (low fat diet = 12 and high fat diet n = 12) were used for an explant experiment where the brain tissue was directly treated with BDNF (100 ng/ml) for 30 min. To examine neuronal pathways activated with exercise, mice remained sedentary (n = 12) or underwent an acute bout of treadmill running at 15 m/min with a 5% incline for 120 min (n = 12). The prefrontal cortex and hippocampus were collected 2-h post-exercise. Direct treatment with BDNF resulted in reductions in BACE1 activity in the prefrontal cortex (p < 0.05), but not the hippocampus. The high fat diet reduced BDNF content in the hippocampus; however, the acute bout of exercise increased BDNF in the prefrontal cortex (p < 0.05). These novel findings demonstrate the region specific differences in exercise induced BDNF in lean and obese mice and show that BDNF can reduce BACE1 activity, independent of other exercise-induced alterations. This work demonstrates a previously unknown link between BDNF and BACE1 regulation.
Collapse
Affiliation(s)
| | - Grant C Hayward
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada.,Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
134
|
Méndez-Couz M, Krenzek B, Manahan-Vaughan D. Genetic Depletion of BDNF Impairs Extinction Learning of a Spatial Appetitive Task in the Presence or Absence of the Acquisition Context. Front Behav Neurosci 2021; 15:658686. [PMID: 33994970 PMCID: PMC8119774 DOI: 10.3389/fnbeh.2021.658686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Brain derived neurotropic factor (BDNF) supports neuronal survival, growth, and differentiation and is involved in forms of hippocampus-dependent and independent learning, as well as hippocampus-dependent learning. Extinction learning comprises active inhibition of no-longer relevant learned information, in conjunction with a decreased response of a previously learned behavior. It is highly dependent on context, and evidence exists that it requires hippocampal activation. The participation of BDNF in memory processing is experience-dependent. For example, BDNF has been associated with synaptic plasticity needed for spatial learning, and it is involved in acquisition and extinction learning of fear conditioning. However, little is known about its role in spatial appetitive extinction learning. In this study, we evaluated to what extent BDNF contributes to spatial appetitive extinction learning in the presence (ABA) or absence (AAA) of exposure to the acquisition context. Daily training, of BDNF+/--mice or their wildtype (WT) littermates, to reach acquisition criterion in a T-maze, resulted in a similar performance outcome. However, extinction learning was delayed in the AAA, and impaired in the ABA-paradigm compared to performance in WT littermates. Trial-by-trial learning analysis indicated differences in the integration of the context into extinction learning by BDNF+/--mice compared to WT littermates. Taken together, these results support an important role for BDNF in processes that relate to information updating and retrieval that in turn are crucial for effective extinction learning.
Collapse
Affiliation(s)
- Marta Méndez-Couz
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Beate Krenzek
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
135
|
Aprigliano R, Aksu ME, Bradamante S, Mihaljevic B, Wang W, Rian K, Montaldo NP, Grooms KM, Fordyce Martin SL, Bordin DL, Bosshard M, Peng Y, Alexov E, Skinner C, Liabakk NB, Sullivan GJ, Bjørås M, Schwartz CE, van Loon B. Increased p53 signaling impairs neural differentiation in HUWE1-promoted intellectual disabilities. Cell Rep Med 2021; 2:100240. [PMID: 33948573 PMCID: PMC8080178 DOI: 10.1016/j.xcrm.2021.100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/18/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Essential E3 ubiquitin ligase HUWE1 (HECT, UBA, and WWE domain containing 1) regulates key factors, such as p53. Although mutations in HUWE1 cause heterogenous neurodevelopmental X-linked intellectual disabilities (XLIDs), the disease mechanisms common to these syndromes remain unknown. In this work, we identify p53 signaling as the central process altered in HUWE1-promoted XLID syndromes. By focusing on Juberg-Marsidi syndrome (JMS), one of the severest XLIDs, we show that increased p53 signaling results from p53 accumulation caused by HUWE1 p.G4310R destabilization. This further alters cell-cycle progression and proliferation in JMS cells. Modeling of JMS neurodevelopment reveals majorly impaired neural differentiation accompanied by increased p53 signaling. The neural differentiation defects can be successfully rescued by reducing p53 levels and restoring the expression of p53 target genes, in particular CDKN1A/p21. In summary, our findings suggest that increased p53 signaling underlies HUWE1-promoted syndromes and impairs XLID JMS neural differentiation.
