101
|
Jeong S, Chokkalla AK, Davis CK, Vemuganti R. Post-stroke depression: epigenetic and epitranscriptomic modifications and their interplay with gut microbiota. Mol Psychiatry 2023; 28:4044-4055. [PMID: 37188778 PMCID: PMC10646155 DOI: 10.1038/s41380-023-02099-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Epigenetic and epitranscriptomic modifications that regulate physiological processes of an organism at the DNA and RNA levels, respectively, are novel therapeutic candidates for various neurological diseases. Gut microbiota and its metabolites are known to modulate DNA methylation and histone modifications (epigenetics), as well as RNA methylation especially N6-methyladenosine (epitranscriptomics). As gut microbiota as well as these modifications are highly dynamic across the lifespan of an organism, they are implicated in the pathogenesis of stroke and depression. The lack of specific therapeutic interventions for managing post-stroke depression emphasizes the need to identify novel molecular targets. This review highlights the interaction between the gut microbiota and epigenetic/epitranscriptomic pathways and their interplay in modulating candidate genes that are involved in post-stroke depression. This review further focuses on the three candidates, including brain-derived neurotrophic factor, ten-eleven translocation family proteins, and fat mass and obesity-associated protein based on their prevalence and pathoetiologic role in post-stroke depression.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA.
- William S. Middleton Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
102
|
Koneru S, Thiruvadi V, Ramesh M. Gut microbiome and its clinical implications: exploring the key players in human health. Curr Opin Infect Dis 2023; 36:353-359. [PMID: 37593952 DOI: 10.1097/qco.0000000000000958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW The human gut harbors a diverse community of microorganisms known as the gut microbiota. Extensive research in recent years has shed light on the profound influence of the gut microbiome on human health and disease. This review aims to explore the role of the gut microbiome in various clinical conditions and highlight the emerging therapeutic potential of targeting the gut microbiota for disease management. RECENT FINDINGS Knowledge of the influence of gut microbiota on human physiology led to the development of various therapeutic possibilities such as fecal microbiota transplant (FMT), phage therapy, prebiotics, and probiotics. Recently, the U.S. FDA approved two FMT products for the treatment of recurrent Clostridioides difficile infection with ongoing research for the treatment of various disease conditions. SUMMARY Advancement in the knowledge of the association between gut microbiota and various disease processes has paved the way for novel therapeutics.
Collapse
Affiliation(s)
- Sindhuja Koneru
- Division of Infectious Diseases, Henry Ford Hospital, Detroit, Michigan, USA
| | | | | |
Collapse
|
103
|
Mäkelä SM, Griffin SM, Reimari J, Evans KC, Hibberd AA, Yeung N, Ibarra A, Junnila J, Turunen J, Beboso R, Chhokar B, Dinan TG, Cryan J, Patterson E. Efficacy and safety of Lacticaseibacillus paracasei Lpc-37® in students facing examination stress: A randomized, triple-blind, placebo-controlled clinical trial (the ChillEx study). Brain Behav Immun Health 2023; 32:100673. [PMID: 37662485 PMCID: PMC10474370 DOI: 10.1016/j.bbih.2023.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/27/2023] [Accepted: 07/30/2023] [Indexed: 09/05/2023] Open
Abstract
Lacticaseibacillus paracasei Lpc-37 (Lpc-37) has previously shown to reduce perceived stress in healthy adults. The ChillEx study investigated whether Lpc-37 reduces stress in a model of chronic examination stress in healthy students. One hundred ninety university students (18-40 y) were randomized to take 1.56 × 1010 colony-forming units of Lpc-37 or placebo (1:1) each day for 10 weeks, in a triple-blind, parallel, multicenter clinical trial consisting of six visits: two screening visits, a baseline visit, and visits at 4, 8, and 10 weeks after baseline. The primary objective was to demonstrate that Lpc-37 reduces stress, as measured by the change in state anxiety from baseline to just before the first examination, after 8 weeks using the State Trait Anxiety Inventory (STAI-state). Secondary objectives aimed to demonstrate that Lpc-37 modulates psychological stress-induced symptoms and biomarkers related to mood and sleep. An exploratory analysis of fecal microbiota composition was also conducted. There was no difference between Lpc-37 and placebo groups in the change of STAI-state score (estimate 1.03; 95% confidence interval [CI]: -1.62, 3.67; p = 0.446). None of the secondary outcomes resulted in significant results when corrected for multiplicity, but exploratory results were notable. Results showed an improvement in sleep-disturbance scores (odds ratio 0.30; 95% CI: 0.11, 0.82; p = 0.020) and reduction in duration of sleep (odds ratio 3.52; 95% CI: 1.46, 8.54; p = 0.005) on the Pittsburgh Sleep Quality Index questionnaire after 8 weeks in the Lpc-37 group compared to placebo. A reduction in Bond Lader VAS-alertness was also demonstrated in the Lpc-37 group compared to placebo (estimate -3.97; 95% CI: -7.78, -0.15; p = 0.042) just prior to the examination. Analysis of fecal microbiota found no differences between study groups for alpha and beta diversity or microbiota abundance. Adverse events were similar between groups. Vital signs, safety-related laboratory measures, and gastrointestinal parameters were stable during the trial. In conclusion, probiotic Lpc-37 was safe but had no effect on stress, mood, or anxiety in healthy university students in this model of chronic academic stress. ClinicalTrials.gov: NCT04125810.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ronnie Beboso
- MeDiNova North London Dedicated Research Center, London, UK
| | - Balgit Chhokar
- MeDiNova East London Dedicated Research Center, London, UK
| | | | - John Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
104
|
Ross K. Psychobiotics: Are they the future intervention for managing depression and anxiety? A literature review. Explore (NY) 2023; 19:669-680. [PMID: 36868988 PMCID: PMC9940471 DOI: 10.1016/j.explore.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Mental health is a public health concern among professional organizations, clinicians, and consumers alike, especially in light of the COVID-19 pandemic. Indeed, the World Health Organization has identified mental health as an epidemic of the 21st century contributing to the global health burden, which highlights the urgency to develop economical, accessible, minimally invasive interventions to effectively manage depression, anxiety, and stress. Nutritional approaches, including the use of probiotics and psychobiotics to manage depression and anxiety, have elicited interest in recent years. This review aimed to summarize evidence from studies including animal models, cell cultures, and human subjects. Overall, the current evidence suggests that 1) Specific strains of probiotics can reduce depressive symptoms and anxiety; 2) Symptoms may be reduced through one or more possible mechanisms of action, including impact on the synthesis of neurotransmitters such as serotonin and GABA, modulation of inflammatory cytokines, or enhancing stress responses through effects on stress hormones and the HPA axis; and 3) While psychobiotics may offer therapeutic benefits to manage depression and anxiety, further research, particularly human studies, is needed to better characterize their mode of action and understand optimal dosing in the context of nutritional interventions.
Collapse
Affiliation(s)
- Kim Ross
- Sonoran University of Health Sciences, 2140 E. Broadway Rd. Tempe, AZ 85282, United States.
| |
Collapse
|
105
|
Gryksa K, Schmidtner AK, Masís-Calvo M, Rodríguez-Villagra OA, Havasi A, Wirobski G, Maloumby R, Jägle H, Bosch OJ, Slattery DA, Neumann ID. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: A unique model for comorbid depression and social dysfunctions. Neurosci Biobehav Rev 2023; 152:105292. [PMID: 37353047 DOI: 10.1016/j.neubiorev.2023.105292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Animal models of selective breeding for extremes in emotionality are a strong experimental approach to model psychopathologies. They became indispensable in order to increase our understanding of neurobiological, genetic, epigenetic, hormonal, and environmental mechanisms contributing to anxiety disorders and their association with depressive symptoms or social deficits. In the present review, we extensively discuss Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour on the elevated plus-maze. After 30 years of breeding, we can confirm the prominent differences between HAB and LAB rats in trait anxiety, which are accompanied by consistent differences in depressive-like, social and cognitive behaviours. We can further confirm a single nucleotide polymorphism in the vasopressin promotor of HAB rats causative for neuropeptide overexpression, and show that low (or high) anxiety and fear levels are unlikely due to visual dysfunctions. Thus, HAB and LAB rats continue to exist as a reliable tool to study the multiple facets underlying the pathology of high trait anxiety and its comorbidity with depression-like behaviour and social dysfunctions.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Anna K Schmidtner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Marianella Masís-Calvo
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Odir A Rodríguez-Villagra
- Centro de Investigación en Neurosciencias, Universidad de Costa Rica, San Pedro, San José, Costa Rica.
| | - Andrea Havasi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Gwendolyn Wirobski
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Herbert Jägle
- Department of Ophthalmology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
106
|
Abstract
The multifaceted microbiota characterizing our gut plays a crucial role in maintaining immune, metabolic and tissue homeostasis of the intestine as well as of distal organs, including the central nervous system. Microbial dysbiosis is reported in several inflammatory intestinal diseases characterized by the impairment of the gut epithelial and vascular barriers, defined as leaky gut, and it is reported as a potential danger condition associated with the development of metabolic, inflammatory and neurodegenerative diseases. Recently, we pointed out the strict connection between the gut and the brain via a novel vascular axis. Here we want to deepen our knowledge on the gut-brain axis, with particular emphasis on the connection between microbial dysbiosis, leaky gut, cerebral and gut vascular barriers, and neurodegenerative diseases. The firm association between microbial dysbiosis and impairment of the vascular gut-brain axis will be summarized in the context of protection, amelioration or boosting of Alzheimer, Parkinson, Major depressive and Anxiety disorders. Understanding the relationship between disease pathophysiology, mucosal barrier function and host-microbe interaction will foster the use of the microbiome as biomarker for health and disease as well as a target for therapeutic and nutritional advances.
Collapse
Affiliation(s)
- Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072 Pieve Emanuele, MI, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI, Italy.
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072 Pieve Emanuele, MI, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI, Italy.
| |
Collapse
|
107
|
Cickovski T, Mathee K, Aguirre G, Tatke G, Hermida A, Narasimhan G, Stollstorff M. Attention Deficit Hyperactivity Disorder (ADHD) and the gut microbiome: An ecological perspective. PLoS One 2023; 18:e0273890. [PMID: 37594987 PMCID: PMC10437823 DOI: 10.1371/journal.pone.0273890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is an increasingly prevalent neuropsychiatric disorder characterized by hyperactivity, inattention, and impulsivity. Symptoms emerge from underlying deficiencies in neurocircuitry, and recent research has suggested a role played by the gut microbiome. The gut microbiome is an ecosystem of interdependent taxa involved in an exponentially complex web of interactions, plus host gene and reaction pathways, some of which involve neurotransmitters with roles in ADHD neurocircuitry. Studies have analyzed the ADHD gut microbiome using macroscale metrics such as diversity and differential abundance, and have proposed several taxa as elevated or reduced in ADHD compared to Control. Few studies have delved into the complex underlying dynamics ultimately responsible for the emergence of such metrics, leaving a largely incomplete, sometimes contradictory, and ultimately inconclusive picture. We aim to help complete this picture by venturing beyond taxa abundances and into taxa relationships (i.e. cooperation and competition), using a publicly available gut microbiome dataset (targeted 16S, v3-4 region, qPCR) from an observational, case-control study of 30 Control (15 female, 15 male) and 28 ADHD (15 female, 13 male) undergraduate students. We first perform the same macroscale analyses prevalent in ADHD gut microbiome literature (diversity, differential abundance, and composition) to observe the degree of correspondence, or any new trends. We then estimate two-way ecological relationships by producing Control and ADHD Microbial Co-occurrence Networks (MCNs), using SparCC correlations (p ≤ 0.01). We perform community detection to find clusters of taxa estimated to mutually cooperate along with their centroids, and centrality calculations to estimate taxa most vital to overall gut ecology. We finally summarize our results, providing conjectures on how they can guide future experiments, some methods for improving our experiments, and general implications for the field.
