101
|
Bissonnette L, Bergeron MG. Next revolution in the molecular theranostics of infectious diseases: microfabricated systems for personalized medicine. Expert Rev Mol Diagn 2014; 6:433-50. [PMID: 16706745 DOI: 10.1586/14737159.6.3.433] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The molecular diagnosis of infectious diseases is currently going through a revolution sustained by the regulatory approval of amplification tests that have been shown to be equivalent or superior to existing gold standard methods. The recent approval of a microarray system for the pharmacogenomic profiling of cytochrome P450-mediated drug metabolism is paving the way to novel, rapid, sensitive, robust and economical microfabricated systems for point-of-care diagnostics, which are utilized closer and closer to the patient's bedside. These systems will enable the multiparametric genetic evaluation of several medical conditions, including infectious diseases. This forecoming revolution will position molecular theranostics in a broader integrated view of personalized medicine, which exploits genetic information from microbes and human hosts to optimize patient management and disease treatment.
Collapse
Affiliation(s)
- Luc Bissonnette
- Département de Biologie Médicale (Microbiologie), Faculté de Médecine, Université Laval, Québec City, Canada.
| | | |
Collapse
|
102
|
Abstract
In the coming years, genetic test results will be increasingly used as indicators that influence medical decision making. Novel instrumentation that is able to detect relevant mutations in a point-of-care setting is being developed to facilitate this increase, frequently as a spin-off from recent research in the area of biothreat monitoring. This market review will describe the current generation of instrumentation that is most suitable for use in a point-of-care setting; it will also try to identify some of the technologies that will make-up the next generation of instrumentation currently being prepared for the market.
Collapse
Affiliation(s)
- Mark G Dobson
- National Centre for Medical Genetics, University College Dublin, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | | | | |
Collapse
|
103
|
Lee MK, Lee TJ, Choi HW, Shin SJ, Park JY, Lee SJ. A universal spring-probe system for reliable probing of electrochemical lab-on-a-chip devices. SENSORS 2014; 14:944-56. [PMID: 24406857 PMCID: PMC3926595 DOI: 10.3390/s140100944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/19/2013] [Accepted: 01/02/2014] [Indexed: 11/28/2022]
Abstract
For achieve sensitivity in lab-on-a-chip electrochemical detection, more reliable probing methods are required, especially for repeated measurements. Spring-probes are a promising candidate method which can replace needle-like probes and alligator clips that usually produce scratches on the surface of gold electrodes due to the strong physical contacts needed for electrochemical measurements. The superior reliability of amperometric measurements by a spring-probe system was compared with results by conventional probing methods. We demonstrated that a universal spring-probe system would be potentially suitable to achieve high performance in lab-on-a-chip devices using electrochemical detection.
Collapse
Affiliation(s)
- Moon-Keun Lee
- Center for Nanobio Integration & Convergence Engineering, National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea.
| | - Tae Jae Lee
- Center for Nanobio Integration & Convergence Engineering, National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea.
| | - Ho Woon Choi
- Center for Nanobio Integration & Convergence Engineering, National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea.
| | - Su Jeong Shin
- Center for Nanobio Integration & Convergence Engineering, National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea.
| | - Jung Youn Park
- Center for Nanobio Integration & Convergence Engineering, National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea.
| | - Seok Jae Lee
- Center for Nanobio Integration & Convergence Engineering, National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-806, Korea.
| |
Collapse
|
104
|
Prakash R, Pabbaraju K, Wong S, Wong A, Tellier R, Kaler KVIS. Droplet Microfluidic Chip Based Nucleic Acid Amplification and Real-Time Detection of Influenza Viruses. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2014; 161:B3083-B3093. [PMID: 32287356 PMCID: PMC7105149 DOI: 10.1149/2.013402jes] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/13/2013] [Indexed: 06/11/2023]
Abstract
Miniaturized bio-diagnostic devices have the potential to allow for rapid pathogen screening in clinical patient samples, as a low cost and portable alternative to conventional bench-top equipment. Miniaturization of key bio-diagnostic techniques, such as: nucleic acid detection and quantification, polymerase chain reaction (PCR), DNA fingerprinting, enzyme linked immunosorbent assay (ELISA), results in substantial reduction of reaction volumes (expensive samples/reagents) and shorter reaction times. Droplet microfluidics (DMF) is one of several miniaturized bio-sample handling techniques available for manipulating clinical samples and reagents in microliter (10-6 L) to picoliter (10-12 L) volume regime. Electro-actuation of sample and reagent in the form of droplets in the aforementioned volume regime, using dielectrophoresis (DEP) and/or Electrowetting (EW) are achieved by means of patterned, insulated metal electrodes on one or more substrates. In this work, we have utilized electro-actuation based DMF technology, integrated with suitably tailored resistive micro-heaters and temperature sensors, to achieve chip based real-time, quantitative PCR (qRT-PCR). This qRT-PCR micro-device was utilized to detect and quantify the presence of influenza A and C virus nucleic acids, using in-vitro synthesized viral RNA segments. The experimental analysis of the DMF micro-device confirms its capabilities in qRT-PCR based detection and quantification of pathogen samples, with accuracy levels comparable to established commercial bench-top equipment (PCR efficiency ∼95%). The limit of detection (LOD) of the chip based qRT-PCR technique was estimated to be ∼5 copies of template RNA per PCR reaction.
