101
|
Yang Q, Liu H, Li Z, Wang Y, Liu W. Purification and mutagenesis studies of TANC1 ankyrin repeats domain provide clues to understand mis-sense variants from diseases. Biochem Biophys Res Commun 2019; 514:358-364. [PMID: 31040020 DOI: 10.1016/j.bbrc.2019.04.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022]
Abstract
TANC1 and its close relative TANC2 are two important synaptic scaffold proteins which play critical roles in regulating densities of synaptic spines and excitatory synapse strength. Recent studies indicated TANC1 and TANC2 are candidate genes of several neurodevelopmental disorders (NDD). So far, the biochemical properties of TANC1/2 proteins remain largely unknown. In this study, Ankyrin-repeats (AR) domain of TANC1 was expressed and purified using Escherichia coli. (E. coli.) cells, which showed low solubility and stability after removing the maltose binding protein (MBP) tag. Sequence analysis revealed that the TANC1 AR domain is lack of canonical N, C-capping units. By introducing two point mutations in the C-capping unit and replacing the N-capping unit, monomeric and well-folded TANC1 AR domain was purified and characterized by size exclusion chromatography coupled with multi-angle static light scattering (SEC-MALS) and circular dichroism spectroscopy (CD). In addition, mutations from intellectual disability (ID) patients and cancer patients were imported into the TANC1 AR domain. The ID mutant exhibited marginal effects in terms of conformation and protein folding stability changes. By contrast, the cancer mutants dramatically decreased protein solubility. Combined with structural prediction, we speculated that mis-sense variants tested in this study may either affect protein folding or disrupt the interaction between TANC1/2 AR domains and their binding partners.
Collapse
Affiliation(s)
- Qingqing Yang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China
| | - Haiyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhiwei Li
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China
| | - Yue Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China.
| |
Collapse
|
102
|
Strowitzki MJ, Cummins EP, Taylor CT. Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous? Cells 2019; 8:cells8050384. [PMID: 31035491 PMCID: PMC6562979 DOI: 10.3390/cells8050384] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
All metazoans that utilize molecular oxygen (O2) for metabolic purposes have the capacity to adapt to hypoxia, the condition that arises when O2 demand exceeds supply. This is mediated through activation of the hypoxia-inducible factor (HIF) pathway. At physiological oxygen levels (normoxia), HIF-prolyl hydroxylases (PHDs) hydroxylate proline residues on HIF-α subunits leading to their destabilization by promoting ubiquitination by the von-Hippel Lindau (VHL) ubiquitin ligase and subsequent proteasomal degradation. HIF-α transactivation is also repressed in an O2-dependent way due to asparaginyl hydroxylation by the factor-inhibiting HIF (FIH). In hypoxia, the O2-dependent hydroxylation of HIF-α subunits by PHDs and FIH is reduced, resulting in HIF-α accumulation, dimerization with HIF-β and migration into the nucleus to induce an adaptive transcriptional response. Although HIFs are the canonical substrates for PHD- and FIH-mediated protein hydroxylation, increasing evidence indicates that these hydroxylases may also have alternative targets. In addition to PHD-conferred alterations in protein stability, there is now evidence that hydroxylation can affect protein activity and protein/protein interactions for alternative substrates. PHDs can be pharmacologically inhibited by a new class of drugs termed prolyl hydroxylase inhibitors which have recently been approved for the treatment of anemia associated with chronic kidney disease. The identification of alternative targets of HIF hydroxylases is important in order to fully elucidate the pharmacology of hydroxylase inhibitors (PHI). Despite significant technical advances, screening, detection and verification of alternative functional targets for PHDs and FIH remain challenging. In this review, we discuss recently proposed non-HIF targets for PHDs and FIH and provide an overview of the techniques used to identify these.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoin P Cummins
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Cormac T Taylor
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
103
|
de Macêdo Mendes C, Teixeira DG, Lima JPMS, Lanza DCF. Characterization of putative proteins encoded by variable ORFs in white spot syndrome virus genome. BMC STRUCTURAL BIOLOGY 2019; 19:8. [PMID: 30999895 PMCID: PMC6474068 DOI: 10.1186/s12900-019-0106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/28/2019] [Indexed: 01/07/2023]
Abstract
Background White Spot Syndrome Virus (WSSV) is an enveloped double-stranded DNA virus which causes mortality of several species of shrimp, being considered one of the main pathogens that affects global shrimp farming. This virus presents a complex genome of ~ 300 kb and viral isolates that present genomes with great identity. Despite this conservation, some variable regions in the WSSV genome occur in coding regions, and these putative proteins may have some relationship with viral adaptation and virulence mechanisms. Until now, the functions of these proteins were little studied. In this work, sequences and putative proteins encoded by WSSV variable regions were characterized in silico. Results The in silico approach enabled determining the variability of some sequences, as well as the identification of some domains resembling the Formin homology 2, RNA recognition motif, Xeroderma pigmentosum group D repair helicase, Hemagglutinin and Ankyrin motif. The information obtained from the sequences and the analysis of secondary and tertiary structure models allow to infer that some of these proteins possibly have functions related to protein modulation/degradation, intracellular transport, recombination and endosome fusion events. Conclusions The bioinformatics approaches were efficient in generating three-dimensional models and to identify domains, thereby enabling to propose possible functions for the putative polypeptides produced by the ORFs wsv129, wsv178, wsv249, wsv463a, wsv477, wsv479, wsv492, and wsv497. Electronic supplementary material The online version of this article (10.1186/s12900-019-0106-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cayro de Macêdo Mendes
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Postgraduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Diego Gomes Teixeira
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - João Paulo Matos Santos Lima
- Postgraduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daniel Carlos Ferreira Lanza
- Applied Molecular Biology Lab - LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil. .,Postgraduate Program in Bioinformatics, Federal University of Rio Grande do Norte, Natal, RN, Brazil. .,Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
104
|
Gonadotropin regulation of ankyrin-repeat and SOCS-box protein 9 (ASB9) in ovarian follicles and identification of binding partners. PLoS One 2019; 14:e0212571. [PMID: 30811458 PMCID: PMC6392328 DOI: 10.1371/journal.pone.0212571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/05/2019] [Indexed: 11/23/2022] Open
Abstract
Ankyrin-repeat and SOCS-box protein 9 (ASB9) is a member of the large SOCS-box containing proteins family and acts as the specific substrate recognition component of E3 ubiquitin ligases in the process of ubiquitination and proteasomal degradation. We previously identified ASB9 as a differentially expressed gene in granulosa cells (GC) of bovine ovulatory follicles. This study aimed to further investigate ASB9 mRNA and protein regulation, identify binding partners in GC of bovine ovulatory follicles, and study its function. GC were obtained from small follicles (SF: 2–4 mm), dominant follicles at day 5 of the estrous cycle (DF), and ovulatory follicles, 24 hours following hCG injection (OF). Analyses by RT-PCR showed a 104-fold greater expression of ASB9 in GC of OF than in DF. Steady-state levels of ASB9 in follicular walls (granulosa and theca cells) analyzed at 0, 6, 12, 18 and 24 hours after hCG injection showed a significant induction of ASB9 expression at 12 and 18 hours, reaching a maximum induction of 10.2-fold at 24 hours post-hCG as compared to 0 hour. These results were confirmed in western blot analysis showing strongest ASB9 protein amounts in OF. Yeast two-hybrid screening of OF-cDNAs library resulted in the identification of 10 potential ASB9 binding partners in GC but no interaction was found between ASB9 and creatine kinase B (CKB) in these GC. Functional studies using CRISPR-Cas9 approach revealed that ASB9 inhibition led to increased GC proliferation and modulation of target genes expression. Overall, these results support a physiologically relevant role of ASB9 in the ovulatory follicle by targeting specific proteins likely for degradation, contributing to reduced GC proliferation, and could be involved in the final GC differentiation into luteal cells.
Collapse
|
105
|
Campbell CL, Saavedra-Rodriguez K, Kubik TD, Lenhart A, Lozano-Fuentes S, Black WC. Vgsc-interacting proteins are genetically associated with pyrethroid resistance in Aedes aegypti. PLoS One 2019; 14:e0211497. [PMID: 30695054 PMCID: PMC6350986 DOI: 10.1371/journal.pone.0211497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022] Open
Abstract
Association mapping of factors that condition pyrethroid resistance in Aedes aegypti has consistently identified genes in multiple functional groups. Toward better understanding of the mechanisms involved, we examined high throughput sequencing data (HTS) from two Aedes aegypti aegypti collections from Merida, Yucatan, Mexico treated with either permethrin or deltamethrin. Exome capture enrichment for coding regions and the AaegL5 annotation were used to identify genes statistically associated with resistance. The frequencies of single nucleotide polymorphisms (SNPs) were compared between resistant and susceptible mosquito pools using a contingency χ2 analysis. The -log10(χ2p value) was calculated at each SNP site, with a weighted average determined from all sites in each gene. Genes with -log10(χ2p value) ≥ 4.0 and present among all 3 treatment groups were subjected to gene set enrichment analysis (GSEA). We found that several functional groups were enriched compared to all coding genes. These categories were transport, signal transduction and metabolism, in order from highest to lowest statistical significance. Strikingly, 21 genes with demonstrated association to synaptic function were identified. In the high association group (n = 1,053 genes), several genes were identified that also genetically or physically interact with the voltage-gated sodium channel (VGSC). These genes were eg., CHARLATAN (CHL), a transcriptional regulator, several ankyrin-domain proteins, PUMILIO (PUM), a translational repressor, and NEDD4 (E3 ubiquitin-protein ligase). There were 13 genes that ranked among the top 10%: these included VGSC; CINGULIN, a predicted neuronal gap junction protein, and the aedine ortholog of NERVY (NVY), a transcriptional regulator. Silencing of CHL and NVY followed by standard permethrin bottle bioassays validated their association with permethrin resistance. Importantly, VGSC levels were also reduced about 50% in chl- or nvy-dsRNA treated mosquitoes. These results are consistent with the contribution of a variety of neuronal pathways to pyrethroid resistance in Ae. aegypti.