Collapse
Affiliation(s)
- Trevor Cickovski
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| | - Gloria Aguirre
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Gorakh Tatke
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Alejandro Hermida
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Melanie Stollstorff
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| |
Collapse
|
108
|
Gao H, He C, Xin S, Hua R, Du Y, Wang B, Gong F, Yu X, Pan L, Gao L, Xu J. Current Insights into the Use of Probiotics and Fatty Acids in Alleviating Depression. Microorganisms 2023; 11:2018. [PMID: 37630578 PMCID: PMC10459535 DOI: 10.3390/microorganisms11082018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Depression is the most prevalent psychiatric symptom present among individuals of all ages and backgrounds, impacting an estimated 300 million people globally. Therefore, it demands a significant amount of attention when it comes to managing depression. A growing amount of data reveal that probiotics and fatty acids could be beneficial to depression. However, the opposing position maintains that they have no influence on depression. A network meta-analyses of existing datasets aid in the estimation of comparative efficacy as well as in achieving an understanding of the relative merits of different therapies. The purpose of this study was to investigate the current evidence for probiotic or fatty acid depression therapy and to establish a practical alternative for depression patients using a meta-analysis and metagenomic data from a Wistar-Kyoto (WKY) depressed rat model. (2) Methods: Probiotic data were obtained from seven randomized controlled trial studies (n = 394), and fatty acid data were obtained from 24 randomized controlled trial studies (n = 1876). Meanwhile, a metagenomics analysis of data on animal gut flora was also applied to validate the preceding evidence. (3) Results: The fatty acid studies were separated into three sections based on the duration of probiotic delivery: ≤8 weeks, 9-12 weeks, and >12 weeks. The results were as follows: for ≤8 weeks, MD = -1.65 (95% CI: -2.96--0.15), p = 0.01; for 9-12 weeks, MD = -2.22 (95% CI: -3.03--1.22), p < 0.001; for >12 weeks, MD = -1.23 (95% CI: -2.85-0.39), p = 0.14. Regarding the probiotics, the meta-analysis revealed MD = -2.19 (95% CI: -3.38--2.43), p < 0.001. The research presented herein illustrates that probiotics and fatty acids may successfully lower depression scores. Additionally, the probiotics were drastically reduced in the WKY rats. (4) Conclusions: According to the data, a depression intervention utilizing probiotics outperformed the control, implying that the use of probiotics and fatty acids may be a successful strategy for depression treatment.
Collapse
Affiliation(s)
- Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing 100049, China;
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.)
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.)
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.)
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (R.H.); (Y.D.); (F.G.); (X.Y.); (L.P.)
| | - Yixuan Du
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (R.H.); (Y.D.); (F.G.); (X.Y.); (L.P.)
| | - Boya Wang
- Department of Digestive Oncology, Peking University Cancer Hospital, Beijing 100044, China;
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (R.H.); (Y.D.); (F.G.); (X.Y.); (L.P.)
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (R.H.); (Y.D.); (F.G.); (X.Y.); (L.P.)
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (R.H.); (Y.D.); (F.G.); (X.Y.); (L.P.)
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China;
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (C.H.); (S.X.)
| |
Collapse
|
109
|
Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, Khan MIU, Hassan IU, Li K. The gut microbiota-brain axis in neurological disorder. Front Neurosci 2023; 17:1225875. [PMID: 37600019 PMCID: PMC10436500 DOI: 10.3389/fnins.2023.1225875] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Chang-qing Liu
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuwen Chen
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Li Qijie
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ka Li
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
110
|
McKenna BG, Dunlop AL, Corwin E, Smith AK, Venkateswaran S, Brennan PA. Intergenerational and early life associations of the gut microbiome and stress-related symptomatology among Black American mothers and children. Brain Behav Immun Health 2023; 31:100651. [PMID: 37449285 PMCID: PMC10336162 DOI: 10.1016/j.bbih.2023.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/02/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
Recent evidence suggests that maternal childhood adversity may have an intergenerational impact, with children of adversity-exposed mothers exhibiting elevated symptoms of psychopathology. At the same time, many children demonstrate resilience to these intergenerational effects. Among the variety of factors that likely contribute to resilience, the composition of the gut microbiome may play a role in buffering the negative impacts of trauma and stress. The current prospective cohort study tested the novel hypothesis that offspring gut microbiome composition is a potential moderator in the relationship between maternal exposure to childhood adversity and offspring symptomatology (i.e., internalizing, externalizing, and posttraumatic stress symptoms). Maternal childhood adversity was self-reported during pregnancy via the Childhood Trauma Questionnaire and Adverse Childhood Experiences (ACEs) survey, and offspring symptomatology was assessed with the Child Behavior Checklist/1.5-5 when offspring were 2-4 years old. Offspring fecal samples were collected between these timepoints (i.e., during 6- to 24-month follow-up visits) for microbiome sequencing. Results indicated that maternal ACEs and the relative abundances of Bifidobacterium, Lactobacillus, and Prevotella were associated with offspring symptomatology. However, there was little evidence that microbial abundance moderated the association between maternal adversity and offspring symptoms. Overall, these findings further our understanding of how the gut microbiome associates with psychopathology, and informs future studies aimed at targeting modifiable factors that may buffer the intergenerational effects of childhood adversity.
Collapse
Affiliation(s)
| | - Anne L. Dunlop
- School of Nursing, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth Corwin
- School of Nursing, Columbia University, New York, NY, 10032, USA
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | | | | |
Collapse
|
111
|
Bistas KG, Tabet JP. The Benefits of Prebiotics and Probiotics on Mental Health. Cureus 2023; 15:e43217. [PMID: 37692658 PMCID: PMC10490379 DOI: 10.7759/cureus.43217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
In individuals with depression and anxiety, the composition or alteration of their gut microbiota can significantly affect their psychological symptoms. Articles for this study were selected using PubMed and NCBI (National Center for Biotechnology Information) with the following search terms: "gut microbiota," "depression," "anxiety," "probiotics," and "prebiotics." These studies evaluated the composition of the gut microbiota and the decrease in symptoms of depression and anxiety due to treatment with probiotics and prebiotics. Only papers published after 2015 were included. There was a significant relationship between the composition and alteration of the gut microbiota and the presence or variation of symptoms of depression and anxiety. Treatment with probiotics or prebiotics improved the symptoms of these mental health conditions. This literature review examines how different prebiotics and probiotics affect mental health and how altering individuals' gut microbiota correlates with depression and anxiety. Treatment with probiotics or prebiotics may decrease the severity of these mental disorders by altering the gut microbiota.
Collapse
Affiliation(s)
- Karlyle G Bistas
- Psychiatry and Behavioral Sciences, Wayne State University Detroit Medical Center, Detroit, USA
| | - Jean Paul Tabet
- School of Medicine, Medical University of the Americas, Charlestown, KNA
| |
Collapse
|
112
|
Lou H, Liu X, Liu P. Mechanism and implications of pro-nature physical activity in antagonizing psychological stress: the key role of microbial-gut-brain axis. Front Psychol 2023; 14:1143827. [PMID: 37560094 PMCID: PMC10408457 DOI: 10.3389/fpsyg.2023.1143827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Appropriate physical activities and a biodiversity-rich environment are conducive to the relief of psychological stress, and pro-nature physical activities are a combination of the two, which has good application potential in antagonizing psychological stress, but the intervention mechanism is still unclear. The microbiota-gut-brain axis is cyclically associated with psychological stress, and psychological stress can affect the microbiota through the gut-brain pathway, and conversely, the microbiota can also affect the psychological stress-induced symptoms. It is suggested that the microbe-gut-brain axis may provide a new perspective and target for the treatment of psychological stress-related diseases. Pro-nature physical activity can improve the number of Firmicutes, short-chain fatty acids, Akkermansia bacteria, and the gut-brain barrier and further affect the HPA axis, BDNF, and serotonin pathways of gut-brain two-way communication, thereby maintaining the body's homeostasis and reducing antagonistic psychological stress. According to the comprehensive influence of physical activities on the microbiota-gut-brain axis, a "green + exercise prescription hypothesis" in line with the holistic medical concept is revealed, which is expected to be effective in the prevention, alleviation, and treatment of irritable bowel syndrome and neurodegenerative diseases. It provides new means for treating psychological stress-related diseases such as mental disorders and mood disorders. In addition, it enlightens the construction of green infrastructure that is conducive to the diversified contact of microorganisms in outdoor physical activities venues and induces healthy interaction between the human body and the microbial population in the natural ecology. However, the current research is still in its early stages, and the intervention effect and mechanism of pro-nature physical activities need further demonstration in the future.
Collapse
|
113
|
Xu J, Chen C, Gan S, Liao Y, Fu R, Hou C, Yang S, Zheng Z, Chen W. The Potential Value of Probiotics after Dental Implant Placement. Microorganisms 2023; 11:1845. [PMID: 37513016 PMCID: PMC10383117 DOI: 10.3390/microorganisms11071845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Dental implantation is currently the optimal solution for tooth loss. However, the health and stability of dental implants have emerged as global public health concerns. Dental implant placement, healing of the surgical site, osseointegration, stability of bone tissues, and prevention of peri-implant diseases are challenges faced in achieving the long-term health and stability of implants. These have been ongoing concerns in the field of oral implantation. Probiotics, as beneficial microorganisms, play a significant role in the body by inhibiting pathogens, promoting bone tissue homeostasis, and facilitating tissue regeneration, modulating immune-inflammatory levels. This review explores the potential of probiotics in addressing post-implantation challenges. We summarize the existing research regarding the importance of probiotics in managing dental implant health and advocate for further research into their potential applications.
