101
|
Zeng J, Lu M, Wang Y, Zhao X, Zhao Y. Photothermal Fish Gelatin-Graphene Microneedle Patches for Chronic Wound Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405847. [PMID: 39248682 DOI: 10.1002/smll.202405847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Indexed: 09/10/2024]
Abstract
Microneedles are demonstrated as an effective strategy for chronic wound treatment. Great endeavors are devoted to developing microneedles with natural compositions and potent functions to promote therapeutic effects for wound healing. Herein, a novel graphene oxide-integrated methacrylated fish gelatin (GO-FGelMA) microneedle patch encapsulated with bacitracin and vascular endothelial growth factor (VEGF) is developed for chronic wound management. As the natural components and porous structures of FGelMA, the fabricated microneedle patches display satisfactory biocompatibility and drug-loading ability. Owing to the integration of graphene oxide, the microneedle patches can realize promoted drug release via near-infrared (NIR) irradiation. Besides, the encapsulated bacitracin and VEGF endow the microneedle patches with the ability to inhibit bacterial growth and promote angiogenesis. It is demonstrated that the GO-FGelMA microneedle patches with efficient drug release exert a positive influence on the wound healing process through reduced inflammation, enhanced wound closure, and improved tissue regeneration. Thus, it is believed that the proposed drugs-loaded GO-FGelMA microneedle patches will hold great potential in future chronic wound treatment.
Collapse
Affiliation(s)
- Junjie Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Minhui Lu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
102
|
Kurdtabar M, Mirashrafi NS, Bagheri Marandi G, Ghobadifar V. Synthesis and characterization of self-healable supramolecular hydrogel based on carboxymethyl cellulose for biomedical applications. Int J Biol Macromol 2024; 281:136532. [PMID: 39406321 DOI: 10.1016/j.ijbiomac.2024.136532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Hydrogels have been widely used in biomedical fields including tissue engineering, drug delivery and cell delivery and 3D cell delivery due to abundant water content in their hydrophilic three-dimensional networks and having soft tissue similar to the human body. In recent years, supramolecular hydrogels (SHG) formed by the inclusion complex between polyethylene glycol (PEG) and macrocycles such as cyclodextrin (CD) have attracted much interest due to their excellent biocompatibility and great potential in biomedical. In this research, a carboxymethyl cellulose (CMC)-based graft copolymer was prepared by using acrylic acid (AA) and maleic anhydride functionalized β-CD (β-CD-MA) as comonomers and ammonium persulfate (APS) as initiator. Then, a self-healable supramolecular hydrogel was synthesized by formation of a host-guest inclusion complex between CMC-g-poly (AA-co-β-CD-MA) as host molecule and cytosine- and guanine-modified PEG as guest molecules. The prepared hydrogel was characterized by Scanning Electron Microscope (SEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Nuclear magnetic resonance spectroscopy (1H NMR). The thermal stability of hydrogel was also determined by thermal gravimetric (TGA) and differential scanning calorimetry (DSC) methods. In addition, the loading and release profiles of metformin hydrochloride (MH) drug as a model on hydrogel was investigated. The results indicated that the drug release from the hydrogel peaks around 360 min and aligns with the Ritger-Peppas model. The hydrogel's self-healing property was examined at ambient temperature and 37 °C. It showed 70 % healing in 1.5 h and completed recovery after 9 h.
Collapse
Affiliation(s)
- Mehran Kurdtabar
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran.
