101
|
Gross AJ, Proekt I, DeFranco AL. Elevated BCR signaling and decreased survival of Lyn-deficient transitional and follicular B cells. Eur J Immunol 2011; 41:3645-55. [PMID: 21928281 DOI: 10.1002/eji.201141708] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/03/2011] [Accepted: 09/15/2011] [Indexed: 11/10/2022]
Abstract
The Src-family tyrosine kinase Lyn negatively regulates BCR signaling and also myeloid cell activity. Mice deficient in Lyn have substantially decreased numbers of peripheral B cells, despite spontaneously producing IgG anti-DNA antibodies. Here, we examine the mechanism underlying the B-cell depletion in these mice. Lyn-deficient B cells were out-competed by WT B cells in mixed BM chimeras at two steps, at the T1 to T2 transitional maturation stage in the spleen and again between the T2 or T3 stage and the mature follicular B-cell population. Lyn-deficient T2 and follicular B cells expressed elevated levels of the pro-apoptotic factor Bim and deletion of Bim restored splenic B cells of Lyn-deficient mice to close to WT numbers. Lyn-deficient T2 and later stage B cells also had changes in cell surface phenotype consistent with increased in vivo BCR signaling. Similarly, an increased proportion of T2 and follicular B cells had elevated basal intracellular free calcium levels. Overall, these observations suggest that increased BCR signaling is responsible for increased death of weakly self-reactive Lyn-deficient B cells both at the T2 stage and additionally as these cells mature to follicular B cells.
Collapse
Affiliation(s)
- Andrew J Gross
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA 94143-0414, USA
| | | | | |
Collapse
|
102
|
Ma H, Qazi S, Ozer Z, Gaynon P, Reaman GH, Uckun FM. CD22 Exon 12 deletion is a characteristic genetic defect of therapy-refractory clones in paediatric acute lymphoblastic leukaemia. Br J Haematol 2011; 156:89-98. [DOI: 10.1111/j.1365-2141.2011.08901.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
103
|
Becker-Herman S, Meyer-Bahlburg A, Schwartz MA, Jackson SW, Hudkins KL, Liu C, Sather BD, Khim S, Liggitt D, Song W, Silverman GJ, Alpers CE, Rawlings DJ. WASp-deficient B cells play a critical, cell-intrinsic role in triggering autoimmunity. ACTA ACUST UNITED AC 2011; 208:2033-42. [PMID: 21875954 PMCID: PMC3182055 DOI: 10.1084/jem.20110200] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In a manner dependent on CD4 T cell help and Toll-like receptor signals, B cells lacking WASp induce autoantibody production and autoimmune disease in mice. Patients with the immunodeficiency Wiskott-Aldrich syndrome (WAS) frequently develop systemic autoimmunity. Here, we demonstrate that mutation of the WAS gene results in B cells that are hyperresponsive to B cell receptor and Toll-like receptor (TLR) signals in vitro, thereby promoting a B cell–intrinsic break in tolerance. Whereas this defect leads to autoantibody production in WAS protein–deficient (WASp−/−) mice without overt disease, chimeric mice in which only the B cell lineage lacks WASp exhibit severe autoimmunity characterized by spontaneous germinal center formation, class-switched autoantibodies, renal histopathology, and early mortality. Both T cell help and B cell–intrinsic TLR engagement play important roles in promoting disease in this model, as depletion with anti-CD4 antibodies or generation of chimeric mice with B cells deficient in both WASp and MyD88 prevented development of autoimmune disease. These data highlight the potentially harmful role for cell-intrinsic loss of B cell tolerance in the setting of normal T cell function, and may explain why WAS patients with mixed chimerism after stem cell transplantation often develop severe humoral autoimmunity.
Collapse
Affiliation(s)
- Shirly Becker-Herman
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; Seattle Children’s Research Institute, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Ota T, Ota M, Duong BH, Gavin AL, Nemazee D. Liver-expressed Igkappa superantigen induces tolerance of polyclonal B cells by clonal deletion not kappa to lambda receptor editing. ACTA ACUST UNITED AC 2011; 208:617-29. [PMID: 21357741 PMCID: PMC3058582 DOI: 10.1084/jem.20102265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Analysis of tolerance in a polyclonal wild-type B cell population demonstrates apoptosis of cells reactive to antigen expressed on liver membrane. Little is know about the nature of peripheral B cell tolerance or how it may vary in distinct lineages. Although autoantibody transgenic studies indicate that anergy and apoptosis are involved, some studies claim that receptor editing occurs. To model peripheral B cell tolerance in a normal, polyclonal immune system, we generated transgenic mice expressing an Igκ–light chain–reactive superantigen targeted to the plasma membrane of hepatocytes (pAlb mice). In contrast to mice expressing κ superantigen ubiquitously, in which κ cells edit efficiently to λ, in pAlb mice, κ B cells underwent clonal deletion. Their κ cells failed to populate lymph nodes, and the remaining splenic κ cells were anergic, arrested at a semi-mature stage without undergoing receptor editing. In the liver, κ cells recognized superantigen, down-regulated surface Ig, and expressed active caspase 3, suggesting ongoing apoptosis at the site of B cell receptor ligand expression. Some, apparently mature, κ B1 and follicular B cells persisted in the peritoneum. BAFF (B cell–activating factor belonging to the tumor necrosis factor family) overexpression rescued splenic κ B cell maturation and allowed κ cells to populate lymph nodes. Our model facilitates analysis of tissue-specific autoimmunity, tolerance, and apoptosis in a polyclonal B cell population. The results suggest that deletion, not editing, is the major irreversible pathway of tolerance induction among peripheral B cells.
Collapse
Affiliation(s)
- Takayuki Ota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
105
|
Capasso M, DeCoursey TE, Dyer MJS. pH regulation and beyond: unanticipated functions for the voltage-gated proton channel, HVCN1. Trends Cell Biol 2011; 21:20-8. [PMID: 20961760 PMCID: PMC3014425 DOI: 10.1016/j.tcb.2010.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/02/2010] [Accepted: 09/13/2010] [Indexed: 12/22/2022]
Abstract
Electrophysiological studies have implicated voltage-gated proton channels in several specific cellular contexts. In neutrophils, they mediate charge compensation that is associated with the oxidative burst of phagocytosis. Molecular characterization of the hydrogen voltage-gated channel 1 (HVCN1) has enabled identification of unanticipated and diverse functions: HVCN1 not only modulates signaling from the B-cell receptor following B-cell activation and histamine release from basophils, but also mediates pH-dependent activation of spermatozoa, as well as acid secretion by tracheal epithelium. The importance of HVCN1 in pH regulation during phagocytosis was established by surprising evidence that indicated its first-responder role. In this review, we discuss recent findings from a functional perspective, and the potential of HVCN1 as a therapeutic target for autoimmune and other diseases.
Collapse
Affiliation(s)
- Melania Capasso
- Centre for Cancer & Inflammation, Institute of Cancer, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom.
| | | | | |
Collapse
|
106
|
Waterman PM, Cambier JC. The conundrum of inhibitory signaling by ITAM-containing immunoreceptors: potential molecular mechanisms. FEBS Lett 2010; 584:4878-82. [PMID: 20875413 PMCID: PMC2998577 DOI: 10.1016/j.febslet.2010.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 11/28/2022]
Abstract
Immunoreceptor signals must be appropriately transduced and regulated to achieve effective immunity while controlling inflammation and autoimmunity. It is generally held that these processes are mediated by the interplay of distinct activating and inhibitory receptors via conserved activating (ITAM) and inhibitory (ITIM) signaling motifs. However, recent evidence indicates that under certain conditions incomplete phosphorylation of ITAM tyrosines leads to inhibitory signaling. This new regulatory function of ITAMs has been termed ITAMi (inhibitory ITAM). Here we discuss the potential molecular mechanisms of inhibitory signaling by ITAM-containing receptors.
Collapse
Affiliation(s)
- Paul M Waterman
- Integrated Department of Immunology, University of Colorado School of Medicine, Denver CO 80206, USA
| | | |
Collapse
|
107
|
Jackson TA, Haga CL, Ehrhardt GRA, Davis RS, Cooper MD. FcR-like 2 Inhibition of B cell receptor-mediated activation of B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:7405-12. [PMID: 21068405 PMCID: PMC5381824 DOI: 10.4049/jimmunol.1002305] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
FcR-like (FCRL) 2 is a transmembrane protein with immunomodulatory potential that is preferentially expressed by memory B cells in humans. It has two consensus ITIMs in addition to a putative ITAM sequence in its cytoplasmic domain. We have confirmed the cellular distribution of FCRL2 and analyzed its functional potential to show that coligation with the BCR leads to tyrosine phosphorylation of its ITIM motifs and subsequent Src homology region 2 domain-containing phosphatase-1 recruitment to facilitate inhibition of BCR signaling. Mutational analysis indicates that the tyrosine residues in both inhibitory motifs of FCRL2 are required for complete inhibition of BCR signaling, whereas tyrosines in the putative activation motif are dispensable for signal modulation. These findings suggest a negative immunomodulatory function for FCRL2 in the regulation of memory B cells.
