101
|
Simon DN, Domaradzki T, Hofmann WA, Wilson KL. Lamin A tail modification by SUMO1 is disrupted by familial partial lipodystrophy-causing mutations. Mol Biol Cell 2012; 24:342-50. [PMID: 23243001 PMCID: PMC3564541 DOI: 10.1091/mbc.e12-07-0527] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lamin A tail domains are SUMO1 modified at K420 (nuclear localization signal) and K486 (Ig-fold). K486 modification requires Ig-fold surface residues E460 and D461 and is reduced by familial partial lipodystrophy–causing mutations G465D and K486N. These results suggest novel mechanisms of functional control over lamin A in cells. Lamin filaments are major components of the nucleoskeleton that bind LINC complexes and many nuclear membrane proteins. The tail domain of lamin A directly binds 21 known partners, including actin, emerin, and SREBP1, but how these interactions are regulated is unknown. We report small ubiquitin-like modifier 1 (SUMO1) as a major new posttranslational modification of the lamin A tail. Two SUMO1 modification sites were identified based on in vitro SUMOylation assays and studies of Cos-7 cells. One site (K420) matches the SUMO1 target consensus; the other (K486) does not. On the basis of the position of K486 on the lamin A Ig-fold, we hypothesize the SUMO1 E2 enzyme recognizes a folded structure–dependent motif that includes residues genetically linked to familial partial lipodystrophy (FPLD). Supporting this model, SUMO1-modification of the lamin A tail is reduced by two FPLD-causing mutations, G465D and K486N, and by single mutations in acidic residues E460 and D461. These results suggest a novel mode of functional control over lamin A in cells.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
102
|
|
103
|
Gangemi F, Degano M. Disease-associated mutations in the coil 2B domain of human lamin A/C affect structural properties that mediate dimerization and intermediate filament formation. J Struct Biol 2012; 181:17-28. [PMID: 23142632 DOI: 10.1016/j.jsb.2012.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 11/17/2022]
Abstract
The lamin proteins are essential components of the nuclear lamina of eukaryotic cells, that are involved in a complex association mechanism to attain a functional supermolecular structure. Mutations of the lamin A/C gene are associated with several different neuromuscular diseases, and the detailed effect of disease-associated amino acid substitutions on the structure and stability of human lamin dimers is yet unknown. Here we present a structural and thermodynamic characterization by means of molecular dynamics simulations of the effect of pathological mutations (S326T, R331P, R331Q, E347K, E358K, M371K, and R377H) on the association of the coil 2B domains that mediate lamin A/C oligomerization. The structures attained during the simulations, along with the quantification of the contribution of each residue to the dimerization energies, support a lamin association mechanism mediated by homophilic intermolecular interactions promoted by dissociative conformational changes at distinct positions in the coiled coil. The pathogenic mutations can both increase or decrease the stability of lamin A/C dimers, and a possible correlation between the effect of the amino acid substitutions and disease onset and severity is presented.
Collapse
Affiliation(s)
- Fabrizio Gangemi
- Biocrystallography Unit, Department of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | | |
Collapse
|
104
|
Al-Haggar M, Madej-Pilarczyk A, Kozlowski L, Bujnicki JM, Yahia S, Abdel-Hadi D, Shams A, Ahmad N, Hamed S, Puzianowska-Kuznicka M. A novel homozygous p.Arg527Leu LMNA mutation in two unrelated Egyptian families causes overlapping mandibuloacral dysplasia and progeria syndrome. Eur J Hum Genet 2012; 20:1134-1140. [PMID: 22549407 PMCID: PMC3476705 DOI: 10.1038/ejhg.2012.77] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/06/2012] [Accepted: 03/27/2012] [Indexed: 11/08/2022] Open
Abstract
Mandibuloacral dysplasia (MAD) is a rare disease resulting from a mutation of LMNA gene encoding lamins A and C. The most common mutation associated with this disease is a homozygous arginine 527 replacement by histidine. Three female patients originating from two unrelated families from Northeast Egypt were examined. Their growth was retarded; they had microcephaly, widened cranial sutures, prominent eyes and cheeks, micrognathia, dental crowding, hypoplastic mandible, acro-osteolysis of distal phalanges, and joint contractures. In addition, they presented some progeroid features, such as pinched nose, premature loss of teeth, loss of hair, scleroderma-like skin atrophy, spine rigidity, and waddling gait. The clinical presentation of the disease varied between the patient originating from Family 1 and patients from Family 2, suggesting that unknown, possibly epigenetic factors, modify the course of the disease. The first symptoms of the disease appeared at the age of 2.5 (a girl from Family 1), 5, and 3 years (girls from Family 2). All patients had the same, novel homozygous c.1580G>T LMNA mutation, resulting in the replacement of arginine 527 by leucine. Computational predictions of such substitution effects suggested that it might alter protein stability and increase the tendency for protein aggregation, and as a result, might influence its interaction with other proteins. In addition, restriction fragment-length polymorphism analysis performed in 178 unrelated individuals showed that up to 1.12% of inhabitants of Northeast Egypt might be heterozygous carriers of this mutation, suggesting the presence of a founder effect in this area.
Collapse
Affiliation(s)
- Mohammad Al-Haggar
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University Children's Hospital, Mansoura, Egypt
| | | | - Lukasz Kozlowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Sohier Yahia
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Dina Abdel-Hadi
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Amany Shams
- Department of Anatomy and Histology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nermin Ahmad
- Department of Radiology, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Sahar Hamed
- Mansoura Urology and Nephrology Center, Mansoura, Egypt
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Center of Postgraduate Education, Warsaw, Poland
| |
Collapse
|
105
|
Affiliation(s)
- Chin Yee Ho
- Cornell University, Weill Institute for Cell and Molecular Biology, Department of Biomedical Engineering, Ithaca, NY 14853, USA
| | | |
Collapse
|
106
|
Gomez-Cavazos JS, Hetzer MW. Outfits for different occasions: tissue-specific roles of Nuclear Envelope proteins. Curr Opin Cell Biol 2012; 24:775-83. [PMID: 22995343 DOI: 10.1016/j.ceb.2012.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/07/2012] [Accepted: 08/20/2012] [Indexed: 11/29/2022]
Abstract
The Nuclear Envelope (NE) contains over 100 different proteins that associate with nuclear components such as chromatin, the lamina and the transcription machinery. Mutations in genes encoding NE proteins have been shown to result in tissue-specific defects and disease, suggesting cell-type specific differences in NE composition and function. Consistent with these observations, recent studies have revealed unexpected functions for numerous NE associated proteins during cell differentiation and development. Here we review the latest insights into the roles played by the NE in cell differentiation, development, disease and aging, focusing primarily on inner nuclear membrane (INM) proteins and nuclear pore components.
Collapse
Affiliation(s)
- J Sebastian Gomez-Cavazos
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010N. Torrey Pines Road, La Jolla, 92037 CA, United States
| | | |
Collapse
|
107
|
Jahn D, Schramm S, Schnölzer M, Heilmann CJ, de Koster CG, Schütz W, Benavente R, Alsheimer M. A truncated lamin A in the Lmna -/- mouse line: implications for the understanding of laminopathies. Nucleus 2012; 3:463-74. [PMID: 22895093 PMCID: PMC3474667 DOI: 10.4161/nucl.21676] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During recent years a number of severe clinical syndromes, collectively termed laminopathies, turned out to be caused by various, distinct mutations in the human LMNA gene. Arising from this, remarkable progress has been made to unravel the molecular pathophysiology underlying these disorders. A great benefit in this context was the generation of an A-type lamin deficient mouse line (Lmna−/−) by Sullivan and others,1 which has become one of the most frequently used models in the field and provided profound insights to many different aspects of A-type lamin function. Here, we report the unexpected finding that these mice express a truncated Lmna gene product on both transcriptional and protein level. Combining different approaches including mass spectrometry, we precisely define this product as a C-terminally truncated lamin A mutant that lacks domains important for protein interactions and post-translational processing. Based on our findings we discuss implications for the interpretation of previous studies using Lmna−/− mice and the concept of human laminopathies.