Collapse
Affiliation(s)
- Jia Xu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenfeng Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chuping Hou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhan Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
114
|
Williams ZA, Szyszkowicz JK, Osborne N, Allehyany B, Nadon C, Udechukwu MC, Santos A, Audet MC. Sex-specific effects of voluntary wheel running on behavior and the gut microbiota-immune-brain axis in mice. Brain Behav Immun Health 2023; 30:100628. [PMID: 37396336 PMCID: PMC10308214 DOI: 10.1016/j.bbih.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 07/04/2023] Open
Abstract
Physical exercise has been positioned as a promising strategy to prevent and/or alleviate anxiety and depression, but the biological processes associated with its effects on mental health have yet to be entirely determined. Although the prevalence of depression and anxiety in women is about twice that of men, very few studies have examined whether physical exercise could affect mental health differently according to sex. This study examined, in singly-housed mice, the sex-specific effects of voluntary exercise on depressive- and anxiety-like behaviors as well as on different markers along the gut microbiota-immune-brain axis. Male and female C57BL/6N mice had voluntary access to running wheels in their home-cages for 24 days or were left undisturbed in identical home-cages without running wheels. Behaviors were then examined in the open field, splash, elevated plus maze, and tail suspension tests. Gene expression of pro-inflammatory cytokines, microglia activation-related genes, and tight junction proteins was determined in the jejunum and the hippocampus, while microbiota composition and predicted function were verified in cecum contents. Voluntary exercise reduced anxiety-like behaviors and altered grooming patterns in males exclusively. Although the exercise intervention resulted in changes to brain inflammatory activity and to cecal microbiota composition and inferred function in both sexes, reductions in the jejunal expression of pro-inflammatory markers were observed in females only. These findings support the view that voluntary exercise, even when performed during a short period, is beneficial for mental and intestinal health and that its sex-specific effects on behavior could be, at least in part, related to some components of the gut microbiota-immune-brain axis.
Collapse
Affiliation(s)
| | - Joanna Kasia Szyszkowicz
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, Canada
| | - Natasha Osborne
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Christophe Nadon
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Ana Santos
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | - Marie-Claude Audet
- Department of Neuroscience, Carleton University, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
115
|
Shukla AK, Kumari A, Kumar A. Gut brain regulation using psychobiotics for improved neuropsychological illness. Dev Psychobiol 2023; 65:e22404. [PMID: 37338246 DOI: 10.1002/dev.22404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/21/2023]
Abstract
"Psychobiotics" are a novel class of probiotics that are beneficial to the health and functional efficiency of our brain and psychology. The main hold on command in ill conditions of the brain and psychology is overtaken by these psychobiotic bacteria (a dietary supplement) via the action/determined role of bacterial neurochemicals or neuroactive substances that are released by them in the intestinal epithelium after their ingestion. Although these psychobiotics flourish in the gut of the host consuming them, the effect is widely spread to the brain due to the communication between the gut and the brain via the bidirectional gut-brain axis. The nervous system involved in this directional process includes both the enteric nervous system and the central nervous system. With time, several corroborations have proved the effectiveness of psychobiotics in terms of mental illnesses and brain disorders. In the prevailing situation of the coronavirus pandemic, psychobiotics may serve as an aid because a majority of the population worldwide is already suffering from psychological issues due to changes in lifestyle and dietary habits, and in need of an immediate solution to cope with it. Moreover, the in silico approach is also vital for the development of biological relevance to neurosubstances.
Collapse
Affiliation(s)
- Adarsh Kumar Shukla
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| | - Anita Kumari
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
116
|
Baucells BJ, Sebastiani G, Herrero-Aizpurua L, Andreu-Fernández V, Navarro-Tapia E, García-Algar O, Figueras-Aloy J. Effectiveness of a probiotic combination on the neurodevelopment of the very premature infant. Sci Rep 2023; 13:10344. [PMID: 37365274 DOI: 10.1038/s41598-023-37393-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Probiotics have shown a benefit in reducing necrotising enterocolitis in the premature infant, however the study of their effect on premature neonates' neurodevelopment is limited. The aim of our study was to elucidate whether the effect of Bifidobacterium bifidum NCDO 2203 combined with Lactobacillus acidophilus NCDO 1748 could positively impact the neurodevelopment of the preterm neonates. Quasi-experimental comparative study with a combined treatment of probiotics in premature infants < 32 weeks and < 1500 g birth weight, cared for at a level III neonatal unit. The probiotic combination was administered orally to neonates surviving beyond 7 days of life, until 34 weeks postmenstrual age or discharge. Globally, neurodevelopment was evaluated at 24 months corrected age. A total of 233 neonates were recruited, 109 in the probiotic group and 124 in the non-probiotic group. In those neonates receiving probiotics, there was a significant reduction in neurodevelopment impairment at 2 years of age RR 0.30 [0.16-0.58], and a reduction in the degree of impairment (normal-mild vs moderate-severe, RR 0.22 [0.07-0.73]). Additionally, there was a significant reduction in late-onset sepsis (RR 0.45 [0.21-0.99]). The prophylactic use of this probiotic combination contributed to improving neurodevelopmental outcome and reduced sepsis in neonates born at < 32 weeks and < 1500 g.Per style, a structured abstract is not allowed so we have changed the structured abstract to an unstructured abstract. Please check and confirm.Accepted.
Collapse
Affiliation(s)
- Benjamin James Baucells
- Neonatology Service Hospital Clínic-Maternitat, ICGON, BCNatal, Carrer Sabino Arana 1, 08028, Barcelona, Spain.
| | - Giorgia Sebastiani
- Neonatology Service Hospital Clínic-Maternitat, ICGON, BCNatal, Carrer Sabino Arana 1, 08028, Barcelona, Spain
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Vicente Andreu-Fernández
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August pi i Sunyer (IDIBAPS), Barcelona, Spain
- Biosanitary Research Institute, Valencian International University (VIU), Valencia, Spain
| | - Elisabet Navarro-Tapia
- Grup de Recerca Infància i Entorn (GRIE), Institut d'investigacions Biomèdiques August pi i Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Health Sciences, Valencian International University (VIU), Valencia, Spain
| | - Oscar García-Algar
- Neonatology Service Hospital Clínic-Maternitat, ICGON, BCNatal, Carrer Sabino Arana 1, 08028, Barcelona, Spain
| | - Josep Figueras-Aloy
- Neonatology Service Hospital Clínic-Maternitat, ICGON, BCNatal, Carrer Sabino Arana 1, 08028, Barcelona, Spain
| |
Collapse
|
117
|
Daniele E, Nazer Y, Kortebi I, Casasbuenas DL, Fan Y, Trinh M, Tompkins TA, Faiz M. Oral probiotic therapy improves motor function in a rodent model of sensorimotor stroke. Exp Brain Res 2023:10.1007/s00221-023-06651-4. [PMID: 37358570 DOI: 10.1007/s00221-023-06651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
Ischemic stroke is a debilitating neurological disease with few effective therapeutics. Previous work has shown that oral probiotic treatment prior to stroke can attenuate cerebral infarction and neuroinflammation, highlighting the gut-microbiota-brain axis as a novel therapeutic target. Whether a more clinically relevant, post-stroke, administration of probiotics can improve stroke outcomes is unknown. In this study, we examined the effect of post-stroke oral probiotic therapy on motor behavior in the pre-clinical mouse endothelin-1 (ET-1) model of sensorimotor stroke. We found that post-stroke oral probiotic therapy with Cerebiome® (Lallemand, Montreal, Canada), containing B. longum R0175 and L. helveticus R0052, improved functional recovery and changed the composition of the post-stroke gut microbiota. Interestingly, oral Cerebiome® administration did not result in alterations of lesion volume or the number of CD8+/Iba1+ cells in the injured tissue. Overall, these findings suggest that probiotic treatment following injury can improve sensorimotor function.
Collapse
Affiliation(s)
- E Daniele
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Y Nazer
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - I Kortebi
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - Y Fan
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - M Trinh
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - M Faiz
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
118
|
Mutoh N, Kakiuchi I, Kato K, Xu C, Iwabuchi N, Ayukawa M, Kiyosawa K, Igarashi K, Tanaka M, Nakamura M, Miyasaka M. Heat-Killed L. helveticus Enhances Positive Mood States: A Randomized, Double-Blind, Placebo-Controlled Study. Brain Sci 2023; 13:973. [PMID: 37371451 DOI: 10.3390/brainsci13060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
When mood states are impaired, daily life is severely disrupted. To maintain a specific mood state, both positive and negative moods must be controlled; however, methods to maintain a positive mood have not been fully established. Previous studies have suggested that heat-killed L. helveticus MCC1848 has the potential to improve positive moods. This study aimed to test the efficacy of heat-killed L. helveticus MCC1848 in maintaining and improving a positive mood with PANAS, a questionnaire specifically designed to assess positive and negative mood, as the primary endpoint. Healthy Japanese nursing students (n = 46) were randomized to receive heat-killed L. helveticus MCC1848 (5 billion/day) or placebo powder for four weeks. Mood state was assessed before and two and four weeks after the intervention began; ingestion of heat-killed L. helveticus MCC1848 significantly improved PANAS 'Positive Affect' compared to the placebo. These results indicate that heat-killed L. helveticus MCC1848 is effective in enhancing positive mood.
Collapse
Affiliation(s)
- Natsumi Mutoh
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City 252-8583, Kanagawa, Japan
| | - Izumi Kakiuchi
- Faculty of Nursing, Matsumoto College of Nursing, 3118, Sasaga, Matsumoto-City 399-0033, Nagano, Japan
| | - Kumiko Kato
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City 252-8583, Kanagawa, Japan
| | - Chendong Xu
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City 252-8583, Kanagawa, Japan
| | - Noriyuki Iwabuchi
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City 252-8583, Kanagawa, Japan
| | - Masayo Ayukawa
- Faculty of Nursing, Matsumoto College of Nursing, 3118, Sasaga, Matsumoto-City 399-0033, Nagano, Japan
| | - Kyoko Kiyosawa
- Department of Nursing, Matsumoto Junior College, 3118, Sasaga, Matsumoto-City 399-0033, Nagano, Japan
| | - Kazumi Igarashi
- Faculty of Nursing, Matsumoto College of Nursing, 3118, Sasaga, Matsumoto-City 399-0033, Nagano, Japan
| | - Miyuki Tanaka
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-City 252-8583, Kanagawa, Japan
| | - Masahiko Nakamura
- Matsumoto City Hospital, 4417-180 Hata, Matsumoto-City 390-1401, Nagano, Japan
| | - Mitsunaga Miyasaka
- Faculty of Nursing, Matsumoto College of Nursing, 3118, Sasaga, Matsumoto-City 399-0033, Nagano, Japan
| |
Collapse
|
119
|
Sehn Hilgert S, Dias DPM. The intestinal microbiota as an ally in the treatment of Alzheimer's disease. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e9. [PMID: 39295910 PMCID: PMC11406366 DOI: 10.1017/gmb.2023.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 09/21/2024]
Abstract
The evolution of the understanding of the intestinal microbiota and its influence on our organism leverages it as a potential protagonist in therapies aimed at diseases that affect not only the intestine but also neural pathways and the central nervous system itself. This study, developed from a thorough systematic review, sought to demonstrate the influence of the intervention on the intestinal microbiota in subjects with Alzheimer's disease. Clinical trials using different classes of probiotics have depicted noteworthy remission of symptoms, whose measurement was performed based on screenings and scores applied before, during, and after the period of probiotics use, allowing the observation of changes in functionality and symptomatology of patients. On the other hand, faecal microbiota transplantation requires further validation through clinical trials, even though it has already been reported in case studies as promising from the symptomatology point of view. The current compilation of studies made it possible to demonstrate the potential influence of the intestinal microbiota on Alzheimer's pathology. However, new clinical studies with a larger number of participants are needed to obtain further clarification on pathophysiological correlations.