Collapse
Affiliation(s)
- Rossana Aprigliano
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zürich, Switzerland
| | - Merdane Ezgi Aksu
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Stefano Bradamante
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
- Department of Pathology and Medical Genetics, St. Olavs University Hospital, 7049 Trondheim, Norway
| | - Boris Mihaljevic
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Kristin Rian
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Nicola P. Montaldo
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Kayla Mae Grooms
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Sarah L. Fordyce Martin
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Diana L. Bordin
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Matthias Bosshard
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zürich, Switzerland
| | - Yunhui Peng
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29631, USA
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29631, USA
| | | | - Nina-Beate Liabakk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Gareth J. Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0315 Oslo, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0315 Oslo, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
- Department of Pathology and Medical Genetics, St. Olavs University Hospital, 7049 Trondheim, Norway
- Department of Microbiology, Oslo University Hospital, Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway
| | | | - Barbara van Loon
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zürich, Switzerland
- Department of Pathology and Medical Genetics, St. Olavs University Hospital, 7049 Trondheim, Norway
- Corresponding author
| |
Collapse
|
136
|
Zainullina LF, Vakhitova YV, Lusta AY, Gudasheva TA, Seredenin SB. Dimeric mimetic of BDNF loop 4 promotes survival of serum-deprived cell through TrkB-dependent apoptosis suppression. Sci Rep 2021; 11:7781. [PMID: 33833366 PMCID: PMC8032782 DOI: 10.1038/s41598-021-87435-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/30/2021] [Indexed: 01/09/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in the regulation of neuronal cell growth, differentiation, neuroprotection and synaptic plasticity. Although aberrant BDNF/TrkB signaling is implicated in several neurological, neurodegenerative and psychiatric disorders, neurotrophin-based therapy is challenging and is limited by improper pharmacokinetic properties of BDNF. Dimeric dipeptide compound GSB-106 (bis-(N-monosuccinyl-L-seryl-L-lysine) hexamethylenediamide) has earlier been designed to mimic the TrkB-interaction 4 loop of BDNF. It displayed protective effect in various cell-damaging models in vitro. Animal studies uncovered antidepressive and neuroprotective properties upon GSB-106 per os administration. Current study shows that GSB-106 acts similarly to BDNF, promoting survival of serum-deprived neuronal-like SH-SY5Y cells. 100 nmol concentration of GSB-106 provided maximum neurotrophic effect, which corresponds to about 37% of the maximum effect provided by BDNF. Protective properties of GSB-106 arise from its ability to counteract cell apoptosis via activation of TrkB-dependent pro-survival mechanisms, including inactivation of pro-apoptotic BAD protein and suppression of caspases 9 and 3/7. Thus, our study has characterized neurotrophic activity of small dimeric compound GSB-106, which mimics certain biological functions of BDNF and neurotrophin-specific protective mechanisms. GSB-106 also displays similarities to some known low weight peptide and non-peptide TrkB ligands.
Collapse
Affiliation(s)
- L F Zainullina
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", 125315, Baltiyskaya str. 8, Moscow, Russia
| | - Yu V Vakhitova
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", 125315, Baltiyskaya str. 8, Moscow, Russia.
