101
|
Wang W, Shiraishi R, Kawauchi D. Sonic Hedgehog Signaling in Cerebellar Development and Cancer. Front Cell Dev Biol 2022; 10:864035. [PMID: 35573667 PMCID: PMC9100414 DOI: 10.3389/fcell.2022.864035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
The sonic hedgehog (SHH) pathway regulates the development of the central nervous system in vertebrates. Aberrant regulation of SHH signaling pathways often causes neurodevelopmental diseases and brain tumors. In the cerebellum, SHH secreted by Purkinje cells is a potent mitogen for granule cell progenitors, which are the most abundant cell type in the mature brain. While a reduction in SHH signaling induces cerebellar structural abnormalities, such as hypoplasia in various genetic disorders, the constitutive activation of SHH signaling often induces medulloblastoma (MB), one of the most common pediatric malignant brain tumors. Based on the existing literature on canonical and non-canonical SHH signaling pathways, emerging basic and clinical studies are exploring novel therapeutic approaches for MB by targeting SHH signaling at distinct molecular levels. In this review, we discuss the present consensus on SHH signaling mechanisms, their roles in cerebellar development and tumorigenesis, and the recent advances in clinical trials for MB.
Collapse
Affiliation(s)
- Wanchen Wang
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
- *Correspondence: Daisuke Kawauchi,
| |
Collapse
|
102
|
Zhou Q, Xu Y, Zhou Y, Wang J. Promising Chemotherapy for Malignant Pediatric Brain Tumor in Recent Biological Insights. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092685. [PMID: 35566032 PMCID: PMC9104915 DOI: 10.3390/molecules27092685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Brain tumors are the most widespread malignancies in children around the world. Chemotherapy plays a critical role in the treatment of these tumors. Although the current chemotherapy process has a remarkable outcome for a certain subtype of brain tumor, improving patient survival is still a major challenge. Further intensive treatment with conventional non-specific chemotherapy could cause additional adverse reactions without significant advancement in survival. Recently, patient derived brain tumor, xenograft, and whole genome analysis using deep sequencing technology has made a significant contribution to our understanding of cancer treatment. This realization has changed the focus to new agents, targeting the molecular pathways that are critical to tumor survival or proliferation. Thus, many novel drugs targeting epigenetic regulators or tyrosine kinase have been developed. These selective drugs may have less toxicity in normal cells and are expected to be more effective than non-specific chemotherapeutics. This review will summarize the latest novel targets and corresponding candidate drugs, which are promising chemotherapy for brain tumors according to the biological insights.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China; (Q.Z.); (Y.Z.)
| | - Yichen Xu
- Department of Biological Sciences, University of Southern California (Main Campus), Los Angeles, CA 90007, USA;
| | - Yan Zhou
- Department of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China; (Q.Z.); (Y.Z.)
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
103
|
Khalid U, Simovic M, Hammann LA, Iskar M, Kl Wong J, Kumar R, Jugold M, Sill M, Bolkestein M, Kolb T, Hergt M, Devens F, Ecker J, Kool M, Milde T, Westermann F, Benner A, Lewis J, Dietrich S, Pfister SM, Lichter P, Zapatka M, Ernst A. A synergistic interaction between HDAC- and PARP inhibitors in childhood tumors with chromothripsis. Int J Cancer 2022; 151:590-606. [PMID: 35411591 DOI: 10.1002/ijc.34027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/15/2021] [Accepted: 01/25/2022] [Indexed: 11/06/2022]
Abstract
Chromothripsis is a form of genomic instability characterized by the occurrence of tens to hundreds of clustered DNA double-strand breaks in a one-off catastrophic event. Rearrangements associated with chromothripsis are detectable in numerous tumor entities and linked with poor prognosis in some of these, such as Sonic Hedgehog medulloblastoma, neuroblastoma and osteosarcoma. Hence, there is a need for therapeutic strategies eliminating tumor cells with chromothripsis. Defects in DNA double-strand break repair, and in particular homologous recombination repair, have been linked with chromothripsis. Targeting DNA repair deficiencies by synthetic lethality approaches, we performed a synergy screen using drug libraries (n = 375 compounds, 15 models) combined with either a PARP inhibitor or cisplatin. This revealed a synergistic interaction between the HDAC inhibitor romidepsin and PARP inhibition. Functional assays, transcriptome analyses, and in vivo validation in patient-derived xenograft mouse models confirmed the efficacy of the combinatorial treatment.
Collapse
Affiliation(s)
- Umar Khalid
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,University of Heidelberg, Germany
| | - Milena Simovic
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,University of Heidelberg, Germany
| | - Linda A Hammann
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,University of Heidelberg, Germany
| | - Murat Iskar
- Division of Molecular Genetics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John Kl Wong
- Division of Molecular Genetics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rithu Kumar
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Jugold
- Core Facility, Small Animal Imaging Center, DKFZ, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michiel Bolkestein
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thorsten Kolb
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michaela Hergt
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frauke Devens
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Till Milde
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; KiTZ Clinical Trial Unit.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joe Lewis
- European Molecular Biology Laboratory
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
104
|
Tauziède-Espariat A, Guerrini-Rousseau L, Perrier A, Torrejon J, Bernardi F, Varlet P, Hasty L, Delattre O, Beccaria K, Métais A, Ayrault O, Chrétien F, Bourdeaut F, Dufour C, Masliah-Planchon J. Immunohistochemistry as a tool to identify ELP1-associated medulloblastoma. Acta Neuropathol 2022; 143:523-525. [PMID: 35199222 PMCID: PMC8960608 DOI: 10.1007/s00401-022-02409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris-Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, rue Cabanis, 75014, Paris, France.
- Institut de Psychiatrie Et Neurosciences de Paris (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France.
- Université de Paris, Paris, France.
| | - Léa Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Paris Saclay University, Villejuif, France
- Team "Genomics and Oncogenesis of Pediatric Brain Tumors", INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Alexandre Perrier
- Laboratory of Somatic Genetics, Curie Institute Hospital, Paris, France
| | - Jacob Torrejon
- Institut Curie, PSL Research University, CNRS UMR, INSERM, 91898, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91898, Orsay, France
| | - Flavia Bernardi
- Institut Curie, PSL Research University, CNRS UMR, INSERM, 91898, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91898, Orsay, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris-Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, rue Cabanis, 75014, Paris, France
- Institut de Psychiatrie Et Neurosciences de Paris (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France
- Université de Paris, Paris, France
| | - Lauren Hasty
- Department of Neuropathology, GHU Paris-Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, rue Cabanis, 75014, Paris, France
| | - Olivier Delattre
- Université de Paris, Paris, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91898, Orsay, France
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker Hospital, APHP, Université Paris Descartes, Sorbonne Paris Cite, 75015, Paris, France
| | - Alice Métais
- Department of Neuropathology, GHU Paris-Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, rue Cabanis, 75014, Paris, France
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, 91898, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91898, Orsay, France
| | - Fabrice Chrétien
- Department of Neuropathology, GHU Paris-Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, rue Cabanis, 75014, Paris, France
- Université de Paris, Paris, France
| | - Franck Bourdeaut
- SIREDO Center Care, Innovation, Research in Pediatric, Adolescent and Young Adult Oncology, Curie Institute and Paris Descartes University, Paris, France
| | - Christelle Dufour
- Department of Children and Adolescents Oncology, Gustave Roussy, Paris Saclay University, Villejuif, France
- Team "Genomics and Oncogenesis of Pediatric Brain Tumors", INSERM U981, Gustave Roussy, Paris Saclay University, Villejuif, France
| | | |
Collapse
|
105
|
Multidisciplinary Management of Medulloblastoma: Consensus, Challenges, and Controversies. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2423:215-235. [PMID: 34978701 DOI: 10.1007/978-1-0716-1952-0_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Medulloblastoma is a highly aggressive "small round blue cell tumor" of the posterior fossa predominantly seen in children. Historically aggressive multimodality regimens have achieved encouraging outcomes with the caveat of severe long-term toxicities. The last decade has unleashed a revolution in terms of evolved understanding of this heterogeneous disease entity in terms of molecular biology. Medulloblastoma as of today is grouped into one of four canonical molecular subgroups (WNT, SHH, Group 3, and Group 4) each characterized by different putative cells of origin, characteristic aberrations at the molecular level, radiogenomics, and outcomes. Our understanding continues to grow in this regard. The future promises much in terms of personalized medicine in tailoring therapy to the needs of individual patients based on their clinical and molecular profile in order to maximize individual and population based outcomes at the cost of minimizing toxicity.
Collapse
|
106
|
Luo J, Wang J, Yang J, Huang W, Liu J, Tan W, Xin H. Saikosaponin B1 and Saikosaponin D inhibit tumor growth in medulloblastoma allograft mice via inhibiting the Hedgehog signaling pathway. J Nat Med 2022; 76:584-593. [PMID: 35171398 DOI: 10.1007/s11418-022-01603-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/11/2022] [Indexed: 12/01/2022]
Abstract
Medulloblastoma (MB), accounting for nearly 10% of all childhood brain tumors, are implicated with aberrant activation of the Hedgehog (Hh) signaling pathway. Saikosaponin B1 (SSB1) and Saikosaponin D (SSD), two bioactive constituents of Radix Bupleuri, are reported to have many biological activities including anticancer activities. In our work, we evaluated the inhibition of SSB1 and SSD on MB tumor growth in allograft mice and explored the underlying mechanisms. The associated biological activity was investigated in Shh Light II cells, an Hh-responsive fibroblast cell line, using the Dual-Glo® Luciferase Assay System. First, SSB1 (IC50, 241.8 nM) and SSD (IC50, 168.7 nM) inhibited GLI-luciferase activity in Shh Light II cells stimulated with ShhN CM, as well as Gli1 and Ptch1 mRNA expression. In addition, both compounds suppressed the Hh signaling activity provoked by smoothened agonist (SAG) or excessive Smoothened (SMO) expression. Meanwhile, SSB1 and SSD did not inhibit glioma-associated oncogene homolog (GLI) luciferase activity activated by abnormal expression of downstream molecules, suppressor of fuse (SUFU) knockdown or GLI2 overexpression. Consequently, SSB1 (30 mg/kg, ip) and SSD (10 mg/kg, ip) displayed excellent in vivo inhibitory activity in MB allografts, and the tumor growth inhibition ratios were approximately 50% and 70%, respectively. Our findings, thus, identify SSB1 and SSD significantly inhibit tumor growth in MB models by inhibiting the Hedgehog pathway through targeting SMO.
Collapse
Affiliation(s)
- Jia Luo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Jun Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Wenjing Huang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Junqiu Liu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
107
|
Lafay-Cousin L, Dufour C. High-Dose Chemotherapy in Children with Newly Diagnosed Medulloblastoma. Cancers (Basel) 2022; 14:837. [PMID: 35159104 PMCID: PMC8834150 DOI: 10.3390/cancers14030837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
High-dose chemotherapy with stem cell rescue has been used as an adjuvant therapy or as salvage therapy to treat pediatric patients with brain tumors, and to avoid deleterious side effects of radiotherapy in infants and very young children. Here, we present the most recent trials using high-dose chemotherapy regimens for medulloblastoma in children, and we discuss their contribution to improved survival and describe their toxicity profile and limitations.