Collapse
|
120
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
121
|
Jawhara S. Healthy Diet and Lifestyle Improve the Gut Microbiota and Help Combat Fungal Infection. Microorganisms 2023; 11:1556. [PMID: 37375058 DOI: 10.3390/microorganisms11061556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Western diets are rapidly spreading due to globalization, causing an increase in obesity and diseases of civilization. These Western diets are associated with changes in the gut microbiota related to intestinal inflammation. This review discusses the adverse effects of Western diets, which are high in fat and sugar and low in vegetable fiber, on the gut microbiota. This leads to gut dysbiosis and overgrowth of Candida albicans, which is a major cause of fungal infection worldwide. In addition to an unhealthy Western diet, other factors related to disease development and gut dysbiosis include smoking, excessive alcohol consumption, lack of physical activity, prolonged use of antibiotics, and chronic psychological stress. This review suggests that a diversified diet containing vegetable fiber, omega-3 polyunsaturated fatty acids, vitamins D and E, as well as micronutrients associated with probiotic or prebiotic supplements can improve the biodiversity of the microbiota, lead to short-chain fatty acid production, and reduce the abundance of fungal species in the gut. The review also discusses a variety of foods and plants that are effective against fungal overgrowth and gut dysbiosis in traditional medicine. Overall, healthy diets and lifestyle factors contribute to human well-being and increase the biodiversity of the gut microbiota, which positively modulates the brain and central nervous system.
Collapse
Affiliation(s)
- Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, F-59000 Lille, France
- Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
| |
Collapse
|
122
|
Pesarico AP, Vieira AT, Rosa SG. Editorial: Gut-microbiota-brain axis in depression: mechanisms and possible therapies. Front Behav Neurosci 2023; 17:1221141. [PMID: 37346896 PMCID: PMC10280164 DOI: 10.3389/fnbeh.2023.1221141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
| | - Angelica Thomaz Vieira
- Laboratory of Microbiota and Immunomodulation, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
123
|
Lin B, Ye Z, Ye Z, Wang M, Cao Z, Gao R, Zhang Y. Gut microbiota in brain tumors: An emerging crucial player. CNS Neurosci Ther 2023; 29 Suppl 1:84-97. [PMID: 36627748 PMCID: PMC10314108 DOI: 10.1111/cns.14081] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
In recent decades, various roles of the gut microbiota in physiological and pathological conditions have been uncovered. Among the many interacting pathways between the host and gut flora, the gut-brain axis has drawn increasing attention and is generally considered a promising way to understand and treat brain tumors, one of the most lethal neoplasms. In this narrative review, we aimed to unveil and dissect the sophisticated mechanisms by which the gut-brain axis exerts its influence on brain tumors. Furthermore, we summarized the latest research regarding the gastrointestinal microbial landscape and the effect of gut-brain axis malfunction on different brain tumors. Finally, we outlined the ongoing developing approaches of microbial manipulation and their corresponding research related to neuro-malignancies. Collectively, we recapitulated the advances in gut microbial alterations along with their potential interactive mechanisms in brain tumors and encouraged increased efforts in this area.
Collapse
Affiliation(s)
- Ben Lin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zhen Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Meng Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zhan Cao
- Department of General Surgery, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Renyuan Gao
- Department of General Surgery, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
124
|
Scriven M, McSweeney A, O'Carroll T, Morkl S, Butler MI. The Muscle-Gut-Brain Axis and Psychiatric Illness. Adv Biol (Weinh) 2023; 7:e2200214. [PMID: 37080945 DOI: 10.1002/adbi.202200214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/07/2023] [Indexed: 04/22/2023]
Abstract
The microbiota-gut-brain axis (MGBA) has been the subject of much research over the past decade, offering an exciting new paradigm for the treatment of psychiatric disorders. In this review, the MGBA is extended to include skeletal muscle and the potential role of an expanded "muscle-gut-brain axis" (MuGBA) in conditions such as anxiety and depression is discussed. There is evidence, from both preclinical and human studies, of bidirectional links between the gut microbiome and skeletal muscle function and structure. The therapeutic role of exercise in reducing depressive and anxiety symptoms is widely recognised, and the potential role of the gut microbiota-skeletal muscle link is discussed within this context. Potential pathways of communication involved in the MuGBA including the tryptophan-kynurenine pathway, intestinal permeability, immune modulation, and bacterial metabolites such as short-chain-fatty-acids are explored.
Collapse
Affiliation(s)
- Mary Scriven
- St Loman's Psychiatric Hospital, Delvin Road, Mullingar, County Westmeath, N91T3PR, Ireland
| | - Angela McSweeney
- Department of Psychiatry, Cork University Hospital, Wilton Road, Cork, T12DC4A, Ireland
| | | | - Sabrina Morkl
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, 8010, Austria
| | - Mary I Butler
- Department of Psychiatry, Cork University Hospital, Wilton Road, Cork, T12DC4A, Ireland
| |
Collapse
|
125
|
Fogelson KA, Dorrestein PC, Zarrinpar A, Knight R. The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases. Gastroenterology 2023; 164:1069-1085. [PMID: 36841488 PMCID: PMC10205675 DOI: 10.1053/j.gastro.2023.02.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/27/2023]
Abstract
The human gut microbiome has been linked to numerous digestive disorders, but its metabolic products have been much less well characterized, in part due to the expense of untargeted metabolomics and lack of ability to process the data. In this review, we focused on the rapidly expanding information about the bile acid repertoire produced by the gut microbiome, including the impacts of bile acids on a wide range of host physiological processes and diseases, and discussed the role of short-chain fatty acids and other important gut microbiome-derived metabolites. Of particular note is the action of gut microbiome-derived metabolites throughout the body, which impact processes ranging from obesity to aging to disorders traditionally thought of as diseases of the nervous system, but that are now recognized as being strongly influenced by the gut microbiome and the metabolites it produces. We also highlighted the emerging role for modifying the gut microbiome to improve health or to treat disease, including the "engineered native bacteria'' approach that takes bacterial strains from a patient, modifies them to alter metabolism, and reintroduces them. Taken together, study of the metabolites derived from the gut microbiome provided insights into a wide range of physiological and pathophysiological processes, and has substantial potential for new approaches to diagnostics and therapeutics of disease of, or involving, the gastrointestinal tract.
Collapse
Affiliation(s)
- Kelly A Fogelson
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California; Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California.
| | - Amir Zarrinpar
- Center for Microbiome Innovation, University of California San Diego, San Diego, California; Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, San Diego, California; Division of Gastroenterology, University of California San Diego, San Diego, California; Institute of Diabetes and Metabolic Health, University of California San Diego, San Diego, California.
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, California; Center for Microbiome Innovation, University of California San Diego, San Diego, California; Department of Bioengineering, University of California San Diego, San Diego, California; Department of Computer Science and Engineering, University of California San Diego, San Diego, California.
| |
Collapse
|
126
|
Russo GI, Bongiorno D, Bonomo C, Musso N, Stefani S, Sokolakis I, Hatzichristodoulou G, Falcone M, Cai T, Smarrazzo F, Verze P. The relationship between the gut microbiota, benign prostatic hyperplasia, and erectile dysfunction. Int J Impot Res 2023; 35:350-355. [PMID: 35418604 DOI: 10.1038/s41443-022-00569-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Microbiota is defined as the group of commensal microorganisms that inhabit a specific human body site. The composition of each individual's gastrointestinal microbiota is influenced by several factors such as age, diet, lifestyle, and drug intake, but an increasing number of studies have shown that the differences between a healthy microbiota and a dysbiotic one can be related to different diseases such as benign prostatic hyperplasia (BPH) and erectile dysfunction (ED). The aim of this review is to give an overview of the role of the gut microbiota on BPH and ED. Gut microbiota modifications can influence prostate health indirectly by the activation of the immune system and the production of proinflammatory cytokines such as IL-17, IL-23, TNF-alpha, and IFN-gamma, which are able to promote an inflammatory state. Gut dysbiosis may lead to the onset of ED by the alteration of hormone levels and metabolic profiles, the modulation of stress/anxiety-mediated sexual dysfunction, the development of altered metabolic conditions such as obesity and diabetes mellitus, and the development of hypertension. In conclusion, much evidence suggests that the intestinal microbiota has an influence on various pathologies including BPH and ED.
Collapse
Affiliation(s)
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125, Catania, Italy
| | - Carmelo Bonomo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125, Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125, Catania, Italy
| | - Ioannis Sokolakis
- Department of Urology, 'Martha-Maria' Hospital Nuremberg, Nuremberg, Germany
| | | | - Marco Falcone
- Department of Urology and Andrology, Ospedale di Circolo and Macchi Foundation, 21100, Varese, Italy
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, Trento, Italy
| | - Francesco Smarrazzo
- Urology Unit, Department of Medicine, Surgery, Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Paolo Verze
- Urology Unit, Department of Medicine, Surgery, Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| |
Collapse
|
127
|
Zheng Q, Wang S, Tian X, Liu W, Gao P. Fecal microbiota transplantation confirmed that 919 Syrup reduced the ratio of erucamide to 5-AVAB in hippocampus to alleviate postpartum depression by regulating gut microbes. Front Immunol 2023; 14:1203015. [PMID: 37292211 PMCID: PMC10244653 DOI: 10.3389/fimmu.2023.1203015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
Background Postpartum depression has a crucial impact on the physical and psychological comfort and the work of postnatal women, the growth and development of infants and mental health in adulthood. Finding a safe and effective anti-postnatal depression drug is currently an important research goal in this field. Methods In this study, the forced swimming test (FST) and tail suspension test (TST) were used to evaluated the depressive behaviors of mice, and the changes of metabolites and intestinal microflora in mice with postpartum depression were examined through non-target metabolomics and 16S RNA sequencing respectively. Results We found that traditional Chinese medicine compound 919 Syrup could alleviate postpartum depression in mice and inhibit the elevated erucamide level in depressive hippocampus. However, mice treated with antibiotics were not sensitive to the anti-postnatal depression effect of 919 Syrup, and the level of 5-aminovaleric acid betaine (5-AVAB) in their hippocampus was significantly decreased. Transplanting fecal microflora treated with 919 Syrup could effectively improve the depressive behaviors of mice, upregulate the level of gut-derived 5-AVAB in the hippocampus, and downregulate the level of erucamide. Erucamide was significantly negatively correlated with increased Bacteroides in intestine after 919 Syrup treatment or fecal transplantation, and significantly positively correlated with Ruminococcaceae UCG-014 which was increased in feces of mice with postpartum depression. The increase of Bacteroides, Lactobacillus, and Ruminiclostridium in intestine after fecal transplantation had a clearly positive correlation with 5-AVAB. Conclusion In brief, 919 Syrup may downregulate the ratio of hippocampal metabolites erucamide to 5-AVAB by regulating intestinal flora to alleviate postpartum depression, laying a scientific foundation for future pathological research and development of therapeutic drugs for postpartum depression.