Collapse
Affiliation(s)
- Tanisha A. Jackson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Christopher L. Haga
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
| | - Götz R. A. Ehrhardt
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
| | - Randall S. Davis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
- Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Max D. Cooper
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
- Emory Vaccine Center, Emory University, Atlanta, GA 30322
- Emory Center for AIDS Research, Emory University, Atlanta, GA 30322
- Georgia Research Alliance, Atlanta, GA 30303
| |
Collapse
|
108
|
Lyn- and PLC-beta3-dependent regulation of SHP-1 phosphorylation controls Stat5 activity and myelomonocytic leukemia-like disease. Blood 2010; 116:6003-13. [PMID: 20858858 DOI: 10.1182/blood-2010-05-283937] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyperactivation of the transcription factor Stat5 leads to various leukemias. Stat5 activity is regulated by the protein phosphatase SHP-1 in a phospholipase C (PLC)-β3-dependent manner. Thus, PLC-β3-deficient mice develop myeloproliferative neoplasm, like Lyn (Src family kinase)- deficient mice. Here we show that Lyn/PLC-β3 doubly deficient lyn(-/-);PLC-β3(-/-) mice develop a Stat5-dependent, fatal myelodysplastic/myeloproliferative neoplasm, similar to human chronic myelomonocytic leukemia (CMML). In hematopoietic stem cells of lyn(-/-);PLC-β3(-/-) mice that cause the CMML-like disease, phosphorylation of SHP-1 at Tyr(536) and Tyr(564) is abrogated, resulting in reduced phosphatase activity and constitutive activation of Stat5. Furthermore, SHP-1 phosphorylation at Tyr(564) by Lyn is indispensable for maximal phosphatase activity and for suppression of the CMML-like disease in these mice. On the other hand, Tyr(536) in SHP-1 can be phosphorylated by Lyn and another kinase(s) and is necessary for efficient interaction with Stat5. Therefore, we identify a novel Lyn/PLC-β3-mediated regulatory mechanism of SHP-1 and Stat5 activities.
Collapse
|
109
|
CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia. Proc Natl Acad Sci U S A 2010; 107:16852-7. [PMID: 20841423 DOI: 10.1073/pnas.1007896107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Here, we report that primary leukemic cells from infants with newly diagnosed B-precursor leukemia express a truncated and functionally defective CD22 coreceptor protein that is unable to transmit apoptotic signals because it lacks most of the intracellular domain, including the key regulatory signal transduction elements and all of the cytoplasmic tyrosine residues. Expression of this structurally and functionally abnormal CD22 protein is associated with a very aggressive in vivo growth of patients' primary leukemia cells causing disseminated overt leukemia in SCID mice. The abnormal CD22 coreceptor is encoded by a profoundly aberrant mRNA arising from a splicing defect that causes the deletion of exon 12 (c.2208-c.2327) (CD22ΔE12) and results in a truncating frameshift mutation. The splicing defect is associated with multiple homozygous mutations within a 132-bp segment of the intronic sequence between exons 12 and 13. These mutations cause marked changes in the predicted secondary structures of the mutant CD22 pre-mRNA sequences that affect the target motifs for the splicing factors hnRNP-L, PTB, and PCBP that are up-regulated in infant leukemia cells. Forced expression of the mutant CD22ΔE12 protein in transgenic mice perturbs B-cell development, as evidenced by B-precursor/B-cell hyperplasia, and corrupts the regulation of gene expression, causing reduced expression levels of several genes with a tumor suppressor function. We further show that CD22ΔE12-associated unique gene expression signature is a discriminating feature of newly diagnosed infant leukemia patients. These striking findings implicate CD22ΔE12 as a previously undescribed pathogenic mechanism in human B-precursor leukemia.
Collapse
|
110
|
Taher TE, Parikh K, Flores-Borja F, Mletzko S, Isenberg DA, Peppelenbosch MP, Mageed RA. Protein phosphorylation and kinome profiling reveal altered regulation of multiple signaling pathways in B lymphocytes from patients with systemic lupus erythematosus. ACTA ACUST UNITED AC 2010; 62:2412-23. [PMID: 20506108 DOI: 10.1002/art.27505] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The cause of B lymphocyte hyperactivity and autoantibody production in systemic lupus erythematosus (SLE) remains unclear. Previously, we identified abnormalities in the level and translocation of signaling molecules in B cells in SLE patients. The present study was undertaken to examine the extent of signaling abnormalities that relate to altered B cell responses in SLE. METHODS B lymphocytes from 88 SLE patients and 72 healthy controls were isolated from blood by negative selection. Protein tyrosine phosphorylation and cellular kinase levels were analyzed by Western blotting, flow cytometry, and a kinome array protocol. Changes in protein phosphorylation were determined in ex vivo B cells and following B cell receptor engagement. RESULTS Differences in tyrosine phosphorylation in B cells from patients with SLE, compared with matched controls, were demonstrated. Further, the kinome array analysis identified changes in the activation of key kinases, i.e., the activity of phosphatidylinositol 3-kinase, which regulates survival and differentiation, was up-regulated and the activity of Rac and Rho kinases, which regulate the cytoskeleton and migration, was increased. In contrast, the activity of ATR, which regulates the cell cycle, was down-regulated in SLE patients compared with controls. Differences in signaling pathways were seen in all SLE B lymphocyte subsets that manifested phenotypic features of immature, mature, and memory cells. CONCLUSION This study revealed dysregulation in multiple signaling pathways that control key responses in B cells of SLE patients. Data generated in this study provide a molecular basis for further analysis of the altered B lymphocyte responses in SLE.
Collapse
Affiliation(s)
- Taher E Taher
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
111
|
Abstract
A byproduct of the largely stochastic generation of a diverse B-cell specificity repertoire is production of cells that recognize autoantigens. Indeed, recent studies indicate that more than half of the primary repertoire consists of autoreactive B cells that must be silenced to prevent autoimmunity. While this silencing can occur by multiple mechanisms, it appears that most autoreactive B cells are silenced by anergy, wherein they populate peripheral lymphoid organs and continue to express unoccupied antigen receptors yet are unresponsive to antigen stimulation. Here we review molecular mechanisms that appear operative in maintaining the antigen unresponsiveness of anergic B cells. In addition, we present new data indicating that the failure of anergic B cells to mobilize calcium in response to antigen stimulation is not mediated by inactivation of stromal interacting molecule 1, a critical intermediary in intracellular store depletion-induced calcium influx.
Collapse
Affiliation(s)
- Yuval Yarkoni
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO, USA
| | - Andrew Getahun
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO, USA
| | - John C. Cambier
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish Health, Denver, CO, USA
| |
Collapse
|
112
|
Mackay F, Figgett WA, Saulep D, Lepage M, Hibbs ML. B-cell stage and context-dependent requirements for survival signals from BAFF and the B-cell receptor. Immunol Rev 2010; 237:205-25. [DOI: 10.1111/j.1600-065x.2010.00944.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
113
|
Chang NH, Cheung YH, Loh C, Pau E, Roy V, Cai YC, Wither J. B cell activating factor (BAFF) and T cells cooperate to breach B cell tolerance in lupus-prone New Zealand Black (NZB) mice. PLoS One 2010; 5:e11691. [PMID: 20661465 PMCID: PMC2908288 DOI: 10.1371/journal.pone.0011691] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 06/17/2010] [Indexed: 01/23/2023] Open
Abstract
The presence of autoantibodies in New Zealand Black (NZB) mice suggests a B cell tolerance defect however the nature of this defect is unknown. To determine whether defects in B cell anergy contribute to the autoimmune phenotype in NZB mice, soluble hen egg lysozyme (sHEL) and anti-HEL Ig transgenes were bred onto the NZB background to generate double transgenic (dTg) mice. NZB dTg mice had elevated levels of anti-HEL antibodies, despite apparently normal B cell functional anergy in-vitro. NZB dTg B cells also demonstrated increased survival and abnormal entry into the follicular compartment following transfer into sHEL mice. Since this process is dependent on BAFF, BAFF serum and mRNA levels were assessed and were found to be significantly elevated in NZB dTg mice. Treatment of NZB sHEL recipient mice with TACI-Ig reduced NZB dTg B cell survival following adoptive transfer, confirming the role of BAFF in this process. Although NZB mice had modestly elevated BAFF, the enhanced NZB B cell survival response appeared to result from an altered response to BAFF. In contrast, T cell blockade had a minimal effect on B cell survival, but inhibited anti-HEL antibody production. The findings suggest that the modest BAFF elevations in NZB mice are sufficient to perturb B cell tolerance, particularly when acting in concert with B cell functional abnormalities and T cell help.