Collapse
Affiliation(s)
- Lucie Lafay-Cousin
- Section of Pediatric Hematology Oncology and Bone Marrow Transplantation, Alberta Children’s Hospital, Calgary, AB T3B 6A8, Canada
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 96805 Villejuif, France;
| |
Collapse
|
108
|
Epidemiologic profile and outcome of primary pediatric brain tumors in Iran: retrospective study and literature review. Childs Nerv Syst 2022; 38:353-360. [PMID: 34559302 DOI: 10.1007/s00381-021-05363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Primary pediatric tumors are the most common solid tumors in children. There are limited reports on the management and outcome of these tumors in the developing countries. In recent years, advances have been done in the diagnosis, treatment, and outcome of these tumors. The aim of this study was to evaluate the histopathology, characteristics, and outcome of primary pediatric tumors in Iran. METHODS This retrospective study examines primary brain tumors in children below 14 years of age who have undergone surgery. Histopathological characteristics according to WHO 2017 classification, age, sex, tumor resection rate, and patient outcome were extracted and studied. The results of the study were compared with the results of similar reports from neighboring countries and other parts of the world. RESULTS In this study, 199 primary pediatric tumors were examined. Out of 199 cases, 114 cases were males, and 85 cases were females, and the male/female ratio was 1.34. The most common tumor group in this study was astrocytic tumors (68.3%) and the most common tumor was pilocytic astrocytoma (22.1%). In terms of malignancy, 50.7% of tumors were benign, and 49.3% were malignant. Total resection was done in 46% and subtotal resection in 35%. The mortality rate was found 19.2%. َAmong the remaining cases during follow-up, 76.6% had a good outcome without neurological deficits or mild disability and 23.4% had moderate to severe disability. CONCLUSIONS The results of the study in terms of pathology and demographic characteristics were mainly similar to other reports. The mean age of patients was lower, and the patients' outcome was better than the other countries in the region.
Collapse
|
109
|
Harris MK, Shatara M, Funk Z, Stanek J, Boué DR, Jones J, Finlay JL, Abdelbaki MS. Recurrent Wnt medulloblastoma treated with marrow-ablative chemotherapy and autologous hematopoietic progenitor cell rescue: a dual case report and review of the literature. Childs Nerv Syst 2022; 38:465-472. [PMID: 33948723 DOI: 10.1007/s00381-021-05197-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 11/27/2022]
Abstract
Wnt-activated medulloblastoma (MB) confers an excellent prognosis. However, specific treatment strategies for patients with relapsed Wnt-MB are unknown. We report two patients with recurrent beta-catenin nucleopositive Wnt-MB successfully treated by incorporating marrow-ablative chemotherapy and autologous hematopoietic progenitor cell rescue (HDCx/AuHPCR). We also present a review of the literature for previously reported cases of relapsed Wnt-MB. We propose that patients with recurrent Wnt-MB may be treated using a multi-disciplinary approach that includes HDCx/AuHPCR with or without re-irradiation.
Collapse
Affiliation(s)
- Micah K Harris
- The Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Margaret Shatara
- The Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, 43205, USA
- The Division of Pediatric Hematology and Oncology, Washington University School of Medicine, 1 Children's Pl, St. Louis, MO, 63011, USA
| | - Zachary Funk
- The Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, 43205, USA
| | - Joseph Stanek
- The Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, 43205, USA
| | - Daniel R Boué
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio, 43210, USA
| | - Jeremy Jones
- The Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Jonathan L Finlay
- The Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, 43205, USA
| | - Mohamed S Abdelbaki
- The Division of Hematology, Oncology, Blood and Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, 43205, USA.
- The Division of Pediatric Hematology and Oncology, Washington University School of Medicine, 1 Children's Pl, St. Louis, MO, 63011, USA.
| |
Collapse
|
110
|
Pfister SM, Reyes-Múgica M, Chan JKC, Hasle H, Lazar AJ, Rossi S, Ferrari A, Jarzembowski JA, Pritchard-Jones K, Hill DA, Jacques TS, Wesseling P, López Terrada DH, von Deimling A, Kratz CP, Cree IA, Alaggio R. A Summary of the Inaugural WHO Classification of Pediatric Tumors: Transitioning from the Optical into the Molecular Era. Cancer Discov 2022; 12:331-355. [PMID: 34921008 PMCID: PMC9401511 DOI: 10.1158/2159-8290.cd-21-1094] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023]
Abstract
Pediatric tumors are uncommon, yet are the leading cause of cancer-related death in childhood. Tumor types, molecular characteristics, and pathogenesis are unique, often originating from a single genetic driver event. The specific diagnostic challenges of childhood tumors led to the development of the first World Health Organization (WHO) Classification of Pediatric Tumors. The classification is rooted in a multilayered approach, incorporating morphology, IHC, and molecular characteristics. The volume is organized according to organ sites and provides a single, state-of-the-art compendium of pediatric tumor types. A special emphasis was placed on "blastomas," which variably recapitulate the morphologic maturation of organs from which they originate. SIGNIFICANCE: In this review, we briefly summarize the main features and updates of each chapter of the inaugural WHO Classification of Pediatric Tumors, including its rapid transition from a mostly microscopic into a molecularly driven classification systematically taking recent discoveries in pediatric tumor genomics into account.
Collapse
Affiliation(s)
- Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Miguel Reyes-Múgica
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR China
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Jason A Jarzembowski
- Department of Pathology, Children's Wisconsin and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - D Ashley Hill
- Department of Pathology, Children's National Hospital, Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Thomas S Jacques
- Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Pieter Wesseling
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands
| | - Dolores H López Terrada
- Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ian A Cree
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
111
|
The Current Landscape of Targeted Clinical Trials in Non-WNT/Non-SHH Medulloblastoma. Cancers (Basel) 2022; 14:cancers14030679. [PMID: 35158947 PMCID: PMC8833659 DOI: 10.3390/cancers14030679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Medulloblastoma is a form of malignant brain tumor that arises predominantly in infants and young children and can be divided into different groups based on molecular markers. The group of non-WNT/non-SHH medulloblastoma includes a spectrum of heterogeneous subgroups that differ in their biological characteristics, genetic underpinnings, and clinical course of disease. Non-WNT/non-SHH medulloblastoma is currently treated with surgery, chemotherapy, and radiotherapy; however, new drugs are needed to treat patients who are not yet curable and to reduce treatment-related toxicity and side effects. We here review which new treatment options for non-WNT/non-SHH medulloblastoma are currently clinically tested. Furthermore, we illustrate the challenges that have to be overcome to reach a new therapeutic standard for non-WNT/non-SHH medulloblastoma, for instance the current lack of good preclinical models, and the necessity to conduct trials in a comparably small patient collective. Abstract Medulloblastoma is an embryonal pediatric brain tumor and can be divided into at least four molecularly defined groups. The category non-WNT/non-SHH medulloblastoma summarizes medulloblastoma groups 3 and 4 and is characterized by considerable genetic and clinical heterogeneity. New therapeutic strategies are needed to increase survival rates and to reduce treatment-related toxicity. We performed a noncomprehensive targeted review of the current clinical trial landscape and literature to summarize innovative treatment options for non-WNT/non-SHH medulloblastoma. A multitude of new drugs is currently evaluated in trials for which non-WNT/non-SHH patients are eligible, for instance immunotherapy, kinase inhibitors, and drugs targeting the epigenome. However, the majority of these trials is not restricted to medulloblastoma and lacks molecular classification. Whereas many new molecular targets have been identified in the last decade, which are currently tested in clinical trials, several challenges remain on the way to reach a new therapeutic strategy for non-WNT/non-SHH medulloblastoma. These include the severe lack of faithful preclinical models and predictive biomarkers, the question on how to stratify patients for clinical trials, and the relative lack of studies that recruit large, homogeneous patient collectives. Innovative trial designs and international collaboration will be a key to eventually overcome these obstacles.
Collapse
|
112
|
The Molecular Landscape of Medulloblastoma in Teenagers and Young Adults. Cancers (Basel) 2022; 14:cancers14010251. [PMID: 35008416 PMCID: PMC8750554 DOI: 10.3390/cancers14010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 02/01/2023] Open
Abstract
Medulloblastoma (MB) is a childhood malignant brain tumour but also occurs in teenagers and young adults (TYA). Considering that MB is heterogeneous, this study aimed to define the molecular landscape of MBs in TYAs. We collated more than 2000 MB samples that included 287 TYA patients (13-24 years). We performed computational analyses consisting of genome-wide methylation and transcriptomic profiles and developed a prognostics model for the TYAs with MB. We identified that TYAs predominantly comprised of Group 4 (40%) and Sonic Hedgehog (SHH)-activated (33%) tumours, with Wingless-type (WNT, 17%) and Group 3 (10%) being less common. TYAs with SHH tumours displayed significantly more gene expression alterations, whereas no gene was detected in the Group 4 tumours. Across MB subgroups, we identified unique and shared sets of TYA-specific differentially methylated probes and DNA-binding motifs. Finally, a 22-gene signature stratified TYA patients into high- and low-risk groups, and the prognostic significance of these risk groups persisted in multivariable regression models (P = 0.001). This study is an important step toward delineating the molecular landscape of TYAs with MB. The emergence of novel genes and pathways may provide a basis for improved clinical management of TYA with MB.
Collapse
|
113
|
Shahani SA, Marcotte EL. Landscape of germline cancer predisposition mutations testing and management in pediatrics: Implications for research and clinical care. Front Pediatr 2022; 10:1011873. [PMID: 36225340 PMCID: PMC9548803 DOI: 10.3389/fped.2022.1011873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
As germline genetic testing capacities have improved over the last two decades, increasingly more people are newly diagnosed with germline cancer susceptibility mutations. In the wake of this growth, there remain limitations in both testing strategies and translation of these results into morbidity- and mortality-reducing practices, with pediatric populations remaining especially vulnerable. To face the challenges evoked by an expanding diversity of germline cancer mutations, we can draw upon a model cancer-associated genetic condition for which we have developed a breadth of expertise in managing, Trisomy 21. We can additionally apply advances in other disciplines, such as oncofertility and pharmacogenomics, to enhance care delivery. Herein, we describe the history of germline mutation testing, epidemiology of known germline cancer mutations and their associations with childhood cancer, testing limitations, and future directions for research and clinical care.
Collapse
Affiliation(s)
- Shilpa A Shahani
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Erin L Marcotte
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
114
|
Abstract
In 2016, medulloblastoma classification was restructured to allow for incorporation of updated data about medulloblastoma biology, genomics, and clinical behavior. For the first time, medulloblastomas were classified according to molecular characteristics ("genetically defined" categories) as well as histologic characteristics ("histologically defined" categories). Current genetically-defined categories include WNT-activated, SHH-activated TP53 wildtype, SHH-activated TP53-mutant, and non-WNT/non-SHH. In this article, we review the most recent update to the classification of medulloblastomas, provide a practical approach to immunohistochemical and molecular testing for these tumors, and demonstrate how to use key molecular genetic findings to develop an integrated diagnosis.
Collapse
Affiliation(s)
- Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
115
|
Albrecht S, Miedzybrodzki B, Palma L, Nguyen VH, Dudley RW, Pietsch T, Goschzik T, Jabado N, Goudie C, Foulkes WD. Medulloblastoma and Cowden syndrome: Further evidence of an association. FREE NEUROPATHOLOGY 2022; 3:1. [PMID: 37284158 PMCID: PMC10209873 DOI: 10.17879/freeneuropathology-2022-3684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/02/2022] [Indexed: 06/08/2023]
Abstract
Cowden syndrome (CS) is an autosomal dominant hamartoma and tumor predisposition syndrome caused by heterozygous pathogenic germline variants in PTEN in most affected individuals. Major features include macrocrania, multiple facial tricholemmomas, acral and oral keratoses and papillomas, as well as mammary, non-medullary thyroid, renal, and endometrial carcinomas. Lhermitte-Duclos disease (LDD), or dysplastic gangliocytoma of the cerebellum, is the typical brain tumor associated with CS; the lifetime risk for LDD in CS patients has been estimated to be as high as 30%. In contrast, medulloblastoma is much rarer in CS, with only 4 reported cases in the literature. We report a 5th such patient. All 5 patients were diagnosed between 1 and 2 years of age and not all showed the pathognomonic clinical stigmata of CS at the time of their medulloblastoma diagnosis. Where detailed information was available, the medulloblastoma was of the SHH-subtype, in keeping with the observation that in sporadic medulloblastomas, PTEN-alterations are usually encountered in the SHH-subtype. Medulloblastomas can be associated with several tumor-predisposition syndromes and of the 4 medulloblastoma subtypes, SHH-medulloblastomas in children have the highest prevalence of predisposing germline variants (approx. 40%). CS should be added to the list of SHH-medulloblastoma-associated syndromes. Germline analysis of PTEN should be performed in infants with SHH-medulloblastomas, regardless of their clinical phenotype, especially if they do not carry pathogenic germline variants in PTEN or PTEN, the most commonly altered predisposing genes in this age-group. In addition, these cases show that CS has a biphasic brain tumor distribution, both in regards to the age of onset and the tumor type: a small number of CS patients develop a medulloblastoma in infancy while many more develop LDD in adulthood.