Collapse
Affiliation(s)
- Daniel Jahn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg; Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Lee CH, Kim MS, Chung BM, Leahy DJ, Coulombe PA. Structural basis for heteromeric assembly and perinuclear organization of keratin filaments. Nat Struct Mol Biol 2012; 19:707-15. [PMID: 22705788 PMCID: PMC3864793 DOI: 10.1038/nsmb.2330] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/18/2012] [Indexed: 01/07/2023]
Abstract
There is as yet no high-resolution data regarding the structure and organization of keratin intermediate filaments, which are obligate heteropolymers providing vital mechanical support in epithelia. We report the crystal structure of interacting 2B regions from the central coiled-coil domains of keratins 5 and 14 (K5 and K14), expressed in progenitor keratinocytes of epidermis. The interface of the K5-K14 coiled-coil heterodimer has asymmetric salt bridges, hydrogen bonds and hydrophobic contacts, and its surface exhibits a notable charge polarization. A trans-dimer homotypic disulfide bond involving Cys367 in K14's stutter region occurs in the crystal and in skin keratinocytes, where it is concentrated in a keratin filament cage enveloping the nucleus. We show that K14-Cys367 impacts nuclear shape in cultured keratinocytes and that mouse epidermal keratinocytes lacking K14 show aberrations in nuclear structure, highlighting a new function for keratin filaments.
Collapse
Affiliation(s)
- Chang-Hun Lee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Min-Sung Kim
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Byung Min Chung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel J Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
109
|
Zaremba-Czogalla M, Piekarowicz K, Wachowicz K, Kozioł K, Dubińska-Magiera M, Rzepecki R. The different function of single phosphorylation sites of Drosophila melanogaster lamin Dm and lamin C. PLoS One 2012; 7:e32649. [PMID: 22393432 PMCID: PMC3290585 DOI: 10.1371/journal.pone.0032649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/28/2012] [Indexed: 11/18/2022] Open
Abstract
Lamins' functions are regulated by phosphorylation at specific sites but our understanding of the role of such modifications is practically limited to the function of cdc 2 (cdk1) kinase sites in depolymerization of the nuclear lamina during mitosis. In our study we used Drosophila lamin Dm (B-type) to examine the function of particular phosphorylation sites using pseudophosphorylated mutants mimicking single phosphorylation at experimentally confirmed in vivo phosphosites (S(25)E, S(45)E, T(435)E, S(595)E). We also analyzed lamin C (A-type) and its mutant S(37)E representing the N-terminal cdc2 (mitotic) site as well as lamin Dm R(64)H mutant as a control, non-polymerizing lamin. In the polymerization assay we could observe different effects of N-terminal cdc2 site pseudophosphorylation on A- and B-type lamins: lamin Dm S(45)E mutant was insoluble, in contrast to lamin C S(37)E. Lamin Dm T(435)E (C-terminal cdc2 site) and R(64)H were soluble in vitro. We also confirmed that none of the single phosphorylation site modifications affected the chromatin binding of lamin Dm, in contrast to the lamin C N-terminal cdc2 site. In vivo, all lamin Dm mutants were incorporated efficiently into the nuclear lamina in transfected Drosophila S2 and HeLa cells, although significant amounts of S(45)E and T(435)E were also located in cytoplasm. When farnesylation incompetent mutants were expressed in HeLa cells, lamin Dm T(435)E was cytoplasmic and showed higher mobility in FRAP assay.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
110
|
Ruan J, Xu C, Bian C, Lam R, Wang JP, Kania J, Min J, Zang J. Crystal structures of the coil 2B fragment and the globular tail domain of human lamin B1. FEBS Lett 2012; 586:314-8. [PMID: 22265972 DOI: 10.1016/j.febslet.2012.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 12/31/2011] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
Abstract
We present here the crystal structures of human lamin B1 globular tail domain and coiled 2B domain, which adopt similar folds to Ig-like domain and coiled-coil domain of lamin A, respectively. Despite the overall similarity, we found an extra intermolecular disulfide bond in the lamin B1 coil 2B domain, which does not exist in lamin A/C. In addition, the structural analysis indicates that interactions at the lamin B1 homodimer interface are quite different from those of lamin A/C. Thus our research not only reveals the diversely formed homodimers among lamin family members, but also sheds light on understanding the important roles of lamin B1 in forming the nuclear lamina matrix.
Collapse
Affiliation(s)
- Jianbin Ruan
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Inner nuclear membrane proteins: impact on human disease. Chromosoma 2012; 121:153-67. [DOI: 10.1007/s00412-012-0360-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 02/01/2023]
|
112
|
Structures of the lamin A/C R335W and E347K mutants: Implications for dilated cardiolaminopathies. Biochem Biophys Res Commun 2012; 418:217-21. [DOI: 10.1016/j.bbrc.2011.12.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 12/25/2011] [Indexed: 11/19/2022]
|
113
|
Grossman E, Dahan I, Stick R, Goldberg MW, Gruenbaum Y, Medalia O. Filaments assembly of ectopically expressed Caenorhabditis elegans lamin within Xenopus oocytes. J Struct Biol 2012; 177:113-8. [DOI: 10.1016/j.jsb.2011.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/21/2011] [Accepted: 11/01/2011] [Indexed: 12/23/2022]
|
114
|
Pekovic V, Gibbs-Seymour I, Markiewicz E, Alzoghaibi F, Benham AM, Edwards R, Wenhert M, von Zglinicki T, Hutchison CJ. Conserved cysteine residues in the mammalian lamin A tail are essential for cellular responses to ROS generation. Aging Cell 2011; 10:1067-79. [PMID: 21951640 DOI: 10.1111/j.1474-9726.2011.00750.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pre-lamin A and progerin have been implicated in normal aging, and the pathogenesis of age-related degenerative diseases is termed 'laminopathies'. Here, we show that mature lamin A has an essential role in cellular fitness and that oxidative damage to lamin A is involved in cellular senescence. Primary human dermal fibroblasts (HDFs) aged replicatively or by pro-oxidants acquire a range of dysmorphic nuclear shapes. We observed that conserved cysteine residues in the lamin A tail domain become hyperoxidized in senescent fibroblasts, which inhibits the formation of lamin A inter- and intramolecular disulfide bonds. Both in the absence of lamin A and in the presence of a lamin A cysteine-to-alanine mutant, which eliminates these cysteine residues (522, 588, and 591), mild oxidative stress induced nuclear disorganization and led to premature senescence as a result of decreased tolerance to ROS stimulators. Human dermal fibroblasts lacking lamin A or expressing the lamin A cysteine-to-alanine mutant displayed a gene expression profile of ROS-responsive genes characteristic of chronic ROS stimulation. Our findings suggest that the conserved C-terminal cysteine residues are essential for lamin A function and that loss or oxidative damage to these cysteine residues promotes cellular senescence.
Collapse
Affiliation(s)
- Vanja Pekovic
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Gerace L, Huber MD. Nuclear lamina at the crossroads of the cytoplasm and nucleus. J Struct Biol 2011; 177:24-31. [PMID: 22126840 DOI: 10.1016/j.jsb.2011.11.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 11/02/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
The nuclear lamina is a protein meshwork that lines the nuclear envelope in metazoan cells. It is composed largely of a polymeric assembly of lamins, which comprise a distinct sequence homology class of the intermediate filament protein family. On the basis of its structural properties, the lamina originally was proposed to provide scaffolding for the nuclear envelope and to promote anchoring of chromatin and nuclear pore complexes at the nuclear surface. This viewpoint has expanded greatly during the past 25 years, with a host of surprising new insights on lamina structure, molecular composition and functional attributes. It has been established that the self-assembly properties of lamins are very similar to those of cytoplasmic intermediate filament proteins, and that the lamin polymer is physically associated with components of the cytoplasmic cytoskeleton and with a multitude of chromatin and inner nuclear membrane proteins. Cumulative evidence points to an important role for the lamina in regulating signaling and gene activity, and in mechanically coupling the cytoplasmic cytoskeleton to the nucleus. The significance of the lamina has been vaulted to the forefront by the discovery that mutations in lamins and lamina-associated polypeptides lead to an array of human diseases. A key future challenge is to understand how the lamina integrates pathways for mechanics and signaling at the molecular level. Understanding the structure of the lamina from the atomic to supramolecular levels will be essential for achieving this goal.