Collapse
Affiliation(s)
- Nan-Hua Chang
- Arthritis Centre of Excellence, Toronto Western Research Institute, Toronto, Ontario, Canada
| | - Yui-Ho Cheung
- Arthritis Centre of Excellence, Toronto Western Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Christina Loh
- Arthritis Centre of Excellence, Toronto Western Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Evelyn Pau
- Arthritis Centre of Excellence, Toronto Western Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Valerie Roy
- Arthritis Centre of Excellence, Toronto Western Research Institute, Toronto, Ontario, Canada
| | - Yong-Chun Cai
- Arthritis Centre of Excellence, Toronto Western Research Institute, Toronto, Ontario, Canada
| | - Joan Wither
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
114
|
Gutierrez T, Halcomb KE, Coughran AJ, Li QZ, Satterthwaite AB. Separate checkpoints regulate splenic plasma cell accumulation and IgG autoantibody production in Lyn-deficient mice. Eur J Immunol 2010; 40:1897-905. [PMID: 20394076 PMCID: PMC3057185 DOI: 10.1002/eji.200940043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Accumulation of plasma cells and autoantibodies against nuclear antigens characterize both human and murine lupus. Understanding how these processes are controlled may reveal novel therapeutic targets for this disease. Mice deficient in Lyn, a negative regulator of B and myeloid cell activity, develop lupus-like autoimmune disease. Here, we show that lyn(-) (/) (-) mice exhibit increased splenic plasmablasts and plasma cells and produce IgM against a wide range of self-antigens. Both events require Btk, a target of Lyn-dependent inhibitory pathways. A Btk-dependent increase in the expression of the plasma cell survival factor IL-6 by lyn(-) (/) (-) splenic myeloid cells was also observed. Surprisingly, IL-6 was not required for plasma cell accumulation or polyclonal IgM autoreactivity in lyn(-/-) mice. IL-6 was, however, necessary for the production of IgG autoantibodies, which we show are focused towards a limited set of nucleic acid-containing and glomerular autoantigens in lyn(-) (/) (-) mice. A similar uncoupling of plasma cell accumulation from IgG autoantibodies was seen in lyn(+/-) mice. Plasma cell accumulation and polyclonal IgM autoreactivity are therefore controlled separately from, and are insufficient for, the production of IgG against lupus-associated autoantigens. Regulators of either of these two checkpoints may be attractive therapeutic targets for lupus.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antibodies, Antinuclear/blood
- Antibodies, Antinuclear/genetics
- Autoantigens/immunology
- Cells, Cultured
- Disease Models, Animal
- Humans
- Immunoglobulin G/blood
- Immunoglobulin M/blood
- Interleukin-6/biosynthesis
- Interleukin-6/genetics
- Lupus Erythematosus, Systemic/blood
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microarray Analysis
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Plasma Cells/pathology
- Protein-Tyrosine Kinases/metabolism
- Spleen/pathology
- src-Family Kinases/genetics
- src-Family Kinases/immunology
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Toni Gutierrez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristina E. Halcomb
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alanna J. Coughran
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anne B. Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
115
|
Saunders AE, Johnson P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell Signal 2010; 22:339-48. [PMID: 19861160 DOI: 10.1016/j.cellsig.2009.10.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/18/2009] [Indexed: 01/01/2023]
Abstract
CD45 is a leukocyte specific transmembrane glycoprotein and a receptor-like protein tyrosine phosphatase (PTP). CD45 can be expressed as several alternatively spliced isoforms that differ in the extracellular domain. The isoforms are regulated in a cell type and activation state-dependent manner, yet their function has remained elusive. The Src family kinase members Lck and Lyn are key substrates for CD45 in T and B lymphocytes, respectively. CD45 lowers the threshold of antigen receptor signalling, which impacts T and B cell activation and development. CD45 also regulates antigen triggered Fc receptor signalling in mast cells and Toll-like receptor (TLR) signalling in dendritic cells, thus broadening the role of CD45 to other recognition receptors involved in adaptive and innate immunity. In addition, CD45 can affect immune cell adhesion and migration and can modulate cytokine production and signalling. Here we review what is known about the substrate specificity and regulation of CD45 and summarise its effect on immune cell signalling pathways, from its established role in T and B antigen receptor signalling to its emerging role regulating innate immune cell recognition and cytokine production.
Collapse
Affiliation(s)
- A E Saunders
- Department of Microbiology and Immunology, Life Sciences Institute, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
116
|
Jellusova J, Wellmann U, Amann K, Winkler TH, Nitschke L. CD22 × Siglec-G Double-Deficient Mice Have Massively Increased B1 Cell Numbers and Develop Systemic Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2010; 184:3618-27. [DOI: 10.4049/jimmunol.0902711] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
117
|
Capasso M, Bhamrah MK, Henley T, Boyd RS, Langlais C, Cain K, Dinsdale D, Pulford K, Khan M, Musset B, Cherny VV, Morgan D, Gascoyne RD, Vigorito E, DeCoursey TE, MacLennan ICM, Dyer MJS. HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat Immunol 2010; 11:265-72. [PMID: 20139987 PMCID: PMC3030552 DOI: 10.1038/ni.1843] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/12/2010] [Indexed: 11/09/2022]
Abstract
Voltage-gated proton currents regulate generation of reactive oxygen species (ROS) in phagocytic cells. In B cells, stimulation of the B cell antigen receptor (BCR) results in the production of ROS that participate in B cell activation, but the involvement of proton channels is unknown. We report here that the voltage-gated proton channel HVCN1 associated with the BCR complex and was internalized together with the BCR after activation. BCR-induced generation of ROS was lower in HVCN1-deficient B cells, which resulted in attenuated BCR signaling via impaired BCR-dependent oxidation of the tyrosine phosphatase SHP-1. This resulted in less activation of the kinases Syk and Akt, impaired mitochondrial respiration and glycolysis and diminished antibody responses in vivo. Our findings identify unanticipated functions for proton channels in B cells and demonstrate the importance of ROS in BCR signaling and downstream metabolism.
Collapse
Affiliation(s)
- Melania Capasso
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Crispín JC, Liossis SNC, Kis-Toth K, Lieberman LA, Kyttaris VC, Juang YT, Tsokos GC. Pathogenesis of human systemic lupus erythematosus: recent advances. Trends Mol Med 2010; 16:47-57. [PMID: 20138006 DOI: 10.1016/j.molmed.2009.12.005] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/21/2009] [Accepted: 12/21/2009] [Indexed: 01/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with manifestations derived from the involvement of multiple organs including the kidneys, joints, nervous system and hematopoietic organs. Immune system aberrations, as well as heritable, hormonal and environmental factors interplay in the expression of organ damage. Recent contributions from different fields have developed our understanding of SLE and reshaped current pathogenic models. Here, we review recent findings that deal with (i) genes associated with disease expression; (ii) immune cell molecular abnormalities that lead to autoimmune pathology; (iii) the role of hormones and sex chromosomes in the development of disease; and (iv) environmental and epigenetic factors thought to contribute to the expression of SLE. Finally, we highlight molecular defects intimately associated with the disease process of SLE that might represent ideal therapeutic targets and disease biomarkers.