| | | | | | - Vahid Ghobadifar
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
103
|
Zhu J, Xie F, Qiu Z, Chen L. Effect of active carbonyl-carboxyl ratio on dynamic Schiff base crosslinking and its modulation of high-performance oxidized starch-chitosan hydrogel by hot extrusion 3D printing. Carbohydr Polym 2024; 343:122438. [PMID: 39174083 DOI: 10.1016/j.carbpol.2024.122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 08/24/2024]
Abstract
The quest to develop 3D starch-based printing hydrogels for the controlled release of active substances with excellent mechanical and printing properties has gained significant attention. This work introduced a facile method based on crosslinking via Schiff base reaction for preparing bicomponent hydrogels. The method involved the utilization of customizable oxidized starch (OS) and chitosan (CS), enabling superior printing performance through the precise control of various active carbonyl-carboxyl ratios (ACR, 2:1, 1:1, and 2:3, respectively) of OS. OS-CS hydrogel (OSC) with an ACR level of 2:1 (OS-2-y%CS) underwent rearrangement during printing environment, fostering increased Schiff base reaction with a higher crosslinking degree and robust high structural recovery (>95 %). However, with decreasing ACR levels (from 2:1 to 2:3), the printing performance and mechanical strength of printed OSC (POSC) declined due to lower Schiff base bonds and increased phase separation. Compared with printed OS, POS-2-2%CS exhibited a remarkable 1250.52 % increase in tensile strength and a substantial 2424.71 % boost in compressive strength, enhanced shape fidelity and notable self-healing properties. Moreover, POS-2-2%CS exhibited stable diffusive drug release, showing potential application in the pH-responsive release of active substances. Overall, controlling the active carbonyl-carboxyl ratios provided an efficient and manageable approach for preparing high-performance 3D-printed hydrogels.
Collapse
Affiliation(s)
- Junchao Zhu
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Zhipeng Qiu
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
104
|
Mottaghitalab F, Farokhi M. Stimulus-responsive biomacromolecule wound dressings for enhanced drug delivery in chronic wound healing: A review. Int J Biol Macromol 2024; 281:136496. [PMID: 39419149 DOI: 10.1016/j.ijbiomac.2024.136496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Addressing the challenge of poor wound healing in chronic wounds remains complex, as the underlying physiological mechanisms are still not fully understood. Traditional wound dressings often fail to meet the specific needs of the chronic wound healing process. Recently, considerable interest has shifted toward employing biomacromolecule-based smart wound dressings to facilitate wound healing. These stimuli-responsive dressings have undergone substantial development to manage local drug delivery, demonstrating promising therapeutic effects in treating chronic wound defects. They have displayed improved drug release profiles both in vitro and in vivo. Recently, there have been advancements in the development of innovative dual and multi-stimuli responsive dressings that react to combinations of signals including pH-temperature, pH-enzyme, pH-ROS, pH-glucose, pH-NIR, and multiple stimuli. This paper offers an in-depth review of recent progress in responsive wound dressings based on biomacromolecules, with a specific focus on their design, drug release capabilities, and therapeutic advantages.
Collapse
Affiliation(s)
- Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
105
|
Hua S, Zhang Y, Zhu Y, Fu X, Meng L, Zhao L, Kong L, Pan S, Che Y. Tunicate cellulose nanocrystals strengthened injectable stretchable hydrogel as multi-responsive enhanced antibacterial wound dressing for promoting diabetic wound healing. Carbohydr Polym 2024; 343:122426. [PMID: 39174115 DOI: 10.1016/j.carbpol.2024.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 08/24/2024]
Abstract
The intricate microenvironment of diabetic wounds characterized by hyperglycemia, intense oxidative stress, persistent bacterial infection and complex pH fluctuations hinders the healing process. Herein, an injectable multifunctional hydrogel (QPTx) was developed, which exhibited excellent mechanical performance and triple responsiveness to pH, temperature, and glucose due to dynamic covalent cross-linking involving dynamic Schiff base bonds and phenylboronate esters with phenylboronic-modified quaternized chitosan (QCS-PBA), polydopamine coated tunicate cellulose crystals (PDAn@TCNCs) and polyvinyl alcohol (PVA). Furthermore, the hydrogels can incorporate insulin (INS) drugs to adapt to the complex and variable wound environment in diabetic patients for on-demand drug release that promote diabetic wound healing. Based on various excellent properties of the colloidal materials, the hydrogels were evaluated for self-healing, rheological and mechanical properties, in vitro insulin response to pH/temperature/glucose release, antibacterial, antioxidant, tissue adhesion, coagulation, hemostasis in vivo and in vitro, and biocompatibility and biodegradability. By introducing PDAn@TCNCs particles, the hydrogel has photothermal antibacterial activity, enhanced adhesion and oxidation resistance. We further demonstrated that these hydrogel dressings significantly improved the healing process compared to commercial dressings (Tegaderm™) in full-layer skin defect models. All indicated that the glucose-responsive QPTx hydrogel platform has great potential for treating diabetic wounds.