Collapse
Affiliation(s)
- Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Karla Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tristan D Kubik
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Audrey Lenhart
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
106
|
Chatrath A, Kiran M, Kumar P, Ratan A, Dutta A. The Germline Variants rs61757955 and rs34988193 Are Predictive of Survival in Lower Grade Glioma Patients. Mol Cancer Res 2019; 17:1075-1086. [PMID: 30651372 DOI: 10.1158/1541-7786.mcr-18-0996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/22/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023]
Abstract
Lower grade gliomas are invasive brain tumors that are difficult to completely resect neurosurgically. They often recur following resection and progress, resulting in death. Although previous studies have shown that specific germline variants increase the risk of tumor formation, no previous study has screened many germline variants to identify variants predictive of survival in patients with glioma. In this study, we present an approach to identify the small fraction of prognostic germline variants from the pool of over four million variants that we variant called in The Cancer Genome Atlas whole-exome sequencing and RNA sequencing datasets. We identified two germline variants that are predictive of poor patient outcomes by Cox regression, controlling for eleven covariates. rs61757955 is a germline variant found in the 3' UTR of GRB2 associated with increased KRAS signaling, CIC mutations, and 1p/19q codeletion. rs34988193 is a germline variant found in the tumor suppressor gene ANKDD1a that causes an amino acid change from lysine to glutamate. This variant was found to be predictive of poor prognosis in two independent lower grade glioma datasets and is predicted to be within the top 0.06% of deleterious mutations across the human genome. The wild-type residue is conserved in all 22 other species with a homologous protein. IMPLICATIONS: This is the first study presenting an approach to screening many germline variants to identify variants predictive of survival and our application of this methodology revealed the germline variants rs61757955 and rs34988193 as being predictive of survival in patients with lower grade glioma.
Collapse
Affiliation(s)
- Ajay Chatrath
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Manjari Kiran
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
107
|
Loop dynamics behind the affinity of DARPins towards ERK2: Molecular dynamics simulations (MDs) and elastic network model (ENM). J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
108
|
Zhang Z, Guo J, Zhao Y, Chen J. Identification and characterization of maize ACD6-like gene reveal ZmACD6 as the maize orthologue conferring resistance to Ustilago maydis. PLANT SIGNALING & BEHAVIOR 2019; 14:e1651604. [PMID: 31397626 PMCID: PMC6768228 DOI: 10.1080/15592324.2019.1651604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 05/22/2023]
Abstract
Enhancing broad-spectrum resistance is a major goal of crop breeding. However, broad-spectrum resistance has not been thoroughly investigated, and its underlying molecular mechanisms remain elusive. In the model plant Arabidopsis (Arabidopsis thaliana), ACCELERATED CELL DEATH6 (ACD6) is a key component of broad-spectrum resistance that acts in a positive feedback loop with salicylic acid (SA) to regulate multiple pattern recognition receptors. However, the role of ACD6 in disease resistance in crop plants is unclear. Here, we show that the transcript of ANK23, one of the 15 ACD6-like genes in maize (Zea mays), is induced by SA and by infection with the pathogenic fungus Ustilago maydis. Heterologous expression of ANK23 restored disease resistance in the Arabidopsis mutant acd6-2. We show that ANK23 is a maize ortholog of ACD6 and therefore rename ANK23 as ZmACD6. Furthermore, using CRISPR/Cas9, we generated ZmACD6 knockout maize plants, which are more susceptible to U. maydis than wild-type plants. We also identified a maize line (SC-9) with relatively high ZmACD6 expression levels from a diverse natural maize population. SC-9 has increased disease resistance to U. maydis and defense activation, suggesting a practical approach to cultivate elite varieties with enhanced disease resistance.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
- CONTACT Zhongqin Zhang Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Jinjie Guo
- Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Yongfeng Zhao
- Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Jingtang Chen
- Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
109
|
Wu J, Wang J, Yue B, Xing-Tang F, Zhang C, Ma Y, Hu L, Bai Y, Qi X, Chen H. Research on association between variants and haplotypes of TRPV1 and TRPA1 genes with growth traits in three cattle breeds. Anim Biotechnol 2018; 30:202-211. [PMID: 30595081 DOI: 10.1080/10495398.2018.1470530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this study was to examine the association of transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) genes polymorphisms with growth traits in three Chinese cattle breeds (Jiaxian red cattle, Qinchuan cattle and Luxi cattle). Through experiments we identified three single nucleotide polymorphisms (SNPs) in these three cattle breeds TRPV1 and TRPA1 genes using PCR-SSCP, (forced) PCR-RFLP methods. Three of these polymorphisms are all synonymous mutation which includes (NW_003104493.1: 30327 C > T), (NW_003104493.1: 33394 A > G) and (NW_003104493.1: 38471 G > A) are in exons. The other three polymorphisms are located at 3'UTR. Furthermore, we evaluated the haplotype frequency and the statistical analyses indicated that these SNPs of TRPV1 and TRPA1 genes were associated with bovine body height, body length, waist angle width, hucklebone width, cross ministry height, chest qingwidth (p < 0.05) and recommendation height, cannon circumference (p < 0.01) of Qingchuan cattle; body length, waist angle width (p < 0.05) of Jiaxian red cattle; body weight, Body length, cannon circumference, chest circumference (p < 0.05) and body height (p < 0.01) of Luxi cattle. Our result confirms the polymorphisms in the TRPV1 and TRPA1 genes are associated with growth traits that may be used for marker-assisted selection (MAS) in three beef breeds programs.
Collapse
Affiliation(s)
- Jiyao Wu
- a Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University , Xuzhou , PR China
| | - Jianjin Wang
- a Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University , Xuzhou , PR China
| | - Binglin Yue
- a Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University , Xuzhou , PR China
| | - Fang Xing-Tang
- a Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University , Xuzhou , PR China
| | - Chunlei Zhang
- a Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University , Xuzhou , PR China
| | - Yun Ma
- b College of Life Sciences , Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University , Xinyang , PR China
| | - Linyong Hu
- c Key Laboratory of Adaptation and Evolution of Plateau Biota , Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining , PR China
| | - Yueyu Bai
- d Animal Health Supervision in Henan Province , Zhengzhou , PR China.,e Bureau of Animal Husbandry of Biyang County , Biyang , PR China
| | - Xingshan Qi
- e Bureau of Animal Husbandry of Biyang County , Biyang , PR China
| | - Hong Chen
- a Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University , Xuzhou , PR China
| |
Collapse
|
110
|
Liu CG, Cui XL, Wei ZG, Guo JS. High expression of the ANKRD49 protein is associated with progression and poor prognosis of gastric cancer. Cancer Biomark 2018; 22:649-656. [PMID: 29865034 DOI: 10.3233/cbm-171074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumours. Identifying novel genes that govern the development of gastric cancer will help to elucidate its molecular mechanisms and find novel biomarkers. METHODS Expression of the ANKRD49 protein was assessed by immunohistochemical analysis of tissue microarrays containing 92 sets of human gastric cancer specimens with adjacent non-cancerous tissue. Associations between ANKRD49 levels and clinicopathological characteristics of the patient were investigated. The correlation between ANKRD49 expression and patient survival was analysed by the Kaplan-Meier method. RESULTS The results revealed that the expression level of the ANKRD49 protein in gastric cancer was significantly upregulated and correlated with the tumour size, tumour-node-metastasis (TNM) stage, histological grade, depth of invasion, vessel invasion, lymph node metastasis and distant metastasis. The mean survival time of patients with low expression levels of ANKRD49 was significantly longer than that of patients with high expression levels of ANKRD49. Multivariate Cox regression analysis demonstrated that the ANKRD49 protein expression level was an independent prognostic indicator for the survival rate of patients with gastric cancer. CONCLUSION The results of the present study highlighted an important role of the ANKRD49 protein in the progression of gastric cancer. The ANKRD49 protein could act as a potential biomarker for prognosis evaluation of gastric cancer and may be used as a molecular target for gastric cancer treatment.
Collapse
|
111
|
Pers D, Lynch JA. Ankyrin domain encoding genes from an ancient horizontal transfer are functionally integrated into Nasonia developmental gene regulatory networks. Genome Biol 2018; 19:148. [PMID: 30266092 PMCID: PMC6161386 DOI: 10.1186/s13059-018-1526-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND How regulatory networks incorporate additional components and how novel genes are functionally integrated into well-established developmental processes are two important and intertwined questions whose answers have major implications for understanding the evolution of development. We recently discovered a set of lineage-restricted genes with strong and specific expression patterns along the dorsal-ventral (DV) axis of the embryo of the wasp Nasonia that may serve as a powerful system for addressing these questions. We sought to both understand the evolutionary history of these genes and to determine their functions in the Nasonia DV patterning system. RESULTS We have found that the novel DV genes are part of a large family of rapidly duplicating and diverging ankyrin domain-encoding genes that originated most likely by horizontal transfer from a prokaryote in a common ancestor of the wasp superfamily Chalcidoidea. We tested the function of those ankyrin-encoding genes expressed along the DV axis and found that they participate in early embryonic DV patterning. We also developed a new wasp model system (Melittobia) and found that some functional integration of ankyrin genes have been preserved for over 90 million years. CONCLUSIONS Our results indicate that regulatory networks can incorporate novel genes that then become necessary for stable and repeatable outputs. Even a modest role in developmental networks may be enough to allow novel or duplicate genes to be maintained in the genome and become fully integrated network components.
Collapse
Affiliation(s)
- Daniel Pers
- Department of Biological Sciences, University of Illinois at Chicago, MBRB 4020, 900 S. Ashland Ave, Chicago, IL, 60607, USA
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, MBRB 4020, 900 S. Ashland Ave, Chicago, IL, 60607, USA.
| |
Collapse
|
112
|
Ramsey KM, Narang D, Komives EA. Prediction of the presence of a seventh ankyrin repeat in IκBε from homology modeling combined with hydrogen-deuterium exchange mass spectrometry (HDX-MS). Protein Sci 2018; 27:1624-1635. [PMID: 30133030 PMCID: PMC6194264 DOI: 10.1002/pro.3459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 02/02/2023]
Abstract
The ankyrin repeat (AR) structure is a common protein-protein interaction motif and ankyrin repeat proteins comprise a vast family across a large array of different taxa. Natural AR proteins adopt a conserved fold comprised of several repeats with the N- and C-terminal repeats generally being of more divergent sequences. Obtaining experimental crystal structures for natural ankyrin repeat domains (ARD) can be difficult and often requires complexation with a binding partner. Homology modeling is an attractive method for creating a model of AR proteins due to the highly conserved fold; however, modeling the divergent N- and C-terminal "capping" repeats remains a challenge. We show here that amide hydrogen/deuterium exchange mass spectrometry (HDX-MS), which reports on the presence of secondary structural elements and "foldedness," can aid in the refinement and selection of AR protein homology models when multiple templates are identified with variations between them localizing to these terminal repeats. We report a homology model for the AR protein IκBε from three different templates and use HDX-MS to establish the presence of a seventh AR at the C-terminus identified by only one of the three templates used for modeling.