Collapse
Affiliation(s)
- Larry Gerace
- Department of Cell, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | | |
Collapse
|
116
|
Worman HJ. Nuclear lamins and laminopathies. J Pathol 2011; 226:316-25. [PMID: 21953297 DOI: 10.1002/path.2999] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/01/2011] [Accepted: 09/15/2011] [Indexed: 12/31/2022]
Abstract
Nuclear lamins are intermediate filament proteins that polymerize to form the nuclear lamina on the inner aspect of the inner nuclear membrane. Long known to be essential for maintaining nuclear structure and disassembling/reassembling during mitosis in metazoans, research over the past dozen years has shown that mutations in genes encoding nuclear lamins, particularly LMNA encoding the A-type lamins, cause a broad range of diverse diseases, often referred to as laminopathies. Lamins are expressed in all mammalian somatic cells but mutations in their genes lead to relatively tissue-selective disease phenotypes in most cases. While mutations causing laminopathies have been shown to produce abnormalities in nuclear morphology, how these disease-causing mutations or resultant alterations in nuclear structure lead to pathology is only starting to be understood. Despite the incomplete understanding of pathogenic mechanisms underlying the laminopathies, basic research in cellular and small animal models has produced promising leads for treatments of these rare diseases.
Collapse
Affiliation(s)
- Howard J Worman
- Departments of Medicine and of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, USA.
| |
Collapse
|
117
|
Saini-Chohan HK, Mitchell RW, Vaz FM, Zelinski T, Hatch GM. Delineating the role of alterations in lipid metabolism to the pathogenesis of inherited skeletal and cardiac muscle disorders: Thematic Review Series: Genetics of Human Lipid Diseases. J Lipid Res 2011; 53:4-27. [PMID: 22065858 DOI: 10.1194/jlr.r012120] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As the specific composition of lipids is essential for the maintenance of membrane integrity, enzyme function, ion channels, and membrane receptors, an alteration in lipid composition or metabolism may be one of the crucial changes occurring during skeletal and cardiac myopathies. Although the inheritance (autosomal dominant, autosomal recessive, and X-linked traits) and underlying/defining mutations causing these myopathies are known, the contribution of lipid homeostasis in the progression of these diseases needs to be established. The purpose of this review is to present the current knowledge relating to lipid changes in inherited skeletal muscle disorders, such as Duchenne/Becker muscular dystrophy, myotonic muscular dystrophy, limb-girdle myopathic dystrophies, desminopathies, rostrocaudal muscular dystrophy, and Dunnigan-type familial lipodystrophy. The lipid modifications in familial hypertrophic and dilated cardiomyopathies, as well as Barth syndrome and several other cardiac disorders associated with abnormal lipid storage, are discussed. Information on lipid alterations occurring in these myopathies will aid in the design of improved methods of screening and therapy in children and young adults with or without a family history of genetic diseases.
Collapse
Affiliation(s)
- Harjot K Saini-Chohan
- Department of Pharmacology and Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
118
|
Bertrand AT, Chikhaoui K, Ben Yaou R, Bonne G. [Laminopathies: one gene, several diseases]. Biol Aujourdhui 2011; 205:147-62. [PMID: 21982404 DOI: 10.1051/jbio/2011017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Indexed: 01/03/2023]
Abstract
Lamins A and C, encoded by the LMNA gene, are nuclear proteins expressed in all post-mitotic cells. Together with B-type lamins, they form a meshwork of proteins beneath the inner nuclear membrane, the lamina, in connection with the cytoskeleton. Lamins A/C also interact with chromatin and numerous proteins, including transcription factors. Mutations in LMNA are responsible for more than ten different disorders, commonly called "laminopathies". These diseases affect tissues in a specific (striated muscle, adipose tissue, peripheral nerve) or in a systemic manner (premature ageing syndromes). This wide spectrum of phenotypes is associated to a wide variety of mutations. This large clinical and genetic heterogeneity, unique to the LMNA gene, makes genotype-phenotype relations particularly difficult to establish. However, correlations have been obtained in several cases. Hence, LMNA mutations identified in premature ageing syndromes lead to the accumulation of immature proteins with a toxic effect for cells. Mutations in laminopathies of the adipose tissue mainly localize in the Ig-like domain of the proteins, potentially affecting the interaction with the SREBP-1 transcription factor. In laminopathies of the striated muscles, the mutations are spread throughout the gene. These mutations are thought to induce structural modifications of the proteins, thereby affecting their polymerization into nuclear lamina. Such defect would lead to a mechanical weakness of the nuclear lamina and of the cells, particularly in striated muscles continuously stretching. The exploration of pathophysiological mechanisms of LMNA mutations largely benefits from the numerous mouse models created, which have been widely used to analyze affected molecular pathways and to test putative therapeutic treatments.
Collapse
|
119
|
Duband-Goulet I, Woerner S, Gasparini S, Attanda W, Kondé E, Tellier-Lebègue C, Craescu CT, Gombault A, Roussel P, Vadrot N, Vicart P, Ostlund C, Worman HJ, Zinn-Justin S, Buendia B. Subcellular localization of SREBP1 depends on its interaction with the C-terminal region of wild-type and disease related A-type lamins. Exp Cell Res 2011; 317:2800-13. [PMID: 21993218 DOI: 10.1016/j.yexcr.2011.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 09/02/2011] [Accepted: 09/26/2011] [Indexed: 11/26/2022]
Abstract
Lamins A and C are nuclear intermediate filament proteins expressed in most differentiated somatic cells. Previous data suggested that prelamin A, the lamin A precursor, accumulates in some lipodystrophy syndromes caused by mutations in the lamin A/C gene, and binds and inactivates the sterol regulatory element binding protein 1 (SREBP1). Here we show that, in vitro, the tail regions of prelamin A, lamin A and lamin C bind a polypeptide of SREBP1. Such interactions also occur in HeLa cells, since expression of lamin tail regions impedes nucleolar accumulation of the SREBP1 polypeptide fused to a nucleolar localization signal sequence. In addition, the tail regions of A-type lamin variants that occur in Dunnigan-type familial partial lipodystrophy of (R482W) and Hutchison Gilford progeria syndrome (∆607-656) bind to the SREBP1 polypeptide in vitro, and the corresponding FLAG-tagged full-length lamin variants co-immunoprecipitate the SREBP1 polypeptide in cells. Overexpression of wild-type A-type lamins and variants favors SREBP1 polypeptide localization at the intranuclear periphery, suggesting its sequestration. Our data support the hypothesis that variation of A-type lamin protein level and spatial organization, in particular due to disease-linked mutations, influences the sequestration of SREBP1 at the nuclear envelope and thus contributes to the regulation of SREBP1 function.
Collapse
Affiliation(s)
- Isabelle Duband-Goulet
- Laboratoire du Stress et Pathologies du Cytosquelette, Université Paris Diderot-Paris 7, CNRS, Institut de Biologie Fonctionnelle et Adaptative, 4 rue M.A. Lagroua Weill Halle, 75205 Paris cedex 13, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Qin Z, Kalinowski A, Dahl KN, Buehler MJ. Structure and stability of the lamin A tail domain and HGPS mutant. J Struct Biol 2011; 175:425-33. [PMID: 21635954 PMCID: PMC3150306 DOI: 10.1016/j.jsb.2011.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 12/30/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging syndrome caused by the expression and accumulation of a mutant form of lamin A, Δ50 lamin A. As a component of the cell's nucleoskeleton, lamin A plays an important role in the mechanical stabilization of the nuclear envelope and in other nuclear functions. It is largely unknown how the characteristic 50 amino acid deletion affects the conformation of the mostly intrinsically disordered tail domain of lamin A. Here we perform replica exchange molecular dynamics simulations of the tail domain and determine an ensemble of semi-stable structures. Based on these structures we show that the ZMPSTE 24 cleavage site on the precursor form of the lamin A tail domain orients itself in such a way as to facilitate cleavage during the maturation process. We confirm our simulated structures by comparing the thermodynamic properties of the ensemble structures to in vitro stability measurements. Using this combination of experimental and computational techniques, we compare the size, heterogeneity of size, thermodynamic stability of the Ig-fold, as well as the mechanisms of force-induced denaturation. Our data shows that the Δ50 lamin A tail domain is more compact and displays less heterogeneity than the mature lamin A tail domain. Altogether these results suggest that the altered structure and stability of the tail domain can explain changed protein-protein and protein-DNA interactions and may represent an etiology of the disease. Also, this study provides the first molecular structure(s) of the lamin A tail domain, which is confirmed by thermodynamic tests in experiment.