Collapse
Affiliation(s)
- Shengming Hua
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yujie Zhang
- Pathology Department, Weihai Municipal Hospital, Shandong University, Peace Rd.70, Weihai, Shandong Province 264200, PR China
| | - Yifei Zhu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Xin Fu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lingtao Meng
- School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lihua Zhao
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lingming Kong
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Shihui Pan
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yuju Che
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China.
| |
Collapse
|
106
|
Fang Y, Han Y, Yang L, Kankala RK, Wang S, Chen A, Fu C. Conductive hydrogels: intelligent dressings for monitoring and healing chronic wounds. Regen Biomater 2024; 12:rbae127. [PMID: 39776855 PMCID: PMC11703555 DOI: 10.1093/rb/rbae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
Conductive hydrogels (CHs) represent a burgeoning class of intelligent wound dressings, providing innovative strategies for chronic wound repair and monitoring. Notably, CHs excel in promoting cell migration and proliferation, exhibit powerful antibacterial and anti-inflammatory properties, and enhance collagen deposition and angiogenesis. These capabilities, combined with real-time monitoring functions, play a pivotal role in accelerating collagen synthesis, angiogenesis and continuous wound surveillance. This review delves into the preparation, mechanisms and applications of CHs in wound management, highlighting their diverse and significant advantages. It emphasizes the effectiveness of CHs in treating various chronic wounds, such as diabetic ulcers, infected wounds, temperature-related injuries and athletic joint wounds. Additionally, it explores the diverse applications of multifunctional intelligent CHs in advanced wound care technologies, encompassing self-powered dressings, electrically-triggered drug delivery, comprehensive diagnostics and therapeutics and scar-free healing. Furthermore, the review highlights the challenges to their broader implementation, explores the future of intelligent wound dressings and discusses the transformative role of CHs in chronic wound management, particularly in the context of the anticipated integration of artificial intelligence (AI). Additionally, this review underscores the challenges hindering the widespread adoption of CHs, delves into the prospects of intelligent wound dressings and elucidates the transformative impact of CHs in managing chronic wounds, especially with the forthcoming integration of AI. This integration promises to facilitate predictive analytics and tailor personalized treatment plans, thereby further refining the healing process and elevating patient satisfaction. Addressing these challenges and harnessing emerging technologies, we postulate, will establish CHs as a cornerstone in revolutionizing chronic wound care, significantly improving patient outcomes.
Collapse
Affiliation(s)
- Ying Fang
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Yiran Han
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Lu Yang
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Chaoping Fu
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
107
|
Yang Y, Ma Y, Wang H, Li C, Li C, Zhang R, Zhong S, He W, Cui X. Chitosan-based hydrogel dressings with antibacterial and antioxidant for wound healing. Int J Biol Macromol 2024; 280:135939. [PMID: 39317283 DOI: 10.1016/j.ijbiomac.2024.135939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Bacterial infection and free radical oxidative stress at the wound site could easily cause cascade inflammation and hinder the healing process of the wound. In this study, chitosan-cysteine-gallic acid (CCG) hydrogel with antibacterial and antioxidant properties was synthesized by chitosan (CS), cysteine (Cys), and gallic acid (GA) for a preliminary evaluation of its therapeutic efficacy in a mouse model of full-layer skin defect. In vitro analysis showed that the CCG hydrogel had good antibacterial activity and blood compatibility. In vivo, the CCG hydrogel wound dressings accelerated wound healing, stimulate angiogenesis, increase collagen deposition and anti-inflammatory factor expression. The CCG hydrogel wound dressing is designed to promote the regeneration of damaged skin tissue and is expected to become a potential candidate for clinical treatment.