Collapse
Affiliation(s)
- R Prakash
- Biosystems Research and Applications Group, Schulich School of Engineering, University of Calgary, Calgary, Alberta AB T2N 1N4, Canada
| | - K Pabbaraju
- Provincial Laboratory for Public Health of Alberta, ProvLAB, Calgary AB T2N4W4, Canada
| | - S Wong
- Provincial Laboratory for Public Health of Alberta, ProvLAB, Calgary AB T2N4W4, Canada
| | - A Wong
- Provincial Laboratory for Public Health of Alberta, ProvLAB, Calgary AB T2N4W4, Canada
| | - R Tellier
- Provincial Laboratory for Public Health of Alberta, ProvLAB, Calgary AB T2N4W4, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - K V I S Kaler
- Biosystems Research and Applications Group, Schulich School of Engineering, University of Calgary, Calgary, Alberta AB T2N 1N4, Canada
| |
Collapse
|
105
|
Sedighi A, Li PC. Challenges and Future Trends in DNA Microarray Analysis. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-62651-6.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
106
|
Safavieh M, Ahmed MU, Sokullu E, Ng A, Braescu L, Zourob M. A simple cassette as point-of-care diagnostic device for naked-eye colorimetric bacteria detection. Analyst 2014; 139:482-7. [DOI: 10.1039/c3an01859h] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
107
|
Liu T, Sin MLY, Pyne JD, Gau V, Liao JC, Wong PK. Electrokinetic stringency control in self-assembled monolayer-based biosensors for multiplex urinary tract infection diagnosis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2014; 10:159-66. [PMID: 23891989 PMCID: PMC3858494 DOI: 10.1016/j.nano.2013.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/24/2013] [Accepted: 07/05/2013] [Indexed: 11/30/2022]
Abstract
Rapid detection of bacterial pathogens is critical toward judicious management of infectious diseases. Herein, we demonstrate an in situ electrokinetic stringency control approach for a self-assembled monolayer-based electrochemical biosensor toward urinary tract infection diagnosis. The in situ electrokinetic stringency control technique generates Joule heating induced temperature rise and electrothermal fluid motion directly on the sensor to improve its performance for detecting bacterial 16S rRNA, a phylogenetic biomarker. The dependence of the hybridization efficiency reveals that in situ electrokinetic stringency control is capable of discriminating single-base mismatches. With electrokinetic stringency control, the background noise due to the matrix effects of clinical urine samples can be reduced by 60%. The applicability of the system is demonstrated by multiplex detection of three uropathogenic clinical isolates with similar 16S rRNA sequences. The results demonstrate that electrokinetic stringency control can significantly improve the signal-to-noise ratio of the biosensor for multiplex urinary tract infection diagnosis. FROM THE CLINICAL EDITOR Urinary tract infections remain a significant cause of mortality and morbidity as secondary conditions often related to chronic diseases or to immunosuppression. Rapid and sensitive identification of the causative organisms is critical in the appropriate management of this condition. These investigators demonstrate an in situ electrokinetic stringency control approach for a self-assembled monolayer-based electrochemical biosensor toward urinary tract infection diagnosis, establishing that such an approach significantly improves the biosensor's signal-to-noise ratio.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA
| | - Mandy L Y Sin
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA; Department of Urology, Stanford University, Stanford, CA, USA
| | - Jeff D Pyne
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA
| | | | - Joseph C Liao
- Department of Urology, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
108
|
Hosseini S, Ibrahim F, Djordjevic I, Koole LH. Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications. Analyst 2014; 139:2933-43. [DOI: 10.1039/c3an01789c] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
109
|
Wu J, Kodzius R, Cao W, Wen W. Extraction, amplification and detection of DNA in microfluidic chip-based assays. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1140-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
110
|
Integration of sample pretreatment, μPCR, and detection for a total genetic analysis microsystem. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1128-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
111
|
Ahmed MU, Nahar S, Safavieh M, Zourob M. Real-time electrochemical detection of pathogen DNA using electrostatic interaction of a redox probe. Analyst 2013; 138:907-15. [PMID: 23230566 DOI: 10.1039/c2an36153a] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Electrostatic redox probes interaction has been widely rendered for DNA quantification. We have established a proof-of-principle by using the ruthenium hexaamine molecule [Ru(NH(3))(6)](3+). We have applied this method for real-time electrochemical monitoring of a loop mediated isothermal amplification (LAMP) amplicon of target genes of Escherichia coli and Staphylococcus aureus by square wave voltammetry (SWV). Ruthenium hexaamine interaction with free DNAs in solution without being immobilized onto the biochip surface enabled us to discard the time-consuming overnight probe immobilization step in DNA quantification. We have measured the changes in the cathodic current signals using screen printed low-cost biochips both in the presence and the absence of LAMP amplicons of target DNAs in the solution-phase. By using this novel probe, we successfully carried out the real-time isothermal amplification and detection in less than 30 min for S. aureus and E. coli with a sensitivity up to 30 copies μL(-1) and 20 copies μL(-1), respectively. The cathode peak height of the current was related to the extent of amplicon formation and the amount of introduced template genomic DNA. Importantly, since laborious probe immobilization is not necessary at all, and both the in vitro amplification and real-time monitoring are performed in a single polypropylene tube using a single biochip, this novel approach could avoid all potential cross-contamination in the whole procedure.
Collapse
Affiliation(s)
- Minhaz Uddin Ahmed
- Institut National de la Recherche Scientifique (INRS) - Énergie Matériaux Télécommunications (EMT), 1650 Boulevard Lionel-Boulet, Varennes, J3X 1S2, Quebec, Canada.
| | | | | | | |
Collapse
|
112
|
Shabani A, Marquette CA, Mandeville R, Lawrence MF. Magnetically-assisted impedimetric detection of bacteria using phage-modified carbon microarrays. Talanta 2013; 116:1047-53. [DOI: 10.1016/j.talanta.2013.07.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 01/11/2023]
|
113
|
Boybay MS, Jiao A, Glawdel T, Ren CL. Microwave sensing and heating of individual droplets in microfluidic devices. LAB ON A CHIP 2013; 13:3840-6. [PMID: 23896699 DOI: 10.1039/c3lc50418b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet-based microfluidics is an emerging high-throughput screening technology finding applications in a variety of areas such as life science research, drug discovery and material synthesis. In this paper we present a cost-effective, scalable microwave system that can be integrated with microfluidic devices enabling remote, simultaneous sensing and heating of individual nanoliter-sized droplets generated in microchannels. The key component of this microwave system is an electrically small resonator that is able to distinguish between materials with different electrical properties (i.e. permittivity, conductivity). The change in these properties causes a shift in the operating frequency of the resonator, which can be used for sensing purposes. Alternatively, if microwave power is delivered to the sensing region at the frequency associated with a particular material (i.e. droplet), then only this material receives the power while passing the resonator leaving the surrounding materials (i.e. carrier fluid and chip material) unaffected. Therefore this method allows sensing and heating of individual droplets to be inherently synchronized, eliminating the need for external triggers. We confirmed the performance of the sensor by applying it to differentiate between various dairy fluids, identify salt solutions and detect water droplets with different glycerol concentrations. We experimentally verified that this system can increase the droplet temperature from room temperature by 42 °C within 5.62 ms with an input power of 27 dBm. Finally we employed this system to thermally initiate the formation of hydrogel particles out of the droplets that are being heated by this system.
Collapse
Affiliation(s)
- Muhammed S Boybay
- Department of Computer Engineering, Antalya International University, Universite Caddesi No:2, 07190 Antalya, Turkey
| | | | | | | |
Collapse
|
114
|
Yang J, Brooks C, Estes MD, Hurth CM, Zenhausern F. An integratable microfluidic cartridge for forensic swab samples lysis. Forensic Sci Int Genet 2013; 8:147-58. [PMID: 24315603 DOI: 10.1016/j.fsigen.2013.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 08/13/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022]
Abstract
Fully automated rapid forensic DNA analysis requires integrating several multistep processes onto a single microfluidic platform, including substrate lysis, extraction of DNA from the released lysate solution, multiplexed PCR amplification of STR loci, separation of PCR products by capillary electrophoresis, and analysis for allelic peak calling. Over the past several years, most of the rapid DNA analysis systems developed started with the reference swab sample lysate and involved an off-chip lysis of collected substrates. As a result of advancement in technology and chemistry, addition of a microfluidic module for swab sample lysis has been achieved in a few of the rapid DNA analysis systems. However, recent reports on integrated rapid DNA analysis systems with swab-in and answer-out capability lack any quantitative and qualitative characterization of the swab-in sample lysis module, which is important for downstream forensic sample processing. Maximal collection and subsequent recovery of the biological material from the crime scene is one of the first and critical steps in forensic DNA technology. Herein we present the design, fabrication and characterization of an integratable swab lysis cartridge module and the test results obtained from different types of commonly used forensic swab samples, including buccal, saliva, and blood swab samples, demonstrating the compatibility with different downstream DNA extraction chemistries. This swab lysis cartridge module is easy to operate, compatible with both forensic and microfluidic requirements, and ready to be integrated with our existing automated rapid forensic DNA analysis system. Following the characterization of the swab lysis module, an integrated run from buccal swab sample-in to the microchip CE electropherogram-out was demonstrated on the integrated prototype instrument. Therefore, in this study, we demonstrate that this swab lysis cartridge module is: (1) functionally, comparable with routine benchtop lysis, (2) compatible with various types of swab samples and chemistries, and (3) integratable to achieve a micro total analysis system (μTAS) for rapid DNA analysis.