Collapse
Affiliation(s)
| | - Barbara Miedzybrodzki
- Division of Dermatology, Department of Pediatrics, McGill University Health Centre, Montreal Children's Hospital, Montreal, QCCanada
| | - Laura Palma
- Department of Human Genetics, McGill University, Montreal, QCCanada
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QCCanada
| | - Van Hung Nguyen
- Department of Pathology, McGill University, Montreal, QCCanada
| | - Roy W.R. Dudley
- Division of Neurosurgery, Department of Pediatric Surgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, QCCanada
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, BonnGermany
| | - Tobias Goschzik
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, BonnGermany
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QCCanada
- Department of Pediatrics, McGill University, Montreal, QCCanada
- The Research Institute of the McGill University Health Centre, Child Health and Human Development Program, Montreal, QCCanada
| | - Catherine Goudie
- The Research Institute of the McGill University Health Centre, Child Health and Human Development Program, Montreal, QCCanada
- Division of Hematology-Oncology, Montreal Children's Hospital, Department of Pediatrics, McGill University, Montreal, QCCanada
| | - William D. Foulkes
- Department of Human Genetics, McGill University, Montreal, QCCanada
- Cancer Axis, Lady Davis Institute, The Jewish General Hospital, Montreal, QCCanada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QCCanada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCCanada
| |
Collapse
|
116
|
Hill RM, Plasschaert SLA, Timmermann B, Dufour C, Aquilina K, Avula S, Donovan L, Lequin M, Pietsch T, Thomale U, Tippelt S, Wesseling P, Rutkowski S, Clifford SC, Pfister SM, Bailey S, Fleischhack G. Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers (Basel) 2021; 14:126. [PMID: 35008290 PMCID: PMC8750207 DOI: 10.3390/cancers14010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Relapsed medulloblastoma (rMB) accounts for a considerable, and disproportionate amount of childhood cancer deaths. Recent advances have gone someway to characterising disease biology at relapse including second malignancies that often cannot be distinguished from relapse on imaging alone. Furthermore, there are now multiple international early-phase trials exploring drug-target matches across a range of high-risk/relapsed paediatric tumours. Despite these advances, treatment at relapse in pre-irradiated patients is typically non-curative and focuses on providing life-prolonging and symptom-modifying care that is tailored to the needs and wishes of the individual and their family. Here, we describe the current understanding of prognostic factors at disease relapse such as principal molecular group, adverse molecular biology, and timing of relapse. We provide an overview of the clinical diagnostic process including signs and symptoms, staging investigations, and molecular pathology, followed by a summary of treatment modalities and considerations. Finally, we summarise future directions to progress understanding of treatment resistance and the biological mechanisms underpinning early therapy-refractory and relapsed disease. These initiatives include development of comprehensive and collaborative molecular profiling approaches at relapse, liquid biopsies such as cerebrospinal fluid (CSF) as a biomarker of minimal residual disease (MRD), modelling strategies, and the use of primary tumour material for real-time drug screening approaches.
Collapse
Affiliation(s)
- Rebecca M. Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Sabine L. A. Plasschaert
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany;
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France;
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK;
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK;
| | - Laura Donovan
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Maarten Lequin
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, 53127 Bonn, Germany;
| | - Ulrich Thomale
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Stephan Tippelt
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
- Department of Pathology, Amsterdam University Medical Centers/VUmc, 1081 HV Amsterdam, The Netherlands
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Stefan M. Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Gudrun Fleischhack
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| |
Collapse
|
117
|
Role of MicroRNAs in the Development and Progression of the Four Medulloblastoma Subgroups. Cancers (Basel) 2021; 13:cancers13246323. [PMID: 34944941 PMCID: PMC8699467 DOI: 10.3390/cancers13246323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma is the most frequent malignant brain tumour in children. Medulloblastoma originate during the embryonic stage. They are located in the cerebellum, which is the area of the central nervous system (CNS) responsible for controlling equilibrium and coordination of movements. In 2012, medulloblastoma were divided into four subgroups based on a genome-wide analysis of RNA expression. These subgroups are named Wingless, Sonic Hedgehog, Group 3 and Group 4. Each subgroup has a different cell of origin, prognosis, and response to therapies. Wingless and Sonic Hedgehog medulloblastoma are so named based on the main mutation originating these tumours. Group 3 and Group 4 have generic names because we do not know the key mutation driving these tumours. Gene expression at the post-transcriptional level is regulated by a group of small single-stranded non-coding RNAs. These microRNA (miRNAs or miRs) play a central role in several cellular functions such as cell differentiation and, therefore, any malfunction in this regulatory system leads to a variety of disorders such as cancer. The role of miRNAs in medulloblastoma is still a topic of intense clinical research; previous studies have mostly concentrated on the clinical entity of the single disease rather than in the four molecular subgroups. In this review, we summarize the latest discoveries on miRNAs in the four medulloblastoma subgroups.
Collapse
|
118
|
Kloth K, Obrecht D, Sturm D, Pietsch T, Warmuth-Metz M, Bison B, Mynarek M, Rutkowski S. Defining the Spectrum, Treatment and Outcome of Patients With Genetically Confirmed Gorlin Syndrome From the HIT-MED Cohort. Front Oncol 2021; 11:756025. [PMID: 34888241 PMCID: PMC8649840 DOI: 10.3389/fonc.2021.756025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
Gorlin syndrome is a genetic condition associated with the occurrence of SHH activated medulloblastoma, basal cell carcinoma, macrocephaly and other congenital anomalies. It is caused by heterozygous pathogenic variants in PTCH1 or SUFU. In this study we included 16 patients from the HIT2000, HIT2000interim, I-HIT-MED, observation registry and older registries such as HIT-SKK87, HIT-SKK92 (1987 – 2020) with genetically confirmed Gorlin syndrome, harboring 10 PTCH1 and 6 SUFU mutations. Nine patients presented with desmoplastic medulloblastomas (DMB), 6 with medulloblastomas with extensive nodularity (MBEN) and one patient with classic medulloblastoma (CMB); all tumors affected the cerebellum, vermis or the fourth ventricle. SHH activation was present in all investigated tumors (14/16); DNA methylation analysis (when available) classified 3 tumors as iSHH-I and 4 tumors as iSHH-II. Age at diagnosis ranged from 0.65 to 3.41 years. All but one patient received chemotherapy according to the HIT-SKK protocol. Ten patients were in complete remission after completion of primary therapy; four subsequently presented with PD. No patient received radiotherapy during initial treatment. Five patients acquired additional neoplasms, namely basal cell carcinomas, odontogenic tumors, ovarian fibromas and meningioma. Developmental delay was documented in 5/16 patients. Overall survival (OS) and progression-free survival (PFS) between patients with PTCH1 or SUFU mutations did not differ statistically (10y-OS 90% vs. 100%, p=0.414; 5y-PFS 88.9% ± 10.5% vs. 41.7% ± 22.2%, p=0.139). Comparing the Gorlin patients to all young, SHH activated MBs in the registries (10y-OS 93.3% ± 6.4% vs. 92.5% ± 3.3%, p=0.738; 10y-PFS 64.9%+-16.7% vs. 83.8%+-4.5%, p=0.228) as well as comparing Gorlin M0 SKK-treated patients to all young, SHH activated, M0, SKK-treated MBs in the HIT-MED database did not reveal significantly different clinical outcomes (10y-OS 88.9% ± 10.5% vs. 88% ± 4%, p=0.812; 5y-PFS 87.5% ± 11.7% vs. 77.7% ± 5.1%, p=0.746). Gorlin syndrome should be considered in young children with SHH activated medulloblastoma, especially DMB and MBEN but cannot be ruled out for CMB. Survival did not differ to patients with SHH-activated medulloblastoma with unknown germline status or between PTCH1 and SUFU mutated patients. Additional neoplasms, especially basal cell carcinomas, need to be expected and screened for. Genetic counselling should be provided for families with young medulloblastoma patients with SHH activation.
Collapse
Affiliation(s)
- Katja Kloth
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Obrecht
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany.,Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, Deutsche Gesellschaft für Neuropathologie und Neuroanatomie (DGNN) Brain Tumor Reference Center, Bonn, Germany
| | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Brigitte Bison
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
119
|
Childhood Malignant Brain Tumors: Balancing the Bench and Bedside. Cancers (Basel) 2021; 13:cancers13236099. [PMID: 34885207 PMCID: PMC8656510 DOI: 10.3390/cancers13236099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/28/2023] Open
Abstract
Simple Summary Brain tumors remain the most common childhood solid tumors, accounting for approximately 25% of all pediatric cancers. They also represent the most common cause of cancer-related illness and death in this age group. Recent years have witnessed an evolution in our understanding of the biological underpinnings of many childhood brain tumors, potentially improving survival through both improved risk group allocation for patients to provide appropriate treatment intensity, and novel therapeutic breakthroughs. This review aims to summarize the molecular landscape, current trial-based standards of care, novel treatments being explored and future challenges for the three most common childhood malignant brain tumors—medulloblastomas, high-grade gliomas and ependymomas. Abstract Brain tumors are the leading cause of childhood cancer deaths in developed countries. They also represent the most common solid tumor in this age group, accounting for approximately one-quarter of all pediatric cancers. Developments in neuro-imaging, neurosurgical techniques, adjuvant therapy and supportive care have improved survival rates for certain tumors, allowing a future focus on optimizing cure, whilst minimizing long-term adverse effects. Recent times have witnessed a rapid evolution in the molecular characterization of several of the common pediatric brain tumors, allowing unique clinical and biological patient subgroups to be identified. However, a resulting paradigm shift in both translational therapy and subsequent survival for many of these tumors remains elusive, while recurrence remains a great clinical challenge. This review will provide an insight into the key molecular developments and global co-operative trial results for the most common malignant pediatric brain tumors (medulloblastoma, high-grade gliomas and ependymoma), highlighting potential future directions for management, including novel therapeutic options, and critical challenges that remain unsolved.
Collapse
|
120
|
Mynarek M, Milde T, Padovani L, Janssens GO, Kwiecien R, Mosseri V, Clifford SC, Doz F, Rutkowski S. SIOP PNET5 MB Trial: History and Concept of a Molecularly Stratified Clinical Trial of Risk-Adapted Therapies for Standard-Risk Medulloblastoma. Cancers (Basel) 2021; 13:6077. [PMID: 34885186 PMCID: PMC8657236 DOI: 10.3390/cancers13236077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND SIOP PNET5 MB was initiated in 2014 as the first European trial using clinical, histological, and molecular parameters to stratify treatments for children and adolescents with standard-risk medulloblastoma. METHODS Stratification by upfront assessment of molecular parameters requires the timely submission of adequate tumour tissue. In the standard-risk phase-III cohort, defined by the absence of high-risk criteria (M0, R0), pathological (non-LCA), and molecular biomarkers (MYCN amplification in SHH-MB or MYC amplification), a randomized intensification by carboplatin concomitant with radiotherapy is investigated. In the LR stratum for localized WNT-activated medulloblastoma and age <16 years, a reduction of craniospinal radiotherapy dose to 18 Gy and a reduced maintenance chemotherapy are investigated. Two additional strata (WNT-HR, SHH-TP53) were implemented during the trial. RESULTS SIOP PNET5 MB is actively recruiting. The availability of adequate tumour tissue for upfront real-time biological assessments to assess inclusion criteria has proven feasible. CONCLUSION SIOP PNET5 MB has demonstrated that implementation of biological parameters for stratification is feasible in a prospective multicentre setting, and may improve risk-adapted treatment. Comprehensive research studies may allow assessment of additional parameters, e.g., novel medulloblastoma subtypes, and identification and validation of biomarkers for the further refinement of risk-adapted treatment in the future.