Collapse
Affiliation(s)
- Kristen M. Ramsey
- Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaCalifornia92092‐0378
| | - Dominic Narang
- Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaCalifornia92092‐0378
| | - Elizabeth A. Komives
- Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaCalifornia92092‐0378
| |
Collapse
|
113
|
Oleaga A, Obolo-Mvoulouga P, Manzano-Román R, Pérez-Sánchez R. De novo assembly and analysis of midgut transcriptome of the argasid tick Ornithodoros erraticus and identification of genes differentially expressed after blood feeding. Ticks Tick Borne Dis 2018; 9:1537-1554. [PMID: 30093291 DOI: 10.1016/j.ttbdis.2018.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Ticks are hematophagous vectors of great medical and veterinary importance because they transmit numerous pathogenic microorganisms to humans and animals. The argasid Ornithodoros erraticus is the main vector of tick-borne human relapsing fever and African swine fever in the Mediterranean Basin. Tick enterocytes express bioactive molecules that perform key functions in blood digestion, feeding, toxic waste processing and pathogen transmission. To explore new strategies for tick control, in this work we have obtained and compared the midgut transcriptomes of O. erraticus female ticks before and after a blood meal and identified the genes whose expression is differentially regulated after feeding. The transcript sequences were annotated, functionally and structurally characterised and their expression levels compared between both physiological conditions (unfed females and fed females at 2 days post-engorgement). Up to 29,025 transcripts were assembled, and 9290 of them corresponded to differentially expressed genes (DEGs) after feeding. Of these, 4656 genes were upregulated and nearly the same number of genes was downregulated in fed females compared to unfed females. BLASTN and BLASTX analyses of the 29,025 transcripts allowed the annotation of 9072 transcripts/proteins. Among them, the most numerous were those with catalytic and binding activities and those involved in diverse metabolic pathways and cellular processes. The analyses of functional groups of upregulated DEGs potentially related to the digestion of proteins, carbohydrates and lipids, and the genes involved in the defence response and response to oxidative stress, confirm that these processes are narrowly regulated in ticks, highlighting their complexity and importance in tick biology. The expression patterns of six genes throughout the blood digestion period revealed significant differences between these patterns, strongly suggesting that the transcriptome composition is highly dynamic and subjected to important variation along the trophogonic cycle. This may guide future studies aimed at improving the understanding of the molecular physiology of tick digestion and digestion-related processes. The current work provides a more robust and comprehensive understanding of the argasid tick digestive system.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Prosper Obolo-Mvoulouga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Raúl Manzano-Román
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
114
|
Vinayagam D, Mager T, Apelbaum A, Bothe A, Merino F, Hofnagel O, Gatsogiannis C, Raunser S. Electron cryo-microscopy structure of the canonical TRPC4 ion channel. eLife 2018; 7:e36615. [PMID: 29717981 PMCID: PMC5951680 DOI: 10.7554/elife.36615] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Canonical transient receptor channels (TRPC) are non-selective cation channels. They are involved in receptor-operated Ca2+ signaling and have been proposed to act as store-operated channels (SOC). Their malfunction is related to cardiomyopathies and their modulation by small molecules has been shown to be effective against renal cancer cells. The molecular mechanism underlying the complex activation and regulation is poorly understood. Here, we report the electron cryo-microscopy structure of zebrafish TRPC4 in its unliganded (apo), closed state at an overall resolution of 3.6 Å. The structure reveals the molecular architecture of the cation conducting pore, including the selectivity filter and lower gate. The cytoplasmic domain contains two key hubs that have been shown to interact with modulating proteins. Structural comparisons with other TRP channels give novel insights into the general architecture and domain organization of this superfamily of channels and help to understand their function and pharmacology.
Collapse
Affiliation(s)
| | - Thomas Mager
- Department of Biophysical ChemistryMax Planck Institute of BiophysicsFrankfurt am MainGermany
| | - Amir Apelbaum
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Arne Bothe
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Felipe Merino
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Oliver Hofnagel
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Christos Gatsogiannis
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Stefan Raunser
- Department of Structural BiochemistryMax Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
115
|
Vaira AM, Lim HS, Bauchan G, Gulbronson CJ, Miozzi L, Vinals N, Natilla A, Hammond J. The interaction of Lolium latent virus major coat protein with ankyrin repeat protein NbANKr redirects it to chloroplasts and modulates virus infection. J Gen Virol 2018; 99:730-742. [PMID: 29557771 DOI: 10.1099/jgv.0.001043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Lolium latent virus (LoLV) major coat protein sequence contains a typical chloroplast transit peptide (cTP) domain. In infected Nicotiana benthamiana leaf tissue, LoLV coat proteins can be detected at the chloroplast. In transient expression, several N-terminal deletions of the CP sequence, increasing in length, result in disruption of the domain functionality, markedly affecting intracellular localization. A yeast two-hybrid-based study using LoLV CP as bait identified several potentially interacting Arabidopsis host proteins, most of them with chloroplast-linked pathways. One of them, an ankyrin repeat protein, was studied in detail. The N. benthamiana homologue (NbANKr) targets chloroplasts, is able to co-localize with LoLV CP at chloroplast membranes in transient expression and shows a robust interaction with LoLV CP in vivo by BiFC, which has been confirmed by yeast two-hybrid data. Silencing NbANKr genes in N. benthamiana plants, prior to challenging with LoLV by mechanical inoculation, affects LoLV infection, significantly reducing the level of viral RNA in young leaves, compared to levels in control plants, and suggesting an inhibition of virus movement. Silencing of NbANKr has no obvious effect on plant phenotype, but is able to interfere with LoLV infection, opening the way for a new strategy for virus infection control.
Collapse
Affiliation(s)
- A M Vaira
- Institute for Sustainable Plant Protection, IPSP-CNR, Strada delle Cacce 73, 10135, Torino, Italy
- USDA-ARS, USNA, Floral and Nursery Plant Research Unit, 10300 Baltimore Ave, Beltsville, MD, USA
| | - H S Lim
- USDA-ARS, USNA, Floral and Nursery Plant Research Unit, 10300 Baltimore Ave, Beltsville, MD, USA
- Department of Applied Biology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - G Bauchan
- USDA-ARS, BARC, Electron and Confocal Microscopy Unit, 10300 Baltimore Ave, Beltsville, MD, USA
| | - C J Gulbronson
- USDA-ARS, USNA, Floral and Nursery Plant Research Unit, 10300 Baltimore Ave, Beltsville, MD, USA
- Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, USA
| | - L Miozzi
- Institute for Sustainable Plant Protection, IPSP-CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - N Vinals
- Institute for Sustainable Plant Protection, IPSP-CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - A Natilla
- USDA-ARS, BARC, Molecular Plant Pathology Laboratory, 10300 Baltimore Ave, Beltsville, MD, USA
- Present address: Arc Horizon, LLC, Innovation Park, 1736 West Paul Dirac Dr., Tallahassee, FL, USA
| | - J Hammond
- USDA-ARS, USNA, Floral and Nursery Plant Research Unit, 10300 Baltimore Ave, Beltsville, MD, USA
| |
Collapse
|
116
|
Evans SM, Rodino KG, Adcox HE, Carlyon JA. Orientia tsutsugamushi uses two Ank effectors to modulate NF-κB p65 nuclear transport and inhibit NF-κB transcriptional activation. PLoS Pathog 2018; 14:e1007023. [PMID: 29734393 PMCID: PMC5957444 DOI: 10.1371/journal.ppat.1007023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/17/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023] Open
Abstract
Orientia tsutsugamushi causes scrub typhus, a potentially fatal infection that threatens over one billion people. Nuclear translocation of the transcription factor, NF-κB, is the central initiating cellular event in the antimicrobial response. Here, we report that NF-κB p65 nuclear accumulation and NF-κB-dependent transcription are inhibited in O. tsutsugamushi infected HeLa cells and/or primary macrophages, even in the presence of TNFα. The bacterium modulates p65 subcellular localization by neither degrading it nor inhibiting IκBα degradation. Rather, it exploits host exportin 1 to mediate p65 nuclear export, as this phenomenon is leptomycin B-sensitive. O. tsutsugamushi antagonizes NF-κB-activated transcription even when exportin 1 is inhibited and NF-κB consequently remains in the nucleus. Two ankyrin repeat-containing effectors (Anks), Ank1 and Ank6, each of which possess a C-terminal F-box and exhibit 58.5% amino acid identity, are linked to the pathogen's ability to modulate NF-κB. When ectopically expressed, both translocate to the nucleus, abrogate NF-κB-activated transcription in an exportin 1-independent manner, and pronouncedly reduce TNFα-induced p65 nuclear levels by exportin 1-dependent means. Flag-tagged Ank 1 and Ank6 co-immunoprecipitate p65 and exportin 1. Both also bind importin β1, a host protein that is essential for the classical nuclear import pathway. Importazole, which blocks importin β1 activity, abrogates Ank1 and Ank6 nuclear translocation. The Ank1 and Ank6 regions that bind importin β1 also mediate their transport into the nucleus. Yet, these regions are distinct from those that bind p65/exportin 1. The Ank1 and Ank6 F-box and the region that lies between it and the ankyrin repeat domain are essential for blocking p65 nuclear accumulation. These data reveal a novel mechanism by which O. tsutsugamushi modulates the activity and nuclear transport of NF-κB p65 and identify the first microbial proteins that co-opt both importin β1 and exportin 1 to antagonize a critical arm of the antimicrobial response.
Collapse
Affiliation(s)
- Sean M. Evans
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, United States of America
| | - Kyle G. Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, United States of America
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, United States of America
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
117
|
Rastogi A, Maheswari U, Dorrell RG, Vieira FRJ, Maumus F, Kustka A, McCarthy J, Allen AE, Kersey P, Bowler C, Tirichine L. Integrative analysis of large scale transcriptome data draws a comprehensive landscape of Phaeodactylum tricornutum genome and evolutionary origin of diatoms. Sci Rep 2018; 8:4834. [PMID: 29556065 PMCID: PMC5859163 DOI: 10.1038/s41598-018-23106-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/02/2018] [Indexed: 11/13/2022] Open
Abstract
Diatoms are one of the most successful and ecologically important groups of eukaryotic phytoplankton in the modern ocean. Deciphering their genomes is a key step towards better understanding of their biological innovations, evolutionary origins, and ecological underpinnings. Here, we have used 90 RNA-Seq datasets from different growth conditions combined with published expressed sequence tags and protein sequences from multiple taxa to explore the genome of the model diatom Phaeodactylum tricornutum, and introduce 1,489 novel genes. The new annotation additionally permitted the discovery of extensive alternative splicing in diatoms, including intron retention and exon skipping, which increase the diversity of transcripts generated in changing environments. In addition, we have used up-to-date reference sequence libraries to dissect the taxonomic origins of diatom genes. We show that the P. tricornutum genome is enriched in lineage-specific genes, with up to 47% of the gene models present only possessing orthologues in other stramenopile groups. Finally, we have performed a comprehensive de novo annotation of repetitive elements showing novel classes of transposable elements such as SINE, MITE and TRIM/LARD. This work provides a solid foundation for future studies of diatom gene function, evolution and ecology.