Collapse
Affiliation(s)
- Jianing Yang
- Center for Applied NanoBioscience and Medicine, The University of Arizona College of Medicine, 425 N. 5th Street, Phoenix, AZ 85004 USA.
| | | | | | | | | |
Collapse
|
115
|
van Oordt T, Barb Y, Smetana J, Zengerle R, von Stetten F. Miniature stick-packaging--an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems. LAB ON A CHIP 2013; 13:2888-92. [PMID: 23674222 DOI: 10.1039/c3lc50404b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stick-packaging of goods in tubular-shaped composite-foil pouches has become a popular technology for food and drug packaging. We miniaturized stick-packaging for use in lab-on-a-chip (LOAC) systems to pre-store and on-demand release the liquid and dry reagents in a volume range of 80-500 μl. An integrated frangible seal enables the pressure-controlled release of reagents and simplifies the layout of LOAC systems, thereby making the package a functional microfluidic release unit. The frangible seal is adjusted to defined burst pressures ranging from 20 to 140 kPa. The applied ultrasonic welding process allows the packaging of temperature sensitive reagents. Stick-packs have been successfully tested applying recovery tests (where 99% (STDV = 1%) of 250 μl pre-stored liquid is released), long-term storage tests (where there is loss of only <0.5% for simulated 2 years) and air transport simulation tests. The developed technology enables the storage of a combination of liquid and dry reagents. It is a scalable technology suitable for rapid prototyping and low-cost mass production.
Collapse
Affiliation(s)
- Thomas van Oordt
- HSG-IMIT-Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | | | | | | | | |
Collapse
|
116
|
Cho W, Maeng JH, Ahn Y, Hwang SY. Disposable on-chip microfluidic system for buccal cell lysis, DNA purification, and polymerase chain reaction. Electrophoresis 2013; 34:2531-7. [DOI: 10.1002/elps.201300230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Woong Cho
- Graduate School; Hanyang University; Seoul Korea
| | - Joon-Ho Maeng
- Department of Biochemistry; Hanyang University; Ansan, Gyeonggi-do Korea
| | - Yoomin Ahn
- Department of Mechanical Engineering; Hanyang University; Ansan, Gyeonggi-do Korea
| | - Seung Yong Hwang
- Division of Molecular and Life Science; Hanyang University; Ansan, Gyeonggi-do Korea
- GenoCheck Co. Ltd., Hanyang University; Ansan, Gyeonggi-do Korea
| |
Collapse
|
117
|
Roskos K, Hickerson AI, Lu HW, Ferguson TM, Shinde DN, Klaue Y, Niemz A. Simple system for isothermal DNA amplification coupled to lateral flow detection. PLoS One 2013; 8:e69355. [PMID: 23922706 PMCID: PMC3724848 DOI: 10.1371/journal.pone.0069355] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/09/2013] [Indexed: 02/04/2023] Open
Abstract
Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden.
Collapse
Affiliation(s)
- Kristina Roskos
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Anna I. Hickerson
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Hsiang-Wei Lu
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Tanya M. Ferguson
- Claremont BioSolutions, Upland, California, United States of America
| | - Deepali N. Shinde
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Yvonne Klaue
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Angelika Niemz
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
- * E-mail:
| |
Collapse
|
118
|
Electrochemical method for monitoring the progress of polymerase chain reactions using Methylene blue as an indicator. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
119
|
Oblath EA, Henley WH, Alarie JP, Ramsey JM. A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva. LAB ON A CHIP 2013; 13:1325-32. [PMID: 23370016 PMCID: PMC3617581 DOI: 10.1039/c3lc40961a] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A microfluidic chip integrating DNA extraction, amplification, and detection for the identification of bacteria in saliva is described. The chip design integrated a monolithic aluminum oxide membrane (AOM) for DNA extraction with seven parallel reaction wells for real-time polymerase chain reaction (rtPCR) amplification of the extracted DNA. Samples were first heated to lyse target organisms and then added to the chip and filtered through the nanoporous AOM to extract the DNA. PCR reagents were added to each of the wells and the chip was thermocycled. Identification of Streptococcus mutans in a saliva sample is demonstrated along with the detection of 300 fg (100-125 copies) of both methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) genomic DNA (gDNA) spiked into a saliva sample. Multiple target species and strains of bacteria can be simultaneously identified in the same sample by varying the primers and probes used in each of the seven reaction wells. In initial tests, as little as 30 fg (8-12 copies) of MSSA gDNA in buffer has been successfully amplified and detected with this device.
Collapse
Affiliation(s)
- Emily A Oblath
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
120
|
Chang CM, Chang WH, Wang CH, Wang JH, Mai JD, Lee GB. Nucleic acid amplification using microfluidic systems. LAB ON A CHIP 2013; 13:1225-42. [PMID: 23407669 DOI: 10.1039/c3lc41097h] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In the post-human-genome-project era, the development of molecular diagnostic techniques has advanced the frontiers of biomedical research. Nucleic-acid-based technology (NAT) plays an especially important role in molecular diagnosis. However, most research and clinical protocols still rely on the manual analysis of individual samples by skilled technicians which is a time-consuming and labor-intensive process. Recently, with advances in microfluidic designs, integrated micro total-analysis-systems have emerged to overcome the limitations of traditional detection assays. These microfluidic systems have the capability to rapidly perform experiments in parallel and with a high-throughput which allows a NAT analysis to be completed in a few hours or even a few minutes. These features have a significant beneficial influence on many aspects of traditional biological or biochemical research and this new technology is promising for improving molecular diagnosis. Thus, in the foreseeable future, microfluidic systems developed for molecular diagnosis using NAT will become an important tool in clinical diagnosis. One of the critical issues for NAT is nucleic acid amplification. In this review article, recent advances in nucleic acid amplification techniques using microfluidic systems will be reviewed. Different approaches for fast amplification of nucleic acids for molecular diagnosis will be highlighted.