Collapse
Affiliation(s)
- Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till Milde
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany;
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Laetitia Padovani
- Oncology Radiotherapy Department, CRCM Inserm, Aix-Marseille University, UMR1068, CNRS UMR7258, AMU UM105, Genome Instability and Carcinogenesis, Assistance Publique des Hôpitaux de Marseille, 13284 Marseille, France;
| | - Geert O. Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands;
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Robert Kwiecien
- Institute of Biostatistics and Clinical Research, Faculty of Medicine, University of Münster, 48149 Münster, Germany;
| | | | - Steven C. Clifford
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - François Doz
- SIREDO Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), Institut Curie, Paris and Université de Paris, 75248 Paris, France;
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
121
|
Friedman GK, Dhall G. Potential role of carbon ion radiotherapy in chromothripsis-induced medulloblastoma and other malignancies. Neuro Oncol 2021; 23:1991. [PMID: 34605541 DOI: 10.1093/neuonc/noab232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Gregory K Friedman
- Department of Pediatrics, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Girish Dhall
- Department of Pediatrics, Division of Hematology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
122
|
McEachron TA, Helman LJ. Recent Advances in Pediatric Cancer Research. Cancer Res 2021; 81:5783-5799. [PMID: 34561271 DOI: 10.1158/0008-5472.can-21-1191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Over the past few years, the field of pediatric cancer has experienced a shift in momentum, and this has led to new and exciting findings that have relevance beyond pediatric malignancies. Here we present the current status of key aspects of pediatric cancer research. We have focused on genetic and epigenetic drivers of disease, cellular origins of different pediatric cancers, disease models, the tumor microenvironment, and cellular immunotherapies.
Collapse
Affiliation(s)
| | - Lee J Helman
- Osteosarcoma Institute, Dallas, Texas
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
123
|
Rivero-Hinojosa S, Grant M, Panigrahi A, Zhang H, Caisova V, Bollard CM, Rood BR. Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors. Nat Commun 2021; 12:6689. [PMID: 34795224 PMCID: PMC8602676 DOI: 10.1038/s41467-021-26936-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Neoantigen discovery in pediatric brain tumors is hampered by their low mutational burden and scant tissue availability. Here we develop a proteogenomic approach combining tumor DNA/RNA sequencing and mass spectrometry proteomics to identify tumor-restricted (neoantigen) peptides arising from multiple genomic aberrations to generate a highly target-specific, autologous, personalized T cell immunotherapy. Our data indicate that aberrant splice junctions are the primary source of neoantigens in medulloblastoma, a common pediatric brain tumor. Proteogenomically identified tumor-specific peptides are immunogenic and generate MHC II-based T cell responses. Moreover, polyclonal and polyfunctional T cells specific for tumor-specific peptides effectively eliminate tumor cells in vitro. Targeting tumor-specific antigens obviates the issue of central immune tolerance while potentially providing a safety margin favoring combination with other immune-activating therapies. These findings demonstrate the proteogenomic discovery of immunogenic tumor-specific peptides and lay the groundwork for personalized targeted T cell therapies for children with brain tumors. Targeting tumor-associated antigens in paediatric medulloblastomas (MB) is challenging due to their low mutational burden. Here, the authors develop a sensitive proteogenomic approach to identify tumour specific neoantigens, which may enable personalised T cell immunotherapy in paediatric MB.
Collapse
Affiliation(s)
- Samuel Rivero-Hinojosa
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA
| | - Melanie Grant
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.,Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Aswini Panigrahi
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA
| | - Huizhen Zhang
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA
| | - Veronika Caisova
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.,George Washington University Cancer Center, Washington, DC, USA
| | - Brian R Rood
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA. .,George Washington University Cancer Center, Washington, DC, USA.
| |
Collapse
|
124
|
Central Nervous System Tumor Classification: An Update on the Integration of Tumor Genetics. Hematol Oncol Clin North Am 2021; 36:1-21. [PMID: 34763992 DOI: 10.1016/j.hoc.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 2016, the World Health Organization Classification of CNS Tumors introduced molecular abnormalities that refined tumor diagnoses. Around this time, the introduction of large scale genetic mutational analyses quickly advanced our knowledge of recurrent abnormalities in disease. In 2017, the C-IMPACT group was established to render expert consensus opinions regarding the application of molecular findings into central nervous system tumor diagnoses. C-IMPACT have presented their recommendations in 7 peer-reviewed publications; this article details those recommendations that are expected to be incorporated into the upcoming fifth edition of the World Health Organization classification.
Collapse
|
125
|
Baliga S, Gallotto S, Bajaj B, Lewy J, Weyman E, Lawell M, Yeap BY, Ebb DE, Huang M, Caruso P, Perry A, Jones RM, MacDonald SM, Tarbell NJ, Yock TI. Decade Long Disease, Secondary Malignancy, and Brainstem Injury Outcomes in Pediatric and Young Adult Medulloblastoma Patients Treated with Proton Radiotherapy. Neuro Oncol 2021; 24:1010-1019. [PMID: 34788463 DOI: 10.1093/neuonc/noab257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Survivors of pediatric medulloblastoma experience long term morbidity associated with the toxic effects of post-operative radiotherapy. Proton radiotherapy limits radiation dose to normal tissues thereby reducing side effects of treatment while maintaining high cure rates. However, long term data on disease outcomes and long-term effects of proton radiotherapy remain limited. METHODS 178 Pediatric medulloblastoma patients treated with proton radiotherapy between 2002-2016 at the Massachusetts General Hospital comprise the cohort of patients who were treated with surgery, radiation therapy and chemotherapy. We evaluated EFS, OS, and LC using the Kaplan Meier method. The cumulative incidence of brainstem injury and secondary malignancies was assessed. RESULTS Median follow-up was 9.3 years. 159 patients (89.3%) underwent a gross total resection (GTR). The 10-year OS for the entire cohort, standard risk, and intermediate/high risk patients was 79.3%, 86.9%, and 68.9% respectively. The 10-year EFS for entire cohort, SR, and IR/HR cohorts was 73.8%, 79.5%, and 66.2%. The 10-year EFS and OS for patients with GTR/NTR were 75.3% and 81.0% versus 57.7% and 61.0% for STR. On univariate analysis, IR/HR status was associated with inferior EFS, while both anaplastic histology and IR/HR status was associated with worse overall survival. The 10-year cumulative incidence of secondary tumors and brainstem injury was 5.6% and 2.1%, respectively. CONCLUSIONS In this cohort study of pediatric medulloblastoma, proton radiotherapy was effective and disease outcomes were comparable to historically treated photon cohorts. The incidence of secondary malignancies and brainstem injury was low in this cohort with mature follow up.
Collapse
Affiliation(s)
- Sujith Baliga
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sara Gallotto
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Benjamin Bajaj
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Jaqueline Lewy
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Weyman
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Miranda Lawell
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Beow Y Yeap
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - David E Ebb
- Department of Pediatric Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mary Huang
- Department of Pediatric Hematology Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Paul Caruso
- Department of Pediatric Neuroradiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Alisa Perry
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Robin M Jones
- Department of Pediatric Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Nancy J Tarbell
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
126
|
Liu APY, Chung PHY, Au Yeung RKH, Chan S, Wong KKY, Leung SY, Chiang AKS. Early Development of Colonic Adenocarcinoma With Minimal Polyposis in a Young Child With Metastatic Hepatoblastoma and Germline APC Mutation. J Pediatr Hematol Oncol 2021; 43:e1191-e1193. [PMID: 34001798 DOI: 10.1097/mph.0000000000002209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
Germline adenomatous polyposis coli (APC) gene mutation is a cancer-predisposing condition commonly presenting as familial adenomatous polyposis. We describe a patient first diagnosed at the age of 3 years with metastatic hepatoblastoma. With a positive family history, germline testing confirmed maternally inherited APC mutation (p.Thr899Ansfs*13). The patient was subsequently diagnosed at 8 years with colonic adenocarcinoma in the absence of macroscopic polyposis. Total colectomy with adjuvant chemotherapy was delivered and the patient remained disease-free for 5 years since the second diagnosis. This report demonstrates the importance of considering germline APC mutation in children with hepatoblastoma, who may benefit from the early institution of colonoscopic surveillance.
Collapse
Affiliation(s)
| | | | - Rex K H Au Yeung
- Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Shing Chan
- Departments of Paediatrics and Adolescent Medicine
| | | | - Suet-Yi Leung
- Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | | |
Collapse
|
127
|
Kratz CP, Freycon C, Maxwell KN, Nichols KE, Schiffman JD, Evans DG, Achatz MI, Savage SA, Weitzel JN, Garber JE, Hainaut P, Malkin D. Analysis of the Li-Fraumeni Spectrum Based on an International Germline TP53 Variant Data Set: An International Agency for Research on Cancer TP53 Database Analysis. JAMA Oncol 2021; 7:1800-1805. [PMID: 34709361 PMCID: PMC8554692 DOI: 10.1001/jamaoncol.2021.4398] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Questions What is the phenotypic spectrum associated with variants in TP53, the gene variant in persons with Li-Fraumeni syndrome, and what mechanisms underlie phenotypic differences? Findings In this cohort study, the phenotypes within the classification Li-Fraumeni spectrum were defined, and data from 3034 persons from 1282 families with data available in the International Agency for Research on Cancer TP53 Database were analyzed and classified to reveal meaningful differences in the TP53 variant distribution between patients who met vs those who did not meet Li-Fraumeni syndrome testing criteria. Meaning The study results suggest that this classification is a potential step toward understanding the factors that lead to phenotypic differences in the Li-Fraumeni spectrum and may serve as a model for the reclassification of other hereditary conditions with an increased cancer risk. Importance Li-Fraumeni syndrome is a cancer predisposition syndrome that is associated with a high, lifelong risk of a broad spectrum of cancers that is caused by pathogenic TP53 germline variants. A definition that reflects the broad phenotypic spectrum that has evolved since the gene discovery is lacking, and mechanisms leading to phenotypic differences remain largely unknown. Objective To define the phenotypic spectrum of Li-Fraumeni syndrome and conduct phenotype-genotype associations across the phenotypic spectrum. Design, Setting, and Participants We analyzed and classified the germline variant data set of the International Agency for Research on Cancer TP53 database that contains data on a cohort of 3034 persons from 1282 families reported in the scientific literature since 1990. We defined the term Li-Fraumeni spectrum to encompass (1) phenotypic Li-Fraumeni syndrome, defined by the absence of a pathogenic/likely pathogenic TP53 variant in persons/families meeting clinical Li-Fraumeni syndrome criteria; (2) Li-Fraumeni syndrome, defined by the presence of a pathogenic/likely pathogenic TP53 variant in persons/families meeting Li-Fraumeni syndrome testing criteria; (3) attenuated Li-Fraumeni syndrome, defined by the presence of a pathogenic/likely pathogenic TP53 variant in a person/family with cancer who does not meet Li-Fraumeni syndrome testing criteria; and (4) incidental Li-Fraumeni syndrome, defined by the presence of a pathogenic/likely pathogenic TP53 variant in a person/family without a history of cancer. Data analysis occurred from November 2020 to March 2021. Main Outcomes and Measures Differences in variant distribution and cancer characteristics in patients with a germline TP53 variant who met vs did not meet Li-Fraumeni syndrome testing criteria. Results Tumor spectra showed significant differences, with more early adrenal (n = 166, 6.5% vs n = 0), brain (n = 360, 14.17% vs n = 57, 7.46%), connective tissue (n = 303, 11.92% vs n = 56, 7.33%), and bone tumors (n = 279, 10.98% vs n = 3, 0.39%) in patients who met Li-Fraumeni syndrome genetic testing criteria (n = 2139). Carriers who did not meet Li-Fraumeni syndrome genetic testing criteria (n = 678) had more breast (n = 292, 38.22% vs n = 700, 27.55%) and other cancers, 45% of them occurring after age 45 years. Hotspot variants were present in both groups. Several variants were exclusively found in patients with Li-Fraumeni syndrome, while others where exclusively found in patients with attenuated Li-Fraumeni syndrome. In patients who met Li-Fraumeni syndrome genetic testing criteria, most TP53 variants were classified as pathogenic/likely pathogenic (1757 of 2139, 82.2%), whereas 40.4% (404 of 678) of TP53 variants identified in patients who did not meet the Li-Fraumeni syndrome genetic testing criteria were classified as variants of uncertain significance, conflicting results, likely benign, benign, or unknown. Conclusions and Relevance The findings of this cohort study suggest that this new classification, Li-Fraumeni spectrum, is a step toward understanding the factors that lead to phenotypic differences and may serve as a model for other cancer predisposition syndromes.