Collapse
Affiliation(s)
- Achal Rastogi
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 75005, Paris, France
| | - Uma Maheswari
- EMBL-EBI, Wellcome Trust Genome Campus, Cambridge, CB10 1 SD, United Kingdom
| | - Richard G Dorrell
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 75005, Paris, France
| | - Fabio Rocha Jimenez Vieira
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 75005, Paris, France
| | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, Versailles, 78026, France
| | - Adam Kustka
- Earth and Environmental Sciences, Rutgers University, 101 Warren Street, 07102, Newark, New Jersey, USA
| | - James McCarthy
- J. Craig Venter Institute, 10355 Science Center Drive, 92121, San Diego, California, USA
| | - Andy E Allen
- J. Craig Venter Institute, 10355 Science Center Drive, 92121, San Diego, California, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Paul Kersey
- EMBL-EBI, Wellcome Trust Genome Campus, Cambridge, CB10 1 SD, United Kingdom
| | - Chris Bowler
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 75005, Paris, France.
| | - Leila Tirichine
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université, 75005, Paris, France.
| |
Collapse
|
118
|
Bonneau M, Atyame C, Beji M, Justy F, Cohen-Gonsaud M, Sicard M, Weill M. Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia. Nat Commun 2018; 9:319. [PMID: 29358578 PMCID: PMC5778026 DOI: 10.1038/s41467-017-02749-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022] Open
Abstract
Culex pipiens mosquitoes are infected with Wolbachia (wPip) that cause an important diversity of cytoplasmic incompatibilities (CIs). Functional transgenic studies have implicated the cidA-cidB operon from wPip and its homolog in wMel in CI between infected Drosophila males and uninfected females. However, the genetic basis of the CI diversity induced by different Wolbachia strains was unknown. We show here that the remarkable diversity of CI in the C. pipiens complex is due to the presence, in all tested wPip genomes, of several copies of the cidA-cidB operon, which undergoes diversification through recombination events. In 183 isofemale lines of C. pipiens collected worldwide, specific variations of the cidA-cidB gene repertoires are found to match crossing types. The diversification of cidA-cidB is consistent with the hypothesis of a toxin–antitoxin system in which the gene cidB co-diversifies with the gene cidA, particularly in putative domains of reciprocal interactions. Wolbachia causes cytoplasmic incompatibility (CI) between mosquitoes infected with different strains, but the genetic basis of observed CI diversity is unknown. Here, Bonneau et al. sequence Wolbachia from over 100 Culex pipiens lines and show that crossing types match variations of the toxin-antitoxin cidA-cidB genes.
Collapse
Affiliation(s)
- Manon Bonneau
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Celestine Atyame
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.,Processus Infectieux en Milieu Insulaire Tropical (PIMIT), UMR CNRS-INSERM-IRD-Université de La Réunion, Sainte-Clotilde, Ile de La Réunion, 97490, France
| | - Marwa Beji
- Institut Pasteur Tunis, Laboratory of Epidemiology and Veterinary Microbiology, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Fabienne Justy
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale (CBS), UMR CNRS-INSERM-Université de Montpellier, 29 rue de Navacelles, 34090, Montpellier, France
| | - Mathieu Sicard
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
| |
Collapse
|
119
|
Shukla A, Chatterjee A, Kondabagil K. The number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses. Virus Evol 2018; 4:vex039. [PMID: 29308275 PMCID: PMC5753266 DOI: 10.1093/ve/vex039] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific. When compared with other giant virus families, we observed a near–linear increase in the number of genes encoding repeat domain-containing proteins (RDCPs) with the increase in the genome size of AVs. From what is known about the functions of RDCPs in bacteria and eukaryotes and their prevalence in the AV genomes, we envisage important roles for RDCPs in the life cycle of AVs, their genome expansion, and plasticity. This observation also supports the evolution of AVs from a smaller viral ancestor by the acquisition of diverse gene families from the environment including RDCPs that might have helped in host adaption.
Collapse
Affiliation(s)
- Avi Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
120
|
Pan W, Sun K, Tang K, Xiao Q, Ma C, Yu C, Wei Z. Structural insights into ankyrin repeat-mediated recognition of the kinesin motor protein KIF21A by KANK1, a scaffold protein in focal adhesion. J Biol Chem 2017; 293:1944-1956. [PMID: 29217769 DOI: 10.1074/jbc.m117.815779] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/29/2017] [Indexed: 01/25/2023] Open
Abstract
Kidney ankyrin repeat-containing proteins (KANK1/2/3/4) belong to a family of scaffold proteins, playing critical roles in cytoskeleton organization, cell polarity, and migration. Mutations in KANK proteins are implicated in cancers and genetic diseases, such as nephrotic syndrome. KANK proteins can bind various target proteins through different protein regions, including a highly conserved ankyrin repeat domain (ANKRD). However, the molecular basis for target recognition by the ANKRD remains elusive. In this study, we solved a high-resolution crystal structure of the ANKRD of KANK1 in complex with a short sequence of the motor protein kinesin family member 21A (KIF21A), revealing that the highly specific target-binding mode of the ANKRD involves combinatorial use of two interfaces. Mutations in either interface disrupted the KANK1-KIF21A interaction. Cellular immunofluorescence localization analysis indicated that binding-deficient mutations block recruitment of KIF21A to focal adhesions by KANK1. In conclusion, our structural study provides mechanistic explanations for the ANKRD-mediated recognition of KIF21A and for many disease-related mutations identified in human KANK proteins.
Collapse
Affiliation(s)
- Wenfei Pan
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Kang Sun
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, 518055 Shenzhen, China
| | - Kun Tang
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China.,College of Life Sciences, Nankai University, 300071 Tianjin, China, and
| | - Qingpin Xiao
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China.,Faculty of Health Sciences, University of Macau, Macau Special Administrative Region, China
| | - Chenxue Ma
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Cong Yu
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, 518055 Shenzhen, China
| | - Zhiyi Wei
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China,
| |
Collapse
|
121
|
Guo Q, Liao S, Zhu Z, Li Y, Li F, Xu C. Structural basis for the recognition of kinesin family member 21A (KIF21A) by the ankyrin domains of KANK1 and KANK2 proteins. J Biol Chem 2017; 293:557-566. [PMID: 29183992 DOI: 10.1074/jbc.m117.817494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/21/2017] [Indexed: 01/09/2023] Open
Abstract
A well-controlled microtubule organization is essential for intracellular transport, cytoskeleton maintenance, and cell development. KN motif and ankyrin repeat domain-containing protein 1 (KANK1), a member of KANK family, recruits kinesin family member 21A (KIF21A) to the cell cortex to control microtubule growth via its C-terminal ankyrin domain. However, how the KANK1 ankyrin domain recognizes KIF21A and whether other KANK proteins can also bind KIF21A remain unknown. Here, using a combination of structural, site-directed mutagenesis, and biochemical studies, we found that a stretch of ∼22 amino acids in KIF21A is sufficient for binding to KANK1 and its close homolog KANK2. We further solved the complex structure of the KIF21A peptide with either the KANK1 ankyrin domain or the KANK2 ankyrin domain. In each complex, KIF21A is recognized by two distinct pockets of the ankyrin domain and adopts helical conformations upon binding to the ankyrin domain. The elucidated KANK structures may advance our understanding of the role of KANK1 as a scaffolding molecule in controlling microtubule growth at the cell periphery.
Collapse
Affiliation(s)
- Qiong Guo
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Shanhui Liao
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and .,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Zhongliang Zhu
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Yue Li
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Fudong Li
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Chao Xu
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and .,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| |
Collapse
|
122
|
Majumder S, Zhu G, Xu X, Senchanthisai S, Jiang D, Liu H, Xue C, Wang X, Coia H, Cui Z, Smolock EM, Libby RT, Berk BC, Pang J. G-Protein-Coupled Receptor-2-Interacting Protein-1 Controls Stalk Cell Fate by Inhibiting Delta-like 4-Notch1 Signaling. Cell Rep 2017; 17:2532-2541. [PMID: 27926858 DOI: 10.1016/j.celrep.2016.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 04/12/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022] Open
Abstract
The spatiotemporal localization and expression of Dll4 are critical for sprouting angiogenesis. However, the related mechanisms are poorly understood. Here, we show that G-protein-coupled receptor-kinase interacting protein-1 (GIT1) is a robust endogenous inhibitor of Dll4-Notch1 signaling that specifically controls stalk cell fate. GIT1 is highly expressed in stalk cells but not in tip cells. GIT1 deficiency remarkably enhances Dll4 expression and Notch1 signaling, resulting in impaired retinal sprouting angiogenesis, which can be rescued by treatment with the Notch inhibitor or Dll4 neutralizing antibody. Notch1 regulates Dll4 expression by binding to recombining binding protein suppressor of hairless (RBP-J, a transcriptional regulator of Notch) via a highly conserved ankyrin (ANK) repeat domain. We show that GIT1, which also contains an ANK domain, inhibits the Notch1-Dll4 signaling pathway by competing with Notch1 ANK domain for binding to RBP-J in stalk cells.
Collapse
Affiliation(s)
- Syamantak Majumder
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - GuoFu Zhu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiangbin Xu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sharon Senchanthisai
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Dongyang Jiang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hao Liu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Chao Xue
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Xiaoqun Wang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Heidi Coia
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Zhaoqiang Cui
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Elaine M Smolock
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Richard T Libby
- Flaum Eye Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
123
|
Islam Z, Nagampalli RSK, Fatima MT, Ashraf GM. New paradigm in ankyrin repeats: Beyond protein-protein interaction module. Int J Biol Macromol 2017; 109:1164-1173. [PMID: 29157912 DOI: 10.1016/j.ijbiomac.2017.11.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 01/06/2023]
Abstract
Classically, ankyrin repeat (ANK) proteins are built from tandems of two or more repeats and form curved solenoid structures that are associated with protein-protein interactions. These are short, widespread structural motif of around 33 amino acids repeats in tandem, having a canonical helix-loop-helix fold, found individually or in combination with other domains. The multiplicity of structural pattern enables it to form assemblies of diverse sizes, required for their abilities to confer multiple binding and structural roles of proteins. Three-dimensional structures of these repeats determined to date reveal a degree of structural variability that translates into the considerable functional versatility of this protein superfamily. Recent work on the ANK has proposed novel structural information, especially protein-lipid, protein-sugar and protein-protein interaction. Self-assembly of these repeats was also shown to prevent the associated protein in forming filaments. In this review, we summarize the latest findings and how the new structural information has increased our understanding of the structural determinants of ANK proteins. We discussed latest findings on how these proteins participate in various interactions to diversify the ANK roles in numerous biological processes, and explored the emerging and evolving field of designer ankyrins and its framework for protein engineering emphasizing on biotechnological applications.