| | - A Yu Lusta
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", 125315, Baltiyskaya str. 8, Moscow, Russia
| | - T A Gudasheva
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", 125315, Baltiyskaya str. 8, Moscow, Russia
| | - S B Seredenin
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", 125315, Baltiyskaya str. 8, Moscow, Russia
| |
Collapse
|
137
|
Fndc5 knockdown significantly decreased the expression of neurotrophins and their respective receptors during neural differentiation of mouse embryonic stem cells. Hum Cell 2021; 34:847-861. [PMID: 33683654 DOI: 10.1007/s13577-021-00517-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/05/2021] [Indexed: 10/22/2022]
Abstract
Fibronectin type III domain-containing-5 (Fndc5) is a trans-membrane protein which is involved in a variety of cellular events including neural differentiation of mouse embryonic stem cells (mESCs) as its knockdown and overexpression diminishes and facilitates this process, respectively. However, downstream targets of Fndc5 in neurogenesis are still unclear. Neurotrophins including NGF, BDNF, NT-3, and NT-4 are the primary regulators of neuronal survival, growth, differentiation, and repair. These biomolecules exert their actions through binding to two different receptor families, Trk and p75NTR. In this study, considering the fact that neurotrophins and their receptors play crucial roles in neural differentiation of ESCs, we sought to evaluate whether knockdown of Fndc5 decreased neural differentiation of mESCs by affecting the neurotrophins and their receptors expression. Results showed that at neural progenitor stage, the mRNA and protein levels of BDNF, Trk, and p75NTR receptors decreased following the Fndc5 knockdown. In mature neural cells, still, the expression of Trk and p75NTR receptors at mRNA and protein levels and BDNF and NGF expression only at protein levels showed a significant decrease in Fndc5 knockdown cells compared to control groups. Taken together, our results suggest that decreased efficiency of neural differentiation following the reduction of Fndc5 expression could be attributed to decreased levels of NGF and BDNF proteins in addition to their cognate receptors.
Collapse
|
138
|
Cyrino LAR, Delwing-de Lima D, Ullmann OM, Maia TP. Concepts of Neuroinflammation and Their Relationship With Impaired Mitochondrial Functions in Bipolar Disorder. Front Behav Neurosci 2021; 15:609487. [PMID: 33732117 PMCID: PMC7959852 DOI: 10.3389/fnbeh.2021.609487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bipolar disorder (BD) is a chronic psychiatric disease, characterized by frequent behavioral episodes of depression and mania, and neurologically by dysregulated neurotransmission, neuroplasticity, growth factor signaling, and metabolism, as well as oxidative stress, and neuronal apoptosis, contributing to chronic neuroinflammation. These abnormalities result from complex interactions between multiple susceptibility genes and environmental factors such as stress. The neurocellular abnormalities of BD can result in gross morphological changes, such as reduced prefrontal and hippocampal volume, and circuit reorganization resulting in cognitive and emotional deficits. The term "neuroprogression" is used to denote the progressive changes from early to late stages, as BD severity and loss of treatment response correlate with the number of past episodes. In addition to circuit and cellular abnormalities, BD is associated with dysfunctional mitochondria, leading to severe metabolic disruption in high energy-demanding neurons and glia. Indeed, mitochondrial dysfunction involving electron transport chain (ETC) disruption is considered the primary cause of chronic oxidative stress in BD. The ensuing damage to membrane lipids, proteins, and DNA further perpetuates oxidative stress and neuroinflammation, creating a perpetuating pathogenic cycle. A deeper understanding of BD pathophysiology and identification of associated biomarkers of neuroinflammation are needed to facilitate early diagnosis and treatment of this debilitating disorder.