Collapse
Affiliation(s)
- Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Claire Freycon
- Department of Pediatrics, Grenoble Alpes University Hospital, Grenoble, France.,Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale 1209 Centre National de la Recherche Scientifique 5309 Universitè Grenoble Alpes, Grenoble, France
| | - Kara N Maxwell
- Department of Medicine, Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kim E Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Joshua D Schiffman
- Division of Pediatric Hematology/Oncology, Departments of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, England
| | - Maria I Achatz
- Oncology Center, Hospital Sirio-Libanes, Sao Paulo, Brazil
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Judy E Garber
- Harvard Medical School, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale 1209 Centre National de la Recherche Scientifique 5309 Universitè Grenoble Alpes, Grenoble, France
| | - David Malkin
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
128
|
Gargallo P, Oltra S, Yáñez Y, Juan-Ribelles A, Calabria I, Segura V, Lázaro M, Balaguer J, Tormo T, Dolz S, Fernández JM, Fuentes C, Torres B, Andrés M, Tasso M, Castel V, Font de Mora J, Cañete A. Germline Predisposition to Pediatric Cancer, from Next Generation Sequencing to Medical Care. Cancers (Basel) 2021; 13:5339. [PMID: 34771502 PMCID: PMC8582391 DOI: 10.3390/cancers13215339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge about genetic predisposition to pediatric cancer is constantly expanding. The categorization and clinical management of the best-known syndromes has been refined over the years. Meanwhile, new genes for pediatric cancer susceptibility are discovered every year. Our current work shares the results of genetically studying the germline of 170 pediatric patients diagnosed with cancer. Patients were prospectively recruited and studied using a custom panel, OncoNano V2. The well-categorized predisposing syndromes incidence was 9.4%. Likely pathogenic variants for predisposition to the patient's tumor were identified in an additional 5.9% of cases. Additionally, a high number of pathogenic variants associated with recessive diseases was detected, which required family genetic counseling as well. The clinical utility of the Jongmans MC tool was evaluated, showing a high sensitivity for detecting the best-known predisposing syndromes. Our study confirms that the Jongmans MC tool is appropriate for a rapid assessment of patients; however, the updated version of Ripperger T criteria would be more accurate. Meaningfully, based on our findings, up to 9.4% of patients would present genetic alterations predisposing to cancer. Notably, up to 20% of all patients carry germline pathogenic or likely pathogenic variants in genes related to cancer and, thereby, they also require expert genetic counseling. The most important consideration is that the detection rate of genetic causality outside Jongmans MC et al. criteria was very low.
Collapse
Affiliation(s)
- Pablo Gargallo
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
- Imegen–Health in Code Group, Department of Oncology, Paterna, 46980 Valencia, Spain; (I.C.); (M.L.)
| | - Silvestre Oltra
- Genetics Unit, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain;
- Genetics Department, Universidad de Valencia, 46010 Valencia, Spain
| | - Yania Yáñez
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Antonio Juan-Ribelles
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Inés Calabria
- Imegen–Health in Code Group, Department of Oncology, Paterna, 46980 Valencia, Spain; (I.C.); (M.L.)
| | - Vanessa Segura
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Marián Lázaro
- Imegen–Health in Code Group, Department of Oncology, Paterna, 46980 Valencia, Spain; (I.C.); (M.L.)
| | - Julia Balaguer
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Teresa Tormo
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Sandra Dolz
- Laboratory of Cellular and Molecular Biology, Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.D.); (J.F.d.M.)
| | - José María Fernández
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Carolina Fuentes
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Bárbara Torres
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Mara Andrés
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - María Tasso
- Pediatric Oncology Department, Hospital General de Alicante, 03010 Alicante, Spain;
| | - Victoria Castel
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Jaime Font de Mora
- Laboratory of Cellular and Molecular Biology, Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.D.); (J.F.d.M.)
| | - Adela Cañete
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
129
|
Hirsch S, Dikow N, Pfister SM, Pajtler KW. Cancer predisposition in pediatric neuro-oncology-practical approaches and ethical considerations. Neurooncol Pract 2021; 8:526-538. [PMID: 34594567 PMCID: PMC8475219 DOI: 10.1093/nop/npab031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A genetic predisposition to tumor development can be identified in up to 10% of pediatric patients with central nervous system (CNS) tumors. For some entities, the rate of an underlying predisposition is even considerably higher. In recent years, population-based approaches have helped to further delineate the role of cancer predisposition in pediatric oncology. Investigations for cancer predisposition syndrome (CPS) can be guided by clinical signs and family history leading to directed testing of specific genes. The increasingly adopted molecular analysis of tumor and often parallel blood samples with multi-gene panel, whole-exome, or whole-genome sequencing identifies additional patients with or without clinical signs. Diagnosis of a genetic predisposition may put an additional burden on affected families. However, information on a given cancer predisposition may be critical for the patient as potentially influences treatment decisions and may offer the patient and healthy carriers the chance to take part in intensified surveillance programs aiming at early tumor detection. In this review, we discuss some of the practical and ethical challenges resulting from the widespread use of new diagnostic techniques and the most important CPS that may manifest with brain tumors in childhood.
Collapse
Affiliation(s)
- Steffen Hirsch
- Hopp-Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicola Dikow
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp-Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp-Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
130
|
Fanconi Anaemia, Childhood Cancer and the BRCA Genes. Genes (Basel) 2021; 12:genes12101520. [PMID: 34680915 PMCID: PMC8535386 DOI: 10.3390/genes12101520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022] Open
Abstract
Fanconi anaemia (FA) is an inherited chromosomal instability disorder characterised by congenital and developmental abnormalities and a strong cancer predisposition. In less than 5% of cases FA can be caused by bi-allelic pathogenic variants (PGVs) in BRCA2/FANCD1 and in very rare cases by bi-allelic PGVs in BRCA1/FANCS. The rarity of FA-like presentation due to PGVs in BRCA2 and even more due to PGVs in BRCA1 supports a fundamental role of the encoded proteins for normal development and prevention of malignant transformation. While FA caused by BRCA1/2 PGVs is strongly associated with distinct spectra of embryonal childhood cancers and AML with BRCA2-PGVs, and also early epithelial cancers with BRCA1 PGVs, germline variants in the BRCA1/2 genes have also been identified in non-FA childhood malignancies, and thereby implying the possibility of a role of BRCA PGVs also for non-syndromic cancer predisposition in children. We provide a concise review of aspects of the clinical and genetic features of BRCA1/2-associated FA with a focus on associated malignancies, and review novel aspects of the role of germline BRCA2 and BRCA1 PGVs occurring in non-FA childhood cancer and discuss aspects of clinical and biological implications.
Collapse
|
131
|
Childhood Acute Myeloid Leukemia shows a high level of germline predisposition. Blood 2021; 138:2293-2298. [PMID: 34521114 DOI: 10.1182/blood.2021012666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022] Open
|
132
|
Fernández LT, Ocampo-Garza SS, Elizondo-Riojas G, Ocampo-Candiani J. Basal cell nevus syndrome: an update on clinical findings. Int J Dermatol 2021; 61:1047-1055. [PMID: 34494262 DOI: 10.1111/ijd.15884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Basal cell nevus syndrome, also known as Gorlin-Goltz syndrome, is a rare autosomal dominant disorder caused by mutations in the hedgehog signaling pathway, mainly in PTCH1. This pathway is involved in embryogenesis and tumorigenesis, and the loss of function of PTCH1 protein produces an aberrant increase in the hedgehog signaling pathway activity. Basal cell nevus syndrome is characterized by tumor predisposition, particularly with the development of multiple basal cell carcinomas at an early age, along with odontogenic keratocysts, palmoplantar pits, skeletal abnormalities, and an increased risk of medulloblastoma. Diagnosis is clinical, with gene mutation analysis confirming the suspicion. The striking phenotypic variability of the syndrome may lead to a delayed diagnosis, making it an uncommon but important entity to recognize. A high index of suspicion and an early diagnosis is crucial for prevention, surveillance, and the prompt establishment of multidisciplinary medical care.
Collapse
Affiliation(s)
- Lucía T Fernández
- Department of Dermatology, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Sonia S Ocampo-Garza
- Department of Dermatology, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Guillermo Elizondo-Riojas
- Department of Radiology and Medical Imaging, Hospital Universitario "Dr, José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, México
| | - Jorge Ocampo-Candiani
- Department of Dermatology, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, México
| |
Collapse
|
133
|
Liu F, Shao J, Yang H, Yang G, Zhu Q, Wu Y, Zhu L, Wu H. Disruption of rack1 suppresses SHH-type medulloblastoma formation in mice. CNS Neurosci Ther 2021; 27:1518-1530. [PMID: 34480519 PMCID: PMC8611787 DOI: 10.1111/cns.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Medulloblastoma (MB) is a malignant pediatric brain tumor that arises in the cerebellar granular neurons. Sonic Hedgehog subtype of MB (SHH‐MB) is one of the major subtypes of MB in the clinic. However, the molecular mechanisms underlying MB tumorigenesis are still not fully understood. Aims Our previous work demonstrated that the receptor for activated C kinase 1 (Rack1) is essential for SHH signaling activation in granule neuron progenitors (GNPs) during cerebellar development. To investigate the potential role of Rack1 in MB development, human MB tissue array and SHH‐MB genetic mouse model were used to study the expression of function of Rack1 in MB pathogenesis. Results We found that the expression of Rack1 was significantly upregulated in the majority of human cerebellar MB tumors. Genetic ablation of Rack1 expression in SHH‐MB tumor mice could significantly inhibit MB proliferation, reduce the tumor size, and prolong the survival of tumor rescue mice. Interestingly, neither apoptosis nor autophagy levels were affected in Rack1‐deletion rescue mice compared to WT mice, but the expression of Gli1 and HDAC2 was significantly decreased suggesting the inactivation of SHH signaling pathway in rescue mice. Conclusion Our results demonstrated that Rack1 may serve as a potential candidate for the diagnostic marker and therapeutic target of MB, including SHH‐MB.
Collapse
Affiliation(s)
- Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jingyuan Shao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haihong Yang
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Guochao Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.,Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
134
|
Puthenpura V, DeNunzio NJ, Zeng X, Giantsoudi D, Aboian M, Ebb D, Kahle KT, Yock TI, Marks AM. Radiation Necrosis with Proton Therapy in a Patient with Aarskog-Scott Syndrome and Medulloblastoma. Int J Part Ther 2021; 8:58-65. [PMID: 35127977 PMCID: PMC8768897 DOI: 10.14338/ijpt-21-00013.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Medulloblastoma is known to be associated with multiple cancer-predisposition syndromes. In this article, we explore a possible association among a patient's Aarskog-Scott syndrome, development of medulloblastoma, and subsequent brainstem radiation necrosis. CASE PRESENTATION A 5-year-old male with Aarskog-Scott syndrome initially presented to his pediatrician with morning emesis, gait instability, and truncal weakness. He was ultimately found to have a posterior fossa tumor with pathology consistent with group 3 medulloblastoma. After receiving a gross total resection and standard proton beam radiation therapy with concurrent vincristine, he was noted to develop brainstem radiation necrosis, for which he underwent therapy with high-dose dexamethasone, bevacizumab, and hyperbaric oxygen therapy with radiographic improvement and clinical stabilization. CONCLUSION Based on several possible pathologic correlates in the FDG1 pathway, there exists a potential association between this patient's Aarskog-Scott syndrome and medulloblastoma, which needs to be investigated further. In patients with underlying, rare genetic syndromes, further caution should be taken when evaluating chemotherapy and radiation dosimetry planning.