Collapse
Affiliation(s)
- Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave. Room 1-235A&B, Cambridge, MA, 02139, USA
| | - Agnieszka Kalinowski
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh, PA 15213
| | - Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh, PA 15213
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh, PA 15213
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave. Room 1-235A&B, Cambridge, MA, 02139, USA
| |
Collapse
|
121
|
Lu JT, Muchir A, Nagy PL, Worman HJ. LMNA cardiomyopathy: cell biology and genetics meet clinical medicine. Dis Model Mech 2011; 4:562-8. [PMID: 21810905 PMCID: PMC3180218 DOI: 10.1242/dmm.006346] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in the LMNA gene, which encodes A-type nuclear lamins (intermediate filament proteins expressed in most differentiated somatic cells), cause a diverse range of diseases, called laminopathies, that selectively affect different tissues and organ systems. The most prevalent laminopathy is cardiomyopathy with or without different types of skeletal muscular dystrophy. LMNA cardiomyopathy has an aggressive clinical course with higher rates of deadly arrhythmias and heart failure than most other heart diseases. As awareness among physicians increases, and advances in DNA sequencing methods make the genetic diagnosis of LMNA cardiomyopathy more common, cardiologists are being faced with difficult questions regarding patient management. These questions concern the optimal use of intracardiac cardioverter defibrillators to prevent sudden death from arrhythmias, and medical interventions to prevent heart damage and ameliorate heart failure symptoms. Data from a mouse model of LMNA cardiomyopathy suggest that inhibitors of mitogen-activated protein kinase (MAPK) signaling pathways are beneficial in preventing and treating cardiac dysfunction; this basic research discovery needs to be translated to human patients.
Collapse
Affiliation(s)
- Jonathan T Lu
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
122
|
Abstract
The lamins are the major architectural proteins of the animal cell nucleus. Lamins line the inside of the nuclear membrane, where they provide a platform for the binding of proteins and chromatin and confer mechanical stability. They have been implicated in a wide range of nuclear functions, including higher-order genome organization, chromatin regulation, transcription, DNA replication and DNA repair. The lamins are members of the intermediate filament (IF) family of proteins, which constitute a major component of the cytoskeleton. Lamins are the only nuclear IFs and are the ancestral founders of the IF protein superfamily. Lamins polymerize into fibers forming a complex protein meshwork in vivo and, like all IF proteins, have a tripartite structure with two globular head and tail domains flanking a central α-helical rod domain, which supports the formation of higher-order polymers. Mutations in lamins cause a large number of diverse human diseases, collectively known as the laminopathies, underscoring their functional importance.
Collapse
Affiliation(s)
- Travis A Dittmer
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20896, USA.
| | | |
Collapse
|
123
|
Kapinos LE, Burkhard P, Herrmann H, Aebi U, Strelkov SV. Simultaneous Formation of Right- and Left-handed Anti-parallel Coiled-coil Interfaces by a Coil2 Fragment of Human Lamin A. J Mol Biol 2011; 408:135-46. [DOI: 10.1016/j.jmb.2011.02.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
|
124
|
Lussi YC, Hügi I, Laurell E, Kutay U, Fahrenkrog B. The nucleoporin Nup88 is interacting with nuclear lamin A. Mol Biol Cell 2011; 22:1080-90. [PMID: 21289091 PMCID: PMC3069011 DOI: 10.1091/mbc.e10-05-0463] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope (NE) and mediate bidirectional nucleocytoplasmic transport. Their spatial distribution in the NE is organized by the nuclear lamina, a meshwork of nuclear intermediate filament proteins. Major constituents of the nuclear lamina are A- and B-type lamins. In this work we show that the nuclear pore protein Nup88 binds lamin A in vitro and in vivo. The interaction is mediated by the N-terminus of Nup88, and Nup88 specifically binds the tail domain of lamin A but not of lamins B1 and B2. Expression of green fluorescent protein-tagged lamin A in cells causes a masking of binding sites for Nup88 antibodies in immunofluorescence assays, supporting the interaction of lamin A with Nup88 in a cellular context. The epitope masking disappears in cells expressing mutants of lamin A that are associated with laminopathic diseases. Consistently, an interaction of Nup88 with these mutants is disrupted in vitro. Immunoelectron microscopy using Xenopus laevis oocyte nuclei further revealed that Nup88 localizes to the cytoplasmic and nuclear face of the NPC. Together our data suggest that a pool of Nup88 on the nuclear side of the NPC provides a novel, unexpected binding site for nuclear lamin A.
Collapse
Affiliation(s)
- Yvonne C Lussi
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
125
|
Mitsuhashi H, Hayashi YK, Matsuda C, Noguchi S, Wakatsuki S, Araki T, Nishino I. Specific phosphorylation of Ser458 of A-type lamins in LMNA-associated myopathy patients. J Cell Sci 2010; 123:3893-900. [DOI: 10.1242/jcs.072157] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mutations in LMNA, which encodes A-type nuclear lamins, cause various human diseases, including myopathy, cardiomyopathy, lipodystrophy and progeria syndrome. To date, little is known about how mutations in a single gene cause a wide variety of diseases. Here, by characterizing an antibody that specifically recognizes the phosphorylation of Ser458 of A-type lamins, we uncover findings that might contribute to our understanding of laminopathies. This antibody only reacts with nuclei in muscle biopsies from myopathy patients with mutations in the Ig-fold motif of A-type lamins. Ser458 phosphorylation is not seen in muscles from control patients or patients with any other neuromuscular diseases. In vitro analysis confirmed that only lamin A mutants associated with myopathy induce phosphorylation of Ser458, whereas lipodystrophy- or progeria-associated mutants do not. We also found that Akt1 directly phosphorylates Ser458 of lamin A with myopathy-related mutations in vitro. These results suggest that Ser458 phosphorylation of A-type lamins correlates with striated muscle laminopathies; this might be useful for the early diagnosis of LMNA-associated myopathies. We propose that disease-specific phosphorylation of A-type lamins by Akt1 contributes to myopathy caused by LMNA mutations.
Collapse
Affiliation(s)
- Hiroaki Mitsuhashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Yukiko K. Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Chie Matsuda
- Neuroscience Research Institute, AIST, Central 6, Tsukuba, Ibaraki 305-8566, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
126
|
Abstract
The nuclear lamins are type V intermediate filament proteins that are critically important for the structural properties of the nucleus. In addition, they are involved in the regulation of numerous nuclear processes, including DNA replication, transcription and chromatin organization. The developmentally regulated expression of lamins suggests that they are involved in cellular differentiation. Their assembly dynamic properties throughout the cell cycle, particularly in mitosis, are influenced by posttranslational modifications. Lamins may regulate nuclear functions by direct interactions with chromatin and determining the spatial organization of chromosomes within the nuclear space. They may also regulate chromatin functions by interacting with factors that epigenetically modify the chromatin or directly regulate replication or transcription.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
127
|
Muscular laminopathies: role of prelamin A in early steps of muscle differentiation. ACTA ACUST UNITED AC 2010; 51:246-56. [PMID: 21035482 DOI: 10.1016/j.advenzreg.2010.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 11/23/2022]
Abstract
Lamin A is a nuclear envelope constituent involved in a group of human disorders, collectively referred to as laminopathies, which include Emery-Dreifuss muscular dystrophy. Because increasing evidence suggests a role of lamin A precursor in nuclear functions, we investigated the processing of prelamin A along muscle differentiation. Both protein levels and cellular localization of prelamin A appears to be modulated during C2C12 mouse myoblasts activation. Similar changes also occur in the expression of two lamin A-binding proteins: emerin and LAP2α. Furthermore prelamin A forms a complex with LAP2α in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affects LAP2α and PCNA amount and increases caveolin 3 mRNA and protein levels, whilst accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor inhibits caveolin 3 expression. These data provide evidence for a critical role of lamin A precursor in the early steps of muscle cell differentiation. In fact the post-translational processing of prelamin A affects caveolin 3 expression and influences the myoblast differentiation process. Thus, altered lamin A processing could affect myoblast differentiation and/or muscle regeneration and might contribute to the myopathic phenotype.