Collapse
Affiliation(s)
- Qiaoqi Zheng
- Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shusheng Wang
- Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xinyun Tian
- Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Pengfei Gao
- Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
128
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
129
|
Zubareva OE, Dyomina AV, Kovalenko AA, Roginskaya AI, Melik-Kasumov TB, Korneeva MA, Chuprina AV, Zhabinskaya AA, Kolyhan SA, Zakharova MV, Gryaznova MO, Zaitsev AV. Beneficial Effects of Probiotic Bifidobacterium longum in a Lithium-Pilocarpine Model of Temporal Lobe Epilepsy in Rats. Int J Mol Sci 2023; 24:ijms24098451. [PMID: 37176158 PMCID: PMC10179354 DOI: 10.3390/ijms24098451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Epilepsy is a challenging brain disorder that is often difficult to treat with conventional therapies. The gut microbiota has been shown to play an important role in the development of neuropsychiatric disorders, including epilepsy. In this study, the effects of Bifidobacterium longum, a probiotic, on inflammation, neuronal degeneration, and behavior are evaluated in a lithium-pilocarpine model of temporal lobe epilepsy (TLE) induced in young adult rats. B. longum was administered orally at a dose of 109 CFU/rat for 30 days after pilocarpine injection. The results show that B. longum treatment has beneficial effects on the TLE-induced changes in anxiety levels, neuronal death in the amygdala, and body weight recovery. In addition, B. longum increased the expression of anti-inflammatory and neuroprotective genes, such as Il1rn and Pparg. However, the probiotic had little effect on TLE-induced astrogliosis and microgliosis and did not reduce neuronal death in the hippocampus and temporal cortex. The study suggests that B. longum may have a beneficial effect on TLE and may provide valuable insights into the role of gut bacteria in epileptogenesis. In addition, the results show that B. longum may be a promising drug for the comprehensive treatment of epilepsy.
Collapse
Affiliation(s)
- Olga E Zubareva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Alexandra V Dyomina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Anna A Kovalenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Anna I Roginskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Tigran B Melik-Kasumov
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Marina A Korneeva
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Alesya V Chuprina
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Alesya A Zhabinskaya
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Stepan A Kolyhan
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Maria V Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Marusya O Gryaznova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 Saint Petersburg, Russia
| |
Collapse
|
130
|
Medina-Rodriguez EM, Cruz AA, De Abreu JC, Beurel E. Stress, inflammation, microbiome and depression. Pharmacol Biochem Behav 2023:173561. [PMID: 37148918 DOI: 10.1016/j.pbb.2023.173561] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/13/2022] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Psychiatric disorders are mental illnesses involving changes in mood, cognition and behavior. Their prevalence has rapidly increased in the last decades. One of the most prevalent psychiatric disorders is major depressive disorder (MDD), a debilitating disease lacking efficient treatments. Increasing evidence shows that microbial and immunological changes contribute to the pathophysiology of depression and both are modulated by stress. This bidirectional relationship constitutes the brain-gut axis involving various neuroendocrine, immunological, neuroenterocrine and autonomic pathways. The present review covers the most recent findings on the relationships between stress, the gut microbiome and the inflammatory response and their contribution to depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, United States of America; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33125, United States of America.
| | - Alyssa A Cruz
- Department of Psychiatry and Behavioral Sciences, United States of America
| | | | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, United States of America; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America
| |
Collapse
|
131
|
Mutoh N, Kakiuchi I, Hiraku A, Iwabuchi N, Kiyosawa K, Igarashi K, Tanaka M, Nakamura M, Miyasaka M. Heat-killed Lactobacillus helveticus improves mood states: a randomised, double-blind, placebo-controlled study. Benef Microbes 2023; 14:109-118. [PMID: 37026368 DOI: 10.3920/bm2022.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
We investigated the effects of heat-killed Lactobacillus helveticus MCC1848 on daily mood states in healthy young adults. Participants (n=58) were randomised to receive heat-killed L. helveticus MCC1848 powder or placebo powder for 4 weeks. During the study period, adverse events were recorded in the participant diary. Mood states were assessed before and 2 and 4 weeks after initiation of the intervention. The primary outcomes were the shortened version of the Profile of Mood States 2 (POMS 2) scores. Secondary outcomes included other mood state (State-Trait Anxiety Inventory (STAI); visual analogue scale (VAS)), quality of life (acute form of the SF-36v2), sleep (Athens Insomnia Scale (AIS)) and fatigue (Chalder Fatigue Scale (CFS)) scores. Four weeks of heat-killed L. helveticus MCC1848 intake, compared to placebo, significantly improved the shortened version of the POMS 2 'friendliness' and the VAS 'relaxed' scores, which are two indicators of positive mood states. On the other hand, heat-killed L. helveticus MCC1848 intake had no significant effects on negative mood state items (e.g. anger, nervousness, confusion) assessed by the shortened version of the POMS 2, STAI and VAS. AIS and CFS scores also showed no significant differences. No adverse effects were observed with 4 weeks of heat-killed L. helveticus MCC1848 intake. These results suggest that daily consumption of heat-killed L. helveticus MCC1848 is safe and has the potential to improve positive mood states. UMIN Clinical Trial Registry: UMIN000043697.
Collapse
Affiliation(s)
- N Mutoh
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, 2528583 Zama-city, Kanagawa, Japan
| | - I Kakiuchi
- Department of Nursing, Matsumoto Junior College, 3118, Sasaga, 399-0033, Matsumoto-city, Nagano, Japan
| | - A Hiraku
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, 2528583 Zama-city, Kanagawa, Japan
| | - N Iwabuchi
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, 2528583 Zama-city, Kanagawa, Japan
| | - K Kiyosawa
- Department of Nursing, Matsumoto Junior College, 3118, Sasaga, 399-0033, Matsumoto-city, Nagano, Japan
| | - K Igarashi
- Department of Nursing, Matsumoto Junior College, 3118, Sasaga, 399-0033, Matsumoto-city, Nagano, Japan
| | - M Tanaka
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, 2528583 Zama-city, Kanagawa, Japan
| | - M Nakamura
- Matsumoto City Hospital, 4417-180 Hata, 390-1401 Matsumoto-city, Nagano, Japan
| | - M Miyasaka
- Department of Nursing, Matsumoto Junior College, 3118, Sasaga, 399-0033, Matsumoto-city, Nagano, Japan
| |
Collapse
|
132
|
Radford-Smith DE, Anthony DC. Prebiotic and Probiotic Modulation of the Microbiota-Gut-Brain Axis in Depression. Nutrients 2023; 15:nu15081880. [PMID: 37111100 PMCID: PMC10146605 DOI: 10.3390/nu15081880] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Emerging evidence demonstrates that alterations to the gut microbiota can affect mood, suggesting that the microbiota-gut-brain (MGB) axis contributes to the pathogenesis of depression. Many of these pathways overlap with the way in which the gut microbiota are thought to contribute to metabolic disease progression and obesity. In rodents, prebiotics and probiotics have been shown to modulate the composition and function of the gut microbiota. Together with germ-free rodent models, probiotics have provided compelling evidence for a causal relationship between microbes, microbial metabolites, and altered neurochemical signalling and inflammatory pathways in the brain. In humans, probiotic supplementation has demonstrated modest antidepressant effects in individuals with depressive symptoms, though more studies in clinically relevant populations are needed. This review critically discusses the role of the MGB axis in depression pathophysiology, integrating preclinical and clinical evidence, as well as the putative routes of communication between the microbiota-gut interface and the brain. A critical overview of the current approaches to investigating microbiome changes in depression is provided. To effectively translate preclinical breakthroughs in MGB axis research into novel therapies, rigorous placebo-controlled trials alongside a mechanistic and biochemical understanding of prebiotic and probiotic action are required from future research.
Collapse
Affiliation(s)
- Daniel E Radford-Smith
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX3 7JX, UK
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
133
|
Yeramilli V, Cheddadi R, Shah J, Brawner K, Martin C. A Review of the Impact of Maternal Prenatal Stress on Offspring Microbiota and Metabolites. Metabolites 2023; 13:metabo13040535. [PMID: 37110193 PMCID: PMC10142778 DOI: 10.3390/metabo13040535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Maternal prenatal stress exposure affects the development of offspring. We searched for articles in the PubMed database and reviewed the evidence for how prenatal stress alters the composition of the microbiome, the production of microbial-derived metabolites, and regulates microbiome-induced behavioral changes in the offspring. The gut-brain signaling axis has gained considerable attention in recent years and provides insights into the microbial dysfunction in several metabolic disorders. Here, we reviewed evidence from human studies and animal models to discuss how maternal stress can modulate the offspring microbiome. We will discuss how probiotic supplementation has a profound effect on the stress response, the production of short chain fatty acids (SCFAs), and how psychobiotics are emerging as novel therapeutic targets. Finally, we highlight the potential molecular mechanisms by which the effects of stress are transmitted to the offspring and discuss how the mitigation of early-life stress as a risk factor can improve the birth outcomes.
Collapse
Affiliation(s)
- Venkata Yeramilli
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Riadh Cheddadi
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Juhi Shah
- Burnett School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA
| | - Kyle Brawner
- Department of Biology, Lipscomb University, Nashville, TN 37204, USA
| | - Colin Martin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
134
|
Lin P, Li D, Shi Y, Li Q, Guo X, Dong K, Chen Q, Lou X, Li Z, Li P, Jin W, Chen S, Sun Y, Sun J, Cheng X. Dysbiosis of the Gut Microbiota and Kynurenine (Kyn) Pathway Activity as Potential Biomarkers in Patients with Major Depressive Disorder. Nutrients 2023; 15:1752. [PMID: 37049591 PMCID: PMC10096701 DOI: 10.3390/nu15071752] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
With increasing attention paid to the concept of the microbiota-gut-brain axis, mounting evidence reveals that the gut microbiota is involved in a variety of neurological and psychiatric diseases. However, gut microbiota changes in major depressive disorder (MDD) patients and their association with disease mechanisms remain undefined. Fifty MDD patients and sixty healthy controls were recruited from the Shanghai Healthy Mental Center, China. Fecal samples were collected, and the compositional characteristics of the intestinal flora were determined in MDD patients by MiSeq sequencing. Venous blood was collected for the detection of plasma indoleamine-2,3-dioxygenase (Ido), kynurenine (Kyn) and tryptophan (Trp) levels. Stool samples of bacterial 16S sequencing was carried out. A total of 2,705,809 optimized sequences were obtained, with an average of 54,116 per sample. More unique OTUs were observed at the family, genus and species levels in the control group compared with the MDD cases. Further analysis showed significant changes in the α- and β-diversities and relative abundance levels of gut microbial entities in MDD patients, as well as elevated amounts of Ido and Kyn indicating Kyn pathway activation, KEGG bacterial 16S function prediction analysis shows a variety of amino acids and metabolic (including Ido, Trp and Kyn) changes in the body of patients with MDD. These may result in increased neurotoxic metabolites and reduced generation of serotonin in the disease process. These changed factors may potentially be utilized as biomarkers for MDD in the future, playing more important roles in the disease course.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (D.L.); (Y.S.); (Q.C.); (X.L.); (Z.L.); (P.L.); (W.J.); (S.C.)