Collapse
Affiliation(s)
- Chen-Min Chang
- Institute of Oral Medicine, National Cheng Kung University, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
121
|
Zhang JY, Mahalanabis M, Liu L, Chang J, Pollock NR, Klapperich CM. A Disposable Microfluidic Virus Concentration Device Based on Evaporation and Interfacial Tension. Diagnostics (Basel) 2013; 3:155-169. [PMID: 26617991 PMCID: PMC4662409 DOI: 10.3390/diagnostics3010155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/12/2013] [Accepted: 02/20/2013] [Indexed: 12/04/2022] Open
Abstract
We report a disposable and highly effective polymeric microfluidic viral sample concentration device capable of increasing the concentration of virus in a human nasopharyngeal specimen more than one order of magnitude in less than 30 min without the use of a centrifuge. The device is fabricated using 3D maskless xurography method using commercially available polymeric materials, which require no cleanroom operations. The disposable components can be fabricated and assembled in five minutes. The device can concentrate a few milliliters (mL) of influenza virus in solution from tissue culture or clinical nasopharyngeal swab specimens, via reduction of the fluid volume, to tens of microliters μL). The performance of the device was evaluated by nucleic acid extraction from the concentrated samples, followed by a real-time quantitative polymerase chain reaction (qRT-PCR). The viral RNA concentration in each sample was increased on average over 10-fold for both cultured and patient specimens compared to the starting samples, with recovery efficiencies above 60% for all input concentrations. Highly concentrated samples in small fluid volumes can increase the downstream process speed of on-chip nucleic acid extraction, and result in improvements in the sensitivity of many diagnostic platforms that interrogate small sample volumes.
Collapse
Affiliation(s)
- Jane Yuqian Zhang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; E-Mails: (J.Y.Z.); (M.M.); (L.L.), (J.C.)
| | - Madhumita Mahalanabis
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; E-Mails: (J.Y.Z.); (M.M.); (L.L.), (J.C.)
| | - Lena Liu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; E-Mails: (J.Y.Z.); (M.M.); (L.L.), (J.C.)
| | - Jessie Chang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; E-Mails: (J.Y.Z.); (M.M.); (L.L.), (J.C.)
| | - Nira R. Pollock
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center and Department of Lab Medicine, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA; E-Mail:
| | - Catherine M. Klapperich
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; E-Mails: (J.Y.Z.); (M.M.); (L.L.), (J.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-617-358-0253; Fax: +1-617-353-6766
| |
Collapse
|
122
|
Sharif E, Kiely J, Luxton R. Novel immunoassay technique for rapid measurement of intracellular proteins using paramagnetic particles. J Immunol Methods 2013; 388:78-85. [DOI: 10.1016/j.jim.2012.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/16/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
123
|
Zhang R, Gong HQ, Zeng X, Lou C, Sze C. A microfluidic liquid phase nucleic acid purification chip to selectively isolate DNA or RNA from low copy/single bacterial cells in minute sample volume followed by direct on-chip quantitative PCR assay. Anal Chem 2013; 85:1484-91. [PMID: 23272769 DOI: 10.1021/ac3026509] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purification of nucleic acids from a low quantity of bacterial cells in minute volume is important in many clinical and biological applications. We developed a novel microfluidic liquid phase nucleic acid purification chip to selectively isolate DNA or RNA from bacterial cells in the range of 5000 down to a single cell in the sample volume of 1 μl or 125 nl, which can be directly put through on-chip quantitative PCR assay. The aqueous phase bacterial lysate was isolated in an array of microwells, after which an immiscible organic (phenol-chloroform) phase was introduced in a headspace channel connecting the microwell array. Continuous flow of the organic phase increases the interfacial contact with the aqueous phase to achieve purification of target nucleic acid through phase partitioning. Significantly enhanced nucleic acid recovery yield, up to 10 fold higher, was achieved using the chip-based liquid phase nucleic acid purification technique compared to that obtained by the conventional column-based solid phase nucleic acid extraction method. One step vacuum-driven microfluidics allowed an on-chip quantitative PCR assay to be carried out in the same microwells within which bacterial nucleic acids were isolated, avoiding sample loss during liquid transfer. Using this nucleic acid purification device set in a two-dimensional (2D) array format of 900 microwells, it was demonstrated for the first time that high-throughput extraction of RNA couple with direct on-chip PCR analysis from single bacterial cells could be achieved. Our microfluidic platform offered a simple and effective solution for nucleic acid preparation, which can be integrated for automated bacterial pathogen detection and high throughput transcriptional profiling.
Collapse
Affiliation(s)
- Rui Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | |
Collapse
|
124
|
Miralles V, Huerre A, Malloggi F, Jullien MC. A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications. Diagnostics (Basel) 2013; 3:33-67. [PMID: 26835667 PMCID: PMC4665581 DOI: 10.3390/diagnostics3010033] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/19/2012] [Accepted: 01/04/2013] [Indexed: 11/16/2022] Open
Abstract
This review presents an overview of the different techniques developed over the last decade to regulate the temperature within microfluidic systems. A variety of different approaches has been adopted, from external heating sources to Joule heating, microwaves or the use of lasers to cite just a few examples. The scope of the technical solutions developed to date is impressive and encompasses for instance temperature ramp rates ranging from 0.1 to 2,000 °C/s leading to homogeneous temperatures from -3 °C to 120 °C, and constant gradients from 6 to 40 °C/mm with a fair degree of accuracy. We also examine some recent strategies developed for applications such as digital microfluidics, where integration of a heating source to generate a temperature gradient offers control of a key parameter, without necessarily requiring great accuracy. Conversely, Temperature Gradient Focusing requires high accuracy in order to control both the concentration and separation of charged species. In addition, the Polymerase Chain Reaction requires both accuracy (homogeneous temperature) and integration to carry out demanding heating cycles. The spectrum of applications requiring temperature regulation is growing rapidly with increasingly important implications for the physical, chemical and biotechnological sectors, depending on the relevant heating technique.
Collapse
Affiliation(s)
- Vincent Miralles
- Gulliver CNRS ESPCI, UMR7083, MMN, 10 rue Vauquelin, 75005 Paris, France.
| | - Axel Huerre
- Gulliver CNRS ESPCI, UMR7083, MMN, 10 rue Vauquelin, 75005 Paris, France.
| | - Florent Malloggi
- SIS2M-LIONS CEA CNRS, UMR 3299, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | | |
Collapse
|
125
|
Chen YW, Wang H, Hupert M, Soper SA. Identification of methicillin-resistant Staphylococcus aureus using an integrated and modular microfluidic system. Analyst 2013; 138:1075-83. [DOI: 10.1039/c2an36430a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
126
|
Abstract
The detection of nucleic acid is of central importance for the diagnosis of genetic diseases, infectious agents, and biowarfare agents. Traditional strategies and technologies for nucleic acid detection are time-consuming and labor-intensive. Recently, isothermal strand-displacement reaction-based lateral flow biosensors have attracted a great deal of research interest because they are sensitive, simple, fast, and easy to use. Here, we describe a lateral flow biosensor based on isothermal strand-displacement polymerase reaction and gold nanoparticles for the visual detection of nucleic acid.
Collapse
Affiliation(s)
- Lingwen Zeng
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | |
Collapse
|
127
|
Menegatti E, Berardi D, Messina M, Ferrante I, Giachino O, Spagnolo B, Restagno G, Cognolato L, Roccatello D. Lab-on-a-chip: emerging analytical platforms for immune-mediated diseases. Autoimmun Rev 2012; 12:814-20. [PMID: 23219952 DOI: 10.1016/j.autrev.2012.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Miniaturization of analytical procedures has a significant impact on diagnostic testing since it provides several advantages such as: reduced sample and reagent consumption, shorter analysis time and less sample handling. Lab-on-a-chip (LoC), usually silicon, glass, or silicon-glass, or polymer disposable cartridges, which are produced using techniques inherited from the microelectronics industry, could perform and integrate the operations needed to carry out biochemical analysis through the mechanical realization of a dedicated instrument. Analytical devices based on miniaturized platforms like LoC may provide an important contribution to the diagnosis of high prevalence and rare diseases. In this paper we review some of the uses of Lab-on-a-chip in the clinical diagnostics of immune-mediated diseases and we provide an overview of how specific applications of these technologies could improve and simplify several complex diagnostic procedures.