Collapse
Affiliation(s)
- José C Crispín
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Tsantikos E, Oracki SA, Quilici C, Anderson GP, Tarlinton DM, Hibbs ML. Autoimmune disease in Lyn-deficient mice is dependent on an inflammatory environment established by IL-6. THE JOURNAL OF IMMUNOLOGY 2009; 184:1348-60. [PMID: 20042579 DOI: 10.4049/jimmunol.0901878] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lyn-deficient mice develop Ab-mediated autoimmune disease resembling systemic lupus erythematosus where hyperactive B cells are major contributors to pathology. In this study, we show that an inflammatory environment is established in Lyn(-/-) mice that perturbs several immune cell compartments and drives autoimmune disease. Lyn(-/-) leukocytes, notably B cells, are able to produce IL-6, which facilitates hyperactivation of B and T cells, enhanced myelopoiesis, splenomegaly, and, ultimately, generation of pathogenic autoreactive Abs. Lyn(-/-) dendritic cells show increased maturation, but this phenotype is independent of autoimmunity as it is reiterated in B cell-deficient Lyn(-/-) mice. Genetic deletion of IL-6 on a Lyn-deficient background does not alter B cell development, plasma cell accumulation, or dendritic cell hypermaturation, suggesting that these characteristics are intrinsic to the loss of Lyn. However, hyperactivation of B and T cell compartments, extramedullary hematopoiesis, expansion of the myeloid lineage and autoimmune disease are all ameliorated in Lyn(-/-)IL-6(-/-) mice. Importantly, our studies show that although Lyn(-/-) B cells may be autoreactive, it is the IL-6-dependent inflammatory environment they engender that dictates their disease-causing potential. These findings improve our understanding of the mode of action of anti-IL-6 and B cell-directed therapies in autoimmune and inflammatory disease treatment.
Collapse
Affiliation(s)
- Evelyn Tsantikos
- Signal Transduction Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
120
|
Duong BH, Tian H, Ota T, Completo G, Han S, Vela JL, Ota M, Kubitz M, Bovin N, Paulson JC, Paulson J, Nemazee D. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. ACTA ACUST UNITED AC 2009; 207:173-87. [PMID: 20038598 PMCID: PMC2812539 DOI: 10.1084/jem.20091873] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Autoreactive B lymphocytes first encountering self-antigens in peripheral tissues are normally regulated by induction of anergy or apoptosis. According to the “two-signal” model, antigen recognition alone should render B cells tolerant unless T cell help or inflammatory signals such as lipopolysaccharide are provided. However, no such signals seem necessary for responses to T-independent type 2 (TI-2) antigens, which are multimeric antigens lacking T cell epitopes and Toll-like receptor ligands. How then do mature B cells avoid making a TI-2–like response to multimeric self-antigens? We present evidence that TI-2 antigens decorated with ligands of inhibitory sialic acid–binding Ig-like lectins (siglecs) are poorly immunogenic and can induce tolerance to subsequent challenge with immunogenic antigen. Two siglecs, CD22 and Siglec-G, contributed to tolerance induction, preventing plasma cell differentiation or survival. Although mutations in CD22 and its signaling machinery have been associated with dysregulated B cell development and autoantibody production, previous analyses failed to identify a tolerance defect in antigen-specific mutant B cells. Our results support a role for siglecs in B cell self-/nonself-discrimination, namely suppressing responses to self-associated antigens while permitting rapid “missing self”–responses to unsialylated multimeric antigens. The results suggest use of siglec ligand antigen constructs as an approach for inducing tolerance.
Collapse
Affiliation(s)
- Bao Hoa Duong
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Oracki SA, Tsantikos E, Quilici C, Light A, Schmidt T, Lew AM, Martin JE, Smith KG, Hibbs ML, Tarlinton DM. CTLA4Ig alters the course of autoimmune disease development in Lyn-/- mice. THE JOURNAL OF IMMUNOLOGY 2009; 184:757-63. [PMID: 19966213 DOI: 10.4049/jimmunol.0804349] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lyn-deficient (Lyn(-/-)) mice develop an age-dependent autoimmune disease similar to systemic lupus erythematosus, characterized by the production of IgG anti-nuclear Ab. To determine the extent to which this autoimmune phenotype is driven by T cell costimulation, we generated Lyn(-/-) mice expressing a soluble form of the T cell inhibitory molecule, CTLA4 (CTLA4Ig). Surprisingly, although CTLA4Ig prevented myeloid hyperplasia, splenomegaly and IgG anti-nuclear Ab production in Lyn(-/-) mice, it did not inhibit immune complex deposition and tissue destruction in the kidney. In fact, regardless of CTLA4Ig expression, Lyn(-/-) serum contained elevated titers of IgA anti-nuclear Ab, although generally IgA deposition in the kidney was only revealed in the absence of self-reactive IgG. This demonstrated that activation of autoreactive B cell clones in Lyn(-/-) mice can still occur despite impaired costimulation. Indeed, CTLA4Ig did not alter perturbed Lyn(-/-) B cell development and behavior, and plasma cell frequencies were predominantly unaffected. These results suggest that when self-reactive B cell clones are unimpeded in acquiring T cell help, they secrete pathogenic IgG autoantibodies that trigger the fulminant autoimmunity normally observed in Lyn(-/-) mice. The absence of these IgG immune complexes reveals an IgA-mediated axis of autoimmunity that is not sufficient to cause splenomegaly or extramedullary myelopoiesis, but which mediates destructive glomerulonephritis. These findings have implications for the understanding of the basis of Ab-mediated autoimmune diseases and for their treatment with CTLA4Ig.
Collapse
Affiliation(s)
- Sarah A Oracki
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Cheung YH, Loh C, Pau E, Kim J, Wither J. Insights into the genetic basis and immunopathogenesis of systemic lupus erythematosus from the study of mouse models. Semin Immunol 2009; 21:372-82. [DOI: 10.1016/j.smim.2009.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 10/23/2009] [Indexed: 01/15/2023]
|
123
|
Browne CD, Del Nagro CJ, Cato MH, Dengler HS, Rickert RC. Suppression of phosphatidylinositol 3,4,5-trisphosphate production is a key determinant of B cell anergy. Immunity 2009; 31:749-60. [PMID: 19896393 DOI: 10.1016/j.immuni.2009.08.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 06/15/2009] [Accepted: 08/21/2009] [Indexed: 01/01/2023]
Abstract
Anergy is a critical physiologic mechanism to sensor self-reactive B cells. However, a biochemical understanding of how anergy is achieved and maintained is lacking. Herein, we investigated the role of the phosphoinositide 3-kinase (PI3K) lipid product PI(3,4,5)P(3) in B cell anergy. We found reduced generation of PI(3,4,5)P(3) in anergic B cells, which was attributable to reduced phosphorylation of the PI3K membrane adaptor CD19, as well as increased expression of the inositol phosphatase PTEN. Sustained production of PI(3,4,5)P(3) in B cells, achieved through conditional deletion of Pten, resulted in failed tolerance induction and abundant autoantibody production. In contrast to wild-type immature B cells, B cell receptor engagement of PTEN-deficient immature B cells resulted in activation and proliferation, indicating a central defect in early B cell responsiveness. These findings establish repression of the PI3K signaling pathway as a necessary condition to avert the generation, activation, and persistence of self-reactive B cells.
Collapse
Affiliation(s)
- Cecille D Browne
- Program of Inflammatory Disease Research, Infectious and Inflammatory Disease Center & Program of Signal Transduction, Cancer Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
124
|
Pillai S, Cariappa A, Pirnie SP. Esterases and autoimmunity: the sialic acid acetylesterase pathway and the regulation of peripheral B cell tolerance. Trends Immunol 2009; 30:488-93. [PMID: 19766537 DOI: 10.1016/j.it.2009.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/29/2009] [Accepted: 07/02/2009] [Indexed: 11/16/2022]
Abstract
The best studied mechanisms of B cell tolerance are receptor editing, clonal deletion and anergy. All of these mechanisms of B cell tolerance depend on the induction of signaling downstream of the B cell receptor by self-antigens. Another important and distinct mechanism of B cell tolerance involves the repression of antigen receptor signaling rather than its induction, utilizes the Lyn Src-family kinase, the SHP-1 tyrosine phosphatase, inhibitory members of the Siglec family, and a carbohydrate-modifying enzyme that is capable of negatively regulating B cell receptor activation known as sialic acid acetylesterase.