Collapse
Affiliation(s)
- Vidya Puthenpura
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Nicholas J. DeNunzio
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Drosoula Giantsoudi
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Mariam Aboian
- Section of Neuroradiology and Nuclear Medicine, Department of Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - David Ebb
- Department of Pediatric Hematology/Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Kristopher T. Kahle
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Torunn I. Yock
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Asher M. Marks
- Section of Pediatric Hematology and Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
135
|
Richardson S, Hill RM, Kui C, Lindsey JC, Grabovksa Y, Keeling C, Pease L, Bashton M, Crosier S, Vinci M, André N, Figarella-Branger D, Hansford JR, Lastowska M, Zakrzewski K, Jorgensen M, Pickles JC, Taylor MD, Pfister SM, Wharton SB, Pizer B, Michalski A, Joshi A, Jacques TS, Hicks D, Schwalbe EC, Williamson D, Ramaswamy V, Bailey S, Clifford SC. Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse. Neuro Oncol 2021; 24:153-165. [PMID: 34272868 PMCID: PMC8730763 DOI: 10.1093/neuonc/noab178] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Less than 5% of medulloblastoma (MB) patients survive following failure of contemporary radiation-based therapies. Understanding the molecular drivers of medulloblastoma relapse (rMB) will be essential to improve outcomes. Initial genome-wide investigations have suggested significant genetic divergence of the relapsed disease. Methods We undertook large-scale integrated characterization of the molecular features of rMB—molecular subgroup, novel subtypes, copy number variation (CNV), and driver gene mutation. 119 rMBs were assessed in comparison with their paired diagnostic samples (n = 107), alongside an independent reference cohort sampled at diagnosis (n = 282). rMB events were investigated for association with outcome post-relapse in clinically annotated patients (n = 54). Results Significant genetic evolution occurred over disease-course; 40% of putative rMB drivers emerged at relapse and differed significantly between molecular subgroups. Non-infant MBSHH displayed significantly more chromosomal CNVs at relapse (TP53 mutation-associated). Relapsed MBGroup4 demonstrated the greatest genetic divergence, enriched for targetable (eg, CDK amplifications) and novel (eg, USH2A mutations) events. Importantly, many hallmark features of MB were stable over time; novel subtypes (>90% of tumors) and established genetic drivers (eg, SHH/WNT/P53 mutations; 60% of rMB events) were maintained from diagnosis. Critically, acquired and maintained rMB events converged on targetable pathways which were significantly enriched at relapse (eg, DNA damage signaling) and specific events (eg, 3p loss) predicted survival post-relapse. Conclusions rMB is characterised by the emergence of novel events and pathways, in concert with selective maintenance of established genetic drivers. Together, these define the actionable genetic landscape of rMB and provide a basis for improved clinical management and development of stratified therapeutics, across disease-course.
Collapse
Affiliation(s)
- Stacey Richardson
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Rebecca M Hill
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Christopher Kui
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Janet C Lindsey
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Yura Grabovksa
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Claire Keeling
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Louise Pease
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Matthew Bashton
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK.,The Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Stephen Crosier
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Maria Vinci
- Department of Onco-haematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - Nicolas André
- Department of Pediatric Hematology and Oncology AP-HM, Marseille, France.,Aix-Marseille Universite, CNRS, Inst Neurophysiopathol, Marseille, France
| | - Dominique Figarella-Branger
- AP-HM, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France.,Aix-Marseille Universite, CNRS, Inst Neurophysiopathol, Marseille, France
| | - Jordan R Hansford
- Children's Cancer Centre, Royal Children's Hospital, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Maria Lastowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Krzysztof Zakrzewski
- Department of Neurosurgery, Polish Mother's Memorial Hospital, Research Institute. Lodz, Poland
| | | | - Jessica C Pickles
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK.,Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michael D Taylor
- Programme in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stefan M Pfister
- Hopp Children´s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Barry Pizer
- Oncology Unit, Alder Hey Children's Hospital, Liverpool, UK
| | | | - Abhijit Joshi
- Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Thomas S Jacques
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK.,Developmental Biology and Cancer Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Debbie Hicks
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Edward C Schwalbe
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK.,Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Daniel Williamson
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Vijay Ramaswamy
- Programme in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Simon Bailey
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Steven C Clifford
- Newcastle University Centre for Cancer, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
136
|
Orr BA. Pathology, diagnostics, and classification of medulloblastoma. Brain Pathol 2021; 30:664-678. [PMID: 32239782 PMCID: PMC7317787 DOI: 10.1111/bpa.12837] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma (MB) is the most common CNS embryonal tumor. While the overall cure rate is around 70%, patients with high‐risk disease continue to have poor outcome and experience long‐term morbidity. MB is among the tumors for which diagnosis, risk stratification, and clinical management has shown the most rapid advancement. These advances are largely due to technological improvements in diagnosis and risk stratification which now integrate histomorphologic classification and molecular classification. MB stands as a prototype for other solid tumors in how to effectively integrate morphology and genomic data to stratify clinicopathologic risk and aid design of innovative clinical trials for precision medicine. This review explores the current diagnostic and classification of MB in modern neuropathology laboratories.
Collapse
Affiliation(s)
- Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| |
Collapse
|
137
|
Ceyhan-Birsoy O, Selenica P, Chui MH, Jayakumaran G, Ptashkin R, Misyura M, Aypar U, Jairam S, Yang C, Li Y, Mehta N, Kemel Y, Salo-Mullen E, Maio A, Sheehan M, Zehir A, Carlo M, Latham A, Stadler Z, Robson M, Offit K, Ladanyi M, Walsh M, Reis-Filho JS, Mandelker D. Paired Tumor-Normal Sequencing Provides Insights Into the TP53-Related Cancer Spectrum in Patients With Li-Fraumeni Syndrome. J Natl Cancer Inst 2021; 113:1751-1760. [PMID: 34240179 PMCID: PMC9891110 DOI: 10.1093/jnci/djab117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genetic testing for Li-Fraumeni syndrome (LFS) is performed by using blood specimens from patients selected based on phenotype-dependent guidelines. This approach is problematic for understanding the LFS clinical spectrum because patients with nonclassical presentations are missed, clonal hematopoiesis-related somatic blood alterations cannot be distinguished from germline variants, and unrelated tumors cannot be differentiated from those driven by germline TP53 defects. METHODS To provide insights into the LFS-related cancer spectrum, we analyzed paired tumor-blood DNA sequencing results in 17 922 patients with cancer and distinguished clonal hematopoiesis-related, mosaic, and germline TP53 variants. Loss of heterozygosity and TP53 mutational status were assessed in tumors, followed by immunohistochemistry for p53 expression on a subset to identify those lacking biallelic TP53 inactivation. RESULTS Pathogenic/likely pathogenic TP53 variants were identified in 50 patients, 12 (24.0%) of which were clonal hematopoiesis related and 4 (8.0%) of which were mosaic. Twelve (35.3%) of 34 patients with germline TP53 variants did not meet LFS testing criteria. Loss of heterozygosity of germline TP53 variant was observed in 96.0% (95% confidence interval [CI] = 79.7% to 99.9%) of core LFS spectrum-type tumors vs 45.5% (95% CI = 16.8% to 76.6%) of other tumors and 91.3% (95% CI = 72.0% to 98.9%) of tumors from patients who met LFS testing criteria vs 61.5% (95% CI = 31.6% to 86.1%) of tumors from patients who did not. Tumors retaining the wild-type TP53 allele exhibited wild-type p53 expression. CONCLUSIONS Our results indicate that some TP53 variants identified in blood-only sequencing are not germline and a substantial proportion of patients with LFS are missed based on current testing guidelines. Additionally, a subset of tumors from patients with LFS do not have biallelic TP53 inactivation and may represent cancers unrelated to their germline TP53 defect.
Collapse
Affiliation(s)
- Ozge Ceyhan-Birsoy
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Herman Chui
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gowtham Jayakumaran
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maksym Misyura
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umut Aypar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sowmya Jairam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ciyu Yang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yirong Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikita Mehta
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Kemel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Maio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margaret Sheehan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- Correspondence to: Diana Mandelker, MD, PhD, Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA (e-mail: )
| |
Collapse
|
138
|
Shrestha S, Morcavallo A, Gorrini C, Chesler L. Biological Role of MYCN in Medulloblastoma: Novel Therapeutic Opportunities and Challenges Ahead. Front Oncol 2021; 11:694320. [PMID: 34195095 PMCID: PMC8236857 DOI: 10.3389/fonc.2021.694320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The constitutive and dysregulated expression of the transcription factor MYCN has a central role in the pathogenesis of the paediatric brain tumour medulloblastoma, with an increased expression of this oncogene correlating with a worse prognosis. Consequently, the genomic and functional alterations of MYCN represent a major therapeutic target to attenuate tumour growth in medulloblastoma. This review will provide a comprehensive synopsis of the biological role of MYCN and its family components, their interaction with distinct signalling pathways, and the implications of this network in medulloblastoma development. We will then summarise the current toolbox for targeting MYCN and highlight novel therapeutic avenues that have the potential to results in better-tailored clinical treatments.
Collapse
Affiliation(s)
- Sumana Shrestha
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Alaide Morcavallo
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Chiara Gorrini
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom.,Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), and The Royal Marsden NHS Trust, Sutton, United Kingdom
| |
Collapse
|
139
|
Blattner-Johnson M, Jones DTW, Pfaff E. Precision medicine in pediatric solid cancers. Semin Cancer Biol 2021; 84:214-227. [PMID: 34116162 DOI: 10.1016/j.semcancer.2021.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Despite huge advances in the diagnosis and treatment of pediatric cancers over the past several decades, it remains one of the leading causes of death during childhood in developed countries. The development of new targeted treatments for these diseases has been hampered by two major factors. First, the extremely heterogeneous nature of the types of tumors encountered in this age group, and their fundamental differences from common adult carcinomas, has made it hard to truly get a handle on the complexities of the underlying biology driving tumor growth. Second, a reluctance of the pharmaceutical industry to develop products or trials for this population due to the relatively small size of the 'market', and a too-easy mechanism of obtaining waivers for pediatric development of adult oncology drugs based on disease type rather than mechanism of action, led to significant difficulties in getting access to new drugs. Thankfully, the field has now started to change, both scientifically and from a regulatory perspective, in order to address some of these challenges. In this review, we will examine some of the recent insights into molecular features which make pediatric tumors so unique and how these might represent therapeutic targets; highlight ongoing international initiatives for providing comprehensive, personalized genomic profiling of childhood tumors in a clinically-relevant timeframe, and look briefly at where the field of pediatric precision oncology may be heading in future.
Collapse
Affiliation(s)
- Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Elke Pfaff
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Pediatric Oncology, Hematology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
140
|
Byrjalsen A, Diets IJ, Bakhuizen J, Hansen TVO, Schmiegelow K, Gerdes AM, Stoltze U, Kuiper RP, Merks JHM, Wadt K, Jongmans M. Selection criteria for assembling a pediatric cancer predisposition syndrome gene panel. Fam Cancer 2021; 20:279-287. [PMID: 34061292 PMCID: PMC8484084 DOI: 10.1007/s10689-021-00254-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/07/2021] [Indexed: 11/16/2022]
Abstract
Increasing use of genomic sequencing enables standardized screening of all childhood cancer predisposition syndromes (CPS) in children with cancer. Gene panels currently used often include adult-onset CPS genes and genes without substantial evidence linking them to cancer predisposition. We have developed criteria to select genes relevant for childhood-onset CPS and assembled a gene panel for use in children with cancer. We applied our criteria to 381 candidate genes, which were selected through two in-house panels (n = 338), a literature search (n = 39), and by assessing two Genomics England’s PanelApp panels (n = 4). We developed evaluation criteria that determined a gene’s eligibility for inclusion on a childhood-onset CPS gene panel. These criteria assessed (1) relevance in childhood cancer by a minimum of five childhood cancer patients reported carrying a pathogenic variant in the gene and (2) evidence supporting a causal relation between variants in this gene and cancer development. 138 genes fulfilled the criteria. In this study we have developed criteria to compile a childhood cancer predisposition gene panel which might ultimately be used in a clinical setting, regardless of the specific type of childhood cancer. This panel will be evaluated in a prospective study. The panel is available on (pediatric-cancer-predisposition-genepanel.nl) and will be regularly updated.