Collapse
Affiliation(s)
- Elisa Menegatti
- Department of Medicine and Experimental Oncology, Section of Clinical Pathology, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Chandler DP, Bryant L, Griesemer SB, Gu R, Knickerbocker C, Kukhtin A, Parker J, Zimmerman C, George KS, Cooney CG. Integrated Amplification Microarrays for Infectious Disease Diagnostics. MICROARRAYS 2012; 1:107-24. [PMID: 27605339 PMCID: PMC5003434 DOI: 10.3390/microarrays1030107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 11/17/2022]
Abstract
This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.
Collapse
Affiliation(s)
- Darrell P Chandler
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Lexi Bryant
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Sara B Griesemer
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | - Rui Gu
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | | | - Alexander Kukhtin
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Jennifer Parker
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Cynthia Zimmerman
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| | - Kirsten St George
- Laboratory of Viral Diseases, Wadsworth Center, New York State Dept of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| | - Christopher G Cooney
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, MD 21701, USA.
| |
Collapse
|
129
|
Hilton JP, Nguyen T, Barbu M, Pei R, Stojanovic M, Lin Q. Bead-based polymerase chain reaction on a microchip. MICROFLUIDICS AND NANOFLUIDICS 2012; 13:749-760. [PMID: 33664642 PMCID: PMC7929480 DOI: 10.1007/s10404-012-0993-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We present a bead-based approach to microfluidic polymerase chain reaction (PCR), enabling fluorescent detection and sample conditioning in a single microchamber. Bead-based PCR, while not extensively investigated in microchip format, has been used in a variety of bioanalytical applications in recent years. We leverage the ability of bead-based PCR to accumulate fluorescent labels following DNA amplification to explore a novel DNA detection scheme on a microchip. The microchip uses an integrated microheater and temperature sensor for rapid control of thermal cycling temperatures, while the sample is held in a microchamber fabricated from (poly)dimethylsiloxane and coated with Parylene. The effects of key bead-based PCR parameters, including annealing temperature and concentration of microbeads in the reaction mixture, are studied to achieve optimized device sensitivity and detection time. The device is capable of detecting a synthetically prepared section of the Bordetella pertussis genome in as few as 10 temperature cycles with times as short as 15 min. We then demonstrate the use of the procedure in an integrated device; capturing, amplifying, detecting, and purifying template DNA in a single microfluidic chamber. These results show that this method is an effective method of DNA detection which is easily integrated in a microfluidic device to perform additional steps such as sample pre-conditioning.
Collapse
Affiliation(s)
- John P Hilton
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - ThaiHuu Nguyen
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Mihaela Barbu
- Division of Clinical Pharmacology and Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Renjun Pei
- Division of Clinical Pharmacology and Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Milan Stojanovic
- Division of Clinical Pharmacology and Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
130
|
Park BH, Jung JH, Zhang H, Lee NY, Seo TS. A rotary microsystem for simple, rapid and automatic RNA purification. LAB ON A CHIP 2012; 12:3875-81. [PMID: 22864412 DOI: 10.1039/c2lc40487g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this work, we demonstrate a novel rotary microsystem for simple, rapid and automatic influenza viral RNA purification. The microdevice consists of a silica sol-gel matrix for RNA capture, and three reservoirs for a RNA sample (R(S)), a washing solution (R(W)) and an elution buffer (R(E)) that were connected with different dimensional microfluidic channels (120 μm for R(S), 40 μm for R(W), and 20 μm for R(E)). The hydrophobic property of PDMS and the narrow microchannel served as a passive capillary microvalve, and the loading of the solutions were controlled by centrifugal force. 5 μL of a lysate sample of influenza A H1N1 virus, a washing solution and an elution buffer were injected in each designated reservoir, and the virus sample, the washing solution, and the elution buffer were sequentially loaded into the sol-gel chamber at 1600, 2000, and 2500 RPM, enabling the viral RNA to be captured in the sol-gel solid phase, purified, and eluted in 5 min. The RNA capture yield was measured as ~80%, and the H1 and M gene were successfully amplified from the recovered purified H1N1 viral RNA by reverse-transcriptase PCR. Such a novel rotary sample preparation system eliminates any complicated hardware and human intervention, and performs the RNA extraction with high speed and high fidelity.
Collapse
Affiliation(s)
- Byung Hyun Park
- Department of Chemical and Biomolecular Engineering (BK21 program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | | | | | | | | |
Collapse
|
131
|
Marshall LA, Wu LL, Babikian S, Bachman M, Santiago JG. Integrated Printed Circuit Board Device for Cell Lysis and Nucleic Acid Extraction. Anal Chem 2012; 84:9640-5. [DOI: 10.1021/ac302622v] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lewis A. Marshall
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United
States
| | - Liang Li Wu
- Integrated Nanosystems
Research
Facility, University of California, Irvine,
California 92697, United States
| | - Sarkis Babikian
- Department of Electrical Engineering
and Computer Science, University of California, Irvine, California 92697, United States
| | - Mark Bachman
- Department of Electrical Engineering
and Computer Science, University of California, Irvine, California 92697, United States
| | - Juan G. Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United
States
| |
Collapse
|
132
|
Zhu T, Cheng R, Lee SA, Rajaraman E, Eiteman MA, Querec TD, Unger ER, Mao L. Continuous-flow Ferrohydrodynamic Sorting of Particles and Cells in Microfluidic Devices. MICROFLUIDICS AND NANOFLUIDICS 2012; 13:645-654. [PMID: 26430394 PMCID: PMC4587988 DOI: 10.1007/s10404-012-1004-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A new sorting scheme based on ferrofluid hydrodynamics (ferrohydrodynamics) was used to separate mixtures of particles and live cells simultaneously. Two species of cells, including Escherichia coli and Saccharomyces cerevisiae, as well as fluorescent polystyrene microparticles were studied for their sorting throughput and efficiency. Ferrofluids are stable magnetic nanoparticles suspensions. Under external magnetic fields, magnetic buoyancy forces exerted on particles and cells lead to size-dependent deflections from their laminar flow paths and result in spatial separation. We report the design, modeling, fabrication and characterization of the sorting device. This scheme is simple, low-cost and label-free compared to other existing techniques.