Collapse
|
128
|
Abstract
In the past decade, a wide range of fascinating monogenic diseases have been linked to mutations in the LMNA gene, which encodes the A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. These diseases include dilated cardiomyopathy with variable muscular dystrophy, Dunnigan-type familial partial lipodystrophy, a Charcot-Marie-Tooth type 2 disease, mandibuloacral dysplasia, and Hutchinson-Gilford progeria syndrome. Several diseases are also caused by mutations in genes encoding B-type lamins and proteins that associate with the nuclear lamina. Studies of these so-called laminopathies or nuclear envelopathies, some of which phenocopy common human disorders, are providing clues about functions of the nuclear envelope and insights into disease pathogenesis and human aging.
Collapse
Affiliation(s)
- Howard J Worman
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
129
|
Roblek M, Schüchner S, Huber V, Ollram K, Vlcek-Vesely S, Foisner R, Wehnert M, Ogris E. Monoclonal antibodies specific for disease-associated point-mutants: lamin A/C R453W and R482W. PLoS One 2010; 5:e10604. [PMID: 20498701 PMCID: PMC2869350 DOI: 10.1371/journal.pone.0010604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/11/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Disease-linked missense mutations can alter a protein's function with fatal consequences for the affected individual. How a single amino acid substitution in a protein affects its properties, is difficult to study in the context of the cellular proteome, because mutant proteins can often not be traced in cells due to the lack of mutation-specific detection tools. Antibodies, however, with their exquisite epitope specificity permit the detection of single amino acid substitutions but are not available for the vast majority of disease-causing mutant proteins. One of the most frequently missense-mutated human genes is the LMNA gene coding for A-type lamins. Mutations in LMNA cause phenotypically heterogenous, mostly autosomal-dominant inherited diseases, termed laminopathies. The molecular mechanisms underlying the phenotypic heterogeneity of laminopathies, however, are not well understood. Hence, the goal of this study was the development of monoclonal antibodies specific for disease-linked point-mutant A-type lamins. METHODOLOGY/PRINCIPAL FINDINGS Using two different approaches of antigen presentation, namely KLH-coupled peptides and the display of a complete protein domain fused to the Hepatitis B virus capsid protein, we developed monoclonal antibodies against two disease-associated lamin A/C mutants. Both antibodies display exquisite specificity for the respective mutant proteins. We show that with the help of these novel antibodies it is now possible for the first time to study specifically the properties of the mutant proteins in primary patient cells in the background of wild-type protein. CONCLUSIONS We report here the development of two point-mutant specific antibodies against A-type lamins. While synthetic peptides may be the prime choice of antigen, our results show that a given target sequence may have to be presented in alternative ways to ensure the induction of a mutant-specific immune response. Point-mutant specific antibodies will represent valuable tools for basic and clinical research on a number of hereditary as well as acquired diseases caused by dominant missense mutations.
Collapse
Affiliation(s)
- Marko Roblek
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Stefan Schüchner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Veronika Huber
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Katrin Ollram
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Sylvia Vlcek-Vesely
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Roland Foisner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Manfed Wehnert
- Institute of Human Genetics, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Egon Ogris
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
130
|
Jahn D, Schramm S, Benavente R, Alsheimer M. Dynamic properties of meiosis-specific lamin C2 and its impact on nuclear envelope integrity. Nucleus 2010; 1:273-83. [PMID: 21327075 DOI: 10.4161/nucl.1.3.11800] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/12/2010] [Accepted: 03/15/2010] [Indexed: 11/19/2022] Open
Abstract
A hallmark of meiosis is the precise pairing and the stable physical connection (synapsis) of the homologous chromosomes. These processes are essential prerequisite for their proper segregation. Pairing of the homologs during meiotic prophase I critically depends on characteristic movements of chromosomes. These movements, in turn, require attachment of meiotic telomeres to the nuclear envelope and their subsequent dynamic repositioning. Dynamic repositioning of meiotic telomeres goes along with profound structural reorganization of the nuclear envelope. The short A-type lamin C2 is thought to play a critical role in this process due to its specific expression during meiotic prophase I and the unique localization surrounding telomere attachments. Consistent with this notion, here we provide compelling evidence that meiosis-specific lamin C2 features a significantly increased mobility compared to somatic lamins as revealed by photobleaching techniques. We show that this property can be clearly ascribed to the lack of the N-terminal head and the significantly shorter α-helical coil domain. Moreover, expression of lamin C2 in somatic cells induces nuclear deformations and alters the distribution of the endogenous nuclear envelope proteins lamin B1, LAP2, SUN1 and SUN2. Together, our data define lamin C2 as a "natural lamin deletion mutant" that confers unique properties to the nuclear envelope which would be essential for dynamic telomere repositioning during meiotic prophase I.
Collapse
Affiliation(s)
- Daniel Jahn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Germany
| | | | | | | |
Collapse
|
131
|
Gupta P, Bilinska ZT, Sylvius N, Boudreau E, Veinot JP, Labib S, Bolongo PM, Hamza A, Jackson T, Ploski R, Walski M, Grzybowski J, Walczak E, Religa G, Fidzianska A, Tesson F. Genetic and ultrastructural studies in dilated cardiomyopathy patients: a large deletion in the lamin A/C gene is associated with cardiomyocyte nuclear envelope disruption. Basic Res Cardiol 2010; 105:365-77. [PMID: 20127487 DOI: 10.1007/s00395-010-0085-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 12/24/2022]
Abstract
Major nuclear envelope abnormalities, such as disruption and/or presence of intranuclear organelles, have rarely been described in cardiomyocytes from dilated cardiomyopathy (DCM) patients. In this study, we screened a series of 25 unrelated DCM patient samples for (a) cardiomyocyte nuclear abnormalities and (b) mutations in LMNA and TMPO as they are two DCM-causing genes that encode proteins involved in maintaining nuclear envelope architecture. Among the 25 heart samples investigated, we identified major cardiomyocyte nuclear abnormalities in 8 patients. Direct sequencing allowed the detection of three heterozygous LMNA mutations (p.D192G, p.Q353K and p.R541S) in three patients. By multiplex ligation-dependant probe amplification (MLPA)/quantitative real-time PCR, we found a heterozygous deletion encompassing exons 3-12 of the LMNA gene in one patient. Immunostaining demonstrated that this deletion led to a decrease in lamin A/C expression in cardiomyocytes from this patient. This LMNA deletion as well as the p.D192G mutation was found in patients displaying major cardiomyocyte nuclear envelope abnormalities, while the p.Q353K and p.R541S mutations were found in patients without specific nuclear envelope abnormalities. None of the DCM patients included in the study carried a mutation in the TMPO gene. Taken together, we found no evidence of a genotype-phenotype relationship between the onset and the severity of DCM, the presence of nuclear abnormalities and the presence or absence of LMNA mutations. We demonstrated that a large deletion in LMNA associated with reduced levels of the protein in the nuclear envelope suggesting a haploinsufficiency mechanism can lead to cardiomyocyte nuclear envelope disruption and thus underlie the pathogenesis of DCM.
Collapse
Affiliation(s)
- Pallavi Gupta
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Haque F, Mazzeo D, Patel JT, Smallwood DT, Ellis JA, Shanahan CM, Shackleton S. Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J Biol Chem 2010; 285:3487-98. [PMID: 19933576 PMCID: PMC2823409 DOI: 10.1074/jbc.m109.071910] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/20/2009] [Indexed: 11/06/2022] Open
Abstract
The nuclear envelope (NE) LINC complex, in mammals comprised of SUN domain and nesprin proteins, provides a direct connection between the nuclear lamina and the cytoskeleton, which contributes to nuclear positioning and cellular rigidity. SUN1 and SUN2 interact with lamin A, but lamin A is only required for NE localization of SUN2, and it remains unclear how SUN1 is anchored. Here, we identify emerin and short nesprin-2 isoforms as novel nucleoplasmic binding partners of SUN1/2. These have overlapping binding sites distinct from the lamin A binding site. However, we demonstrate that tight association of SUN1 with the nuclear lamina depends upon a short motif within residues 209-228, a region that does not interact significantly with known SUN1 binding partners. Moreover, SUN1 localizes correctly in cells lacking emerin. Importantly then, the major determinant of SUN1 NE localization has yet to be identified. We further find that a subset of lamin A mutations, associated with laminopathies Emery-Dreifuss muscular dystrophy (EDMD) and Hutchinson-Gilford progeria syndrome (HGPS), disrupt lamin A interaction with SUN1 and SUN2. Despite this, NE localization of SUN1 and SUN2 is not impaired in cell lines from either class of patients. Intriguingly, SUN1 expression at the NE is instead enhanced in a significant proportion of HGPS but not EDMD cells and strongly correlates with pre-lamin A accumulation due to preferential interaction of SUN1 with pre-lamin A. We propose that these different perturbations in lamin A-SUN protein interactions may underlie the opposing effects of EDMD and HGPS mutations on nuclear and cellular mechanics.