Collapse
Affiliation(s)
- Shiv Pillai
- Cancer Center, Massachusetts General Hospital, Boston MA 02129, USA.
| | | | | |
Collapse
|
125
|
Dasu T, Sindhava V, Clarke SH, Bondada S. CD19 signaling is impaired in murine peritoneal and splenic B-1 B lymphocytes. Mol Immunol 2009; 46:2655-65. [PMID: 19541367 PMCID: PMC2727919 DOI: 10.1016/j.molimm.2009.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 04/16/2009] [Indexed: 01/02/2023]
Abstract
B-1 cells reside predominantly within the coelomic cavities, tonsils, Peyer's patches, spleen (a minor fraction - approximately 5%) and are absent in the lymph nodes. They are the primary sources of natural IgM in the body. B-1 cells express polyreactive B cell receptors (BCRs) that cross react with self-antigens and are thus implicated in auto-immune disorders. Previously, we reported that peritoneal B-1 cells are deficient in CD19-mediated intracellular signals leading to Ca(2+) mobilization. Here, we find that splenic B-1 cells, like peritoneal B-1 cells, are defective in Ca(2+) release upon B cell activation by co-cross-linking BCR and CD19. In the absence of extracellular sources of Ca(2+), intracellular Ca(2+) flux is similar between B-1 and B-2 cells. Moreover, the intracellular component of Ca(2+) release in both subsets of B cells is mostly PI3K dependent. BCR and CD19 co-cross-linking activates Akt, a key mediator of survival and proliferation signals downstream of PI3K in splenic B-2 cells. Splenic B-1 cells, on the other hand, do not phosphorylate Akt (S473) upon similar treatment. Furthermore, BCR+CD19 cross-linking induced phosphorylation of JNK is much reduced in splenic B-1 cells. In contrast, B-1 cells exhibited increased levels of constitutively active pLyn which appears to have an inhibitory role. The CD19 induced Ca(2+) response and BCR induced proliferation response were restored by a partial inhibition of pLyn with Src kinase specific inhibitors. These findings suggest a defect in CD19-mediated signals in both peritoneal and splenic B-1 B lymphocytes, which is in part, due to higher levels of constitutively active Lyn.
Collapse
Affiliation(s)
- Trivikram Dasu
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Vishal Sindhava
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Stephen H Clarke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Subbarao Bondada
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, United States
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, United States
- Markey Cancer Research Center, University of Kentucky, Lexington, KY 40536-0096, United States
| |
Collapse
|
126
|
Johnson AL, Aravind L, Shulzhenko N, Morgun A, Choi SY, Crockford TL, Lambe T, Domaschenz H, Kucharska EM, Zheng L, Vinuesa CG, Lenardo MJ, Goodnow CC, Cornall RJ, Schwartz RH. Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. Nat Immunol 2009; 10:831-9. [PMID: 19597497 PMCID: PMC2908989 DOI: 10.1038/ni.1769] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 06/09/2009] [Indexed: 01/15/2023]
Abstract
T cell antigen receptor (TCR) signaling in CD4(+)CD8(+) double-positive thymocytes determines cell survival and lineage commitment, but the genetic and molecular basis of this process is poorly defined. To address this issue, we used ethylnitrosourea mutagenesis to identify a previously unknown T lineage-specific gene, Themis, which is critical for the completion of positive selection. Themis contains a tandem repeat of a unique globular domain (called 'CABIT' here) that includes a cysteine motif that defines a family of five uncharacterized vertebrate proteins with orthologs in most animal species. Themis-deficient thymocytes showed no substantial impairment in early TCR signaling but did show altered expression of genes involved in the cell cycle and survival before and during positive selection. Our data suggest a unique function for Themis in sustaining positive selection.
Collapse
Affiliation(s)
- Andy L Johnson
- Nuffield Department of Clinical Medicine, Oxford University, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Tsantikos E, Quilici C, Harder KW, Wang B, Zhu HJ, Anderson GP, Tarlinton DM, Hibbs ML. Perturbation of the CD4 T cell compartment and expansion of regulatory T cells in autoimmune-prone Lyn-deficient mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:2484-94. [PMID: 19620313 DOI: 10.4049/jimmunol.0804346] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Regulatory T cells (Tregs) are a subset of T lymphocytes that are responsible for suppressing the function of other immune cells, and preventing potentially harmful autoimmune responses. Studies in autoimmune-prone mice and human autoimmune diseases have shown reduced Treg number or function as a causative factor for the apparent loss of tolerance that contributes to disease. We have found that Lyn-deficient mice, which develop high titers of autoantibodies with age, have a perturbed Treg compartment. Contrary to what has been observed in some strains of autoimmune-prone mice, aged Lyn-deficient mice have increased numbers of Tregs. This expansion occurs in the presence of elevated serum IL-2 and diminished TGF-beta. Despite expansion of the Treg compartment, Lyn-deficient mice succumb at approximately 1 year of age due to immune complex-mediated glomerulonephritis. We have shown that Lyn is not expressed in Tregs or indeed in any T cell subset, suggesting that the expansion and apparent functional deficiency in Tregs in Lyn-deficient mice is due to extrinsic factors rather than an intrinsic Treg defect. Indeed, using an in vivo colitis model, we have shown that Lyn-deficient Tregs can suppress inflammation. These results suggest that Tregs are expanding in Lyn-deficient mice in an effort to control the autoimmune disease but are simply overwhelmed by the disease process. This study highlights the role of the inflammatory setting in autoimmune disease and its consideration when contemplating the use of Tregs as an autoimmune therapy.
Collapse
Affiliation(s)
- Evelyn Tsantikos
- Signal Transduction Laboratory, Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Habib HM, Taher TE, Isenberg DA, Mageed RA. Enhanced propensity of T lymphocytes in patients with systemic lupus erythematosus to apoptosis in the presence of tumour necrosis factor alpha. Scand J Rheumatol 2009; 38:112-20. [DOI: 10.1080/03009740802409496] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
129
|
Douglas KB, Windels DC, Zhao J, Gadeliya AV, Wu H, Kaufman KM, Harley JB, Merrill J, Kimberly RP, Alarcón GS, Brown EE, Edberg JC, Ramsey-Goldman R, Petri M, Reveille JD, Vilá LM, Gaffney PM, James JA, Moser KL, Alarcón-Riquelme ME, Vyse TJ, Gilkeson GS, Jacob CO, Ziegler JT, Langefeld CD, Ulgiati D, Tsao BP, Boackle SA. Complement receptor 2 polymorphisms associated with systemic lupus erythematosus modulate alternative splicing. Genes Immun 2009; 10:457-69. [PMID: 19387458 PMCID: PMC2714407 DOI: 10.1038/gene.2009.27] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 02/05/2023]
Abstract
Genetic factors influence susceptibility to systemic lupus erythematosus (SLE). A recent family-based analysis in Caucasian and Chinese populations provided evidence for association of single-nucleotide polymorphisms (SNPs) in the complement receptor 2 (CR2/CD21) gene with SLE. Here we confirmed this result in a case-control analysis of an independent European-derived population including 2084 patients with SLE and 2853 healthy controls. A haplotype formed by the minor alleles of three CR2 SNPs (rs1048971, rs17615, rs4308977) showed significant association with decreased risk of SLE (30.4% in cases vs 32.6% in controls, P=0.016, OR=0.90 (0.82-0.98)). Two of these SNPs are in exon 10, directly 5' of an alternatively spliced exon preferentially expressed in follicular dendritic cells (FDC), and the third is in the alternatively spliced exon. Effects of these SNPs and a fourth SNP in exon 11 (rs17616) on alternative splicing were evaluated. We found that the minor alleles of these SNPs decreased splicing efficiency of exon 11 both in vitro and ex vivo. These findings further implicate CR2 in the pathogenesis of SLE and suggest that CR2 variants alter the maintenance of tolerance and autoantibody production in the secondary lymphoid tissues where B cells and FDCs interact.
Collapse
Affiliation(s)
| | | | - Jian Zhao
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Hui Wu
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenneth M. Kaufman
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- US Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - John B. Harley
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- US Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Joan Merrill
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | | | | | | | - Michelle Petri
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John D. Reveille
- University of Texas-Houston Health Science Center, Houston, TX, USA
| | - Luis M. Vilá
- University of Puerto Rico, San Juan, Puerto Rico
| | | | - Judith A. James
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kathy L. Moser
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | | | | | | - Julie T. Ziegler
- Section on Statistical Genetics and Bioinformatics, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Carl D. Langefeld
- Section on Statistical Genetics and Bioinformatics, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Daniela Ulgiati
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Betty P. Tsao
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Susan A. Boackle
- University of Colorado Denver School of Medicine, Aurora, CO, USA
| |
Collapse
|
130
|
|
131
|
Lu R, Vidal GS, Kelly JA, Delgado-Vega AM, Howard XK, Macwana SR, Dominguez N, Klein W, Burrell C, Harley IT, Kaufman KM, Bruner GR, Moser KL, Gaffney PM, Gilkeson GS, Wakeland EK, Li QZ, Langefeld CD, Marion MC, Divers J, Alarcón GS, Brown EE, Kimberly RP, Edberg JC, Ramsey-Goldman R, Reveille JD, McGwin G, Vilá LM, Petri MA, Bae SC, Cho SK, Bang SY, Kim I, Choi CB, Martin J, Vyse TJ, Merrill JT, Harley JB, Alarcón-Riquelme ME, BIOLUPUS and GENLES Multicenter Collaborations, Nath SK, James JA, Guthridge JM. Genetic associations of LYN with systemic lupus erythematosus. Genes Immun 2009; 10:397-403. [PMID: 19369946 PMCID: PMC2750001 DOI: 10.1038/gene.2009.19] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/05/2009] [Accepted: 03/12/2009] [Indexed: 11/09/2022]
Abstract
We targeted LYN, a src-tyosine kinase involved in B-cell activation, in case-control association studies using populations of European-American, African-American and Korean subjects. Our combined European-derived population, consisting of 2463 independent cases and 3131 unrelated controls, shows significant association with rs6983130 in a female-only analysis with 2254 cases and 2228 controls (P=1.1 x 10(-4), odds ratio (OR)=0.81 (95% confidence interval: 0.73-0.90)). This single nucleotide polymorphism (SNP) is located in the 5' untranslated region within the first intron near the transcription initiation site of LYN. In addition, SNPs upstream of the first exon also show weak and sporadic association in subsets of the total European-American population. Multivariate logistic regression analysis implicates rs6983130 as a protective factor for systemic lupus erythematosus (SLE) susceptibility when anti-dsDNA, anti-chromatin, anti-52 kDa Ro or anti-Sm autoantibody status were used as covariates. Subset analysis of the European-American female cases by American College of Rheumatology classification criteria shows a reduction in the risk of hematological disorder with rs6983130 compared with cases without hematological disorders (P=1.5 x 10(-3), OR=0.75 (95% CI: 0.62-0.89)). None of the 90 SNPs tested show significant association with SLE in the African American or Korean populations. These results support an association of LYN with European-derived individuals with SLE, especially within autoantibody or clinical subsets.