Collapse
Affiliation(s)
- Luiz Arthur Rangel Cyrino
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Laboratório de Práticas Farmacêuticas of Department of Pharmacy, University of Joinville Region—UNIVILLE, Joinville, Brazil
- Department of Psychology, University of Joinville—UNIVILLE, Joinville, Brazil
- Department of Pharmacy, University of Joinville—UNIVILLE, Joinville, Brazil
| | - Daniela Delwing-de Lima
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Laboratório de Práticas Farmacêuticas of Department of Pharmacy, University of Joinville Region—UNIVILLE, Joinville, Brazil
- Department of Pharmacy, University of Joinville—UNIVILLE, Joinville, Brazil
- Department of Medicine, University of Joinville—UNIVILLE, Joinville, Brazil
| | | | | |
Collapse
|
139
|
Zhou Z, Zhong S, Zhang R, Kang K, Zhang X, Xu Y, Zhao C, Zhao M. Functional analysis of brain derived neurotrophic factor (BDNF) in Huntington's disease. Aging (Albany NY) 2021; 13:6103-6114. [PMID: 33631722 PMCID: PMC7950280 DOI: 10.18632/aging.202603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
The aim of this study is to determine the molecular functions of brain derived neurotrophic factor (BDNF) in Huntington's disease (HD). A total of 1,675 differentially expressed genes (DEGs) were overlapped from HD versus control and BDNF-low versus high groups. Five co-expression modules were constructed using weight gene correlation network analysis, among which the blue and turquoise modules were most strongly correlated with HD and low BDNF. Functional enrichment analyses revealed DEGs in these modules significantly enriched in GABAergic synapse, phagosome, cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), renin-angiotensin system (Ras), Ras-associated protein-1 and retrograde endocannabinoid signaling pathways. The intersection pathways of BDNF, such as cAMP, MAPK and Ras signaling pathways, were identified in global regulatory network. Further performance evaluation of low BDNF accurately predicted HD occurrence according to the area under the curve of 82.4%. In aggregate, our findings highlighted the involvement of low BDNF expression in HD pathogenesis, potentially mediated by cAMP, MAPK and Ras signaling pathways.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Rongwei Zhang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Kexin Kang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA 30602, USA.,Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning, PR China
| | - Mei Zhao
- Department of Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang 110004, Liaoning, PR China
| |
Collapse
|
140
|
Unraveling Molecular Pathways Altered in MeCP2-Related Syndromes, in the Search for New Potential Avenues for Therapy. Biomedicines 2021; 9:biomedicines9020148. [PMID: 33546327 PMCID: PMC7913493 DOI: 10.3390/biomedicines9020148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is an X-linked epigenetic modulator whose dosage is critical for neural development and function. Loss-of-function mutations in MECP2 cause Rett Syndrome (RTT, OMIM #312750) while duplications in the Xq28 locus containing MECP2 and Interleukin-1 receptor-associated kinase 1 (IRAK1) cause MECP2 duplication syndrome (MDS, OMIM #300260). Both are rare neurodevelopmental disorders that share clinical symptoms, including intellectual disability, loss of speech, hand stereotypies, vasomotor deficits and seizures. The main objective of this exploratory study is to identify novel signaling pathways and potential quantitative biomarkers that could aid early diagnosis and/or the monitoring of disease progression in clinical trials. We analyzed by RT-PCR gene expression in whole blood and microRNA (miRNA) expression in plasma, in a cohort of 20 females with Rett syndrome, 2 males with MECP2 duplication syndrome and 28 healthy controls, and correlated RNA expression with disease and clinical parameters. We have identified a set of potential biomarker panels for RTT diagnostic and disease stratification of patients with microcephaly and vasomotor deficits. Our study sets the basis for larger studies leading to the identification of specific miRNA signatures for early RTT detection, stratification, disease progression and segregation from other neurodevelopmental disorders. Nevertheless, these data will require verification and validation in further studies with larger sample size including a whole range of ages.
Collapse
|
141
|
Yan T, Liu B, Wang N, Liao Z, Wu B, He B, Jia Y. The flavonoids of okra insulates against oxidative stress, neuroinflammation and restores BDNF levels in Aβ 1-42 induced mouse model of Alzheimer's disease. Exp Gerontol 2021; 147:111263. [PMID: 33516906 DOI: 10.1016/j.exger.2021.111263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/14/2020] [Accepted: 01/24/2021] [Indexed: 12/15/2022]
Abstract