Collapse
Affiliation(s)
- Farhana Haque
- From the Department of Biochemistry, University of Leicester, Leicester LE1 9HN
| | - Daniela Mazzeo
- From the Department of Biochemistry, University of Leicester, Leicester LE1 9HN
| | - Jennifer T. Patel
- From the Department of Biochemistry, University of Leicester, Leicester LE1 9HN
| | - Dawn T. Smallwood
- From the Department of Biochemistry, University of Leicester, Leicester LE1 9HN
| | - Juliet A. Ellis
- The Randall Division of Cell and Molecular Biophysics, Kings College, London SE1 1UL, and
| | - Catherine M. Shanahan
- the Cardiovascular Division, James Black Centre, Kings College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Sue Shackleton
- From the Department of Biochemistry, University of Leicester, Leicester LE1 9HN
| |
Collapse
|
133
|
Abstract
A-type laminopathies are a group of diseases resulting from mutations in the intermediate filament proteins lamin A and C (both encoded by the LMNA gene), but for which the pathogenic mechanisms are little understood. In some laminopathies, there is a good correlation between the presence of a specific LMNA mutation and the disease diagnosed. In others however, many different mutations can give rise to the same clinical condition, even though the mutations may be distributed throughout one, or more, of the three functionally distinct protein domains of lamin A/C. Conversely, certain mutations can cause multiple laminopathies, with related patients carrying an identical mutation even having separate diseases, often affecting different tissues. Therefore clarifying genotype–phenotype links may provide important insights into both disease penetrance and mechanism. In the present paper, we review recent developments in genotype–phenotype correlations in laminopathies and discuss the factors that could influence pathology.
Collapse
|
134
|
Dauer WT, Worman HJ. The nuclear envelope as a signaling node in development and disease. Dev Cell 2009; 17:626-38. [PMID: 19922868 DOI: 10.1016/j.devcel.2009.10.016] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of a membrane-bound structure separating DNA from other cellular components was the epochal evolutionary event that gave rise to eukaryotes, possibly occurring up to 2 billion years ago. Yet, this view of the nuclear envelope as a physical barrier greatly underestimates its fundamental impact on cellular organization and complexity, much of which is only beginning to be understood. Indeed, alterations of nuclear envelope structure and protein composition are essential to many aspects of metazoan development and cellular differentiation. Mutations in genes encoding nuclear envelope proteins cause a fascinating array of diseases referred to as "nuclear envelopathies" or "laminopathies" that affect different tissues and organ systems. We review recent work on the nuclear envelope, including insights derived from the study of nuclear envelopathies. These studies are uncovering new functions for nuclear envelope proteins and underlie an emerging view of the nuclear envelope as a critical signaling node in development and disease.
Collapse
Affiliation(s)
- William T Dauer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109 USA.
| | | |
Collapse
|
135
|
SUMO regulates the assembly and function of a cytoplasmic intermediate filament protein in C. elegans. Dev Cell 2009; 17:724-35. [PMID: 19922876 DOI: 10.1016/j.devcel.2009.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 08/03/2009] [Accepted: 10/08/2009] [Indexed: 11/21/2022]
Abstract
Sumoylation is a reversible posttranslational modification that plays roles in many processes, including transcriptional regulation, cell division, chromosome integrity, and DNA damage response. Using a proteomics approach, we identified approximately 250 candidate targets of sumoylation in C. elegans. One such target is the cytoplasmic intermediate filament (cIF) protein named IFB-1, which is expressed in hemidesmosome-like structures in the worm epidermis and is essential for embryonic elongation and maintenance of muscle attachment to the cuticle. In the absence of SUMO, IFB-1 formed ectopic filaments and protein aggregates in the lateral epidermis. Moreover, depletion of SUMO or mutation of the SUMO acceptor site on IFB-1 resulted in a reduction of its cytoplasmic soluble pool, leading to a decrease in its exchange rate within epidermal attachment structures. These observations indicate that SUMO regulates cIF assembly by maintaining a cytoplasmic pool of nonpolymerized IFB-1, and that this is necessary for normal IFB-1 function.
Collapse
|
136
|
Schulze SR, Curio-Penny B, Speese S, Dialynas G, Cryderman DE, McDonough CW, Nalbant D, Petersen M, Budnik V, Geyer PK, Wallrath LL. A comparative study of Drosophila and human A-type lamins. PLoS One 2009; 4:e7564. [PMID: 19855837 PMCID: PMC2762312 DOI: 10.1371/journal.pone.0007564] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/04/2009] [Indexed: 11/24/2022] Open
Abstract
Nuclear intermediate filament proteins, called lamins, form a meshwork that lines the inner surface of the nuclear envelope. Lamins contain three domains: an N-terminal head, a central rod and a C-terminal tail domain possessing an Ig-fold structural motif. Lamins are classified as either A- or B-type based on structure and expression pattern. The Drosophila genome possesses two genes encoding lamins, Lamin C and lamin Dm0, which have been designated A- and B-type, respectively, based on their expression profile and structural features. In humans, mutations in the gene encoding A-type lamins are associated with a spectrum of predominantly tissue-specific diseases known as laminopathies. Linking the disease phenotypes to cellular functions of lamins has been a major challenge. Drosophila is being used as a model system to identify the roles of lamins in development. Towards this end, we performed a comparative study of Drosophila and human A-type lamins. Analysis of transgenic flies showed that human lamins localize predictably within the Drosophila nucleus. Consistent with this finding, yeast two-hybrid data demonstrated conservation of partner-protein interactions. Drosophila lacking A-type lamin show nuclear envelope defects similar to those observed with human laminopathies. Expression of mutant forms of the A-type Drosophila lamin modeled after human disease-causing amino acid substitutions revealed an essential role for the N-terminal head and the Ig-fold in larval muscle tissue. This tissue-restricted sensitivity suggests a conserved role for lamins in muscle biology. In conclusion, we show that (1) localization of A-type lamins and protein-partner interactions are conserved between Drosophila and humans, (2) loss of the Drosophila A-type lamin causes nuclear defects and (3) muscle tissue is sensitive to the expression of mutant forms of A-type lamin modeled after those causing disease in humans. These studies provide new insights on the role of lamins in nuclear biology and support Drosophila as a model for studies of human laminopathies involving muscle dysfunction.