Collapse
Affiliation(s)
- Zeyaul Islam
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, 13083-100, Brazil.
| | | | - Munazza Tamkeen Fatima
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, 13083-862, Brazil
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
124
|
Monies D, Abou Al-Shaar H, Goljan EA, Al-Younes B, Al-Breacan MMA, Al-Saif MM, Wakil SM, Meyer BF, Khabar KSA, Bohlega S. Identification of a novel genetic locus underlying tremor and dystonia. Hum Genomics 2017; 11:25. [PMID: 29110692 PMCID: PMC5674688 DOI: 10.1186/s40246-017-0123-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Five affected individuals with syndromic tremulous dystonia, spasticity, and white matter disease from a consanguineous extended family covering a period of over 24 years are presented. A positional cloning approach utilizing genome-wide linkage, homozygozity mapping and whole exome sequencing was used for genetic characterization. The impact of a calmodulin-binding transcription activator 2, (CAMTA2) isoform 2, hypomorphic mutation on mRNA and protein abundance was studied using fluorescent reporter expression cassettes. Human brain sub-region cDNA libraries were used to study the expression pattern of CAMTA2 transcript variants. RESULTS Linkage analysis and homozygozity mapping localized the disease allele to a 2.1 Mb interval on chromosome 17 with a LOD score of 4.58. Whole exome sequencing identified a G>A change in the transcript variant 2 5'UTR of CAMTA2 that was only 6 bases upstream of the translation start site (c.-6G > A) (NM_001171166.1) and segregated with disease in an autosomal recessive manner. Transfection of wild type and mutant 5'UTR-linked fluorescent reporters showed no impact upon mRNA levels but a significant reduction in the protein fluorescent activity implying translation inhibition. CONCLUSIONS Mutation of CAMTA2 resulting in post-transcriptional inhibition of its own gene activity likely underlies a novel syndromic tremulous dystonia.
Collapse
Affiliation(s)
- Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital, and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia. .,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
| | - Hussam Abou Al-Shaar
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Ewa A Goljan
- Department of Genetics, King Faisal Specialist Hospital, and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Banan Al-Younes
- Department of Genetics, King Faisal Specialist Hospital, and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | - Maher Mohammed Al-Saif
- Biomolecular Medicine, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Salma M Wakil
- Department of Genetics, King Faisal Specialist Hospital, and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Brian F Meyer
- Department of Genetics, King Faisal Specialist Hospital, and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Biomolecular Medicine, Research Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Saeed Bohlega
- Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. .,Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
125
|
Lindström JB, Pierce NT, Latz MI. Role of TRP Channels in Dinoflagellate Mechanotransduction. THE BIOLOGICAL BULLETIN 2017; 233:151-167. [PMID: 29373067 DOI: 10.1086/695421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transient receptor potential (TRP) ion channels are common components of mechanosensing pathways, mainly described in mammals and other multicellular organisms. To gain insight into the evolutionary origins of eukaryotic mechanosensory proteins, we investigated the involvement of TRP channels in mechanosensing in a unicellular eukaryotic protist, the dinoflagellate Lingulodinium polyedra. BLASTP analysis of the protein sequences predicted from the L. polyedra transcriptome revealed six sequences with high similarity to human TRPM2, TRPM8, TRPML2, TRPP1, and TRPP2; and characteristic TRP domains were identified in all sequences. In a phylogenetic tree including all mammalian TRP subfamilies and TRP channel sequences from unicellular and multicellular organisms, the L. polyedra sequences grouped with the TRPM, TPPML, and TRPP clades. In pharmacological experiments, we used the intrinsic bioluminescence of L. polyedra as a reporter of mechanoresponsivity. Capsaicin and RN1734, agonists of mammalian TRPV, and arachidonic acid, an agonist of mammalian TRPV, TRPA, TRPM, and Drosophila TRP, all stimulated bioluminescence in L. polyedra. Mechanical stimulation of bioluminescence, but not capsaicin-stimulated bioluminescence, was inhibited by gadolinium (Gd3+), a general inhibitor of mechanosensitive ion channels, and the phospholipase C (PLC) inhibitor U73122. These pharmacological results are consistent with the involvement of TRP-like channels in mechanosensing by L. polyedra. The TRP channels do not appear to be mechanoreceptors but rather are components of the mechanotransduction signaling pathway and may be activated via a PLC-dependent mechanism. The presence and function of TRP channels in a dinoflagellate emphasize the evolutionary conservation of both the channel structures and their functions.
Collapse
Key Words
- AA, amino acids
- AMTB hydrochloride, N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide hydrochloride
- Ce, Caenorhabditis elegans
- Cr, Chlamydomonas reinhardtii
- DMSO, dimethyl sulfoxide
- Dm, Drosophila melanogaster
- Dr, Danio rerio
- FSW, filtered seawater
- Gd3+, gadolinium
- GsMTx4, Grammostola spatulata mechanotoxin 4
- HC067047, 2-Methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide
- HMM, Hidden Markov Model
- Hs, Homo sapiens
- Lp, Lingulodinium polyedra
- ML204, 4-Methyl-2-(1-piperidinyl)-quinoline
- Mb, Monosiga brevicollis
- ORF, open reading frame
- PIP2, Phosphatidylinositol 4,5-bisphosphate
- PLC, phospholipase C
- Pt, Paramecium tetraurelia
- RHC80267, O,O′-[1,6-Hexanediylbis(iminocarbonyl)]dioxime cyclohexanone
- RN1734, 2,4-Dichloro-N-isopropyl-N-(2-isopropylaminoethyl)benzenesulfonamide
- RN1747, 1-(4-Chloro-2-nitrophenyl)sulfonyl-4-benzylpiperazine
- TMHMM, transmembrane helix prediction
- TRP, transient receptor potential channel
- U73122, 1-[6-[((17β)-3-Methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione
Collapse
|
126
|
Bulutoglu B, Banta S. Block V RTX Domain of Adenylate Cyclase from Bordetella pertussis: A Conformationally Dynamic Scaffold for Protein Engineering Applications. Toxins (Basel) 2017; 9:E289. [PMID: 28926974 PMCID: PMC5618222 DOI: 10.3390/toxins9090289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/27/2023] Open
Abstract
The isolated Block V repeats-in-toxin (RTX) peptide domain of adenylate cyclase (CyaA) from Bordetella pertussis reversibly folds into a β-roll secondary structure upon calcium binding. In this review, we discuss how the conformationally dynamic nature of the peptide is being engineered and employed as a switching mechanism to mediate different protein functions and protein-protein interactions. The peptide has been used as a scaffold for diverse applications including: a precipitation tag for bioseparations, a cross-linking domain for protein hydrogel formation and as an alternative scaffold for biomolecular recognition applications. Proteins and peptides such as the RTX domains that exhibit natural stimulus-responsive behavior are valuable building blocks for emerging synthetic biology applications.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| |
Collapse
|
127
|
Rigidly connected multispecific artificial binders with adjustable geometries. Sci Rep 2017; 7:11217. [PMID: 28894181 PMCID: PMC5593856 DOI: 10.1038/s41598-017-11472-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Multivalent binding proteins can gain biological activities beyond what is inherent in the individual binders, by bringing together different target molecules, restricting their conformational flexibility or changing their subcellular localization. In this study, we demonstrate a method to build up rigid multivalent and multispecific scaffolds by exploiting the modular nature of a repeat protein scaffold and avoiding flexible linkers. We use DARPins (Designed Ankyrin Repeat Proteins), synthetic binding proteins based on the Ankyrin-repeat protein scaffold, as binding units. Their ease of in vitro selection, high production yield and stability make them ideal specificity-conferring building blocks for the design of more complex constructs. C- and N-terminal DARPin capping repeats were re-designed to be joined by a shared helix in such a way that rigid connector modules are formed. This allows us to join two or more DARPins in predefined geometries without compromising their binding affinities and specificities. Nine connector modules with distinct geometries were designed; for eight of these we were able to confirm the structure by X-ray crystallography, while only one did not crystallize. The bispecific constructs were all able to bind both target proteins simultaneously.
Collapse
|
128
|
Recent advances in the development of novel protein scaffolds based therapeutics. Int J Biol Macromol 2017; 102:630-641. [DOI: 10.1016/j.ijbiomac.2017.04.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
|
129
|
Up-regulation of ANKDR49, a poor prognostic factor, regulates cell proliferation of gliomas. Biosci Rep 2017; 37:BSR20170800. [PMID: 28694302 PMCID: PMC6435464 DOI: 10.1042/bsr20170800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 11/30/2022] Open
Abstract
The Ankyrin repeat domain 49 (ANKRD49) is an evolutionarily conserved protein, which is related to mediate protein–protein interaction. However, the function of ANKRD49 in human glioma remains elusive. Mining through The Cancer Genome Atlas (TCGA) database, we found that the expression of ANKRD49 was increased in glioma tissues and that high expression of ANKRD49 was strongly associated with high disease grade and poor overall survival. To investigate the role of ANKRD49 in malignant glioma, lentivirus expressing shRNA targetting ANKRD49 was constructed in U251 and U87 malignant glioma cells. We demonstrated that ANKRD49 knockdown reduced the proliferation rate of U251 and U87 cells. Further mechanism analysis indicated that depletion of ANKRD49 led to the cell-cycle arrest and induced apoptosis in U251 and U87 cells. ANKRD49 knockdown also changed the expression of key effectors that are involved in stress response, cell cycle, and apoptosis, including p-HSP27 (heat shock protein 27), p-Smad2 (SMAD family member 2), p-p53, p-p38, p-MAPK (mitogen-activated protein kinase), p-SAPK/JNK (stress-activated protein kinase/c-jun n-terminal kinase), cleveagated Caspase-7, p-Chk1 (checkpoint kinase 1), and p-eIF2a (eukaryotic translation initiation factor 2a). Taken together, our findings implicate that ANKRD49 promotes the proliferation of human malignant glioma cells. ANKRD49 maybe an attractive target for malignant glioma therapy.