Okra (Abelmoschus esculentus [L.] Moench.) has been used as a natural drug in East or West Africa for many centuries, as well as consumed in most areas of the world as a tropical vegetable. The study aimed to evaluate whether the flavonoids of okra fruit (FOF) administration influence Aβ1-42-induced learning and memory impairment, and explore the underlying mechanisms. The Y-maze task and the Morris water maze test were used for evaluating cognition processes. The levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and glutathione peroxidase (GSH-Px) were detected by ELISA kits. The expressions of nuclear factor kappa-light chain-enhancer of activated B (NF-κB), brain-derived neurotrophic factor (BDNF), cAMP-response element-binding protein (CREB), extracellular signal-regulated kinase (ERK), phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), glycogen synthase kinase-3β (GSK-3β) were studied by western blot. Histopathological changes were observed by H.E. straining. The results showed that intracerebroventricular injection of Aβ1-42 was effective in producing memory deficits in mice. Besides, Aβ1-42 exposure could significantly increase the levels of NF-κB, TNF-α, IL-1β, and decreased T-AOC, the activities of SOD and GSH-Px in the hippocampus and cortex. Furthermore, the level of BDNF was also reduced, accompanied by down-regulated CREB/ERK and PI3K/AKT/GSK-3β signaling pathways in the hippocampus and cortex. Nevertheless, chronic administration of FOF (100 or 300 mg/kg, i.g.) significantly prevented Aβ1-42-induced behavioral and biochemical alterations. It also suggested that FOF could improve the cognitive deficits in AD-like model mice, which might be mediated by regulation of BDNF levels in cortex and hippocampus and up-regulating of CREB/ERK and PI3K/AKT/GSK3β pathways, as well as alleviation of oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bing Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Nizhi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Zhengzheng Liao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
142
|
Kaplan DR, Mobley WC. (H)Elping nerve growth factor: Elp1 inhibits TrkA's phosphatase to maintain retrograde signaling. J Clin Invest 2021; 130:2195-2198. [PMID: 32281945 DOI: 10.1172/jci136162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nerve growth factor (NGF) regulates many aspects of neuronal biology by retrogradely propagating signals along axons to the targets of those axons. How this occurs when axons contain a plethora of proteins that can silence those signals has long perplexed the neurotrophin field. In this issue of the JCI, Li et al. suggest an answer to this vexing problem, while exploring why the Elp1 gene that is mutated in familial dysautonomia (FD) causes peripheral neuropathy. They describe a distinctive function of Elp1 as a protein that is required to sustain NGF signaling by blocking the activity of its phosphatase that shuts off those signals. This finding helps explain the innervation deficits prominent in FD and reveals a unique role for Elp1 in the regulation of NGF-dependent TrkA activity.
Collapse
Affiliation(s)
- David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
143
|
Abstract
Gene rearrangements involving the neurotrophic receptor kinase genes NTRK1, NTRK2, and NTRK3 (referred to as TRK, encoding TRKA, TRKB, and TRKC, respectively) result in highly oncogenic fusions. TRK fusions are rare, with a prevalence of < 1% in solid tumors. Detection of TRK fusions can be based on fluorescence in-situ hybridization (FISH), immunohistochemistry (IHC), and next-generation sequencing (NGS), where RNA sequencing is the most sensitive method. Inhibition of TRK fusions with highly selective small-molecule TRK inhibitors (TRKi) such as entrectinib and larotrectinib, results in profound responses in most cancer patients, regardless of cancer histology. Even response in CNS metastases is relatively common. Although responses are often durable, many patients develop resistance to TRKi due to mutations in one of the TRK genes, or due to genetic alterations conferring activation of alternative oncogenic signaling pathways. Second-generation TRKi have been developed, which can overcome some of the TRK resistance mutations. TRKi are well tolerated, with most common adverse events being related to on-target/off-tumor inhibition of TRKs.
Collapse
|
144
|
Ko YJ, Kim BK, Ji ES. Treadmill exercise in obese maternal rats during pregnancy improves spatial memory through activation of phosphatidylinositol 3-kinase pathway in the hippocampus of rat pups. J Exerc Rehabil 2020; 16:483-488. [PMID: 33457383 PMCID: PMC7788246 DOI: 10.12965/jer.2040822.411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Maternal nutrition is necessary for the growth of the fetus, and excessive intake of nutrients interferes with brain development in offspring. In the current study, the effect of treadmill running during pregnancy in obese maternal rats on spatial learning memory and spatial working memory in rat pups was investigated. Phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and extracellular signal-regulated kinase 1 and 2 (ERK1/2) was also identified in rat pups. Female rats were divided into the normal diet group and the high-fat diet group for 7 weeks, including pregnancy and lactation. Maternal treadmill running was performed for 4 weeks. The born rat pups were classified into a control group, a treadmill exercise group, a high-fat diet group, a high-fat diet and treadmill exercise group according to the status of maternal rats. Radial 8-arm maze task for spatial learning memory and Morris water maze task for spatial working memory were done. Western blot analysis was conducted to determine the expressions of PI3K, Akt, ERK1/2. In the current results, maternal treadmill running during pregnancy improved spatial learning memory and spatial working memory in rat pups born to obese maternal rats. This improving effect of memory was due to the enhanced phosphorylation of PI3K, Akt, and ERK1/2 by treadmill running.