Collapse
Affiliation(s)
- R Lu
- Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
Collaborators
Peter Junker, Ann Voss, Helle Laustrup, Bernard R Lauwerys, Frédéric A Houssiau, Carlos Vasconcelos, Berta Martins Da Silva, Carmen Gutierrez, Ana Suárez, Torsten Witte, Sandra D'Alfonso, Sergio Migliaresi, Mauro Galeazzi, Gian Domenico Sebastiani, Bernardo Pons-Estel, Emoke Endreffy, Peter K Gregersen, Jorge R Oksenberg, Graciela S Alarcón, Elizabeth E Brown, Robert P Kimberly, Jeffery C Edberg, Gerald McGwin, Rosalind Ramsey-Goldman, John D Reveille, Luis M Vilá, Michelle A Petri,
Collapse
|
132
|
Abstract
The mainstay of therapy of chronic lymphocytic leukemia (CLL) is cytotoxic chemotherapy; however, CLL is still an incurable disease with resistance to therapy developing in the majority of patients. In recent years, our understanding of the biological basis of CLL pathogenesis has substantially improved and novel treatment strategies are emerging. Tailoring and individualizing therapy according to the molecular and cellular biology of the disease is on the horizon, and advances with targeted agents such as monoclonal antibodies combined with traditional chemotherapy have lead to improved remission rates. The proposed key role of the B-cell receptor (BCR) in CLL pathogenesis has led to a number of possible opportunities for therapeutic exploitation. We are beginning to understand that the microenvironment is of utmost importance in CLL because certain T-cell subsets and stromal cells support the outgrowth and development of the malignant clone. Furthermore, an increase in our understanding of the deregulated cell-death machinery in CLL is a prerequisite to developing new targeted strategies that might be more effective in engaging with the cell-death machinery. This Review summarizes the progress made in understanding these features of CLL biology and describes novel treatment strategies that have also been exploited in current clinical trials.
Collapse
|
133
|
Gross AJ, Lyandres JR, Panigrahi AK, Prak ETL, DeFranco AL. Developmental acquisition of the Lyn-CD22-SHP-1 inhibitory pathway promotes B cell tolerance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5382-92. [PMID: 19380785 PMCID: PMC2840041 DOI: 10.4049/jimmunol.0803941] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To better understand whether autoimmunity in Lyn-deficient mice arises from compromised central or peripheral B cell tolerance, we examined BCR signaling properties of wild-type and Lyn-deficient B cells at different stages of development. Wild-type mature follicular B cells were less sensitive to BCR stimulation than were immature transitional stage 1 B cells with regard to BCR-induced calcium elevation and ERK MAPK activation. In the absence of Lyn, mature B cell signaling was greatly enhanced, whereas immature B cell signaling was minimally affected. Correspondingly, Lyn deficiency substantially enhanced the sensitivity of mature B cells to activation via the BCR, but minimally affected events associated with tolerance induction at the immature stage. The effects of CD22 deficiency on BCR signaling were very similar in B cells at different stages of maturation. These results indicate that the Lyn-CD22-Src homology region 2 domain-containing phosphatase-1 inhibitory pathway largely becomes operational as B cell mature, and sets a threshold for activation that appears to be critical for the maintenance of tolerance in the B cell compartment.
Collapse
MESH Headings
- Animals
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Gene Expression Regulation, Developmental/physiology
- Immune Tolerance/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Mice, Transgenic
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/deficiency
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/physiology
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/physiology
- Sialic Acid Binding Ig-like Lectin 2/genetics
- Sialic Acid Binding Ig-like Lectin 2/metabolism
- Sialic Acid Binding Ig-like Lectin 2/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/enzymology
- Spleen/immunology
- Up-Regulation/genetics
- Up-Regulation/immunology
- src-Family Kinases/deficiency
- src-Family Kinases/genetics
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- Andrew J Gross
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
134
|
Miller AT, Beisner DR, Liu D, Cooke MP. Inositol 1,4,5-trisphosphate 3-kinase B is a negative regulator of BCR signaling that controls B cell selection and tolerance induction. THE JOURNAL OF IMMUNOLOGY 2009; 182:4696-704. [PMID: 19342645 DOI: 10.4049/jimmunol.0802850] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inositol 1,4,5-trisphosphate 3-kinase B (or Itpkb) converts inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate upon Ag receptor activation and controls the fate and function of lymphocytes. To determine the role of Itpkb in B cell tolerance, Itpkb(-/-) mice were crossed to transgenic mice that express a BCR specific for hen egg lysozyme (IgHEL). B cells from Itpkb(-/-) IgHEL mice possess an anergic phenotype, hypoproliferate in response to cognate Ag, and yet they exhibit enhanced Ag-induced calcium signaling. In IgHEL transgenic mice that also express soluble HEL, lack of Itpkb converts anergy induction to deletion. These data establish Itpkb as a negative regulator of BCR signaling that controls the fate of developing B cells and tolerance induction.
Collapse
Affiliation(s)
- Andrew T Miller
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
135
|
Singleton KL, Roybal KT, Sun Y, Fu G, Gascoigne NRJ, van Oers NSC, Wülfing C. Spatiotemporal patterning during T cell activation is highly diverse. Sci Signal 2009; 2:ra15. [PMID: 19351954 PMCID: PMC2694444 DOI: 10.1126/scisignal.2000199] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Temporal and spatial variations in the concentrations of signaling intermediates in a living cell are important for signaling in complex networks because they modulate the probabilities that signaling intermediates will interact with each other. We have studied 30 signaling sensors, ranging from receptors to transcription factors, in the physiological activation of murine ex vivo T cells by antigen-presenting cells. Spatiotemporal patterning of these molecules was highly diverse and varied with specific T cell receptors and T cell activation conditions. The diversity and variability observed suggest that spatiotemporal patterning controls signaling interactions during T cell activation in a physiologically important and discriminating manner. In support of this, the effective clustering of a group of ligand-engaged receptors and signaling intermediates in a joint pattern consistently correlated with efficient T cell activation at the level of the whole cell.
Collapse
Affiliation(s)
- Kentner L. Singleton
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kole T. Roybal
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Sun
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guo Fu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas R. J. Gascoigne
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicolai S. C. van Oers
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christoph Wülfing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
136
|
Verhagen AM, Wallace ME, Goradia A, Jones SA, Croom HA, Metcalf D, Collinge JE, Maxwell MJ, Hibbs ML, Alexander WS, Hilton DJ, Kile BT, Starr R. A kinase-dead allele of Lyn attenuates autoimmune disease normally associated with Lyn deficiency. THE JOURNAL OF IMMUNOLOGY 2009; 182:2020-9. [PMID: 19201855 DOI: 10.4049/jimmunol.0803127] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lyn kinase, a member of the Src family of tyrosine kinases, functions as both a positive and negative regulator of B cell activation. In the absence of Lyn, BCR signaling is unregulated, leading to perturbed B cell development, hyperactive B cells, and lethal Ab-mediated autoimmune disease. We have generated a mutant mouse pedigree, termed Mld4, harboring a novel mutation in the gene encoding Lyn, which renders the protein devoid of kinase activity. Despite similarities between the phenotypes of Lyn(Mld4/Mld4) and Lyn(-/-) mice, the spectrum of defects in Lyn(Mld4/Mld4) mice is less severe. In particular, although defects in the B cell compartment are similar, splenomegaly, myeloid expansion, and autoantibody production, characteristic of Lyn(-/-) mice, are absent or mild in Lyn(Mld4/Mld4) mice. Critically, immune complex deposition and complement activation in Lyn(Mld4/Mld4) glomeruli do not result in fulminant glomerulonephritis. Our data suggest that BCR hypersensitivity is insufficient for the development of autoimmune disease in Lyn(-/-) mice and implicate other cell lineages, particularly proinflammatory cells, in autoimmune disease progression. Furthermore, our results provide evidence for an additional role for Lyn kinase, distinct from its catalytic activity, in regulating intracellular signaling pathways.