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (D.L.); (Y.S.); (Q.C.); (X.L.); (Z.L.); (P.L.); (W.J.); (S.C.)
| | - Yun Shi
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (D.L.); (Y.S.); (Q.C.); (X.L.); (Z.L.); (P.L.); (W.J.); (S.C.)
| | - Qingtian Li
- Department of Microbiology and Immunology, The College of Basic Medical Science, Shanghai Jiao Tong University, Shanghai 200025, China; (Q.L.); (X.G.); (K.D.)
| | - Xiaokui Guo
- Department of Microbiology and Immunology, The College of Basic Medical Science, Shanghai Jiao Tong University, Shanghai 200025, China; (Q.L.); (X.G.); (K.D.)
| | - Ke Dong
- Department of Microbiology and Immunology, The College of Basic Medical Science, Shanghai Jiao Tong University, Shanghai 200025, China; (Q.L.); (X.G.); (K.D.)
| | - Qing Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (D.L.); (Y.S.); (Q.C.); (X.L.); (Z.L.); (P.L.); (W.J.); (S.C.)
| | - Xiaoyan Lou
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (D.L.); (Y.S.); (Q.C.); (X.L.); (Z.L.); (P.L.); (W.J.); (S.C.)
| | - Zhenhua Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (D.L.); (Y.S.); (Q.C.); (X.L.); (Z.L.); (P.L.); (W.J.); (S.C.)
| | - Ping Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (D.L.); (Y.S.); (Q.C.); (X.L.); (Z.L.); (P.L.); (W.J.); (S.C.)
| | - Weifeng Jin
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (D.L.); (Y.S.); (Q.C.); (X.L.); (Z.L.); (P.L.); (W.J.); (S.C.)
| | - Shuzi Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; (D.L.); (Y.S.); (Q.C.); (X.L.); (Z.L.); (P.L.); (W.J.); (S.C.)
| | - Yang Sun
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200052, China;
| | - Jing Sun
- Institute for Integrated Intelligence and Systems, School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Gold Coast, QLD 4215, Australia;
- School of Computer Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| |
Collapse
|
135
|
Morales-Torres R, Carrasco-Gubernatis C, Grasso-Cladera A, Cosmelli D, Parada FJ, Palacios-García I. Psychobiotic Effects on Anxiety Are Modulated by Lifestyle Behaviors: A Randomized Placebo-Controlled Trial on Healthy Adults. Nutrients 2023; 15:nu15071706. [PMID: 37049546 PMCID: PMC10096963 DOI: 10.3390/nu15071706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Psychobiotics are modulators of the Microbiota-Gut-Brain Axis (MGBA) with promising benefits to mental health. Lifestyle behaviors are established modulators of both mental health and the MGBA. This randomized placebo-controlled clinical trial (NCT04823533) on healthy adults (N = 135) tested 4 weeks of probiotic supplementation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175). We assessed effects on wellbeing, quality of life, emotional regulation, anxiety, mindfulness and interoceptive awareness. We then analyzed if lifestyle behaviors modulated probiotic effectiveness. Results showed no significant effects of probiotic intake in whole sample outcomes. Correlational analyses revealed Healthy Behaviors were significantly correlated with wellbeing across scales. Moreover, the linear mixed-effects model showed that the interaction between high scores in Healthy Behaviors and probiotic intake was the single significant predictor of positive effects on anxiety, emotional regulation, and mindfulness in post-treatment outcomes. These findings highlight the relevance of controlling for lifestyle behaviors in psychobiotic and mental health research.
Collapse
|
136
|
Tyagi A, Chen X, Shan L, Yan P, Chelliah R, Oh DH. Whole-genome analysis of gamma-aminobutyric acid producing Psychobiotic Limosilactobacillus reuteri with its Untargeted metabolomics using UHPLC-Q-Tof MS/MS. Gene 2023; 858:147195. [PMID: 36641079 DOI: 10.1016/j.gene.2023.147195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The gamma amino butyric acid (GABA) is a chemical messenger and is essential for the health of the brain and muscles. Some lactic acid bacteria (LAB) have the potential to function as psychobiotic cultures because they can produce significant amounts of neuroactive compounds like GABA. Psychobiotics are known to alter bidirectional communication between the gastrointestinal tract and the central nervous system. In the present study, the Limosilactobacillus reuteri (L. reuteri) strain, isolated from human breast milk, was used to detect the GABA-producing glutamic acid decarboxylase (gad) gene and GABA production. PCR, HPLC and UHPLCQ-TOF-MS2 approaches were applied to identify the gad gene, GABA content, and bioactive compounds produced by the bacterial strain, respectively. Additionally, the whole genome was sequenced to better understand the strain's psychobiotic and technological genomic properties. The gadB and gadC genes were confirmed in plasmid 1 of the whole genome. The complete genome sequence of L. reuteri comprises the genome length of 2,087,202 bp with 51.6 percent of G + C content. The results indicate that L. reuteri can be used as a starter culture for the production of GABA-enriched functional foods as well as psychobiotics for health benefits.
Collapse
Affiliation(s)
- Akanksha Tyagi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Xiuqin Chen
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Lingyue Shan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Pianpian Yan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea; Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, South Korea; Saveetha School of Engineering, (SIMATS) University, Saveetha Nagar, Sriperumbudur, Tamil Nadu 600124, India.
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.
| |
Collapse
|
137
|
Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine 2023; 90:104527. [PMID: 36963238 PMCID: PMC10051028 DOI: 10.1016/j.ebiom.2023.104527] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
Major depressive disorder is one of the most disabling mental disorders worldwide. Increasing preclinical and clinical studies have highlighted that compositional and functional (e.g., metabolite) changes in gut microbiota, known as dysbiosis, are associated with the onset and progression of depression via regulating the gut-brain axis. However, the gut microbiota and their metabolites present a double-edged sword in depression. Dysbiosis is involved in the pathogenesis of depression while, at the same time, offering a novel therapeutic target. In this review, we describe the association between dysbiosis and depression, drug-microbiota interactions in antidepressant treatment, and the potential health benefits of microbial-targeted therapeutics in depression, including dietary interventions, fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and postbiotics. With the emergence of microbial research, we describe a new direction for future research and clinical treatment of depression.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China.
| |
Collapse
|
138
|
De Oliveira FL, Salgaço MK, de Oliveira MT, Mesa V, Sartoratto A, Peregrino AM, Ramos WS, Sivieri K. Exploring the Potential of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 as Promising Psychobiotics Using SHIME. Nutrients 2023; 15:nu15061521. [PMID: 36986251 PMCID: PMC10056475 DOI: 10.3390/nu15061521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Psychobiotics are probiotics that have the characteristics of modulating central nervous system (CNS) functions or reconciled actions by the gut-brain axis (GBA) through neural, humoral and metabolic pathways to improve gastrointestinal activity as well as anxiolytic and even antidepressant abilities. The aim of this work was to evaluate the effect of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on the gut microbiota of mildly anxious adults using SHIME®. The protocol included a one-week control period and two weeks of treatment with L. helveticus R0052 and B. longum R0175. Ammonia (NH4+), short chain fatty acids (SCFAs), gamma-aminobutyric acid (GABA), cytokines and microbiota composition were determined. Probiotic strains decreased significantly throughout the gastric phase. The highest survival rates were exhibited by L. helveticus R0052 (81.58%; 77.22%) after the gastric and intestinal phase when compared to B. longum (68.80%; 64.64%). At the genus level, a taxonomic assignment performed in the ascending colon in the SHIME® model showed that probiotics (7 and 14 days) significantly (p < 0.005) increased the abundance of Lactobacillus and Olsenella and significantly decreased Lachnospira and Escheria-Shigella. The probiotic treatment (7 and 14 days) decreased (p < 0.001) NH4+ production when compared to the control period. For SCFAs, we observed after probiotic treatment (14 days) an increase (p < 0.001) in acetic acid production and total SCFAs when compared to the control period. Probiotic treatment increased (p < 0.001) the secretion of anti-inflammatory (IL-6 and IL-10) and decreased (p < 0.001) pro-inflammatory cytokines (TNF-alpha) when compared to the control period. The gut-brain axis plays an important role in the gut microbiota, producing SCFAs and GABA, stimulating the production of anti-anxiety homeostasis. The signature of the microbiota in anxiety disorders provides a promising direction for the prevention of mental illness and opens a new perspective for using the psychobiotic as a main actor of therapeutic targets.