Collapse
Affiliation(s)
- Young Jun Ko
- Major in Sport Service Practice, College of Welfare Convergence, Kangnam University, Yongin, Korea
| | - Bo-Kyun Kim
- Department of Emergency Technology, College of Health Science, Gachon University, Incheon, Korea
| | - Eun-Sang Ji
- Department of Sport & Health Care, College of Art & Culture, Sangmyung University, Seoul, Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
145
|
Yanpallewar S, Fulgenzi G, Tomassoni-Ardori F, Barrick C, Tessarollo L. Delayed onset of inherited ALS by deletion of the BDNF receptor TrkB.T1 is non-cell autonomous. Exp Neurol 2020; 337:113576. [PMID: 33359475 DOI: 10.1016/j.expneurol.2020.113576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022]
Abstract
The pathophysiology of Amyotrophic Lateral Sclerosis (ALS), a disease caused by the gradual degeneration of motoneurons, is still largely unknown. Insufficient neurotrophic support has been cited as one of the causes of motoneuron cell death. Neurotrophic factors such as BDNF have been evaluated in ALS human clinical trials, but yielded disappointing results attributed to the poor pharmacokinetics and pharmacodynamics of BDNF. In the inherited ALS G93A SOD1 animal model, deletion of the BDNF receptor TrkB.T1 delays spinal cord motoneuron cell death and muscle weakness through an unknown cellular mechanism. Here we show that TrkB.T1 is expressed ubiquitously in the spinal cord and its deletion does not change the SOD1 mutant spinal cord inflammatory state suggesting that TrkB.T1 does not influence microglia or astrocyte activation. Although TrkB.T1 knockout in astrocytes preserves muscle strength and co-ordination at early stages of disease, its specific conditional deletion in motoneurons or astrocytes does not delay motoneuron cell death during the early stage of the disease. These data suggest that TrkB.T1 may limit the neuroprotective BDNF signaling to motoneurons via a non-cell autonomous mechanism providing new understanding into the reasons for past clinical failures and insights into the design of future clinical trials employing TrkB agonists in ALS.
Collapse
Affiliation(s)
| | - Gianluca Fulgenzi
- Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, NIH, USA
| | | | - Colleen Barrick
- Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, NIH, USA
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, NIH, USA.
| |
Collapse
|
146
|
de Miranda AS, de Barros JLVM, Teixeira AL. Is neurotrophin-3 (NT-3): a potential therapeutic target for depression and anxiety? Expert Opin Ther Targets 2020; 24:1225-1238. [PMID: 33141605 DOI: 10.1080/14728222.2020.1846720] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Neurotrophin-3 (NT-3) is thought to play a role in the neurobiological processes implicated in mood and anxiety disorders. NT-3 is a potential pharmacological target for mood disorders because of its effects on monoamine neurotransmitters, regulation of synaptic plasticity and neurogenesis, brain-derived neurotrophic factor (BDNF) signaling boosting, and modulation of the hypothalamic-pituitary-adrenal (HPA) axis. The mechanisms underlying NT-3 anxiolytic properties are less clear and require further exploration and definition. Areas covered: The evidence that supports NT-3 as a pharmacological target for anxiety and mood disorders is presented and this is followed by a reflection on the quandaries, stumbling blocks, and future perspectives for this novel target. Expert opinion: There is evidence for miRNAs being key post-transcriptional regulators of neurotrophin-3 receptor gene (NTRK3) in anxiety disorders; however, the anxiolytic properties of NT-3 need further examination and delineation. Moreover, NT-3 expression by non-neuronal cells and its role in brain circuits that participate in anxiety and mood disorders require further scrutiny. Further work is vital before progression into clinical trials can be realized.