Collapse
Affiliation(s)
- Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China; Henan Academy of Sciences, Zhengzhou 450046, PR China
| | - Ying Ma
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China
| | - Haodong Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chongruihan Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chaoqun Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Wenqi He
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
108
|
Wang Y, Tang S, Jiang L, Yuan Z, Zhang Y. A review of lignin application in hydrogel dressing. Int J Biol Macromol 2024; 281:135786. [PMID: 39366610 DOI: 10.1016/j.ijbiomac.2024.135786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Lignin is the most abundant natural aromatic polymer in the world. Currently, researchers have developed a number of lignin-based composite materials that are widely used in various fields, including industry, agriculture and medicine. Especially in recent years, lignin has attracted great interest as a high-value product for biomedical applications. Due to its antioxidant, antibacterial, adhesive and other properties, lignin is a promising candidate for the development of hydrogel dressings. However, there is no comprehensive overview of the application of lignin-based hydrogel dressings. In this review, lignin-based hydrogel skin dressings were first presented, and the preparation methods of physical and chemical crosslinking in lignin-based hydrogel dressings were discussed. In addition, various functional and environmentally responsive lignin-based hydrogel dressings were primarily reviewed. Finally, the prospects for the development of novel multifunctional lignin-based hydrogel dressings in the future were presented. In conclusion, this review provided a timely and comprehensive summary of the latest advances in the use of lignin as a biomaterial for hydrogel dressings, which would provide valuable guidance for the further development of lignin-based hydrogels.
Collapse
Affiliation(s)
- Yuqing Wang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Shuo Tang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Liuyun Jiang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China.
| | - Zhu Yuan
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| | - Yan Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
109
|
Al-Musawi MH, Turki S, Al-Naymi HAS, Sameer Al-salman S, Boroujeni VV, Alizadeh M, Sattar M, Sharifianjazi F, Bazli L, Pajooh AMD, Shahriari-Khalaji M, Najafinezhad A, Moghadam FM, Mirhaj M, Tavakoli M. Localized delivery of healing stimulator medicines for enhanced wound treatment. J Drug Deliv Sci Technol 2024; 101:106212. [DOI: 10.1016/j.jddst.2024.106212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
110
|
Zhou S, Zhang Z, Zhong W, Meng A, Su Y. Polyvinyl alcohol/PEDOT:PSS with Fe 3+/amylopectin enabled highly tough, anti-freezing and healable hydrogels for multifunctional wearable sensors. Talanta 2024; 279:126592. [PMID: 39053360 DOI: 10.1016/j.talanta.2024.126592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
In recent years, hydrogel-based flexible sensors have garnered increasing attention in research. Ionic hydrogels, enriched with large amounts of ionic liquids, exhibit electrical conductivity, excellent electrochemical stability, anti-freezing, and antimicrobial properties. However, most ionic hydrogels suffer from poor mechanical properties, limiting their adaptability to more complex application scenarios. Integrating conductive polymers into hydrogels leads to desirable features such as increased specific surface area, soft and biocompatible interfaces, and high electrolyte permeability. In this study, we successfully prepared Fe3+/Ap@PVA/PEDOT double-network hydrogel. Utilizing polyvinyl alcohol (PVA) as the primary matrix, we introduced PEDOT:PSS and FeCl3 to confer conductivity to the hydrogel. The incorporation of amylopectin (Ap) further enhanced mechanical performance. The resulted hydrogel sensor exhibits outstanding mechanical properties, allowing for stretching up to 347 % and withstanding a tensile force of 505 kPa. In addition, it exhibits excellent antifreeze properties (can work at -30 °C), healability, water retention, and high sensitivity to stretching (GF = 4.72 at a 200 % strain ratio), compression (GF = 2.97 at a 12 % compressive ratio), and temperature (TCR = 2.46). These remarkable properties of the hydrogel make it possible in applications such as human motion monitoring, handwriting recognition, and temperature sensing.