Collapse
|
130
|
Teske KA, Hadden MK. Methyllysine binding domains: Structural insight and small molecule probe development. Eur J Med Chem 2017; 136:14-35. [DOI: 10.1016/j.ejmech.2017.04.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
|
131
|
ANKRD22 promotes progression of non-small cell lung cancer through transcriptional up-regulation of E2F1. Sci Rep 2017; 7:4430. [PMID: 28667340 PMCID: PMC5493668 DOI: 10.1038/s41598-017-04818-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the leading cause of death among all malignancies due to rapid tumor progression and relapse; however, the underlying molecular mechanisms of tumor progression are unclear. In the present study, we identified ANKRD22 as a novel tumor-associated gene in non-small cell lung cancer (NSCLC). According to the clinical correlation analysis, ANKRD22 was highly expressed in primary cancerous tissue compared with adjacent cancerous tissue, and high expression levels of ANKRD22 were significantly correlated with relapse and short overall survival time. Knockdown and overexpression analysis revealed that ANKRD22 promoted tumor progression by increasing cell proliferation. In xenograft assays, knockdown of ANKRD22 or in vivo treatment with ANKRD22 siRNA inhibited tumor growth. Furthermore, ANKRD22 was shown to participate in the transcriptional regulation of E2F1, and ANKRD22 promoted cell proliferation by up-regulating the expression of E2F1 which enhanced cell cycle progression. Therefore, our studies indicated that ANKRD22 up-regulated the transcription of E2F1 and promoted the progression of NSCLC by enhancing cell proliferation. These findings suggest that ANKRD22 could potentially act as a novel therapeutic target for NSCLC.
Collapse
|
132
|
Inferring repeat-protein energetics from evolutionary information. PLoS Comput Biol 2017; 13:e1005584. [PMID: 28617812 PMCID: PMC5491312 DOI: 10.1371/journal.pcbi.1005584] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/29/2017] [Accepted: 05/21/2017] [Indexed: 11/19/2022] Open
Abstract
Natural protein sequences contain a record of their history. A common constraint in a given protein family is the ability to fold to specific structures, and it has been shown possible to infer the main native ensemble by analyzing covariations in extant sequences. Still, many natural proteins that fold into the same structural topology show different stabilization energies, and these are often related to their physiological behavior. We propose a description for the energetic variation given by sequence modifications in repeat proteins, systems for which the overall problem is simplified by their inherent symmetry. We explicitly account for single amino acid and pair-wise interactions and treat higher order correlations with a single term. We show that the resulting evolutionary field can be interpreted with structural detail. We trace the variations in the energetic scores of natural proteins and relate them to their experimental characterization. The resulting energetic evolutionary field allows the prediction of the folding free energy change for several mutants, and can be used to generate synthetic sequences that are statistically indistinguishable from the natural counterparts.
Collapse
|
133
|
Guevara C, Farias G, Bulatova K, Alarcón P, Soruco W, Robles C, Morales M. NOTCH 1 Mutation in a Patient with Spontaneous and Recurrent Dissections of Extracranial Arteries. Front Neurol 2017. [PMID: 28649221 PMCID: PMC5465274 DOI: 10.3389/fneur.2017.00245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dissections of extracranial arteries are estimated to account for only 2% of all ischemic strokes but for approximately 20% of strokes in patients younger than 45 years old. Most dissections of extracranial arteries involve some trauma stretch, mechanical stress, or connective tissue abnormalities. In the absence of these disorders, determining the etiology of recurrent extracranial dissections is quite challenging because the underlying nature of these cases is poorly understood. We report the case of a 44-year-old female with recurrent dissections of the vertebral and carotid arteries associated with a heterozygous mutation p.Pro2122Leu in the NOTCH 1 gene. Her mother with a thoracic aortic aneurysm was also positive for this variant.
Collapse
Affiliation(s)
- Carlos Guevara
- Clínica de Neurología, Servicio de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Gonzalo Farias
- Clínica de Neurología, Servicio de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Kateryna Bulatova
- Clínica de Neurología, Servicio de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Pablo Alarcón
- Sección Genética, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Wendy Soruco
- Clínica de Neurología, Servicio de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carlos Robles
- Sección Neurorradiologia, Servicio de Imágenes, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Marcelo Morales
- Clínica de Cardiologia, Hospital San Juan de Dios, Santiago, Chile
| |
Collapse
|
134
|
Zhang N, Xie XJ, Wang JA. Multifunctional protein: cardiac ankyrin repeat protein. J Zhejiang Univ Sci B 2017; 17:333-41. [PMID: 27143260 DOI: 10.1631/jzus.b1500247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac ankyrin repeat protein (CARP) not only serves as an important component of muscle sarcomere in the cytoplasm, but also acts as a transcription co-factor in the nucleus. Previous studies have demonstrated that CARP is up-regulated in some cardiovascular disorders and muscle diseases; however, its role in these diseases remains controversial now. In this review, we will discuss the continued progress in the research related to CARP, including its discovery, structure, and the role it plays in cardiac development and heart diseases.
Collapse
Affiliation(s)
- Na Zhang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiao-Jie Xie
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jian-An Wang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
135
|
Pasquali CC, Islam Z, Adamoski D, Ferreira IM, Righeto RD, Bettini J, Portugal RV, Yue WWY, Gonzalez A, Dias SMG, Ambrosio ALB. The origin and evolution of human glutaminases and their atypical C-terminal ankyrin repeats. J Biol Chem 2017; 292:11572-11585. [PMID: 28526749 DOI: 10.1074/jbc.m117.787291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/11/2017] [Indexed: 12/14/2022] Open
Abstract
On the basis of tissue-specific enzyme activity and inhibition by catalytic products, Hans Krebs first demonstrated the existence of multiple glutaminases in mammals. Currently, two human genes are known to encode at least four glutaminase isoforms. However, the phylogeny of these medically relevant enzymes remains unclear, prompting us to investigate their origin and evolution. Using prokaryotic and eukaryotic glutaminase sequences, we built a phylogenetic tree whose topology suggested that the multidomain architecture was inherited from bacterial ancestors, probably simultaneously with the hosting of the proto-mitochondrion endosymbiont. We propose an evolutionary model wherein the appearance of the most active enzyme isoform, glutaminase C (GAC), which is expressed in many cancers, was a late retrotransposition event that occurred in fishes from the Chondrichthyes class. The ankyrin (ANK) repeats in the glutaminases were acquired early in their evolution. To obtain information on ANK folding, we solved two high-resolution structures of the ANK repeat-containing C termini of both kidney-type glutaminase (KGA) and GLS2 isoforms (glutaminase B and liver-type glutaminase). We found that the glutaminase ANK repeats form unique intramolecular contacts through two highly conserved motifs; curiously, this arrangement occludes a region usually involved in ANK-mediated protein-protein interactions. We also solved the crystal structure of full-length KGA and present a small-angle X-ray scattering model for full-length GLS2. These structures explain these proteins' compromised ability to assemble into catalytically active supra-tetrameric filaments, as previously shown for GAC. Collectively, these results provide information about glutaminases that may aid in the design of isoform-specific glutaminase inhibitors.
Collapse
Affiliation(s)
- Camila Cristina Pasquali
- From the Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil
| | - Zeyaul Islam
- From the Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil
| | - Douglas Adamoski
- From the Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil
| | - Igor Monteze Ferreira
- From the Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil.,the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Ricardo Diogo Righeto
- the Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil.,the School of Electrical and Computer Engineering, University of Campinas, São Paulo 13083-852, Brazil, and
| | - Jefferson Bettini
- the Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil
| | - Rodrigo Villares Portugal
- the Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil
| | - Wyatt Wai-Yin Yue
- the Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Ana Gonzalez
- the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Sandra Martha Gomes Dias
- From the Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil,
| | - Andre Luis Berteli Ambrosio
- From the Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brazil,
| |
Collapse
|
136
|
Wisitponchai T, Shoombuatong W, Lee VS, Kitidee K, Tayapiwatana C. AnkPlex: algorithmic structure for refinement of near-native ankyrin-protein docking. BMC Bioinformatics 2017; 18:220. [PMID: 28424069 PMCID: PMC5395911 DOI: 10.1186/s12859-017-1628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 04/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Computational analysis of protein-protein interaction provided the crucial information to increase the binding affinity without a change in basic conformation. Several docking programs were used to predict the near-native poses of the protein-protein complex in 10 top-rankings. The universal criteria for discriminating the near-native pose are not available since there are several classes of recognition protein. Currently, the explicit criteria for identifying the near-native pose of ankyrin-protein complexes (APKs) have not been reported yet. RESULTS In this study, we established an ensemble computational model for discriminating the near-native docking pose of APKs named "AnkPlex". A dataset of APKs was generated from seven X-ray APKs, which consisted of 3 internal domains, using the reliable docking tool ZDOCK. The dataset was composed of 669 and 44,334 near-native and non-near-native poses, respectively, and it was used to generate eleven informative features. Subsequently, a re-scoring rank was generated by AnkPlex using a combination of a decision tree algorithm and logistic regression. AnkPlex achieved superior efficiency with ≥1 near-native complexes in the 10 top-rankings for nine X-ray complexes compared to ZDOCK, which only obtained six X-ray complexes. In addition, feature analysis demonstrated that the van der Waals feature was the dominant near-native pose out of the potential ankyrin-protein docking poses. CONCLUSION The AnkPlex model achieved a success at predicting near-native docking poses and led to the discovery of informative characteristics that could further improve our understanding of the ankyrin-protein complex. Our computational study could be useful for predicting the near-native poses of binding proteins and desired targets, especially for ankyrin-protein complexes. The AnkPlex web server is freely accessible at http://ankplex.ams.cmu.ac.th .
Collapse
Affiliation(s)
- Tanchanok Wisitponchai
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Vannajan Sanghiran Lee
- Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok, 10400, Thailand.,Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kuntida Kitidee
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
137
|
Gustafsson MO, Mohammad DK, Ylösmäki E, Choi H, Shrestha S, Wang Q, Nore BF, Saksela K, Smith CIE. ANKRD54 preferentially selects Bruton's Tyrosine Kinase (BTK) from a Human Src-Homology 3 (SH3) domain library. PLoS One 2017; 12:e0174909. [PMID: 28369144 PMCID: PMC5378395 DOI: 10.1371/journal.pone.0174909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/17/2017] [Indexed: 11/19/2022] Open
Abstract
Bruton's Tyrosine Kinase (BTK) is a cytoplasmic protein tyrosine kinase with a fundamental role in B-lymphocyte development and activation. The nucleocytoplasmic shuttling of BTK is specifically modulated by the Ankyrin Repeat Domain 54 (ANKRD54) protein and the interaction is known to be exclusively SH3-dependent. To identify the spectrum of the ANKRD54 SH3-interactome, we applied phage-display screening of a library containing all the 296 human SH3 domains. The BTK-SH3 domain was the prime interactor. Quantitative western blotting analysis demonstrated the accuracy of the screening procedure. Revealing the spectrum and specificity of ANKRD54-interactome is a critical step toward functional analysis in cells and tissues.