Collapse
Affiliation(s)
- A S de Miranda
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil.,Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil
| | - J L V M de Barros
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil
| | - Antonio Lucio Teixeira
- Neuropsychiatry Program, Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston , Houston, TX, Brazil
| |
Collapse
|
147
|
Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes. Neural Plast 2020; 2020:8861903. [PMID: 33293948 PMCID: PMC7718046 DOI: 10.1155/2020/8861903] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a common neurological disease that seriously affects human health. There are many hypotheses about the pathogenesis of depression, and the most widely recognized and applied is the monoamine hypothesis. However, no hypothesis can fully explain the pathogenesis of depression. At present, the brain-derived neurotrophic factor (BDNF) and neurogenesis hypotheses have highlighted the important role of plasticity in depression. The plasticity of neurons and glial cells plays a vital role in the transmission and integration of signals in the central nervous system. Plasticity is the adaptive change in the nervous system in response to changes in external signals. The hippocampus is an important anatomical area associated with depression. Studies have shown that some antidepressants can treat depression by changing the plasticity of the hippocampus. Furthermore, caloric restriction has also been shown to affect antidepressant and hippocampal plasticity changes. In this review, we summarize the latest research, focusing on changes in the plasticity of hippocampal neurons and glial cells in depression and the role of BDNF in the changes in hippocampal plasticity in depression, as well as caloric restriction and mitochondrial plasticity. This review may contribute to the development of antidepressant drugs and elucidating the mechanism of depression.
Collapse
|
148
|
Koizumi Y, Ito T, Mizutari K, Kakehata S. Regenerative Effect of a ROCK Inhibitor, Y-27632, on Excitotoxic Trauma in an Organotypic Culture of the Cochlea. Front Cell Neurosci 2020; 14:572434. [PMID: 33328888 PMCID: PMC7717995 DOI: 10.3389/fncel.2020.572434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022] Open
Abstract
In the past, most inner ear diseases were thought to start with the impairment of the sensory epithelium of the cochlea before subsequently progressing to secondary neural degeneration. However, recent studies show that loss of primary synapses accompanied by excitotoxic degeneration of peripheral axons is likely to be the underlying pathology in sensorineural hearing loss. Rho-associated coiled-coil containing protein kinase (ROCK) inhibition has been reported to have neuroprotective and regenerative effects on synaptic pathways. Therefore, we analyzed the effect of ROCK inhibition using Y-27632 in a model of peripheral axonal damage in the spiral ganglion neurons created using the glutamate agonists, N-methyl-D-aspartate (NMDA) and kainic acid, to induce excitotoxic trauma in the explanted cochlea. The number of axons projecting to hair cells in the cochlea treated with Y-27632 was significantly greater than those in the cochlea treated only with NMDA + kainic acid. Furthermore, there was a significant increase in synapses between the spiral ganglion and the inner hair cells in the cochlea treated with Y-27632. The findings of this study suggest that ROCK inhibition could be a potential strategy for the regeneration of peripheral axons in the spiral ganglion and synapse formation in the inner hair cells of a cochlea that has sustained excitotoxic injury, which is one of the primary etiologies of inner ear disease.
Collapse
Affiliation(s)
- Yutaka Koizumi
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Tsukasa Ito
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Kunio Mizutari
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Seiji Kakehata
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|
149
|
Huang W, Lan Q, Jiang L, Yan W, Tang F, Shen C, Huang H, Zhong H, Lv J, Zeng S, Li M, Mo Z, Hu B, Liang N, Chen Q, Zhang M, Xu F, Cui L. Fasudil attenuates glial cell-mediated neuroinflammation via ERK1/2 and AKT signaling pathways after optic nerve crush. Mol Biol Rep 2020; 47:8963-8973. [PMID: 33161529 DOI: 10.1007/s11033-020-05953-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
To investigate the functional role of fasudil in optic nerve crush (ONC), and further explore its possible molecular mechanism. After ONC injury, the rats were injected intraperitoneally either with fasudil or normal saline once a day until euthanized. RGCs survival was assessed by retrograde labeling with FluoroGold. Retinal glial cells activation and population changes (GFAP, iba-1) were measured by immunofluorescence. The expressions of cleaved caspase 3 and 9, p-ERK1/2 and p-AKT were detected by western blot. The levels of the pro-inflammatory cytokines were determined using real-time polymerase chain reaction. Fasudil treatment inhibited RGCs apoptosis and reduced RGCs loss demonstrated by the decreased apoptosis-associated proteins expression and the increased fluorogold labeling of RGCs after ONC, respectively. In addition, the ONC + fasudil group compared had a significantly lower expression of GFAP and iba1 compared with the ONC group. The levels of pro-inflammatory cytokines were significantly reduced in the ONC + fasudil group than in the ONC group. Furthermore, the phosphorylation levels of ERK1/2 and AKT (p-ERK1/2 and p-AKT) were obviously elevated by the fasudil treatment. Our study demonstrated that fasudil attenuated glial cell-mediated neuroinflammation by up-regulating the ERK1/2 and AKT signaling pathways in rats ONC models. We conclude that fasudil may be a novel treatment for traumatic optic neuropathy.