Collapse
Affiliation(s)
- Shuang Zhou
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China
| | - Zheng Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China
| | - Wei Zhong
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China
| | - Aiyun Meng
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China.
| | - Yaorong Su
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, PR China.
| |
Collapse
|
111
|
Liu Y, Liu T, Zhu Z, Xie L, Bai D, Liu T, Gu W, Li W, Shu Y, Zhang J. An advanced hydrogel dressing system with progressive delivery and layer-to-layer response for diabetic wound healing. Acta Biomater 2024:S1742-7061(24)00638-X. [PMID: 39486779 DOI: 10.1016/j.actbio.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Wound healing in diabetic patients presents a significant challenge due to delayed inflammatory responses, which obstruct subsequent healing stages. In response, we have developed a progressive, layer-by-layer responsive hydrogel, specifically designed to meet the dynamic requirements of diabetic wounds throughout different healing phases. This hydrogel initiates with a glucose-responsive layer formed by boronate ester bonds between 4-arm-poly (ethylene glycol) succinimidyl glutarate (4arm-PEG-SG) and 3-aminophenylboronic acid. This configuration ensures precise control over the physicochemical properties, facilitating accurate drug release during the healing process. Furthermore, we have incorporated an active pharmaceutical ingredient ionic liquid (API) composed of diclofenac and L-carnitine. This combination effectively tackles the solubility and stability issues commonly associated with anti-inflammatory drugs. To further refine drug release, we integrated matrix metalloproteinase-9 (MMP-9)-sensitive gelatin microcapsules, ensuring a controlled release and preventing the abrupt, uneven drug distribution often seen in other systems. Our hydrogel's rheological properties closely resemble human skin, offering a more harmonious approach to diabetic wound healing. Overall, this progressive layer-by-layer responsive wound management system, which is a safe, efficient, and intelligent approach, holds significant potential for the clinical treatment of diabetic wounds. STATEMENT OF SIGNIFICANCE: The two main problems of diabetic wounds are the long-term infiltration of inflammation and the delayed repair process. In this experiment, a glucose-responsive hierarchical drug delivery system was designed to intelligently adjust gel properties to meet the needs of inflammation and repair stage of wound healing, accelerate the transformation of inflammation and repair stage, and accelerate the process of repair stage. In addition, in order to achieve accurate drug release in anti-inflammatory layer hydrogels and avoid sudden drug release due to poor solubility of anti-inflammatory small molecule drugs, we constructed a ionic liquid of active pharmaceutical ingredients (API-ILs) using diclofenac and L-carnitine as raw materials. It was wrapped in MMP-9 enzyme active gelatin microcapsule to construct a double-reaction anti-inflammatory layer gel to achieve accurate drug release. These findings highlight the potential of our system in treating diabetic wounds, providing a significant advance in wound treatment.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, PR China; Changzhou Zhitai Shengchuang Technology Co., Ltd., Changzhou 213000, PR China
| | - Tianqi Liu
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Changzhou Zhitai Shengchuang Technology Co., Ltd., Changzhou 213000, PR China.
| | - Zhenye Zhu
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Lin Xie
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - De Bai
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Tonglin Liu
- Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Wenting Gu
- Changzhou Zhitai Shengchuang Technology Co., Ltd., Changzhou 213000, PR China
| | - Wei Li
- Changzhou Zhitai Shengchuang Technology Co., Ltd., Changzhou 213000, PR China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Changzhou Zhitai Shengchuang Technology Co., Ltd., Changzhou 213000, PR China; Shenzhen Shinehigh Innovation Technology Co., Ltd., Shenzhen 518055, PR China.