Collapse
Affiliation(s)
- Anne M Verhagen
- Signal Transduction Laboratory, St. Vincent's Institute, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Courtney AH, Puffer EB, Pontrello JK, Yang ZQ, Kiessling LL. Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation. Proc Natl Acad Sci U S A 2009; 106:2500-5. [PMID: 19202057 PMCID: PMC2650292 DOI: 10.1073/pnas.0807207106] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Indexed: 11/18/2022] Open
Abstract
CD22 is an inhibitory coreceptor on the surface of B cells that attenuates B cell antigen receptor (BCR) signaling and, therefore, B cell activation. Elucidating the molecular mechanisms underlying the inhibitory activity of CD22 is complicated by the ubiquity of CD22 ligands. Although antigens can display CD22 ligands, the receptor is known to bind to sialylated glycoproteins on the cell surface. The propinquity of CD22 and cell-surface glycoprotein ligands has led to the conclusion that the inhibitory properties of the receptor are due to cis interactions. Here, we examine the functional consequences of trans interactions by employing sialylated multivalent antigens that can engage both CD22 and the BCR. Exposure of B cells to sialylated antigens results in the inhibition of key steps in BCR signaling. These results reveal that antigens bearing CD22 ligands are powerful suppressors of B cell activation. The ability of sialylated antigens to inhibit BCR signaling through trans CD22 interactions reveals a previously unrecognized role for the Siglec-family of receptors as modulators of immune signaling.
Collapse
Affiliation(s)
| | | | | | | | - Laura L. Kiessling
- Departments of Biochemistry and
- Chemistry, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
138
|
Barouch-Bentov R, Che J, Lee CC, Yang Y, Herman A, Jia Y, Velentza A, Watson J, Sternberg L, Kim S, Ziaee N, Miller A, Jackson C, Fujimoto M, Young M, Batalov S, Liu Y, Warmuth M, Wiltshire T, Cooke MP, Sauer K. A conserved salt bridge in the G loop of multiple protein kinases is important for catalysis and for in vivo Lyn function. Mol Cell 2009; 33:43-52. [PMID: 19150426 PMCID: PMC2683036 DOI: 10.1016/j.molcel.2008.12.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 06/30/2008] [Accepted: 12/23/2008] [Indexed: 12/12/2022]
Abstract
The glycine-rich G loop controls ATP binding and phosphate transfer in protein kinases. Here we show that the functions of Src family and Abl protein tyrosine kinases require an electrostatic interaction between oppositely charged amino acids within their G loops that is conserved in multiple other phylogenetically distinct protein kinases, from plants to humans. By limiting G loop flexibility, it controls ATP binding, catalysis, and inhibition by ATP-competitive compounds such as Imatinib. In WeeB mice, mutational disruption of the interaction results in expression of a Lyn protein with reduced catalytic activity, and in perturbed B cell receptor signaling. Like Lyn(-/-) mice, WeeB mice show profound defects in B cell development and function and succumb to autoimmune glomerulonephritis. This demonstrates the physiological importance of the conserved G loop salt bridge and at the same time distinguishes the in vivo requirement for the Lyn kinase activity from other potential functions of the protein.
Collapse
Affiliation(s)
- Rina Barouch-Bentov
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Jianwei Che
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Christian C. Lee
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Yating Yang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ann Herman
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Yong Jia
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Anastasia Velentza
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - James Watson
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Luise Sternberg
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sunjun Kim
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Niusha Ziaee
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Andrew Miller
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Carie Jackson
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Manabu Fujimoto
- Department of Dermatology, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Mike Young
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Serge Batalov
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Yi Liu
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Markus Warmuth
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Tim Wiltshire
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Michael P. Cooke
- Genomics Institute of the Novartis Research Foundation, 10675 John J. Hopkins Drive, San Diego, CA 92121
| | - Karsten Sauer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
139
|
|
140
|
Ostrakhovitch EA, Wang Y, Li SSC. SAP binds to CD22 and regulates B cell inhibitory signaling and calcium flux. Cell Signal 2008; 21:540-50. [PMID: 19150402 DOI: 10.1016/j.cellsig.2008.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/10/2008] [Accepted: 12/15/2008] [Indexed: 01/25/2023]
Abstract
The signaling lymphocyte activation molecule (SLAM)-associated protein (SAP or SH2D1A) is an important regulator of immune function which, when mutated or deleted, causes the X-linked lymphoproliferative syndrome (XLP). Because B cell lymphoma is a major phenotype of XLP, it is important to understand the function of SAP in B cells. Here we report that SAP is expressed endogenously in mouse splenic B cells, is inducibly expressed in the human BJAB cells, and co-localizes and interacts with CD22. We also show that SAP binding to the inhibitory immunoreceptor CD22 regulates calcium mobilization in B cells. Moreover, forced expression of SAP leads to constitutive CD22 tyrosine phosphorylation and decreased Ca(2+) response in B cells. Biochemical analysis reveals that, in response to IgM cross-linking, the phosphorylation of Syk, Blnk, or PLCgamma2 and their interactions with one another were either diminished or completely abolished in SAP-expressing cells compared to cells that lack SAP. Collectively our work identifies a novel role for SAP in B cells and extends its function to inhibitory immunoreceptor signaling and calcium mobilization.
Collapse
Affiliation(s)
- Elena A Ostrakhovitch
- Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | | | | |
Collapse
|
141
|
Cariappa A, Takematsu H, Liu H, Diaz S, Haider K, Boboila C, Kalloo G, Connole M, Shi HN, Varki N, Varki A, Pillai S. B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. ACTA ACUST UNITED AC 2008; 206:125-38. [PMID: 19103880 PMCID: PMC2626685 DOI: 10.1084/jem.20081399] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We show that the enzymatic acetylation and deacetylation of a cell surface carbohydrate controls B cell development, signaling, and immunological tolerance. Mice with a mutation in sialate:O-acetyl esterase, an enzyme that specifically removes acetyl moieties from the 9-OH position of α2–6-linked sialic acid, exhibit enhanced B cell receptor (BCR) activation, defects in peripheral B cell development, and spontaneously develop antichromatin autoantibodies and glomerular immune complex deposits. The 9-O-acetylation state of sialic acid regulates the function of CD22, a Siglec that functions in vivo as an inhibitor of BCR signaling. These results describe a novel catalytic regulator of B cell signaling and underscore the crucial role of inhibitory signaling in the maintenance of immunological tolerance in the B lineage.
Collapse
Affiliation(s)
- Annaiah Cariappa
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
The subunit structure of the B-cell antigen receptor (BCR) and its associated compartmentalization of function confer enormous flexibility for generating signals and directing these toward specific and divergent cell fate decisions. Like all the multichain immune recognition receptors discussed in this volume, assembly of these multi-unit complexes sets these receptors apart from almost all other cell surface signal transduction proteins and affords them the ability to participate in almost all of the diverse aspects of, in this case, B-cell biology. We discuss here the structural aspects of the BCR and its associated coreceptors and relate these mechanistically to how BCR signaling can be directed towards specific fate decisions. By doing so, the BCR plays a pivotal role in ensuring the effective and appropriate B-cell response to antigen.