Collapse
Affiliation(s)
- Taotao Zhu
- Department of Chemistry, Nanoscale Science and Engineering Center, The University of Georgia, Athens, Georgia 30602, USA
| | - Rui Cheng
- Faculty of Engineering, Nanoscale Science and Engineering Center, The University of Georgia, Athens, Georgia 30602, USA
| | - Sarah A. Lee
- Center for Molecular BioEngineering, Department of Biological and Agricultural Engineering, The University of Georgia, Athens, Georgia 30602, USA
| | - Eashwar Rajaraman
- Center for Molecular BioEngineering, Department of Biological and Agricultural Engineering, The University of Georgia, Athens, Georgia 30602, USA
| | - Mark A. Eiteman
- Center for Molecular BioEngineering, Department of Biological and Agricultural Engineering, The University of Georgia, Athens, Georgia 30602, USA
| | - Troy D. Querec
- Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Elizabeth R. Unger
- Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Leidong Mao
- Faculty of Engineering, Nanoscale Science and Engineering Center, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
133
|
Vitol EA, Novosad V, Rozhkova EA. Microfabricated magnetic structures for future medicine: from sensors to cell actuators. Nanomedicine (Lond) 2012; 7:1611-24. [PMID: 23148542 PMCID: PMC3583378 DOI: 10.2217/nnm.12.133] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this review, we discuss the prospective medical application of magnetic carriers microfabricated by top-down techniques. Physical methods allow the fabrication of a variety of magnetic structures with tightly controlled magnetic properties and geometry, which makes them very attractive for a cost-efficient mass-production in the fast growing field of nanomedicine. Stand-alone fabricated particles along with integrated devices combining lithographically defined magnetic structures and synthesized magnetic tags will be considered. Applications of microfabricated multifunctional magnetic structures for future medicinal purposes range from ultrasensitive in vitro diagnostic bioassays, DNA sequencing and microfluidic cell sorting to magnetomechanical actuation, cargo delivery, contrast enhancement and heating therapy.
Collapse
Affiliation(s)
- Elina A Vitol
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- The Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Valentyn Novosad
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Elena A Rozhkova
- The Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
134
|
Chen YW, Wang H, Hupert M, Witek M, Dharmasiri U, Pingle MR, Barany F, Soper SA. Modular microfluidic system fabricated in thermoplastics for the strain-specific detection of bacterial pathogens. LAB ON A CHIP 2012; 12:3348-55. [PMID: 22859220 PMCID: PMC4386729 DOI: 10.1039/c2lc40805h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The recent outbreaks of a lethal E. coli strain in Germany have aroused renewed interest in developing rapid, specific and accurate systems for detecting and characterizing bacterial pathogens in suspected contaminated food and/or water supplies. To address this need, we have designed, fabricated and tested an integrated modular-based microfluidic system and the accompanying assay for the strain-specific identification of bacterial pathogens. The system can carry out the entire molecular processing pipeline in a single disposable fluidic cartridge and detect single nucleotide variations in selected genes to allow for the identification of the bacterial species, even its strain with high specificity. The unique aspect of this fluidic cartridge is its modular format with task-specific modules interconnected to a fluidic motherboard to permit the selection of the target material. In addition, to minimize the amount of finishing steps for assembling the fluidic cartridge, many of the functional components were produced during the polymer molding step used to create the fluidic network. The operation of the cartridge was provided by electronic, mechanical, optical and hydraulic controls located off-chip and packaged into a small footprint instrument (1 ft(3)). The fluidic cartridge was capable of performing cell enrichment, cell lysis, solid-phase extraction (SPE) of genomic DNA, continuous flow (CF) PCR, CF ligase detection reaction (LDR) and universal DNA array readout. The cartridge was comprised of modules situated on a fluidic motherboard; the motherboard was made from polycarbonate, PC, and used for cell lysis, SPE, CF PCR and CF LDR. The modules were task-specific units and performed universal zip-code array readout or affinity enrichment of the target cells with both made from poly(methylmethacrylate), PMMA. Two genes, uidA and sipB/C, were used to discriminate between E. coli and Salmonella, and evaluated as a model system. Results showed that the fluidic system could successfully identify bacteria in <40 min with minimal operator intervention and perform strain identification, even from a mixed population with the target of a minority. We further demonstrated the ability to analyze the E. coli O157:H7 strain from a waste-water sample using enrichment followed by genotyping.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Department of Chemistry and Louisiana State University, Baton Rouge, LA, 70803
| | - Hong Wang
- Department of Biomedical Engineering University of North Carolina, Chapel Hill, NC, 27599
| | - Mateusz Hupert
- Department of Biomedical Engineering University of North Carolina, Chapel Hill, NC, 27599
| | - Makgorzata Witek
- Department of Biomedical Engineering University of North Carolina, Chapel Hill, NC, 27599
| | - Udara Dharmasiri
- Department of Chemistry and Louisiana State University, Baton Rouge, LA, 70803
| | | | | | - Steven A. Soper
- Department of Biomedical Engineering University of North Carolina, Chapel Hill, NC, 27599
- Department of Chemistry University of North Carolina, Chapel Hill, NC, 27599
- Nano-bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| |
Collapse
|
135
|
Forster E, Mayer M, Rabindranath R, Böse H, Schlunck G, Monkman GJ, Shamonin M. Patterning of ultrasoft, agglutinative magnetorheological elastomers. J Appl Polym Sci 2012. [DOI: 10.1002/app.38500] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
136
|
Barnett MJ, Pearce DA, Cullen DC. Advances in the in-field detection of microorganisms in ice. ADVANCES IN APPLIED MICROBIOLOGY 2012; 81:133-67. [PMID: 22958529 DOI: 10.1016/b978-0-12-394382-8.00004-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The historic view of ice-bound ecosystems has been one of a predominantly lifeless environment, where microorganisms certainly exist but are assumed to be either completely inactive or in a state of long-term dormancy. However, this standpoint has been progressively overturned in the past 20years as studies have started to reveal the importance of microbial life in the functioning of these environments. Our present knowledge of the distribution, taxonomy, and metabolic activity of such microbial life has been derived primarily from laboratory-based analyses of collected field samples. To date, only a restricted range of life detection and characterization techniques have been applied in the field. Specific examples include direct observation and DNA-based techniques (microscopy, specific stains, and community profiling based on PCR amplification), the detection of biomarkers (such as adenosine triphosphate), and measurements of metabolism [through the uptake and incorporation of radiolabeled isotopes or chemical alteration of fluorescent substrates (umbelliferones are also useful here)]. On-going improvements in technology mean that smaller and more robust life detection and characterization systems are continually being designed, manufactured, and adapted for in-field use. Adapting technology designed for other applications is the main source of new methodology, and the range of techniques is currently increasing rapidly. Here we review the current use of technology and techniques to detect and characterize microbial life within icy environments and specifically its deployment to in-field situations. We discuss the necessary considerations, limitations, and adaptations, review emerging technologies, and highlight the future potential. Successful application of these new techniques to in-field studies will certainly generate new insights into the way ice bound ecosystems function.