Collapse
Affiliation(s)
- Manuela O. Gustafsson
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
| | - Dara K. Mohammad
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region-Iraq
| | - Erkko Ylösmäki
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hyunseok Choi
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Subhash Shrestha
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Qing Wang
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
| | - Beston F. Nore
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
- Department of Biochemistry, School of Medicine, Faculty of Medical Sciences, University of Sulaimani, Sulaimani, Iraq
- Department of Health, Kurdistan Institution for Strategic Studies and Scientific Research (KISSSR), Sulaimani, Kurdistan-Iraq
| | - Kalle Saksela
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - C. I. Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE Stockholm, Sweden
| |
Collapse
|
138
|
Khajavi N, Mergler S, Biebermann H. 3-Iodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8? Front Endocrinol (Lausanne) 2017; 8:198. [PMID: 28861042 PMCID: PMC5561014 DOI: 10.3389/fendo.2017.00198] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
The decarboxylated and deiodinated thyroid hormone (TH) derivative, 3-iodothyronamine (3-T1AM), is suggested to be involved in energy metabolism and thermoregulation. G protein-coupled receptors (GPCRs) are known as the main targets for 3-T1AM; however, transient receptor potential channels (TRPs) were also recently identified as new targets of 3-T1AM. This article reviews the current knowledge of a putative novel role of 3-T1AM in the modulation of TRPs. Specifically, the TRP melastatin 8 (TRPM8) was identified as a target of 3-T1AM in different cell types including neoplastic cells, whereby 3-T1AM significantly increased cytosolic Ca2+ through TRPM8 activation. Similarly, the β-adrenergic receptor is involved in 3-T1AM-induced Ca2+ influx. Therefore, it has been suggested that 3-T1AM-induced Ca2+ mobilization might be due to β-adrenergic receptor/TRPM8 channel interaction, which adds to the complexity of GPCR regulation by TRPs. It has been revealed that TRPM8 activation leads to a decline in TRPV1 activity, which may be of therapeutic benefit in clinical circumstances such as treatment of TRPV1-mediated inflammatory hyperalgesia, colitis, and dry eye syndrome. This review also summarizes the inverse association between changes in TRPM8 and TRPV1 activity after 3-T1AM stimulation. This finding prompted further detailed investigations of the interplay between 3-T1AM and the GPCR/TRPM8 axis and indicated the probability of additional GPCR/TRP constellations that are modulated by this TH derivative.
Collapse
Affiliation(s)
- Noushafarin Khajavi
- Institute for Experimental Pediatric Endocrinology, Charité University of Medicine Berlin, Berlin, Germany
- *Correspondence: Noushafarin Khajavi,
| | - Stefan Mergler
- Department of Ophthalmology, Charité University of Medicine Berlin, Berlin, Germany
| | - Heike Biebermann
- Institute for Experimental Pediatric Endocrinology, Charité University of Medicine Berlin, Berlin, Germany
| |
Collapse
|
139
|
Wang X, Yang B, Li K, Kang Z, Cantu D, Dubcovsky J. A Conserved Puccinia striiformis Protein Interacts with Wheat NPR1 and Reduces Induction of Pathogenesis-Related Genes in Response to Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:977-989. [PMID: 27898286 DOI: 10.1094/mpmi-10-16-0207-r] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In Arabidopsis, NPR1 is a key transcriptional coregulator of systemic acquired resistance. Upon pathogen challenge, NPR1 translocates from the cytoplasm to the nucleus, in which it interacts with TGA-bZIP transcription factors to activate the expression of several pathogenesis-related (PR) genes. In a screen of a yeast two-hybrid library from wheat leaves infected with Puccinia striiformis f. sp. tritici, we identified a conserved rust protein that interacts with wheat NPR1 and named it PNPi (for Puccinia NPR1 interactor). PNPi interacts with the NPR1/NIM1-like domain of NPR1 via its C-terminal DPBB_1 domain. Using bimolecular fluorescence complementation assays, we detected the interaction between PNPi and wheat NPR1 in the nucleus of Nicotiana benthamiana protoplasts. A yeast three-hybrid assay showed that PNPi interaction with NPR1 competes with the interaction between wheat NPR1 and TGA2.2. In barley transgenic lines overexpressing PNPi, we observed reduced induction of multiple PR genes in the region adjacent to Pseudomonas syringae pv. tomato DC3000 infection. Based on these results, we hypothesize that PNPi has a role in manipulating wheat defense response via its interactions with NPR1.
Collapse
Affiliation(s)
- Xiaodong Wang
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
- 2 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, P. R. China
- 3 College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Agriculture University of Hebei, Baoding, Hebei 071000, P. R. China
| | - Baoju Yang
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
| | - Kun Li
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
| | - Zhensheng Kang
- 2 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, P. R. China
| | - Dario Cantu
- 4 Department of Viticulture and Enology, University of California, Davis, CA 95616, U.S.A
| | - Jorge Dubcovsky
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
- 5 Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, U.S.A
| |
Collapse
|
140
|
Zhang D, Wan Q, He X, Ning L, Huang Y, Xu Z, Liu J, Shao H. Genome-wide characterization of the ankyrin repeats gene family under salt stress in soybean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:899-909. [PMID: 27335162 DOI: 10.1016/j.scitotenv.2016.06.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/11/2016] [Accepted: 06/12/2016] [Indexed: 05/24/2023]
Abstract
Ankyrin repeats (ANK) gene family are common in diverse organisms and play important roles in cell growth, development and response to environmental stresses. Recently, genome-wide identification and evolutionary analyses of the ANK gene family have been carried out in Arabidopsis, rice and maize. However, little is known about the ANK genes in the whole soybean genome. In this study, we described the identification and structural characterization of 162ANK genes in soybean (GmANK). Then, comprehensive bioinformatics analyses of GmANK genes family were performed including gene locus, phylogenetic, domain composition analysis, chromosomal localization and expression profiling. Domain composition analyses showed that GmANK proteins formed eleven subfamilies in soybean. In sicilo expression analysis of these GmANK genes demonstrated that GmANK genes show a diverse/various expression pattern, suggesting that functional diversification of GmANK genes family. Based on digital gene expression profile (DGEP) data between cultivated soybean and wild type under salt treatment, some GmANKs related to salt/drought response were investigated. Moreover, the expression pattern and subcellular localization of GmANK6 were performed. The results will provide important clues to explore ANK genes expression and function in future studies in soybean.
Collapse
Affiliation(s)
- Dayong Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Qun Wan
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolan He
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihua Ning
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yihong Huang
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhaolong Xu
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jia Liu
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongbo Shao
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Key Laboratory of Coastal Biology & Bioresources Utilization, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, China.
| |
Collapse
|
141
|
Proteomic analysis of the signaling pathway mediated by the heterotrimeric Gα protein Pga1 of Penicillium chrysogenum. Microb Cell Fact 2016; 15:173. [PMID: 27716202 PMCID: PMC5053351 DOI: 10.1186/s12934-016-0564-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/21/2016] [Indexed: 11/18/2022] Open
Abstract
Background The heterotrimeric Gα protein Pga1-mediated signaling pathway regulates the entire developmental program in Penicillium chrysogenum, from spore germination to the formation of conidia. In addition it participates in the regulation of penicillin biosynthesis. We aimed to advance the understanding of this key signaling pathway using a proteomics approach, a powerful tool to identify effectors participating in signal transduction pathways. Results Penicillium chrysogenum mutants with different levels of activity of the Pga1-mediated signaling pathway were used to perform comparative proteomic analyses by 2D-DIGE and LC–MS/MS. Thirty proteins were identified which showed differences in abundance dependent on Pga1 activity level. By modifying the intracellular levels of cAMP we could establish cAMP-dependent and cAMP-independent pathways in Pga1-mediated signaling. Pga1 was shown to regulate abundance of enzymes in primary metabolic pathways involved in ATP, NADPH and cysteine biosynthesis, compounds that are needed for high levels of penicillin production. An in vivo phosphorylated protein containing a pleckstrin homology domain was identified; this protein is a candidate for signal transduction activity. Proteins with possible roles in purine metabolism, protein folding, stress response and morphogenesis were also identified whose abundance was regulated by Pga1 signaling. Conclusions Thirty proteins whose abundance was regulated by the Pga1-mediated signaling pathway were identified. These proteins are involved in primary metabolism, stress response, development and signal transduction. A model describing the pathways through which Pga1 signaling regulates different cellular processes is proposed. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0564-x) contains supplementary material, which is available to authorized users.
Collapse
|
142
|
Zhou T, Fleming JR, Franke B, Bogomolovas J, Barsukov I, Rigden DJ, Labeit S, Mayans O. CARP interacts with titin at a unique helical N2A sequence and at the domain Ig81 to form a structured complex. FEBS Lett 2016; 590:3098-110. [PMID: 27531639 DOI: 10.1002/1873-3468.12362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/07/2022]
Abstract
The cardiac ankyrin repeat protein (CARP) is up-regulated in the myocardium during cardiovascular disease and in response to mechanical or toxic stress. Stress-induced CARP interacts with the N2A spring region of the titin filament to modulate muscle compliance. We characterize the interaction between CARP and titin-N2A and show that the binding site in titin spans the dual domain UN2A-Ig81. We find that the unique sequence UN2A is not structurally disordered, but that it has a stable, elongated α-helical fold that possibly acts as a constant force spring. Our findings portray CARP/titin-N2A as a structured node and help to rationalize the molecular basis of CARP mechanosensing in the sarcomeric I-band.
Collapse
Affiliation(s)
- Tiankun Zhou
- Department of Biology, University of Konstanz, Germany.,Institute of Integrative Biology, University of Liverpool, UK
| | - Jennifer R Fleming
- Department of Biology, University of Konstanz, Germany.,Institute of Integrative Biology, University of Liverpool, UK
| | | | - Julius Bogomolovas
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Igor Barsukov
- Institute of Integrative Biology, University of Liverpool, UK
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, UK
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Olga Mayans
- Department of Biology, University of Konstanz, Germany. .,Institute of Integrative Biology, University of Liverpool, UK.
| |
Collapse
|
143
|
Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis. Funct Integr Genomics 2016; 16:619-639. [PMID: 27586658 DOI: 10.1007/s10142-016-0517-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023]
Abstract
In the present study, suppression subtractive hybridization (SSH) strategy was used to identify rare and differentially expressed transcripts in leaf and rhizome tissues of Panax sokpayensis. Out of 1102 randomly picked clones, 513 and 374 high quality expressed sequenced tags (ESTs) were generated from leaf and rhizome subtractive libraries, respectively. Out of them, 64.92 % ESTs from leaf and 69.26 % ESTs from rhizome SSH libraries were assembled into different functional categories, while others were of unknown function. In particular, ESTs encoding galactinol synthase 2, ribosomal RNA processing Brix domain protein, and cell division cycle protein 20.1, which are involved in plant growth and development, were most abundant in the leaf SSH library. Other ESTs encoding protein KIAA0664 homologue, ubiquitin-activating enzyme e11, and major latex protein, which are involved in plant immunity and defense response, were most abundant in the rhizome SSH library. Subtractive ESTs also showed similarity with genes involved in ginsenoside biosynthetic pathway, namely farnesyl pyrophosphate synthase, squalene synthase, and dammarenediol synthase. Expression profiles of selected ESTs validated the quality of libraries and confirmed their differential expression in the leaf, stem, and rhizome tissues. In silico comparative analyses revealed that around 13.75 % of unigenes from the leaf SSH library were not represented in the available leaf transcriptome of Panax ginseng. Similarly, around 18.12, 23.75, 25, and 6.25 % of unigenes from the rhizome SSH library were not represented in available root/rhizome transcriptomes of P. ginseng, Panax notoginseng, Panax quinquefolius, and Panax vietnamensis, respectively, indicating a major fraction of novel ESTs. Therefore, these subtractive transcriptomes provide valuable resources for gene discovery in P. sokpayensis and would complement the available transcriptomes from other Panax species.