Collapse
Affiliation(s)
- Sandra R. Schulze
- Department of Biology, Western Washington University, Bellingham, Washington, United States of America
| | - Beatrice Curio-Penny
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Sean Speese
- Department of Neurobiology, University of Massachusetts, Wochester, Massachusetts, United States of America
| | - George Dialynas
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Diane E. Cryderman
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Caitrin W. McDonough
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Demet Nalbant
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Melissa Petersen
- Department of Biology, Western Washington University, Bellingham, Washington, United States of America
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts, Wochester, Massachusetts, United States of America
| | - Pamela K. Geyer
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Lori L. Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
137
|
Worman HJ, Fong LG, Muchir A, Young SG. Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest 2009; 119:1825-36. [PMID: 19587457 PMCID: PMC2701866 DOI: 10.1172/jci37679] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The main function of the nuclear lamina, an intermediate filament meshwork lying primarily beneath the inner nuclear membrane, is to provide structural scaffolding for the cell nucleus. However, the lamina also serves other functions, such as having a role in chromatin organization, connecting the nucleus to the cytoplasm, gene transcription, and mitosis. In somatic cells, the main protein constituents of the nuclear lamina are lamins A, C, B1, and B2. Interest in the nuclear lamins increased dramatically in recent years with the realization that mutations in LMNA, the gene encoding lamins A and C, cause a panoply of human diseases ("laminopathies"), including muscular dystrophy, cardiomyopathy, partial lipodystrophy, and progeroid syndromes. Here, we review the laminopathies and the long strange trip from basic cell biology to therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Howard J. Worman
- Department of Medicine and
Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Department of Medicine and
Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Loren G. Fong
- Department of Medicine and
Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Department of Medicine and
Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Antoine Muchir
- Department of Medicine and
Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Department of Medicine and
Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Stephen G. Young
- Department of Medicine and
Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
Department of Medicine and
Department of Human Genetics, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
138
|
Magracheva E, Kozlov S, Stewart CL, Wlodawer A, Zdanov A. Structure of the lamin A/C R482W mutant responsible for dominant familial partial lipodystrophy (FPLD). Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:665-70. [PMID: 19574635 PMCID: PMC2705630 DOI: 10.1107/s1744309109020302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/27/2009] [Indexed: 11/10/2022]
Abstract
Proteins of the A-type lamin family, which consists of two members, lamin A and lamin C, are the major components of a thin proteinaceous filamentous meshwork, the lamina, that underlies the inner nuclear membrane. A-type lamins have recently become the focus of extensive functional studies as a consequence of the linking of at least eight congenital diseases to mutations in the lamin A/C gene (LMNA). This spectrum of pathologies, which mostly manifest themselves as dominant traits, includes muscle dystrophies, dilated cardiomyopathies, the premature aging syndrome Hutchinson-Guilford progeria and familial partial lipodystrophy (FPLD). The crystal structure of the lamin A/C mutant R482W, a variant that causes FPLD, has been determined at 1.5 A resolution. A completely novel aggregation state of the C-terminal globular domain and the position of the mutated amino-acid residue suggest means by which the mutation may affect lamin A/C-protein and protein-DNA interactions.
Collapse
Affiliation(s)
- Eugenia Magracheva
- Basic Research Program SAIC-Frederick, NCI-Frederick, Frederick, MD 21702, USA
| | - Serguei Kozlov
- Cancer and Developmental Biology Laboratory, NCI-Frederick, Frederick, MD 21702, USA
| | - Colin L. Stewart
- Cancer and Developmental Biology Laboratory, NCI-Frederick, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Macromolecular Crystallography Laboratory, NCI-Frederick, Frederick, MD 21702, USA
| | - Alexander Zdanov
- Basic Research Program SAIC-Frederick, NCI-Frederick, Frederick, MD 21702, USA
| |
Collapse
|
139
|
Prokocimer M, Davidovich M, Nissim-Rafinia M, Wiesel-Motiuk N, Bar DZ, Barkan R, Meshorer E, Gruenbaum Y. Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med 2009; 13:1059-85. [PMID: 19210577 PMCID: PMC4496104 DOI: 10.1111/j.1582-4934.2008.00676.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/19/2009] [Indexed: 11/27/2022] Open
Abstract
The nuclear lamina is a proteinaceous structure located underneath the inner nuclear membrane (INM), where it associates with the peripheral chromatin. It contains lamins and lamin-associated proteins, including many integral proteins of the INM, chromatin modifying proteins, transcriptional repressors and structural proteins. A fraction of lamins is also present in the nucleoplasm, where it forms stable complexes and is associated with specific nucleoplasmic proteins. The lamins and their associated proteins are required for most nuclear activities, mitosis and for linking the nucleoplasm to all major cytoskeletal networks in the cytoplasm. Mutations in nuclear lamins and their associated proteins cause about 20 different diseases that are collectively called laminopathies'. This review concentrates mainly on lamins, their structure and their roles in DNA replication, chromatin organization, adult stem cell differentiation, aging, tumorogenesis and the lamin mutations leading to laminopathic diseases.
Collapse
Affiliation(s)
- Miron Prokocimer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Maya Davidovich
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Naama Wiesel-Motiuk
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Daniel Z Bar
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Rachel Barkan
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| | - Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
140
|
Verstraeten VLRM, Caputo S, van Steensel MAM, Duband-Goulet I, Zinn-Justin S, Kamps M, Kuijpers HJH, Ostlund C, Worman HJ, Briedé JJ, Le Dour C, Marcelis CLM, van Geel M, Steijlen PM, van den Wijngaard A, Ramaekers FCS, Broers JLV. The R439C mutation in LMNA causes lamin oligomerization and susceptibility to oxidative stress. J Cell Mol Med 2009; 13:959-71. [PMID: 19220582 PMCID: PMC3823411 DOI: 10.1111/j.1582-4934.2009.00690.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dunnigan-type familial partial lipodystrophy (FPLD) is a laminopathy characterized by an aberrant fat distribution and a metabolic syndrome for which oxidative stress has recently been suggested as one of the disease-causing mechanisms. In a family affected with FPLD, we identified a heterozygous missense mutation c.1315C>T in the LMNA gene leading to the p.R439C substitution. Cultured patient fibroblasts do not show any prelamin A accumulation and reveal honeycomb-like lamin A/C formations in a significant percentage of nuclei. The mutation affects a region in the C-terminal globular domain of lamins A and C, different from the FPLD-related hot spot. Here, the introduction of an extra cysteine allows for the formation of disulphide-mediated lamin A/C oligomers. This oligomerization affects the interaction properties of the C-terminal domain with DNA as shown by gel retardation assays and causes a DNA-interaction pattern that is distinct from the classical R482W FPLD mutant. Particularly, whereas the R482W mutation decreases the binding efficiency of the C-terminal domain to DNA, the R439C mutation increases it. Electron spin resonance spectroscopy studies show significantly higher levels of reactive oxygen species (ROS) upon induction of oxidative stress in R439C patient fibroblasts compared to healthy controls. This increased sensitivity to oxidative stress seems independent of the oligomerization and enhanced DNA binding typical for R439C, as both the R439C and R482W mutants show a similar and significant increase in ROS upon induction of oxidative stress by H2O2.
Collapse
|
141
|
Dechat T, Adam SA, Goldman RD. Nuclear lamins and chromatin: when structure meets function. ADVANCES IN ENZYME REGULATION 2008; 49:157-66. [PMID: 19154754 PMCID: PMC3253622 DOI: 10.1016/j.advenzreg.2008.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Thomas Dechat
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| | - Stephen A. Adam
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611, USA
| |
Collapse
|
142
|
Ben-Harush K, Wiesel N, Frenkiel-Krispin D, Moeller D, Soreq E, Aebi U, Herrmann H, Gruenbaum Y, Medalia O. The supramolecular organization of the C. elegans nuclear lamin filament. J Mol Biol 2008; 386:1392-402. [PMID: 19109977 DOI: 10.1016/j.jmb.2008.12.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Accepted: 12/09/2008] [Indexed: 11/26/2022]
Abstract
Nuclear lamins are involved in most nuclear activities and are essential for retaining the mechano-elastic properties of the nucleus. They are nuclear intermediate filament (IF) proteins forming a distinct meshwork-like layer adhering to the inner nuclear membrane, called the nuclear lamina. Here, we present for the first time, the three-dimensional supramolecular organization of lamin 10 nm filaments and paracrystalline fibres. We show that Caenorhabditis elegans nuclear lamin forms 10 nm IF-like filaments, which are distinct from their cytoplasmic counterparts. The IF-like lamin filaments are composed of three and four tetrameric protofilaments, each of which contains two partially staggered anti-parallel head-to-tail polymers. The beaded appearance of the lamin filaments stems from paired globular tail domains, which are spaced regularly, alternating between 21 nm and 27 nm. A mutation in an evolutionarily conserved residue that causes Hutchison-Gilford progeria syndrome in humans alters the supramolecular structure of the lamin filaments. On the basis of our structural analysis, we propose an assembly pathway that yields the observed 10 nm IF-like lamin filaments and paracrystalline fibres. These results serve also as a platform for understanding the effect of laminopathic mutations on lamin supramolecular organization.