Collapse
Affiliation(s)
- Randall J Brezski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
143
|
Epstein-Barr virus latent membrane protein 2A preferentially signals through the Src family kinase Lyn. J Virol 2008; 82:8520-8. [PMID: 18579586 DOI: 10.1128/jvi.00843-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Latent membrane protein 2A (LMP2A) is a viral protein expressed during Epstein-Barr virus (EBV) latency in EBV-infected B cells both in cell culture and in vivo. LMP2A has important roles in modulating B-cell receptor signal transduction and provides survival and developmental signals to B cells in vivo. Although Lyn has been shown to be important in mediating LMP2A signaling, it is still unclear if Lyn is used preferentially or if LMP2A associates promiscuously with other Src family kinase (SFK) members. To investigate the role of various SFKs in LMP2A signaling, we crossed LMP2A transgenic mice (TgE) with Lyn(-/-), Fyn(-/-), or Blk(-/-) mice. TgE Lyn(-/-) mice had a larger immunoglobulin M (IgM)-positive B-cell population than TgE mice, suggesting that the absence of Lyn prevents LMP2A from delivering survival and developmental signals to the B cells. Both TgE Fyn(-/-) and TgE Blk(-/-) mice have an IgM-negative population of splenic B cells, similar to the TgE mice. LMP2A was also transiently transfected into the human EBV-negative B-cell line BJAB to determine which SFK members associate with LMP2A. Lyn was detected in LMP2A immunoprecipitates, whereas Fyn was not. Both Lyn and Fyn were able to bind to an LMP2A mutant which contained a sequence shown previously to bind tightly to the SH2 domain of multiple SFK members. From these results, we conclude that LMP2A preferentially associates with and signals through Lyn compared to its association with other SFKs. This preferential association is due in part to the SH2 domain of Lyn associating with LMP2A.
Collapse
|
144
|
Cohen PL, Maldonado MA. Animal models for SLE. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 15:Unit 15.20. [PMID: 18432900 DOI: 10.1002/0471142735.im1520s52] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systemic lupus erythematosus (SLE) in humans is characterized by inflammatory lesions in skin, joints, kidneys, the central nervous system (CNS), and elsewhere. The clinical manifestations are accompanied by autoantibodies to diverse self antigens, mainly but not exclusively derived from the cell nucleus. Autoantibodies are generally believed to cause most of the tissue damage, although direct injury via cell-mediated immunity is also important. This unit describes protocols for the quantitation of SLE-associated autoantibody levels in mouse serum: detection of anti-chromatin antibodies, detection of anti-single and anti-double-stranded DNA antibodies, and detection of rheumatoid factor. Support protocols for preparing chicken chromatin and dsDNA are included. Also included is an immunoglobulin allotype-specific adaptation of the basic autoantibody ELISA which is useful for measuring antibody production in chimeric animals. The unit includes an ELISPOT protocol for quantitating cells producing anti-chromatin, as well as a method for genotyping mice for the faslpr and fasLgld mutations.
Collapse
Affiliation(s)
- Philip L Cohen
- University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
145
|
Xiao W, Hong H, Kawakami Y, Lowell CA, Kawakami T. Regulation of myeloproliferation and M2 macrophage programming in mice by Lyn/Hck, SHIP, and Stat5. J Clin Invest 2008; 118:924-34. [PMID: 18246197 DOI: 10.1172/jci34013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Accepted: 11/28/2007] [Indexed: 12/31/2022] Open
Abstract
The proliferation and differentiation of hematopoietic stem cells (HSCs) is finely regulated by extrinsic and intrinsic factors via various signaling pathways. Here we have shown that, similar to mice deficient in the lipid phosphatase SHIP, loss of 2 Src family kinases, Lyn and Hck, profoundly affects HSC differentiation, producing hematopoietic progenitors with increased proliferation, reduced apoptosis, growth factor-independent survival, and skewed differentiation toward M2 macrophages. This phenotype culminates in a Stat5-dependent myeloproliferative disease that is accompanied by M2 macrophage infiltration of the lung. Expression of a membrane-bound form of SHIP in HSCs lacking both Lyn and Hck restored normal hematopoiesis and prevented myeloproliferation. In vitro and in vivo studies suggested the involvement of autocrine and/or paracrine production of IL-3 and GM-CSF in the increased proliferation and myeloid differentiation of HSCs. Thus, this study has defined a myeloproliferative transformation-sensitive signaling pathway, composed of Lyn/Hck, SHIP, autocrine/paracrine cytokines, and Stat5, that regulates HSC differentiation and M2 macrophage programming.
Collapse
Affiliation(s)
- Wenbin Xiao
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
146
|
Orschell CM, Borneo J, Munugalavadla V, Ma P, Sims E, Ramdas B, Yoder MC, Kapur R. Deficiency of Src family kinases compromises the repopulating ability of hematopoietic stem cells. Exp Hematol 2008; 36:655-66. [PMID: 18346837 DOI: 10.1016/j.exphem.2008.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Src family kinases (SFK) have been implicated in regulating growth factor and integrin-induced proliferation, migration, and gene expression in multiple cell types. However, little is known about the role of these kinases in the growth, homing, and engraftment potential of hematopoietic stem and progenitor cells. RESULTS Here we show that loss of hematopoietic-specific SFKs Hck, Fgr, and Lyn results in increased number of Sca-1(+)Lin(-) cells in the bone marrow, which respond differentially to cytokine-induced growth in vitro and manifest a significant defect in the long-term repopulating potential in vivo. Interestingly, a significant increase in expression of adhesion molecules, known to coincide with the homing potential of wild-type bone marrow cells is also observed on the surface of SFK(-/-) cells, although, this increase did not affect the homing potential of more primitive Lin(-)Sca-1(+) SFK(-/-) cells. The stem cell-repopulating defect observed in mice transplanted with SFK(-/-) bone marrow cells is due to the loss of Lyn Src kinase, because deficiency of Lyn, but not Hck or Fgr, recapitulated the long-term stem cell defect observed in mice transplanted with SFK(-/-) bone marrow cells. CONCLUSIONS Taken together, our results demonstrate an essential role for Lyn kinase in positively regulating the long-term and multilineage engraftment of stem cells, which is distinct from its role in mature B cells and myeloid cells.
Collapse
Affiliation(s)
- Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 2008; 40:211-6. [PMID: 18204447 DOI: 10.1038/ng.79] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 12/12/2007] [Indexed: 11/09/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by production of autoantibodies and complex genetic inheritance. In a genome-wide scan using 85,042 SNPs, we identified an association between SLE and a nonsynonymous substitution (rs10516487, R61H) in the B-cell scaffold protein with ankyrin repeats gene, BANK1. We replicated the association in four independent case-control sets (combined P = 3.7 x 10(-10); OR = 1.38). We analyzed BANK1 cDNA and found two isoforms, one full-length and the other alternatively spliced and lacking exon 2 (Delta2), encoding a protein without a putative IP3R-binding domain. The transcripts were differentially expressed depending on a branch point-site SNP, rs17266594, in strong linkage disequilibrium (LD) with rs10516487. A third associated variant was found in the ankyrin domain (rs3733197, A383T). Our findings implicate BANK1 as a susceptibility gene for SLE, with variants affecting regulatory sites and key functional domains. The disease-associated variants could contribute to sustained B cell-receptor signaling and B-cell hyperactivity characteristic of this disease.
Collapse
|
148
|
Chang NH, McKenzie T, Bonventi G, Landolt-Marticorena C, Fortin PR, Gladman D, Urowitz M, Wither JE. Expanded Population of Activated Antigen-Engaged Cells within the Naive B Cell Compartment of Patients with Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2008; 180:1276-84. [DOI: 10.4049/jimmunol.180.2.1276] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
149
|
Zhu C, Sato M, Yanagisawa T, Fujimoto M, Adachi T, Tsubata T. Novel Binding Site for Src Homology 2-containing Protein-tyrosine Phosphatase-1 in CD22 Activated by B Lymphocyte Stimulation with Antigen. J Biol Chem 2008; 283:1653-1659. [DOI: 10.1074/jbc.m706584200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
150
|
Abstract
B cells and autoimmunity: cells of the immune system have the capacity to recognize/neutralize a myriad array of disease-causing pathogens, while simultaneously minimizing damage to self tissue. Obvious breakdowns in this ability to distinguish between self and non-self are evident in multiple forms of autoimmune disease, where B and T cells mount damaging attacks on cells and organs. B cells may directly damage tissue by producing pathogenic antibodies that bind self antigen, fix complement or form immune complexes. Recent evidence also suggests B cells indirectly induce autoimmunity by concentrating low avidity self antigen through the B cell receptor and presenting self-peptides to autoreactive T cells. B cells may also initiate autoimmunity when provided sufficient help from autoreactive T cells that have escaped deletion in the thymus. Here, we will review the role of anergy in maintenance of tolerance and how alterations in the normal balance of positive and negative signals may contribute to the development of autoimmune disease in mouse models and humans.
Collapse
Affiliation(s)
- Frank J Conrad
- Integrated Department of Immunology, University of Colorado Health Science Center, National Jewish Medical Research Center, Denver, CO 80206, USA
| | | | | |
Collapse
|