Collapse
Affiliation(s)
- Fellipe Lopes De Oliveira
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Mateus Kawata Salgaço
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | | | - Victoria Mesa
- Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Faculty of Pharmacy, F-75006 Paris, France
- Food and Human Nutrition Research Group, School of Nutrition and Dietetics, Universidad de Antioquia (UdeA), Medellín 050010, Antioquia, Colombia
| | | | | | - Williams Santos Ramos
- APSEN Farmacêutica, Department of Medical Affairs, Santo Amaro 04753-001, SP, Brazil
| | - Katia Sivieri
- Graduate Program in Food, Nutrition, and Food Engineering, Campus Araraquara, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
- University of Araraquara-UNIARA, Araraquara 14801-320, SP, Brazil
| |
Collapse
|
139
|
Gawlik-Kotelnicka O, Margulska A, Skowrońska A, Strzelecki D. PRO-DEMET Randomized Controlled Trial on Probiotics in Depression—Pilot Study Results. Nutrients 2023; 15:nu15061400. [PMID: 36986132 PMCID: PMC10058314 DOI: 10.3390/nu15061400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
There is a pressing need to identify new treatment options for depression and its comorbidities. Depression often coexists with metabolic complications, and the two may share a pathophysiological overlap, including inflammation and microbiota changes. Microbiota interventions (e.g., probiotics) may represent a safe and easy-to-use treatment option as an adjunctive therapy in patients only partially responsive to pharmacologic treatment. (1) Objective: The paper presents the results of a feasibility and pilot study. The study is an internal part of a randomized controlled trail (RCT) of the effect of probiotic supplementation on psychometric, anthropometric, metabolic, and inflammatory parameters in adult patients with depressive disorders depending on the presence of metabolic syndrome. (2) Methods: The trial has a four-arm, parallel-group, prospective, randomized, double-blind, controlled design. Sixty participants received a probiotic preparation containing Lactobacillus helveticus Rosell®-52 and Bifidobacterium longum Rosell®-175 over 60 days. The feasibility of the study design was assessed, as well as the rates of recruitment, eligibility, consent, and study completion. The following were assessed: depressive, anxiety and stress symptoms, quality of life, blood pressure, body mass index and waist circumference, complete blood count with differential, serum levels of C-reactive protein, high-density lipoprotein cholesterol, triglycerides, fasting glucose, some secondary markers of inflammation and metabolic health, as well as noninvasive biomarkers of liver fibrosis (APRI and FIB-4). (3) Results: The study was found to be generally feasible. The eligibility rate was 52% of recruited participants with 80% completing the study protocol. No differences in sociodemographic or anthropometric factors or basic laboratory findings were found between the placebo and probiotic group at the start of the intervention period. Importantly, the proportion of recruited participants fulfilling the criteria of metabolic syndrome was too low. (4) Conclusions: Whilst the whole study protocol was feasible, some different timepoint procedures require modification. The major weakness of the recruitment methods was that the percentage of metabolic arms participants was insufficient. Overall, the full RCT design on probiotics in depression with vs. without metabolic syndrome was shown to be feasible with little modification.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
- Correspondence:
| | - Aleksandra Margulska
- Department of Adolescent Psychiatry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland
| |
Collapse
|
140
|
Johnson D, Letchumanan V, Thum CC, Thurairajasingam S, Lee LH. A Microbial-Based Approach to Mental Health: The Potential of Probiotics in the Treatment of Depression. Nutrients 2023; 15:nu15061382. [PMID: 36986112 PMCID: PMC10053794 DOI: 10.3390/nu15061382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Probiotics are currently the subject of intensive research pursuits and also represent a multi-billion-dollar global industry given their vast potential to improve human health. In addition, mental health represents a key domain of healthcare, which currently has limited, adverse-effect prone treatment options, and probiotics may hold the potential to be a novel, customizable treatment for depression. Clinical depression is a common, potentially debilitating condition that may be amenable to a precision psychiatry-based approach utilizing probiotics. Although our understanding has not yet reached a sufficient level, this could be a therapeutic approach that can be tailored for specific individuals with their own unique set of characteristics and health issues. Scientifically, the use of probiotics as a treatment for depression has a valid basis rooted in the microbiota-gut-brain axis (MGBA) mechanisms, which play a role in the pathophysiology of depression. In theory, probiotics appear to be ideal as adjunct therapeutics for major depressive disorder (MDD) and as stand-alone therapeutics for mild MDD and may potentially revolutionize the treatment of depressive disorders. Although there is a wide range of probiotics and an almost limitless range of therapeutic combinations, this review aims to narrow the focus to the most widely commercialized and studied strains, namely Lactobacillus and Bifidobacterium, and to bring together the arguments for their usage in patients with major depressive disorder (MDD). Clinicians, scientists, and industrialists are critical stakeholders in exploring this groundbreaking concept.
Collapse
Affiliation(s)
- Dinyadarshini Johnson
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Chern Choong Thum
- Department of Psychiatry, Hospital Sultan Abdul Aziz Shah, Persiaran Mardi-UPM, Serdang 43400, Malaysia
| | - Sivakumar Thurairajasingam
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (S.T.); or (L.-H.L.)
| |
Collapse
|
141
|
Host-microbiota interactions and oncogenesis: Crosstalk and its implications in etiology. Microb Pathog 2023; 178:106063. [PMID: 36893903 DOI: 10.1016/j.micpath.2023.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/03/2022] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
A number of articles have discussed the potential of microbiota in oncogenesis. Several of these have evaluated the modulation of microbiota and its influence on cancer development. Even in recent past, a plethora of studies have gathered in order to understand the difference in microbiota population among different cancer and normal individuals. Although in majority of studies, microbiota mediated oncogenesis has been primarily attributed to the inflammatory mechanisms, there are several other ways through which microbiota can influence oncogenesis. These relatively less discussed aspects including the hormonal modulation through estrobolome and endobolome, production of cyclomodulins, and lateral gene transfer need more attention of scientific community. We prepared this article to discuss the role of microbiota in oncogenesis in order to provide concise information on these relatively less discussed microbiota mediated oncogenesis mechanisms.
Collapse
|
142
|
Schmidt T, Meller S, Meyerhoff N, Twele F, Zanghi B, Volk HA. A six-month prospective, randomised, double-blinded, placebo-controlled, crossover, dietary trial design to investigate the potential of psychobiotics on seizure semiology and comorbidities in canine epilepsy: study protocol. BMC Vet Res 2023; 19:57. [PMID: 36864510 PMCID: PMC9983181 DOI: 10.1186/s12917-023-03609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Epilepsy is the most common chronic neurological disease in dogs. More than two-thirds of these patients suffer from associated behavioural comorbidities. The latter could have their origin in partially overlapping pathomechanisms, with the intestinal microbiome as a potential key link between them. The current arsenal of drugs for epilepsy management remains limited. Most canine patients continue to have seizures despite treatment and the occurrence of comorbidities is not sufficiently addressed, limiting quality of life of affected dogs and owners. Therefore, novel additional epilepsy management options are urgently needed. The microbiome-gut-brain axis may serve as a new target for the development of innovative multimodal therapeutic approaches to overcome current shortcomings in epilepsy management. METHODS A six-month prospective, randomised, double-blinded, placebo-controlled, crossover, dietary trial was designed to investigate the potential of the psychobiotic Bifidobacterium longum on behavioural comorbidities in canine epilepsy. Seizure semiology will be evaluated as a secondary outcome measure. Thirty-four privately owned dogs are planned to be included in the ongoing study meeting the following inclusion criteria: Dogs displaying increased anxiety/fear behaviour since the start of the idiopathic epilepsy. Tier II confidence level of the International Veterinary Epilepsy Task Force for the diagnosis of idiopathic epilepsy, with a maximum seizure interval of 3 month and a minimum of three generalised seizures within that period and chronically treated with at least one antiseizure drug without improvement in seizure frequency Each dog will receive the allocated supplement (probiotic vs. placebo) alongside its normal diet for a 3-month period. After a three-week wash out period, the second phase starts by administering the respective other supplement for another 3 months. DISCUSSION The current study considers modern high-quality standards for epilepsy medication trials. Common biasing effects should be limited to a possible minimum (regression-to-the mean effect, placebo effect, observer effect), ensuring a high validity and accuracy of the acquired results, thus enabling a representative nature of the efficacy of Bifidobacterium longum as add-on supplement for dogs suffering from epilepsy and its comorbidities. This publication should provide a description of the study procedure and data acquisition methods, including prognosed statistical analysis.
Collapse
Affiliation(s)
- Teresa Schmidt
- grid.412970.90000 0001 0126 6191Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sebastian Meller
- grid.412970.90000 0001 0126 6191Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nina Meyerhoff
- grid.412970.90000 0001 0126 6191Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Friederike Twele
- grid.412970.90000 0001 0126 6191Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Brian Zanghi
- Research and Development, Nestlé Purina PetCare, St. Louis, MO USA
| | - Holger Andreas Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany. .,Centre for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
143
|
Cameron SJS, Edwards A, Lambert RJ, Stroud M, Mur LAJ. Participants in the Trans-Antarctic Winter Traverse Expedition Showed Increased Bacterial Load and Diversity in Saliva but Maintained Individual Differences within Stool Microbiota and Across Metabolite Fingerprints. Int J Mol Sci 2023; 24:ijms24054850. [PMID: 36902282 PMCID: PMC10002533 DOI: 10.3390/ijms24054850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the impact of long-term physiological and environmental stress on the human microbiota and metabolome may be important for the success of space flight. This work is logistically difficult and has a limited number of available participants. Terrestrial analogies present important opportunities to understand changes in the microbiota and metabolome and how this may impact participant health and fitness. Here, we present work from one such analogy: the Transarctic Winter Traverse expedition, which we believe is the first assessment of the microbiota and metabolome from different bodily locations during prolonged environmental and physiological stress. Bacterial load and diversity were significantly higher during the expedition when compared with baseline levels (p < 0.001) in saliva but not stool, and only a single operational taxonomic unit assigned to the Ruminococcaceae family shows significantly altered levels in stool (p < 0.001). Metabolite fingerprints show the maintenance of individual differences across saliva, stool, and plasma samples when analysed using flow infusion electrospray mass spectrometry and Fourier transform infrared spectroscopy. Significant activity-associated changes in terms of both bacterial diversity and load are seen in saliva but not in stool, and participant differences in metabolite fingerprints persist across all three sample types.
Collapse
Affiliation(s)
- Simon J. S. Cameron
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Chlorine Gardens, Belfast BT9 5DL, UK
- Correspondence: (S.J.S.C.); (L.A.J.M.)
| | - Arwyn Edwards
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth SY23 3FG, UK
| | - Robert J. Lambert
- Department of Orthopaedics, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Mike Stroud
- NIHR BRC Nutrition, University of Southampton Medical School, Southampton SO16 6YD, UK
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, Penglais Campus, Aberystwyth SY23 3FG, UK
- Correspondence: (S.J.S.C.); (L.A.J.M.)
| |
Collapse
|
144
|
Lai CCW, Boag S. The association between gut-health promoting diet and depression: A mediation analysis. J Affect Disord 2023; 324:136-142. [PMID: 36586592 DOI: 10.1016/j.jad.2022.12.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Recent research has highlighted the relevance of a gut-health promoting diet as a possible treatment and prevention for depression. A dietary pattern with consumption of fermented food and high consumption of dietary fiber can promote gut health, physical health, and might even improve mental health. This study aimed to investigate the interrelationship among diet, physical health, and depression. METHODS This study used a nationally representative sample (N = 16,572) from the National Health and Nutrition Examination Survey (2011-2018). Dietary information was collected by dietary recall interviews. Depression was assessed by the 9-item Patient Health Questionnaire. Subjective physical health was indicated by self-reported Body Mass Index (BMI). Objective physical health was indicated by BMI measured by trained health technicians. Path analysis was used to test the association between diet and depression, and the mediating roles of self-reported BMI and BMI measured by technicians. RESULTS Consumption of probiotic foods and higher intake of fiber were significantly associated with lower levels of depressive symptoms. Both subjective and objective physical health significantly mediated the relationship between variables of diet and mild depressive symptoms. Subjective physical health also significantly mediated the relationship between high intake of dietary fiber and lower likelihood of reporting severe depressive symptoms. CONCLUSION Despite being cross-sectional in nature, this study presented evidence that gut-health promoting diets may reduce depressive symptoms through improving physical health. These findings provide preliminary support to diet programs for preventing depression and diet programs as an alternative or supplementary treatment of depression.