Collapse
Affiliation(s)
- Megan J Barnett
- Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | | | | |
Collapse
|
137
|
Demming S, Peterat G, Llobera A, Schmolke H, Bruns A, Kohlstedt M, Al-Halhouli A, Klages CP, Krull R, Büttgenbach S. Vertical microbubble column-A photonic lab-on-chip for cultivation and online analysis of yeast cell cultures. BIOMICROFLUIDICS 2012; 6:34106. [PMID: 23882299 PMCID: PMC3416849 DOI: 10.1063/1.4738587] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/03/2012] [Indexed: 05/11/2023]
Abstract
This paper presents a vertically positioned microfluidic system made of poly(dimethylsiloxane) (PDMS) and glass, which can be applied as a microbubble column (μBC) for biotechnological screening in suspension. In this μBC, microbubbles are produced in a cultivation chamber through an integrated nozzle structure. Thus, homogeneous suspension of biomass is achieved in the cultivation chamber without requiring additional mixing elements. Moreover, blockage due to produced carbon dioxide by the microorganisms-a problem predominant in common, horizontally positioned microbioreactors (MBRs)-is avoided, as the gas bubbles are released by buoyancy at the upper part of the microsystem. The patterned PDMS layer is based on an optimized two-lithographic process. Since the naturally hydrophobic PDMS causes problems for the sufficient production of microbubbles, a method based on polyelectrolyte multilayers is applied in order to allow continuous hydrophilization of the already bonded PDMS-glass-system. The μBC comprises various microelements, including stabilization of temperature, control of continuous bubble formation, and two optical configurations for measurement of optical density with two different sensitivities. In addition, the simple and robust application and handling of the μBC is achieved via a custom-made modular plug-in adapter. To validate the scalability from laboratory scale to microscale, and thus to demonstrate the successful application of the μBC as a screening instrument, a batch cultivation of Saccharomyces cerevisiae is performed in the μBC and compared to shake flask cultivation. Monitoring of the biomass growth in the μBC with the integrated online analytics resulted in a specific growth rate of 0.32 h(-1), which is almost identical to the one achieved in the shake flask cultivation (0.31 h(-1)). Therefore, the validity of the μBC as an alternative screening tool compared to other conventional laboratory scale systems in bioprocess development is proven. In addition, vertically positioned microbioreactors show high potential in comparison to conventional screening tools, since they allow for high density of integrated online analytics and therefore minimize time and cost for screening and guarantee improved control and analysis of cultivation parameters.
Collapse
Affiliation(s)
- Stefanie Demming
- Institut für Mikrotechnik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Araci IE, Quake SR. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves. LAB ON A CHIP 2012; 12:2803-6. [PMID: 22714259 DOI: 10.1039/c2lc40258k] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microfluidic chips with a high density of control elements are required to improve device performance parameters, such as throughput, sensitivity and dynamic range. In order to realize robust and accessible high-density microfluidic chips, we have fabricated a monolithic PDMS valve architecture with three layers, replacing the commonly used two-layer design. The design is realized through multi-layer soft lithography techniques, making it low cost and easy to fabricate. By carefully determining the process conditions of PDMS, we have demonstrated that 8 × 8 and 6 × 6 μm(2) valve sizes can be operated at around 180 and 280 kPa differential pressure, respectively. We have shown that these valves can be fabricated at densities approaching 1 million valves per cm(2), substantially exceeding the current state of the art of microfluidic large-scale integration (mLSI) (thousands of valves per cm(2)). Because the density increase is greater than two orders of magnitude, we describe this technology as microfluidic very large scale integration (mVLSI), analogous to its electronic counterpart. We have captured and tracked fluorescent beads, and changed the electrical resistance of a fluidic channel by using these miniaturized valves in two different experiments, demonstrating that the valves are leakproof. We have also demonstrated that these valves can be addressed through multiplexing.
Collapse
Affiliation(s)
- Ismail Emre Araci
- Dept. of Bioengineering, Stanford University, and Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| | | |
Collapse
|
139
|
Abstract
Because of intensive developments in recent years, the microfluidic system has become a powerful tool for biological analysis. Entire analytic protocols including sample pretreatment, sample/reagent manipulation, separation, reaction, and detection can be integrated into a single chip platform. A lot of demonstrations on the diagnostic applications related to genes, proteins, and cells have been reported because of their advantages associated with miniaturization, automation, sensitivity, and specificity. The aim of this article is to review recent developments in microfluidic systems for diagnostic applications. Based on the categories of various fluid-manipulating mechanisms and biological detection approaches, in-depth discussion of the microfluidic-based diagnostic systems is provided. Moreover, a brief discussion on materials and manufacturing techniques will be included. The current excellent integration of microfluidic systems and diagnostic applications suggests a solid foundation for the development of practical point-of-care devices.
Collapse
|
140
|
Lim C, Manage DP, Atrazhev A, Denomme G, Backhouse CJ, Acker JP. Microfluidic approach to genotyping human platelet antigens. IET Nanobiotechnol 2012; 6:33-9. [PMID: 22559704 DOI: 10.1049/iet-nbt.2011.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centralised laboratories routinely determine blood types by serological and molecular methods. Current practices have limitations in terms of cost, time and accessibility. Miniaturised microfluidic platforms offer an alternative to conventional genotyping methods, since they consume fewer reagents, provide faster analysis and allow for complete integration and automation. As these 'lab-on-a-chip' devices have been used for bacterial and viral detection, the authors investigated blood group genotyping as a novel application of microfluidic technology. To demonstrate the feasibility of microfluidic chip-based genotyping, the authors compared human platelet antigen 1 (HPA-1) genotype results from conventional and chip-based analysis for 19 blood donor specimens. DNA purification was performed with ChargeSwitch™ magnetic beads, DNA amplification (PCR), restriction length polymorphism (RFLP) and capillary electrophoresis (CE) for identification of the DNA on microfluidic chips. It was found that nine donors were HPA-1a/1a and ten were HPA-1a/1b. Concordance between the conventional and on-chip methods was achieved for all but one sample. All the steps were demonstrated for complete blood group genotyping analysis of patient whole blood specimens on separate microfluidic chips. Future work will focus on integration of all the genotyping protocols on a single microfluidic chip.
Collapse
Affiliation(s)
- C Lim
- Canadian Blood Services, Research and Development, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
141
|
Liu C, Mauk MG, Hart R, Bonizzoni M, Yan G, Bau HH. A low-cost microfluidic chip for rapid genotyping of malaria-transmitting mosquitoes. PLoS One 2012; 7:e42222. [PMID: 22879919 PMCID: PMC3411743 DOI: 10.1371/journal.pone.0042222] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30-40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae species complex. The correct identification of vector species is fundamental to the development of control strategies and epidemiological studies of disease transmission. METHODOLOGY/PRINCIPAL FINDINGS An inexpensive, disposable, field-deployable, sample-to-answer, microfluidic chip was designed, constructed, and tested for rapid molecular identification of Anopheles gambiae and Anopheles arabiensis. The chip contains three isothermal amplification reactors. One test reactor operates with specific primers to amplify Anopheles gambiae DNA, another with specific primers for Anopheles arabiensis DNA, and the third serves as a negative control. A mosquito leg was crushed on an isolation membrane. Two discs, laden with mosquito tissue, were punched out of the membrane and inserted into the two test chambers. The isolated, disc-bound DNA served as a template in the amplification processes. The amplification products were detected with intercalating fluorescent dye that was excited with a blue light-emitting diode. The emitted light was observed by eye and recorded with a cell-phone camera. When the target consisted of Anopheles gambiae, the reactor containing primers specific to An. gambiae lit up while the other two reactors remained dark. When the target consisted of Anopheles arabiensis, the reactor containing primers specific to An. arabiensis lit up while the other two reactors remained dark. CONCLUSIONS/SIGNIFICANCE The microfluidic chip provides a means to identify mosquito type through molecular analysis. It is suitable for field work, allowing one to track the geographical distribution of mosquito populations and community structure alterations due to environmental changes and malaria intervention measures.