| |
Collapse
|
112
|
Zhang S, Ruan W, Guan J. Single-atom nanozymes for antibacterial applications. Food Chem 2024; 456:140094. [PMID: 38908326 DOI: 10.1016/j.foodchem.2024.140094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Bacteria have always been a thorny problem that threatens human health and food safety. Conventional antibiotic treatment often leads to the emergence of drug resistance. Therefore, the development of more effective antibacterial agents is urgently needed. Single-atom nanozymes (SAzymes) can efficiently eliminate bacteria due to their high atomic utilization, abundant active centers, and good natural enzyme mimicry, providing a potential alternative choice for antibiotics in antibacterial applications. Here, the antibacterial applications of SAzymes are reviewed and their catalytic properties are discussed from the aspects of active sites, coordination environment regulation and carrier selection. Then, the antibacterial effect of SAzymes is elaborated in combination with photothermal therapy (PTT) and sonodynamic therapy (SDT). Finally, the problems faced by SAzymes in antibacterial applications and their future development potential are proposed.
Collapse
Affiliation(s)
- Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Weidong Ruan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
113
|
Kang Y, Zhang S, Wang G, Yan Z, Wu G, Tang L, Wang W. Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy. Pharmaceutics 2024; 16:1384. [PMID: 39598508 PMCID: PMC11597219 DOI: 10.3390/pharmaceutics16111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Dermatoses are among the most prevalent non-fatal conditions worldwide. Given this context, it is imperative to introduce safe and effective dermatological treatments to address the diverse needs and concerns of individuals. Transdermal delivery technology offers a promising alternative compared to traditional administration methods such as oral or injection routes. Therefore, this review focuses on the recent achievements of nanocarrier-based transdermal delivery technology for dermatological therapy, which summarizes diverse delivery strategies to enhance skin penetration using various nanocarriers including vesicular nanocarriers, lipid-based nanocarriers, emulsion-based nanocarriers, and polymeric nanocarrier according to the pathogenesis of common dermatoses. The fundamentals of transdermal delivery including skin physiology structure and routes of penetration are introduced. Moreover, mechanisms to enhance skin penetration due to the utilization of nanocarriers such as skin hydration, system deformability, disruption of the stratum corneum, surface charge, and tunable particle size are outlined as well.
Collapse
Affiliation(s)
- Yunxiang Kang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
| | - Sunxin Zhang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guoqi Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziwei Yan
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guyuan Wu
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lu Tang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
114
|
Mansur AAP, Carvalho SM, Brito RMDM, Capanema NSV, Duval IDB, Cardozo ME, Rihs JBR, Lemos GGM, Lima LCD, dos Reys MP, Rodrigues APH, Oliveira LCA, de Sá MA, Cassali GD, Bueno LL, Fujiwara RT, Lobato ZIP, Mansur HS. Arginine-Biofunctionalized Ternary Hydrogel Scaffolds of Carboxymethyl Cellulose-Chitosan-Polyvinyl Alcohol to Deliver Cell Therapy for Wound Healing. Gels 2024; 10:679. [PMID: 39590035 PMCID: PMC11594054 DOI: 10.3390/gels10110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Wound healing is important for skin after deep injuries or burns, which can lead to hospitalization, long-term morbidity, and mortality. In this field, tissue-engineered skin substitutes have therapy potential to assist in the treatment of acute and chronic skin wounds, where many requirements are still unmet. Hence, in this study, a novel type of biocompatible ternary polymer hybrid hydrogel scaffold was designed and produced through an entirely eco-friendly aqueous process composed of carboxymethyl cellulose, chitosan, and polyvinyl alcohol and chemically cross-linked by citric acid, forming three-dimensional (3D) matrices, which were biofunctionalized with L-arginine (L-Arg) to enhance cellular adhesion. They were applied as bilayer skin biomimetic substitutes based on human-derived cell cultures of fibroblasts and keratinocytes were seeded and grown into their 3D porous structures, producing cell-based bio-responsive hybrid hydrogel scaffolds to assist the wound healing process. The results demonstrated that hydrophilic hybrid cross-linked networks were formed via esterification reactions with the 3D porous microarchitecture promoted by foam templating and freeze-drying. These hybrids presented chemical stability, physicochemical properties, high moisture adsorption capacity, surface properties, and a highly interconnected 3D porous structure well suited for use as a skin substitute in wound healing. Additionally, the surface biofunctionalization of these 3D hydrogel scaffolds with L-arginine through amide bonds had significantly enhanced cellular attachment and proliferation of fibroblast and keratinocyte cultures. Hence, the in vivo results using Hairless mouse models (an immunocompromised strain) confirmed that these responsive bio-hybrid hydrogel scaffolds possess hemocompatibility, bioadhesion, biocompatibility, adhesiveness, biodegradability, and non-inflammatory behavior and are capable of assisting the skin wound healing process.