Collapse
Affiliation(s)
- Kfir Ben-Harush
- Department of Life Sciences, Ben Gurion University and the NIBN, Beer-Sheva, 84120 Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Pekovic V, Hutchison CJ. Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 2008; 213:5-25. [PMID: 18638067 PMCID: PMC2475560 DOI: 10.1111/j.1469-7580.2008.00928.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2008] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells have been identified in most mammalian tissues of the adult body and are known to support the continuous repair and regeneration of tissues. A generalized decline in tissue regenerative responses associated with age is believed to result from a depletion and/or a loss of function of adult stem cells, which itself may be a driving cause of many age-related disease pathologies. Here we review the striking similarities between tissue phenotypes seen in many degenerative conditions associated with old age and those reported in age-related nuclear envelope disorders caused by mutations in the LMNA gene. The concept is beginning to emerge that nuclear filament proteins, A-type lamins, may act as signalling receptors in the nucleus required for receiving and/or transducing upstream cytosolic signals in a number of pathways central to adult stem cell maintenance as well as adaptive responses to stress. We propose that during ageing and in diseases caused by lamin A mutations, dysfunction of the A-type lamin stress-resistant signalling network in adult stem cells, their progenitors and/or stem cell niches leads to a loss of protection against growth-related stress. This in turn triggers an inappropriate activation or a complete failure of self-renewal pathways with the consequent initiation of stress-induced senescence. As such, A-type lamins should be regarded as intrinsic modulators of ageing within adult stem cells and their niches that are essential for survival to old age.
Collapse
Affiliation(s)
- Vanja Pekovic
- School of Biological and Biomedical Science, Integrated Cell Biology Laboratories, Durham University, South Road, Durham DH1 3LE, UK.
| | | |
Collapse
|
144
|
Burke B, Stewart CL. The laminopathies: the functional architecture of the nucleus and its contribution to disease. Annu Rev Genomics Hum Genet 2008; 7:369-405. [PMID: 16824021 DOI: 10.1146/annurev.genom.7.080505.115732] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most inherited diseases are associated with mutations in a specific gene. Often, mutations in two or more different genes result in diseases with a similar phenotype. Rarely do different mutations in the same gene result in a multitude of seemingly different and unrelated diseases. Mutations in the Lamin A gene (LMNA), which encodes largely ubiquitously expressed nuclear proteins (A-type lamins), are associated with at least eight different diseases, collectively called the laminopathies. Studies examining how different tissue-specific diseases arise from unique LMNA mutations are providing unanticipated insights into the structural organization of the nucleus, and how disruption of this organization relates to novel mechanisms of disease.
Collapse
Affiliation(s)
- Brian Burke
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610
| | | |
Collapse
|
145
|
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 2008; 22:832-53. [PMID: 18381888 PMCID: PMC2732390 DOI: 10.1101/gad.1652708] [Citation(s) in RCA: 746] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Katrin Pfleghaar
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Kaushik Sengupta
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Dale K. Shumaker
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Liliana Solimando
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
146
|
Adam SA, Sengupta K, Goldman RD. Regulation of nuclear lamin polymerization by importin alpha. J Biol Chem 2008; 283:8462-8. [PMID: 18227062 PMCID: PMC2417177 DOI: 10.1074/jbc.m709572200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/18/2008] [Indexed: 01/03/2023] Open
Abstract
Nuclear lamins are integral components of the nuclear envelope and are important for the regulation of many aspects of nuclear function, including gene transcription and DNA replication. During interphase, the lamins form an intranuclear intermediate filament network that must be disassembled and reassembled when cells divide. Little is known about factors regulating this assembly/disassembly cycle. Using in vitro nuclear assembly and lamin assembly assays, we have identified a role for the nuclear transport factor importin alpha in the regulation of lamin assembly. Exogenous importin alpha inhibited nuclear lamin assembly in Xenopus interphase egg nuclear assembly assays. Fractionation of the egg extract used for nuclear assembly identified a high molecular weight complex containing the major egg lamin, XLB3, importin alpha, and importin beta. This complex could be dissociated by RanGTP or a competing nuclear localization sequence, indicating that lamin assembly is Ran- and importin alpha-dependent in the egg extract. We show that the addition of importin alpha to purified lamin B3 prevents the assembly of lamins in solution. Lamin assembly assays show that importin alpha prevents the self-association of lamins required to assemble lamin filaments into the typical paracrystals formed in vitro. These results suggest a role for importin alpha in regulating lamin assembly and possibly modulating the interactions of lamins with lamin-binding proteins.
Collapse
Affiliation(s)
- Stephen A Adam
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
147
|
Håkelien AM, Delbarre E, Gaustad KG, Buendia B, Collas P. Expression of the myodystrophic R453W mutation of lamin A in C2C12 myoblasts causes promoter-specific and global epigenetic defects. Exp Cell Res 2008; 314:1869-80. [PMID: 18396274 DOI: 10.1016/j.yexcr.2008.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/22/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
Autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) is characterized by muscle wasting and is caused by mutations in the LMNA gene encoding A-type lamins. Overexpression of the EDMD lamin A R453W mutation in C2C12 myoblasts impairs myogenic differentiation. We show here the influence of stable expression of the R453W and of the Dunnigan-type partial lipodystrophy R482W mutation of lamin A in C2C12 cells on transcription and epigenetic regulation of the myogenin (Myog) gene and on global chromatin organization. Expression of R453W-, but not R482W-lamin A, impairs activation of Myog and maintains a repressive chromatin state on the Myog promoter upon induction of differentiation, marked by H3 lysine (K) 9 dimethylation and failure to hypertrimethylate H3K4. Cells expressing WT-LaA also fail to hypertrimethylate H3K4. No defect occurs at the level of Myog promoter DNA methylation in any of the clones. Expression of R453W-lamin A and to a lesser extent R482W-lamin A in undifferentiated C2C12 cells redistributes H3K9me3 from pericentric heterochromatin. R453W-lamin A also elicits a redistribution of H3K27me3 from inactive X (Xi) and partial decondensation of Xi, but maintains Xist expression and coating of Xi, indicating that Xi remains inactivated. Our results argue that gene-specific and genome-wide chromatin rearrangements may constitute a molecular basis for laminopathies.
Collapse
Affiliation(s)
- Anne-Mari Håkelien
- Institute of Basic Medical Sciences, Department of Biochemistry, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
| | | | | | | | | |
Collapse
|
148
|
Szeverenyi I, Cassidy AJ, Chung CW, Lee BTK, Common JEA, Ogg SC, Chen H, Sim SY, Goh WLP, Ng KW, Simpson JA, Chee LL, Eng GH, Li B, Lunny DP, Chuon D, Venkatesh A, Khoo KH, McLean WHI, Lim YP, Lane EB. The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases. Hum Mutat 2008; 29:351-60. [PMID: 18033728 DOI: 10.1002/humu.20652] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We describe a revised and expanded database on human intermediate filament proteins, a major component of the eukaryotic cytoskeleton. The family of 70 intermediate filament genes (including those encoding keratins, desmins, and lamins) is now known to be associated with a wide range of diverse diseases, at least 72 distinct human pathologies, including skin blistering, muscular dystrophy, cardiomyopathy, premature aging syndromes, neurodegenerative disorders, and cataract. To date, the database catalogs 1,274 manually-curated pathogenic sequence variants and 170 allelic variants in intermediate filament genes from over 459 peer-reviewed research articles. Unrelated cases were collected from all of the six sequence homology groups and the sequence variations were described at cDNA and protein levels with links to the related diseases and reference articles. The mutations and polymorphisms are presented in parallel with data on protein structure, gene, and chromosomal location and basic information on associated diseases. Detailed statistics relating to the variants records in the database are displayed by homology group, mutation type, affected domain, associated diseases, and nucleic and amino acid substitutions. Multiple sequence alignment algorithms can be run from queries to determine DNA or protein sequence conservation. Literature sources can be interrogated within the database and external links are provided to public databases. The database is freely and publicly accessible online at www.interfil.org (last accessed 13 September 2007). Users can query the database by various keywords and the search results can be downloaded. It is anticipated that the Human Intermediate Filament Database (HIFD) will provide a useful resource to study human genome variations for basic scientists, clinicians, and students alike.
Collapse
|
149
|
Parnaik VK. Role of Nuclear Lamins in Nuclear Organization, Cellular Signaling, and Inherited Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 266:157-206. [DOI: 10.1016/s1937-6448(07)66004-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
150
|
Cox LS, Faragher RGA. From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing. Cell Mol Life Sci 2007; 64:2620-41. [PMID: 17660942 PMCID: PMC2773833 DOI: 10.1007/s00018-007-7123-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner's syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner's syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed.
Collapse
Affiliation(s)
- L. S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - R. G. A. Faragher
- School of Pharmacy and Biomolecular Science, University of Brighton, Cockcroft Building, Moulescoomb, Brighton, BN2 4GJ UK
| |
Collapse
|