Collapse
Affiliation(s)
- Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael G. Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert Hart
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mariangela Bonizzoni
- College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Guiyun Yan
- College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Haim H. Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
142
|
Pjescic I, Crews N. Genotyping from saliva with a one-step microdevice. LAB ON A CHIP 2012; 12:2514-2519. [PMID: 22534758 DOI: 10.1039/c2lc00010e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper presents a disposable microfluidic device for on-chip lysing, PCR, and analysis in one continuous-flow process. Male-female sex determination was performed with human saliva in less than 20 min from spit to finish, and requiring only seconds of manual sample handling. This genetic analysis was based on the amplification and detection of the DYZ1 repeat region unique to the Y-chromosome. The flow-through microfluidic chip consisted of a single serpentine channel designed to guide samples through 42 heating and cooling cycles. Cycling was performed by matching the local channel geometry to a steady-state temperature gradient established across the microfluidic chip. 38 channel segments were designed for rapid low volume PCR, and four were optimized for spatial DNA melting analysis. Fluorescence detection was used to monitor the amplification and to capture the melting signature of the amplicon was performed with a basic 8-bit CCD camera. The microfluidic device itself was fabricated from microscope slides and a double-sided tape. The simplicity of the system and its robust performance combine in an elegant solution for lab-on-a-chip genetic analysis.
Collapse
Affiliation(s)
- Ilija Pjescic
- Institute for Micromanufacturing, Louisiana Tech University, USA
| | | |
Collapse
|
143
|
Hsieh K, Patterson AS, Ferguson BS, Plaxco KW, Soh HT. Rapid, sensitive, and quantitative detection of pathogenic DNA at the point of care through microfluidic electrochemical quantitative loop-mediated isothermal amplification. Angew Chem Int Ed Engl 2012; 51:4896-900. [PMID: 22488842 PMCID: PMC3509743 DOI: 10.1002/anie.201109115] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Indexed: 11/12/2022]
Abstract
Single-step DNA detection: a microfluidic electrochemical loop mediated isothermal amplification platform is reported for rapid, sensitive, and quantitative detection of pathogen genomic DNA at the point of care. DNA amplification was electrochemically monitored in real time within a monolithic microfluidic device, thus enabling the detection of as few as 16 copies of Salmonella genomic DNA through a single-step process in less than an hour.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, University of California, Santa Barbara (USA)
| | - Adriana S. Patterson
- Department of Chemistry and Biochemistry and Biomolecular Science and Engineering Program, University of California, Santa Barbara (USA)
| | - B. Scott Ferguson
- Department of Mechanical Engineering, University of California, Santa Barbara (USA)
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry and Biomolecular Science and Engineering Program, University of California, Santa Barbara (USA)
| | - H. Tom Soh
- Materials Department and Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106 (USA)
| |
Collapse
|
144
|
Electrochemical sandwich assay for attomole analysis of DNA and RNA from beer spoilage bacteria Lactobacillus brevis. Biosens Bioelectron 2012; 37:99-106. [PMID: 22633494 DOI: 10.1016/j.bios.2012.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/19/2012] [Accepted: 05/02/2012] [Indexed: 11/20/2022]
Abstract
Attomole (10(-18)mol) levels of RNA and DNA isolated from beer spoilage bacterial cells Lactobacillus brevis have been detected by the electrochemical sandwich DNA hybridization assay exploiting enzymatic activity of lipase. DNA sequences specific exclusively to L. brevis DNA and RNA were selected and used for probe and target DNA design. The assay employs magnetic beads (MB) modified with a capture DNA sequence and a reporter DNA probe labeled with the enzyme, both made to be highly specific for L. brevis DNA. Lipase-labeled DNAs captured on MBs in the sandwich assay were collected on gold electrodes modified with a ferrocene (Fc)-terminated SAM formed by aliphatic esters. Lipase hydrolysis of the ester bond released a fraction of the Fc redox active groups from the electrode surface, decreasing the electrochemical signal from the surface-confined Fc. The assay, shown to be efficient for analysis of short synthetic DNA sequences, was ineffective with genomic double stranded bacterial DNA, but it allowed down to 16 amole detection of 1563 nts long RNA, isolated from bacterial ribosomes without the need for PCR amplification, and single DNA strands produced from ribosomal RNA. No interference from E. coli RNA was registered. The assay allowed analysis of 400 L. brevis cells isolated from 1L of beer, which fits the "alarm signal" range (from 1 to 100 cells per 100mL).
Collapse
|
145
|
Wang H, Chen HW, Hupert ML, Chen PC, Datta P, Pittman TL, Goettert J, Murphy MC, Williams D, Barany F, Soper SA. Fully Integrated Thermoplastic Genosensor for the Highly Sensitive Detection and Identification of Multi-Drug-Resistant Tuberculosis. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
146
|
Balasubramanian K. Label-free indicator-free nucleic acid biosensors using carbon nanotubes. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
147
|
Hsieh K, Patterson AS, Ferguson BS, Plaxco KW, Soh HT. Rapid, Sensitive, and Quantitative Detection of Pathogenic DNA at the Point of Care through Microfluidic Electrochemical Quantitative Loop-Mediated Isothermal Amplification. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201109115] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
148
|
Sin MLY, Liu T, Pyne JD, Gau V, Liao JC, Kin Wong P. In situ electrokinetic enhancement for self-assembled-monolayer-based electrochemical biosensing. Anal Chem 2012; 84:2702-7. [PMID: 22397486 PMCID: PMC4069200 DOI: 10.1021/ac203245j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study reports a multifunctional electrode approach which directly implements electrokinetic enhancement on a self-assembled-monolayer-based electrochemical sensor for point-of-care diagnostics. Using urinary tract infections as a model system, we demonstrate that electrokinetic enhancement, which involves in situ stirring and heating, can enhance the sensitivity of the strain specific 16S rRNA hybridization assay for 1 order of magnitude and accelerate the time-limiting incubation step with a 6-fold reduction in the incubation time. Since the same electrode platform is used for both electrochemical signal enhancement and electrochemical sensing, the multifunctional electrode approach provides a highly effective strategy toward fully integrated lab-on-a-chip systems for various biomedical applications.
Collapse
Affiliation(s)
- Mandy L. Y. Sin
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Tingting Liu
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey D. Pyne
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Vincent Gau
- GeneFluidics Inc, Irwindale, California 91010, United States
| | - Joseph C. Liao
- Department of Urology, Stanford University, Palo Alto, California 94304, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, United States
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
149
|
Hung MS, Chang YT. Single cell lysis and DNA extending using electroporation microfluidic device. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6111-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
150
|
Wang H, Chen HW, Hupert ML, Chen PC, Datta P, Pittman TL, Goettert J, Murphy MC, Williams D, Barany F, Soper SA. Fully integrated thermoplastic genosensor for the highly sensitive detection and identification of multi-drug-resistant tuberculosis. Angew Chem Int Ed Engl 2012; 51:4349-53. [PMID: 22431490 DOI: 10.1002/anie.201200732] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Hong Wang
- Department of Chemistry and Mechanical Engineering, Louisiana State University, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|