Collapse
Affiliation(s)
- Anna Byrjalsen
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen East, Denmark
| | - Illja J Diets
- Department of Human Genetics, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Jette Bakhuizen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen East, Denmark.,Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen East, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen East, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen East, Denmark
| | - Ulrik Stoltze
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen East, Denmark
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands
| | - Johannes H M Merks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen East, Denmark
| | - Marjolijn Jongmans
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands. .,Department of Genetics, University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands.
| |
Collapse
|
141
|
Simovic M, Bolkestein M, Moustafa M, Wong JKL, Körber V, Benedetto S, Khalid U, Schreiber HS, Jugold M, Korshunov A, Hübschmann D, Mack N, Brons S, Wei PC, Breckwoldt MO, Heiland S, Bendszus M, Jürgen D, Höfer T, Zapatka M, Kool M, Pfister SM, Abdollahi A, Ernst A. Carbon ion radiotherapy eradicates medulloblastomas with chromothripsis in an orthotopic Li-Fraumeni patient-derived mouse model. Neuro Oncol 2021; 23:2028-2041. [PMID: 34049392 PMCID: PMC8643436 DOI: 10.1093/neuonc/noab127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Medulloblastomas with chromothripsis developing in children with Li-Fraumeni Syndrome (germline TP53 mutations) are highly aggressive brain tumors with dismal prognosis. Conventional photon radiotherapy and DNA-damaging chemotherapy are not successful for these patients and raise the risk of secondary malignancies. We hypothesized that the pronounced homologous recombination deficiency in these tumors might offer vulnerabilities that can be therapeutically utilized in combination with high linear energy transfer carbon ion radiotherapy. Methods We tested high-precision particle therapy with carbon ions and protons as well as topotecan with or without PARP inhibitor in orthotopic primary and matched relapsed patient-derived xenograft models. Tumor and normal tissue underwent longitudinal morphological MRI, cellular (markers of neurogenesis and DNA damage-repair), and molecular characterization (whole-genome sequencing). Results In the primary medulloblastoma model, carbon ions led to complete response in 79% of animals irrespective of PARP inhibitor within a follow-up period of 300 days postirradiation, as detected by MRI and histology. No sign of neurologic symptoms, impairment of neurogenesis or in-field carcinogenesis was detected in repair-deficient host mice. PARP inhibitors further enhanced the effect of proton irradiation. In the postradiotherapy relapsed tumor model, median survival was significantly increased after carbon ions (96 days) versus control (43 days, P < .0001). No major change in the clonal composition was detected in the relapsed model. Conclusion The high efficacy and favorable toxicity profile of carbon ions warrants further investigation in primary medulloblastomas with chromothripsis. Postradiotherapy relapsed medulloblastomas exhibit relative resistance compared to treatment-naïve tumors, calling for exploration of multimodal strategies.
Collapse
Affiliation(s)
- Milena Simovic
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ).,Faculty of Biosciences, Heidelberg University
| | - Michiel Bolkestein
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ)
| | - Mahmoud Moustafa
- Division of Molecular & Translational Radiation Oncology,Heidelberg Ion-Beam Therapy Center (HIT).,Heidelberg Institute for Radiation Oncology (HIRO).,National Center for Radiation Oncology (NCRO).,National Center for Tumor Diseases (NCT).,Heidelberg University Hospital (UKHD) and DKFZ.,German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Department of Clinical Pathology, Suez Canal University, Ismailia-Egypt
| | - John K L Wong
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Division of Molecular Genetics, DKFZ
| | | | | | - Umar Khalid
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ).,Faculty of Biosciences, Heidelberg University
| | - Hannah Sophia Schreiber
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ).,Faculty of Medicine, Heidelberg University
| | | | - Andrey Korshunov
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Clinical Cooperation Unit Neuropathology, DKFZ, Department of Neuropathology, UKHD
| | - Daniel Hübschmann
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Computational Oncology Group, Molecular Diagnostics Program at the NCT and DKFZ.,Heidelberg Institute for Stem cell Technology and Experimental Medicine.,Department of Pediatric Oncology, Hematology and Immunology, UKHD
| | - Norman Mack
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Division of Molecular Genetics, DKFZ.,Department of Pediatric Oncology, Hematology and Immunology, UKHD.,Hopp Children's Cancer Center, NCT Heidelberg (KiTZ).,Division of Pediatric Neurooncology, DKFZ
| | | | | | | | | | | | - Debus Jürgen
- Heidelberg Institute for Radiation Oncology (HIRO).,National Center for Tumor Diseases (NCT).,German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Department of Radiation Oncology, UKHD.,Department of Radiation Oncology, Eberhard-Karls-University Tuebingen.,Clinical Cooperation Unit Radiation Oncology, DKFZ
| | | | - Marc Zapatka
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Division of Molecular Genetics, DKFZ
| | - Marcel Kool
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Hopp Children's Cancer Center, NCT Heidelberg (KiTZ).,Division of Pediatric Neurooncology, DKFZ.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Stefan M Pfister
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Department of Pediatric Oncology, Hematology and Immunology, UKHD.,Hopp Children's Cancer Center, NCT Heidelberg (KiTZ).,Division of Pediatric Neurooncology, DKFZ
| | - Amir Abdollahi
- Division of Molecular & Translational Radiation Oncology,Heidelberg Ion-Beam Therapy Center (HIT).,Heidelberg Institute for Radiation Oncology (HIRO).,National Center for Radiation Oncology (NCRO).,National Center for Tumor Diseases (NCT).,Heidelberg University Hospital (UKHD) and DKFZ.,German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ)
| |
Collapse
|
142
|
Tischkowitz M, Balmaña J, Foulkes WD, James P, Ngeow J, Schmutzler R, Voian N, Wick MJ, Stewart DR, Pal T. Management of individuals with germline variants in PALB2: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:1416-1423. [PMID: 33976419 DOI: 10.1038/s41436-021-01151-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE PALB2 germline pathogenic variants are associated with increased breast cancer risk and smaller increased risk of pancreatic and likely ovarian cancer. Resources for health-care professionals managing PALB2 heterozygotes are currently limited. METHODS A workgroup of experts sought to outline management of PALB2 heterozygotes based on current evidence. Peer-reviewed publications from PubMed were identified to guide recommendations, which arose by consensus and the collective expertise of the authors. RESULTS PALB2 heterozygotes should be offered BRCA1/2-equivalent breast surveillance. Risk-reducing mastectomy can be considered guided by personalized risk estimates. Pancreatic cancer surveillance should be considered, but ideally as part of a clinical trial. Typically, ovarian cancer surveillance is not recommended, and risk-reducing salpingo-oophorectomy should only rarely be considered before the age of 50. Given the mechanistic similarities, PALB2 heterozygotes should be considered for therapeutic regimens and trials as those for BRCA1/2. CONCLUSION This guidance is similar to those for BRCA1/2. While the range of the cancer risk estimates overlap with BRCA1/2, point estimates are lower in PALB2 so individualized estimates are important for management decisions. Systematic prospective data collection is needed to determine as yet unanswered questions such as the risk of contralateral breast cancer and survival after cancer diagnosis.
Collapse
Affiliation(s)
- Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO) and Medical Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Hospital Campus, Barcelona, Spain
| | - William D Foulkes
- Departments of Human Genetics, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Paul James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.,Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Joanne Ngeow
- Genomic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Rita Schmutzler
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,University Hospital of Cologne, Center of Integrated Oncology, CIO and Center of Familial Breast and Ovarian Cancer, Cologne, Germany
| | - Nicoleta Voian
- Genetic Risk Clinic, Providence Cancer Institute, Portland, OR, USA
| | - Myra J Wick
- Departments of Obstetrics and Gynecology and Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Tuya Pal
- Department of Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | |
Collapse
|
143
|
Brasil S, Neves CJ, Rijoff T, Falcão M, Valadão G, Videira PA, Dos Reis Ferreira V. Artificial Intelligence in Epigenetic Studies: Shedding Light on Rare Diseases. Front Mol Biosci 2021; 8:648012. [PMID: 34026829 PMCID: PMC8131862 DOI: 10.3389/fmolb.2021.648012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
More than 7,000 rare diseases (RDs) exist worldwide, affecting approximately 350 million people, out of which only 5% have treatment. The development of novel genome sequencing techniques has accelerated the discovery and diagnosis in RDs. However, most patients remain undiagnosed. Epigenetics has emerged as a promise for diagnosis and therapies in common disorders (e.g., cancer) with several epimarkers and epidrugs already approved and used in clinical practice. Hence, it may also become an opportunity to uncover new disease mechanisms and therapeutic targets in RDs. In this “big data” age, the amount of information generated, collected, and managed in (bio)medicine is increasing, leading to the need for its rapid and efficient collection, analysis, and characterization. Artificial intelligence (AI), particularly deep learning, is already being successfully applied to analyze genomic information in basic research, diagnosis, and drug discovery and is gaining momentum in the epigenetic field. The application of deep learning to epigenomic studies in RDs could significantly boost discovery and therapy development. This review aims to collect and summarize the application of AI tools in the epigenomic field of RDs. The lower number of studies found, specific for RDs, indicate that this is a field open to expansion, following the results obtained for other more common disorders.
Collapse
Affiliation(s)
- Sandra Brasil
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Cátia José Neves
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Tatiana Rijoff
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Marta Falcão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gonçalo Valadão
- Instituto de Telecomunicações, Lisbon, Portugal.,Departamento de Ciências e Tecnologias, Autónoma Techlab - Universidade Autónoma de Lisboa, Lisbon, Portugal.,Electronics, Telecommunications and Computers Engineering Department, Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.,UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| |
Collapse
|
144
|
Chromothripsis-Explosion in Genetic Science. Cells 2021; 10:cells10051102. [PMID: 34064429 PMCID: PMC8147837 DOI: 10.3390/cells10051102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Chromothripsis has been defined as complex patterns of alternating genes copy number changes (normal, gain or loss) along the length of a chromosome or chromosome segment (International System for Human Cytogenomic Nomenclature 2020). The phenomenon of chromothripsis was discovered in 2011 and changed the concept of genome variability, mechanisms of oncogenic transformation, and hereditary diseases. This review describes the phenomenon of chromothripsis, its prevalence in genomes, the mechanisms underlying this phenomenon, and methods of its detection. Due to the fact that most often the phenomenon of chromothripsis occurs in cancer cells, in this review, we will separately discuss the issue of the contribution of chromothripsis to the process of oncogenesis.
Collapse
|
145
|
Luque R, Benavides M, del Barco S, Egaña L, García-Gómez J, Martínez-García M, Pérez-Segura P, Pineda E, Sepúlveda JM, Vieito M. SEOM clinical guideline for management of adult medulloblastoma (2020). Clin Transl Oncol 2021; 23:940-947. [PMID: 33792841 PMCID: PMC8057961 DOI: 10.1007/s12094-021-02581-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 11/25/2022]
Abstract
Recent advances in molecular profiling, have reclassified medulloblastoma, an undifferentiated tumor of the posterior fossa, in at least four diseases, each one with differences in prognosis, epidemiology and sensibility to different treatments. The recommended management of a lesion with radiological characteristics suggestive of MB includes maximum safe resection followed by a post-surgical MR < 48 h, LCR cytology and MR of the neuroaxis. Prognostic factors, such as presence of a residual tumor volume > 1.5 cm2, presence of micro- or macroscopic dissemination, and age > 3 years as well as pathological (presence of anaplastic or large cell features) and molecular findings (group, 4, 3 or p53 SHH mutated subgroup) determine the risk of relapse and should guide adjuvant management. Although there is evidence that both high-risk patients and to a lesser degree, standard-risk patients benefit from adjuvant craneoespinal radiation followed by consolidation chemotherapy, tolerability is a concern in adult patients, leading invariably to dose reductions. Treatment after relapse is to be considered palliative and inclusion on clinical trials, focusing on the molecular alterations that define each subgroup, should be encouraged. Selected patients can benefit from surgical rescue or targeted radiation or high-dose chemotherapy followed by autologous self-transplant. Even in patients that are cured by chemorradiation presence of significant sequelae is common and patients must undergo lifelong follow-up.