Collapse
Affiliation(s)
- Wei Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.,Guangxi Medical University, Nanning, 530021, China
| | - Qianqian Lan
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Wenya Yan
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Fen Tang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Hui Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Haibin Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jian Lv
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Ning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Qi Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Ling Cui
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
150
|
Sreter KB, Popovic-Grle S, Lampalo M, Konjevod M, Tudor L, Nikolac Perkovic M, Jukic I, Bingulac-Popovic J, Safic Stanic H, Markeljevic J, Pivac N, Svob Strac D. Plasma Brain-Derived Neurotrophic Factor (BDNF) Concentration and BDNF/ TrkB Gene Polymorphisms in Croatian Adults with Asthma. J Pers Med 2020; 10:E189. [PMID: 33114368 PMCID: PMC7712770 DOI: 10.3390/jpm10040189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its tropomyosin-related kinase B (TrkB) receptor might contribute to normal lung functioning and immune responses; however, their role in asthma remains unclear. Plasma BDNF concentrations, as well as BDNF and NTRK2 (TrkB gene) polymorphisms, were investigated in 120 asthma patients and 120 healthy individuals using enzyme-linked immunosorbent assay and polymerase chain reaction, respectively. The genotype and allele frequencies of BDNF Val66Met (rs6265) and NTRK2 rs1439050 polymorphisms did not differ between healthy individuals and asthma patients, nor between patients grouped according to severity or different asthma phenotypes. Although plasma BDNF concentrations were higher among healthy subjects carrying the BDNF Val66Met GG genotype compared to the A allele carriers, such differences were not detected in asthma patients, suggesting the influences of other factors. Plasma BDNF concentration was not affected by NTRK2 rs1439050 polymorphism. Asthma patients had higher plasma BDNF concentrations than control subjects; however, no differences were found between patients subdivided according to asthma severity, or Type-2, allergic, and eosinophilic asthma. Higher plasma BDNF levels were observed in asthma patients with aspirin sensitivity and aspirin-exacerbated respiratory disease. These results suggest that plasma BDNF may serve as a potential peripheral biomarker for asthma, particularly asthma with aspirin sensitivity.
Collapse
Affiliation(s)
- Katherina B. Sreter
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia; (K.B.S.); (J.M.)
| | - Sanja Popovic-Grle
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (S.P.-G.); (M.L.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Lampalo
- Clinic for Lung Diseases Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (S.P.-G.); (M.L.)
| | - Marcela Konjevod
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Lucija Tudor
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Matea Nikolac Perkovic
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Irena Jukic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia; (I.J.); (J.B.-P.); (H.S.S.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Jasna Bingulac-Popovic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia; (I.J.); (J.B.-P.); (H.S.S.)
| | - Hana Safic Stanic
- Croatian Institute of Transfusion Medicine, 10000 Zagreb, Croatia; (I.J.); (J.B.-P.); (H.S.S.)
| | - Jasenka Markeljevic
- Department of Clinical Immunology, Pulmonology and Rheumatology, University Hospital Centre “Sestre Milosrdnice”, 10000 Zagreb, Croatia; (K.B.S.); (J.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.K.); (L.T.); (M.N.P.); (N.P.)
| |
Collapse
|