Collapse
Affiliation(s)
- Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Ramayana M. de M. Brito
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Nádia S. V. Capanema
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Isabela de B. Duval
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Marcelo E. Cardozo
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - José B. R. Rihs
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Gabriela G. M. Lemos
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Letícia C. D. Lima
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Marina P. dos Reys
- Laboratory of Compared Pathology, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (M.P.d.R.); (G.D.C.)
| | - Ana P. H. Rodrigues
- Chemistry Department, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (A.P.H.R.); (L.C.A.O.)
| | - Luiz C. A. Oliveira
- Chemistry Department, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (A.P.H.R.); (L.C.A.O.)
| | - Marcos Augusto de Sá
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Geovanni D. Cassali
- Laboratory of Compared Pathology, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (M.P.d.R.); (G.D.C.)
| | - Lilian L. Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Ricardo T. Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Zelia I. P. Lobato
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil;
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| |
Collapse
|
115
|
Zhao Y, Chen J, Zhou M, Zhang G, Wu W, Wang Z, Sun J, Zhong A. Desferrioxamine-Laden Nanofibrous Scaffolds with Efficient Angiogenesis for Accelerating Diabetic Wound Healing. Int J Nanomedicine 2024; 19:10551-10568. [PMID: 39435042 PMCID: PMC11492907 DOI: 10.2147/ijn.s477109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024] Open
Abstract
Background Delayed diabetic wound healing is one of the clinical difficulties, the main reason is the limited angiogenesis ability. Deferriamine (DFO) is an iron chelating agent that can induce angiogenesis, but its application is limited due to its short half-life. Increasing the load and slow release performance of desferriamine is beneficial to accelerate diabetic wound healing. Materials and Methods In this study, we developed collagen (Col)-graphene oxide (GO) and (1% w/w) DFO-loaded nanofiber electrospinning scaffolds (DCG) using the electrospinning technique. We tested the physicochemical properties, drug release performance, and vascularization biological function of the scaffolds, and finally evaluated the promotion of full-thickness wound healing in the diabetic rat models. Results The results showed that DCG scaffolds have good mechanical properties and water-holding capacity and can release DFO continuously for 14 days. In vitro, the novel DCG scaffold exhibited good biocompatibility, with the up-regulation at the gene level of VEGF and its regulator HIF-1α, promoters of angiogenesis. This was verified in vivo, as the scaffold enhanced granulation tissue formation and improved neovascularization, thereby accelerating wound healing when applied to full-thickness defects on the back of diabetic rats. Conclusion The DCG nanofiber scaffold prepared in this study has good biocompatibility and vascularization ability, and improves the microenvironment in vivo, and has a good application prospect in diabetic wound repair.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Jialong Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Guo Zhang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Wenhao Wu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
116
|
Fan Y, Wang H, Wang C, Xing Y, Liu S, Feng L, Zhang X, Chen J. Advances in Smart-Response Hydrogels for Skin Wound Repair. Polymers (Basel) 2024; 16:2818. [PMID: 39408528 PMCID: PMC11479249 DOI: 10.3390/polym16192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the treatment of skin wounds, as a result of their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of smart-response features into hydrogels allows for dynamic responses to different external or internal stimuli. Therefore, this paper reviews the design of different smart-responsive hydrogels for different microenvironments in the field of skin wound therapy. First, the unique microenvironments of three typical chronic difficult-to-heal wounds and the key mechanisms affecting wound healing therapeutic measures are outlined. Strategies for the construction of internal stimulus-responsive hydrogels (e.g., pH, ROS, enzymes, and glucose) and external stimulus-responsive hydrogels (e.g., temperature, light, electricity, and magnetic fields) are highlighted from the perspective of the wound microenvironment and the in vitro environment, and the constitutive relationships between material design, intelligent response, and wound healing are revealed. Finally, this paper discusses the severe challenges faced by smart-responsive hydrogels during skin wound repair and provides an outlook on the combination of smart-responsive hydrogels and artificial intelligence to give scientific direction for creating and using hydrogel dressings that respond to stimuli in the clinic.