Collapse
Affiliation(s)
- R. Luque
- Department of Medical Oncology, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - M. Benavides
- Department of Medical Oncology, Hospital Regional Universitario Carlos Haya, Malaga, Spain
| | - S. del Barco
- Department of Medical Oncology, Hospital Universitari Dr. Josep Trueta. ICO Girona, Girona, Spain
| | - L. Egaña
- Department of Medical Oncology, Hospital Donostia-Donostia Ospitalea, San Sebastián, Spain
| | - J. García-Gómez
- Department of Medical Oncology, Complexo Hospitalario de Ourense (CHUO), Orense, Spain
| | - M. Martínez-García
- Department of Medical Oncology, Hospital del Mar - Parc de Salut Mar, Barcelona, Spain
| | - P. Pérez-Segura
- Department of Medical Oncology, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - E. Pineda
- Department of Medical Oncology, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain
| | - J. M. Sepúlveda
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M. Vieito
- Department of Medical Oncology, Hospital Universitario Vall D’Hebron, Barcelona, Spain
| |
Collapse
|
146
|
Shen CJ, Perkins SM, Bradley JA, Mahajan A, Marcus KJ. Radiation therapy for infants with cancer. Pediatr Blood Cancer 2021; 68 Suppl 2:e28700. [PMID: 33818894 DOI: 10.1002/pbc.28700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/11/2022]
Abstract
The clinical outcomes for infants with malignant tumors are often worse than older children due to a combination of more biologically aggressive disease in some cases, and increased toxicity-or deintensification of therapies due to concern for toxicity-in others. Especially in infants and very young children, finding the appropriate balance between maximizing treatment efficacy while minimizing toxicity-in particular late side effects-is crucial. We review here the management of malignant tumors in infants and very young children, focusing on central nervous system (CNS) malignancies and rhabdomyosarcoma.
Collapse
Affiliation(s)
- Colette J Shen
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Stephanie M Perkins
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Karen J Marcus
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
147
|
Gershanov S, Toledano H, Pernicone N, Fichman S, Michowiz S, Pinhasov A, Goldenberg-Cohen N, Listovsky T, Salmon-Divon M. Differences in RNA and microRNA Expression Between PTCH1- and SUFU-mutated Medulloblastoma. Cancer Genomics Proteomics 2021; 18:335-347. [PMID: 33893086 DOI: 10.21873/cgp.20264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIM Germline mutations in PTCH1 or SUFU in the sonic hedgehog (SHH) pathway cause Gorlin's syndrome with increased risk of developing SHH-subgroup medulloblastoma. Gorlin's syndrome precludes the use of radiotherapy (a standard component of treatment) due to the development of multiple basal cell carcinomas. Also, current SHH inhibitors are ineffective against SUFU-mutated medulloblastoma, as they inhibit upstream genes. In this study, we aimed to detect differences in the expression of genes and microRNAs between SUFU- and PTCH1-mutated SHH medulloblastomas which may hint at new treatment directions. PATIENTS AND METHODS We sequenced RNA and microRNA from tumors of two patients with germline Gorlin's syndrome - one having PTCH1 mutation and one with SUFU mutation - followed by bioinformatics analysis to detect changes in genes and miRNAs expression in these two tumors. Expression changes were validated using qRT-PCR. Ingenuity pathway analysis was performed in search for targetable pathways. RESULTS Compared to the PTCH1 tumor, the SUFU tumor demonstrated lower expression of miR-301a-3p and miR-181c-5p, matrix metallopeptidase 11 (MMP11) and OTX2, higher expression of miR-7-5p and corresponding lower expression of its targeted gene, connexin 30 (GJB6). We propose mechanisms to explain the phenotypic differences between the two types of tumors, and understand why PTCH1 and SUFU tumors tend to relapse locally (rather than metastatically as in other medulloblastoma subgroups). CONCLUSION Our results help towards finding new treatable molecular targets for these types of medulloblastomas.
Collapse
Affiliation(s)
- Sivan Gershanov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Helen Toledano
- Department of Pediatric Oncology, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nomi Pernicone
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Suzana Fichman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Pathology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Shalom Michowiz
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Pediatric Neurosurgery, Schneider Children's Medical Center of Israel, Petah-Tikva, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Nitza Goldenberg-Cohen
- Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel.,The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Medical Center, Petah-Tikva, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar Listovsky
- Department of Molecular Biology, Ariel University, Ariel, Israel; .,Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Ariel University, Ariel, Israel; .,Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
148
|
Current recommendations for cancer surveillance in Gorlin syndrome: a report from the SIOPE host genome working group (SIOPE HGWG). Fam Cancer 2021; 20:317-325. [PMID: 33860896 PMCID: PMC8484213 DOI: 10.1007/s10689-021-00247-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/17/2021] [Indexed: 01/22/2023]
Abstract
Gorlin syndrome (MIM 109,400), a cancer predisposition syndrome related to a constitutional pathogenic variation (PV) of a gene in the Sonic Hedgehog pathway (PTCH1 or SUFU), is associated with a broad spectrum of benign and malignant tumors. Basal cell carcinomas (BCC), odontogenic keratocysts and medulloblastomas are the main tumor types encountered, but meningiomas, ovarian or cardiac fibromas and sarcomas have also been described. The clinical features and tumor risks are different depending on the causative gene. Due to the rarity of this condition, there is little data on phenotype-genotype correlations. This report summarizes genotype-based recommendations for screening patients with PTCH1 and SUFU-related Gorlin syndrome, discussed during a workshop of the Host Genome Working Group of the European branch of the International Society of Pediatric Oncology (SIOPE HGWG) held in January 2020. In order to allow early detection of BCC, dermatologic examination should start at age 10 in PTCH1, and at age 20 in SUFU PV carriers. Odontogenic keratocyst screening, based on odontologic examination, should begin at age 2 with annual orthopantogram beginning around age 8 for PTCH1 PV carriers only. For medulloblastomas, repeated brain MRI from birth to 5 years should be proposed for SUFU PV carriers only. Brain MRI for meningiomas and pelvic ultrasound for ovarian fibromas should be offered to both PTCH1 and SUFU PV carriers. Follow-up of patients treated with radiotherapy should be prolonged and thorough because of the risk of secondary malignancies. Prospective evaluation of evidence of the effectiveness of these surveillance recommendations is required.
Collapse
|
149
|
Zeng B, Huang P, Du P, Sun X, Huang X, Fang X, Li L. Comprehensive Study of Germline Mutations and Double-Hit Events in Esophageal Squamous Cell Cancer. Front Oncol 2021; 11:637431. [PMID: 33889545 PMCID: PMC8056176 DOI: 10.3389/fonc.2021.637431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/10/2021] [Indexed: 01/12/2023] Open
Abstract
Esophageal squamous cell cancer (ESCC) is the eighth most common cancer around the world. Several reports have focused on somatic mutations and common germline mutations in ESCC. However, the contributions of pathogenic germline alterations in cancer susceptibility genes (CSGs), highly frequently mutated CSGs, and pathogenically mutated CSG-related pathways in ESCC remain unclear. We obtained data on 571 ESCC cases from public databases and East Asian from the 1000 Genomes Project database and the China Metabolic Analytics Project database to characterize pathogenic mutations. We detected 157 mutations in 75 CSGs, accounting for 25.0% (143/571) of ESCC cases. Six genes had more than five mutations: TP53 (n = 15 mutations), GJB2 (n = 8), BRCA2 (n = 6), RECQL4 (n = 6), MUTYH (n = 6), and PMS2 (n = 5). Our results identified significant differences in pathogenic germline mutations of TP53, BRCA2, and RECQL4 between the ESCC and control cohorts. Moreover, we identified 84 double-hit events (16 germline/somatic double-hit events and 68 somatic/somatic double-hit events) occurring in 18 tumor suppressor genes from 83 patients. Patients who had ESCC with germline/somatic double-hit events were diagnosed at younger ages than patients with the somatic/somatic double-hit events, though the correlation was not significant. Fanconi anemia was the most enriched pathway of pathogenically mutated CSGs, and it appeared to be a primary pathway for ESCC predisposition. The results of this study identified the underlying roles that pathogenic germline mutations in CSGs play in ESCC pathogenesis, increased our awareness about the genetic basis of ESCC, and provided suggestions for using highly mutated CSGs and double-hit features in the early discovery, prevention, and genetic counseling of ESCC.
Collapse
Affiliation(s)
- Bing Zeng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Peina Du
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | | | - Xiaodong Fang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Lin Li
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
150
|
Ranalli M, Boni A, Caroleo AM, Del Baldo G, Rinelli M, Agolini E, Rossi S, Miele E, Colafati GS, Boccuto L, Alessi I, De Ioris MA, Cacchione A, Capolino R, Carai A, Vennarini S, Mastronuzzi A. Molecular Characterization of Medulloblastoma in a Patient with Neurofibromatosis Type 1: Case Report and Literature Review. Diagnostics (Basel) 2021; 11:diagnostics11040647. [PMID: 33918520 PMCID: PMC8067061 DOI: 10.3390/diagnostics11040647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/31/2022] Open
Abstract
Brain tumors are the most common solid neoplasms of childhood. They are frequently reported in children with Neurofibromatosis type 1 (NF1). The most frequent central nervous system malignancies described in NF1 are optic pathway gliomas and brainstem gliomas. Medulloblastoma (MB) in NF1 patients is extremely rare, and to our knowledge, only 10 cases without molecular characterization are described in the literature to date. We report the case of a 14-year-old girl with NF1 that came to our attention for an incidental finding of a lesion arising from cerebellar vermis. The mass was completely resected, revealing a localized classic medulloblastoma (MB), subgroup 4. She was treated as a standard-risk MB with a dose-adapted personalized protocol. The treatment proved to be effective, with minor toxicity. Brain and spine MRI one year after diagnosis confirmed the complete remission of the disease. To our knowledge, this is the only case of MB reported in a patient with NF1 with molecular characterization by the methylation profile. The association between NF1 and MB, although uncommon, may not be an accidental occurrence.
Collapse
Affiliation(s)
- Marco Ranalli
- Department of Pediatrics, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy; (M.R.); (A.B.); (E.M.)
| | - Alessandra Boni
- Department of Pediatrics, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy; (M.R.); (A.B.); (E.M.)
| | - Anna Maria Caroleo
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (A.M.C.); (G.D.B.); (I.A.); (M.A.D.I.); (A.C.)
| | - Giada Del Baldo
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (A.M.C.); (G.D.B.); (I.A.); (M.A.D.I.); (A.C.)
| | - Martina Rinelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (M.R.); (E.A.)
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (M.R.); (E.A.)
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy;
| | - Evelina Miele
- Department of Pediatrics, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy; (M.R.); (A.B.); (E.M.)
| | - Giovanna Stefania Colafati
- Neuroradiology Unit, Department of Imaging, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy;
| | - Luigi Boccuto
- School of Nursing, College of Behavioral, Social and Health Sciences Healthcare Genetics Interdisciplinary Doctoral Program, Clemson University, Clemson, SC 29631, USA;
| | - Iside Alessi
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (A.M.C.); (G.D.B.); (I.A.); (M.A.D.I.); (A.C.)
| | - Maria Antonietta De Ioris
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (A.M.C.); (G.D.B.); (I.A.); (M.A.D.I.); (A.C.)
| | - Antonella Cacchione
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (A.M.C.); (G.D.B.); (I.A.); (M.A.D.I.); (A.C.)
| | - Rossella Capolino
- Medical Genetics Unit, Bambino Gesù Children Hospital, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy;
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy;
| | - Sabina Vennarini
- Proton Therapy Center, Hospital of Trento, Azienda Provinciale per I Servizi Sanitari (APSS), 38122 Trento, Italy;
| | - Angela Mastronuzzi
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), 00165 Rome, Italy; (A.M.C.); (G.D.B.); (I.A.); (M.A.D.I.); (A.C.)
- Correspondence:
| |
Collapse
|