Collapse
|
144
|
Liu CX, Peng XL, Hu CC, Li CY, Li Q, Xu X. Developmental profiling of ASD-related shank3 transcripts and their differential regulation by valproic acid in zebrafish. Dev Genes Evol 2016; 226:389-400. [PMID: 27562614 PMCID: PMC5099374 DOI: 10.1007/s00427-016-0561-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 08/15/2016] [Indexed: 01/15/2023]
Abstract
SHANK3 is a scaffolding protein that binds to various synaptic proteins at the postsynaptic density (PSD) of excitatory glutamatergic synapses. SHANK3 is not only strongly implicated in autism spectrum disorders (ASD) but also plays a critical role in human Phelan-McDermid syndrome (22q13.3 deletion syndrome). Accumulated experimental evidence demonstrates that the zebrafish model system is useful for studying the functions of ASD-related gene during early development. However, many basic features of shank3 transcript expression in zebrafish remain poorly understood. Here, we investigated temporal, spatial, and isoform-specific expression patterns of shank3 during zebrafish development on the basis of previous researches and the differential effects of each shank3 transcript expression after exposure to valproic acid (VPA), an ASD-associated drug. At first, we observed that both shank3a and shank3b were barely expressed at very early ages (before 24 h post-fertilization (hpf)), whereas their expression levels were increased and mainly enriched in the nervous system after 24 hpf. Secondly, all of the six shank3 transcripts gradually increased during the first 7 hpf and then decreased. Subsequently, they exhibited a second increasing peak between 1 month post-fertilization (mpf) and adulthood. Thirdly, VPA treatment affected the isoform-specific expression of zebrafish shank3. In particular, the mRNA expression levels of those isoforms that contain a SAM domain were significantly increased, whereas the mRNA expression level of those which contained an ANK domain but without a SAM domain was decreased. To conclude, our findings support the molecular diversity of shank3 in zebrafish and provide a molecular framework to understand the isoform-specific function of shank3 in zebrafish.
Collapse
Affiliation(s)
- Chun-Xue Liu
- Division of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiao-Lan Peng
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Chun-Chun Hu
- Division of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Chun-Yang Li
- Division of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qiang Li
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Xiu Xu
- Division of Child Health Care, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
145
|
Yang H, Li S. Transient Receptor Potential Ankyrin 1 (TRPA1) Channel and Neurogenic Inflammation in Pathogenesis of Asthma. Med Sci Monit 2016; 22:2917-23. [PMID: 27539812 PMCID: PMC5003164 DOI: 10.12659/msm.896557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Asthma is characterized by airway inflammation, airway obstruction, and airway hyperresponsiveness (AHR), and it affects 300 million people worldwide. However, our current understanding of the molecular mechanisms that underlie asthma remains limited. Recent studies have suggested that transient receptor potential ankyrin 1 (TRPA1), one of the transient receptor potential cation channels, may be involved in airway inflammation in asthma. The present review discusses the relationship between TRPA1 and neurogenic inflammation in asthma, hoping to enhance our understanding of the mechanisms of airway inflammation in asthma.
Collapse
Affiliation(s)
- Hang Yang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - ShuZhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
146
|
Kohda A, Yamazaki S, Sumimoto H. The Nuclear Protein IκBζ Forms a Transcriptionally Active Complex with Nuclear Factor-κB (NF-κB) p50 and the Lcn2 Promoter via the N- and C-terminal Ankyrin Repeat Motifs. J Biol Chem 2016; 291:20739-52. [PMID: 27489104 DOI: 10.1074/jbc.m116.719302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/18/2022] Open
Abstract
The nuclear protein IκBζ, comprising the N-terminal trans-activation domain and the C-terminal ankyrin repeat (ANK) domain composed of seven ANK motifs, activates transcription of a subset of nuclear factor-κB (NF-κB)-dependent innate immune genes such as Lcn2 encoding the antibacterial protein lipocalin-2. Lcn2 activation requires formation of a complex containing IκBζ and NF-κB p50, a transcription factor that harbors the DNA-binding Rel homology region but lacks a trans-activation domain, on the promoter with the canonical NF-κB-binding site (κB site) and its downstream cytosine-rich element. Here we show that IκBζ productively interacts with p50 via Asp-451 in the N terminus of ANK1, a residue that is evolutionarily conserved among IκBζ and the related nuclear IκB proteins Bcl-3 and IκBNS Threonine substitution for Asp-451 abrogates direct association with the κB-site-binding protein p50, complex formation with the Lcn2 promoter DNA, and activation of Lcn2 transcription. The basic residues Lys-717 and Lys-719 in the C-terminal region of ANK7 contribute to IκBζ binding to the Lcn2 promoter, probably via interaction with the cytosine-rich element required for Lcn2 activation; glutamate substitution for both lysines results in a loss of transcriptionally active complex formation without affecting direct contact of IκBζ with p50. Both termini of the ANK domain in Bcl-3 and IκBNS function in a manner similar to that of IκBζ to interact with promoter DNA, indicating a common mechanism in which the nuclear IκBs form a regulatory complex with NF-κB and promoter DNA via the invariant aspartate in ANK1 and the conserved basic residues in ANK7.
Collapse
Affiliation(s)
- Akira Kohda
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Soh Yamazaki
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideki Sumimoto
- From the Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
147
|
Analyses of Physcomitrella patens Ankyrin Repeat Proteins by Computational Approach. Mol Biol Int 2016; 2016:9156735. [PMID: 27429806 PMCID: PMC4939350 DOI: 10.1155/2016/9156735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 11/22/2022] Open
Abstract
Ankyrin (ANK) repeat containing proteins are evolutionary conserved and have functions in crucial cellular processes like cell cycle regulation and signal transduction. In this study, through an entirely in silico approach using the first release of the moss genome annotation, we found that at least 54 ANK proteins are present in P. patens. Based on their differential domain composition, the identified ANK proteins were classified into nine subfamilies. Comparative analysis of the different subfamilies of ANK proteins revealed that P. patens contains almost all the known subgroups of ANK proteins found in the other angiosperm species except for the ones having the TPR domain. Phylogenetic analysis using full length protein sequences supported the subfamily classification where the members of the same subfamily almost always clustered together. Synonymous divergence (dS) and nonsynonymous divergence (dN) ratios showed positive selection for the ANK genes of P. patens which probably helped them to attain significant functional diversity during the course of evolution. Taken together, the data provided here can provide useful insights for future functional studies of the proteins from this superfamily as well as comparative studies of ANK proteins.
Collapse
|
148
|
D'Amato G, Luxán G, de la Pompa JL. Notch signalling in ventricular chamber development and cardiomyopathy. FEBS J 2016; 283:4223-4237. [DOI: 10.1111/febs.13773] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/12/2016] [Accepted: 06/03/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Gaetano D'Amato
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC); Madrid Spain
| | - Guillermo Luxán
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC); Madrid Spain
| | - José Luis de la Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory; Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC); Madrid Spain
| |
Collapse
|
149
|
Cunha ES, Hatem CL, Barrick D. Synergistic enhancement of cellulase pairs linked by consensus ankyrin repeats: Determination of the roles of spacing, orientation, and enzyme identity. Proteins 2016; 84:1043-54. [PMID: 27071357 DOI: 10.1002/prot.25047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 03/09/2016] [Accepted: 03/25/2016] [Indexed: 12/22/2022]
Abstract
Biomass deconstruction to small simple sugars is a potential approach to biofuels production; however, the highly recalcitrant nature of biomass limits the economic viability of this approach. Thus, research on efficient biomass degradation is necessary to achieve large-scale production of biofuels. Enhancement of cellulolytic activity by increasing synergism between cellulase enzymes holds promise in achieving high-yield biofuels production. Here we have inserted cellulase pairs from extremophiles into hyperstable α-helical consensus ankyrin repeat domain scaffolds. Such chimeric constructs allowed us to optimize arrays of enzyme pairs against a variety of cellulolytic substrates. We found that endocellulolytic domains CelA (CA) and Cel12A (C12A) act synergistically in the context of ankyrin repeats, with both three and four repeat spacing. The extent of synergy differs for different substrates. Also, having C12A N-terminal to CA provides greater synergy than the reverse construct, especially against filter paper. In contrast, we do not see synergy for these enzymes in tandem with CelK (CK) catalytic domain, a larger exocellulase, demonstrating the importance of enzyme identity in synergistic enhancement. Furthermore, we found endocellulases CelD and CA with three repeat spacing to act synergistically against filter paper. Importantly, connecting CA and C12A with a disordered linker of similar contour length shows no synergistic enhancement, indicating that synergism results from connecting these domains with folded ankyrin repeats. These results show that ankyrin arrays can be used to vary spacing and orientation between enzymes, helping to design and optimize artificial cellulosomes, providing a novel architecture for synergistic enhancement of enzymatic cellulose degradation. Proteins 2016; 84:1043-1054. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eva S Cunha
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218.,Department of Structural Biology, Max Plank Institute of Biophysics, Max-von-Laue-Str. 3, Frankfurt am Main, D-60438, Germany
| | - Christine L Hatem
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| |
Collapse
|
150
|
Sun JX, Guo Y, Zhang X, Zhu WC, Chen YT, Hong XY. Effects of host interaction withWolbachiaon cytoplasmic incompatibility in the two-spotted spider miteTetranychus urticae. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jian-Xin Sun
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Yan Guo
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Xu Zhang
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Wen-Chao Zhu
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Ya-Ting Chen
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Xiao-Yue Hong
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| |
Collapse
|