Collapse
Affiliation(s)
- Catie Chun Wan Lai
- School of Psychological Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Simon Boag
- School of Psychological Sciences, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
145
|
Tanelian A, Nankova B, Cheriyan A, Arens C, Hu F, Sabban EL. Differences in gut microbiota associated with stress resilience and susceptibility to single prolonged stress in female rodents. Neurobiol Stress 2023; 24:100533. [PMID: 36970450 PMCID: PMC10034505 DOI: 10.1016/j.ynstr.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Exposure to traumatic stress is a major risk factor for the development of neuropsychiatric disorders in a subpopulation of individuals, whereas others remain resilient. The determinants of resilience and susceptibility remain unclear. Here, we aimed to characterize the microbial, immunological, and molecular differences between stress-susceptible and stress-resilient female rats before and after exposure to a traumatic experience. Animals were randomly divided into unstressed controls (n = 10) and experimental groups (n = 16) exposed to Single Prolonged Stress (SPS), an animal model of PTSD. Fourteen days later, all rats underwent a battery of behavioral tests and were sacrificed the following day to collect different organs. Stool samples were collected before and after SPS. Behavioral analyses revealed divergent responses to SPS. The SPS treated animals were further subdivided into SPS-resilient (SPS-R) and SPS-susceptible (SPS-S) subgroups. Comparative analysis of fecal 16S sequencing before and after SPS exposure indicated significant differences in the gut microbial composition, functionality, and metabolites of the SPS-R and SPS-S subgroups. In line with the observed distinct behavioral phenotypes, the SPS-S subgroup displayed higher blood-brain barrier permeability and neuroinflammation relative to the SPS-R and/or controls. These results indicate, for the first time, pre-existing and trauma-induced differences in the gut microbial composition and functionality of female rats that relate to their ability to cope with traumatic stress. Further characterization of these factors will be crucial for understanding susceptibility and fostering resilience, especially in females, who are more likely than males to develop mood disorders.
Collapse
|
146
|
Misera A, Łoniewski I, Palma J, Kulaszyńska M, Czarnecka W, Kaczmarczyk M, Liśkiewicz P, Samochowiec J, Skonieczna-Żydecka K. Clinical significance of microbiota changes under the influence of psychotropic drugs. An updated narrative review. Front Microbiol 2023; 14:1125022. [PMID: 36937257 PMCID: PMC10014913 DOI: 10.3389/fmicb.2023.1125022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Relationship between drugs and microbiota is bilateral. Proper composition thus function of microbiota is a key to some medications used in modern medicine. However, there is also the other side of the coin. Pharmacotherapeutic agents can modify the microbiota significantly, which consequently affects its function. A recently published study showed that nearly 25% of drugs administered to humans have antimicrobial effects. Multiple antidepressants are antimicrobials,. and antibiotics with proven antidepressant effects do exist. On the other hand, antibiotics (e.g., isoniaside, minocycline) confer mental phenotype changes, and adverse effects caused by some antibiotics include neurological and psychological symptoms which further supports the hypothesis that intestinal microbiota may affect the function of the central nervous system. Here we gathered comprehensively data on drugs used in psychiatry regarding their antimicrobial properties. We believe our data has strong implications for the treatment of psychiatric entities. Nevertheless the study of ours highlights the need for more well-designed trials aimed at analysis of gut microbiota function.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Sanprobi sp. z o.o. sp.k., Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | |
Collapse
|
147
|
Sharma N, Kang DK, Paik HD, Park YS. Beyond probiotics: a narrative review on an era of revolution. Food Sci Biotechnol 2023; 32:413-421. [PMID: 36911329 PMCID: PMC9992473 DOI: 10.1007/s10068-022-01212-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Whether knowingly or unknowingly, humans have been consuming probiotic microorganisms through traditionally fermented foods for generations. Bacteria, like lactic acid bacteria, are generally thought to be harmless and produce many metabolites that are beneficial for human health. Probiotics offer a wide range of health benefits; however, their therapeutic usage is limited because they are living organisms. As a result, the focus on the health advantages of microbes has recently shifted from viable live probiotics to non-viable microbes made from probiotics. These newly emerging non-viable microbes include paraprobiotics, postbiotics, psychobiotics, nutribiotics, and gerobiotics. Their metabolites can boost physiological health and reveal the therapeutic effects of probiotics. This new terminology in microbes, their traits, and their applications are summarized in the present review.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 31116 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
148
|
Kazem YI, Mahmoud MH, Essa HA, Azmy O, Kandeel WA, Al-Moghazy M, El-Attar I, Hasheesh A, Mehanna NS. Role of Bifidobacterium spp. intake in improving depressive mood and well-being and its link to kynurenine blood level: an interventional study. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:223-232. [PMID: 34758244 DOI: 10.1515/jcim-2021-0351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Evidence for the contribution of the brain-gut-microbiota axis to the depression pathophysiology is increasing nowadays. Disturbed gut microbiota equilibrium along with bad dietary habits both lead to kynurenine pathway abnormalities contributing to the depression pathophysiology. In this respect, many studies are found but the interventional clinical trials are limited. The present interventional study aims to evaluate the impact of Bifidobacterium spp. supplementation together with improving dietary intake on depressive mood and well-being and their correlation with kynurenine blood level in adult Egyptian healthy volunteers. METHODS A number of 98 healthy female volunteers with a mean age of 46.96 ± 1.82 years were selected and enrolled in this study. They were given yogurt enriched with Bifidobacterium spp. daily for eight weeks. Clinical examination as well as questionnaires for the evaluation of psychological well-being and depression were done at base line and after eight weeks of intervention. Fasting blood samples and stool samples were collected from all subjects at baseline and eight weeks after the intervention for the investigation of serum kynurenine concentration, blood hemoglobin, serum transaminases (ALT & AST) serum urea and creatinine as well as fecal Bifidobacterium count. RESULTS Data revealed that both depression and well-being showed highly significant improvement combined with significant drop in kynurenine blood level after intervention. Also, a significant rise in fecal Bifidobacterium count and a significant improvement in hemoglobin level and activity of liver enzymes were recorded. After intervention, a significant negative correlation was recorded between depression and fecal Bifidobacterium count as well as between serum kynurenine level, and well-being. CONCLUSION Bifidobacterium spp. supplementation combined with improvement in dietary intake resulted in improvement of depressive mood and well-being and reduced kynurenine blood level.
Collapse
Affiliation(s)
- Yusr I Kazem
- Nutrition & Food Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| | - Maha H Mahmoud
- Nutrition & Food Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| | - Hend A Essa
- Nutrition & Food Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| | - Osama Azmy
- Reproductive Health & Family Planning Department, Medical Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | | | - Marwa Al-Moghazy
- Dairy Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| | | | - Adel Hasheesh
- Children with Special Needs Department, Institute of Human Genetics and Genome Research, National Research Centre, Dokki, Cairo, Egypt
| | - Nayra S Mehanna
- Dairy Sciences Department, Institute of Food Industries and Nutrition, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
149
|
Li M, Zhang C, Xiao X, Zhu M, Quan W, Liu X, Zhang S, Liu Z. Theaflavins in Black Tea Mitigate Aging-Associated Cognitive Dysfunction via the Microbiota-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2356-2369. [PMID: 36718846 DOI: 10.1021/acs.jafc.2c06679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aging-associated cognitive dysfunction has a great influence on the lifespan and healthspan of the elderly. Theaflavins (TFs), a mixture of ingredients formed from enzymatic oxidation of catechins during the manufacture of tea, have a positive contribution to the qualities and antiaging activities of black tea. However, the role of TFs in mitigating aging-induced cognitive dysfunction and the underlying mechanism remains largely unknown. Here, we find that TFs effectively improve behavioral impairment via the microbiota-gut-brain axis: TFs maintain gut homeostasis by improving antioxidant ability, strengthening the immune response, increasing the expression of tight junction proteins, restructuring the gut microbiota, and altering core microbiota metabolites, i.e., short-chain fatty acids and essential amino acids (SCFAs and AAs), and upregulating brain neurotrophic factors. Removing the gut microbiota with antibiotics partly abolishes the neuroprotective effects of TFs. Besides, correlation analysis indicates that the decrease in gut microbiota, such as Bacteroidetes and Lachnospiraceae, and the increase in microbiota metabolites' levels are positively correlated with behavioral improvements. Taken together, our findings reveal a potential role of TFs in mitigating aging-driven cognitive dysfunction via the microbiota-gut-brain axis. The intake of TFs can be translated into a novel dietary intervention approach against aging-induced cognitive decline.
Collapse
Affiliation(s)
- Maiquan Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Can Zhang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xing Xiao
- Hunan Provincial People's Hospital, Changsha 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xia Liu
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
150
|
Donovan M, Mackey CS, Lynch MDJ, Platt GN, Brown AN, Washburn BK, Trickey DJ, Curtis JT, Liu Y, Charles TC, Wang Z, Jones KM. Limosilactobacillus reuteri administration alters the gut-brain-behavior axis in a sex-dependent manner in socially monogamous prairie voles. Front Microbiol 2023; 14:1015666. [PMID: 36846764 PMCID: PMC9945313 DOI: 10.3389/fmicb.2023.1015666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023] Open
Abstract
Research on the role of gut microbiota in behavior has grown dramatically. The probiotic L. reuteri can alter social and stress-related behaviors - yet, the underlying mechanisms remain largely unknown. Although traditional laboratory rodents provide a foundation for examining the role of L. reuteri on the gut-brain axis, they do not naturally display a wide variety of social behaviors. Using the highly-social, monogamous prairie vole (Microtus ochrogaster), we examined the effects of L. reuteri administration on behaviors, neurochemical marker expression, and gut-microbiome composition. Females, but not males, treated with live L. reuteri displayed lower levels of social affiliation compared to those treated with heat-killed L. reuteri. Overall, females displayed a lower level of anxiety-like behaviors than males. Live L. reuteri-treated females had lower expression of corticotrophin releasing factor (CRF) and CRF type-2-receptor in the nucleus accumbens, and lower vasopressin 1a-receptor in the paraventricular nucleus of the hypothalamus (PVN), but increased CRF in the PVN. There were both baseline sex differences and sex-by-treatment differences in gut microbiome composition. Live L. reuteri increased the abundance of several taxa, including Enterobacteriaceae, Lachnospiraceae NK4A136, and Treponema. Interestingly, heat-killed L. reuteri increased abundance of the beneficial taxa Bifidobacteriaceae and Blautia. There were significant correlations between changes in microbiota, brain neurochemical markers, and behaviors. Our data indicate that L. reuteri impacts gut microbiota, gut-brain axis and behaviors in a sex-specific manner in socially-monogamous prairie voles. This demonstrates the utility of the prairie vole model for further examining causal impacts of microbiome on brain and behavior.
Collapse
Affiliation(s)
- Meghan Donovan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Calvin S. Mackey
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Michael D. J. Lynch
- Metagenom Bio Life Science Inc, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Grayson N. Platt
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Amber N. Brown
- Department of Biological Science Core Facilities, Florida State University, Tallahassee, FL, United States
| | - Brian K. Washburn
- Department of Biological Science Core Facilities, Florida State University, Tallahassee, FL, United States
| | - Darryl J. Trickey
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - J. Thomas Curtis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Trevor C. Charles
- Metagenom Bio Life Science Inc, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Kathryn M. Jones
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| |
Collapse
|