Collapse
Affiliation(s)
- Yinuo Fan
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Han Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Yuanhao Xing
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Shuying Liu
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Linhan Feng
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Xinyu Zhang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
- State Key Laboratory of Mineral Processing, Beijing 100160, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China
| |
Collapse
|
117
|
Wang P, Wu J, Xiao X, Fan Y, Han X, Sun Y. Engineering Injectable Coassembled Hydrogel by Photothermal Driven Chitosan-Stabilized MoS 2 Nanosheets for Infected Wound Healing. ACS NANO 2024; 18:26961-26974. [PMID: 39305262 DOI: 10.1021/acsnano.4c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The application of enzyme-like molybdenum disulfide (MoS2) in tissue repair was confronted with stable dispersion, solubilization, and biotoxicity. Here, the injectable self-healing hydrogel was successfully designed using a step-by-step coassembly of chitosan and MoS2. Polyphenolic chitosan as a "structural stabilizer" of MoS2 nanosheets reconstructed well-dispersed MoS2@CSH nanosheets, which improved the biocompatibility of traditional MoS2, and strengthened its photothermal conversion and enzyme-like activities, guaranteeing highly efficient radical scavenging and antimicrobial properties. Furthermore, the polyphenol chitosan was employed again as a "molecular cross-linking agent" to form the injectable NIR-responsive MoS2@CSH hydrogel by accelerating hydrogen-bond interaction among chitosan and the multicross-linking reaction among polyphenols. The rapid self-healing ability was conducive to wound closure and dynamic adaptability. An experimental study on infected wound healing demonstrated that MoS2@CSH hydrogel could substantially eradicate bacteria and accelerate the angiogenesis of infected wounds. The photothermal-driven coassembly of MoS2 and polycation provided an alternative strategy for infected wound healing.
Collapse
Affiliation(s)
- Peilei Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Jingwen Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaolin Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
118
|
Ji M, Li F, Li J, Li J, Wang X, Zhang C, Peng S, Man J. Physical, antibacterial, blood coagulation, and healing promotion evaluations of chitosan derivative-based composite films. Int J Biol Macromol 2024; 278:134714. [PMID: 39142487 DOI: 10.1016/j.ijbiomac.2024.134714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/30/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Chitosan is a potentially suitable material for wound dressing, but is undesirably water-insoluble. Although chitosan can be modified to produce water-soluble derivatives, the best chitosan derivative for wound dressings remains unclear. The present study introduced three water-soluble chitosan derivatives, namely, carboxymethyl chitosan, quaternized chitosan (QCS), and carboxymethyl quaternized chitosan, and explored the physical properties, biochemical properties, and wound care effectiveness of films of these derivatives. The QCS-based film exhibited higher absorption ability, mechanical properties, water-vapor permeability, electroconductivity, and antioxidant capacity than the other films. Most importantly, the cationic quaternary ammonium groups facilitated the antibacterial activity (>95 %) and blood coagulant capacity of the QCS-based film. As this film also promoted wound healing, it presented as an ideal candidate for wound dressings.
Collapse
Affiliation(s)
- Maocheng Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Chuanwei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Sixian Peng
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
119
|
Zhang Y, Chen Y, Shao P, Luo Y, Liu X, Xu T. Baicalin derivative dynamically cross-linked natural polysaccharide hydrogel for diabetic wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 497:154803. [DOI: 10.1016/j.cej.2024.154803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
120
|
Casillas-Popova SN, Lokuge ND, Andrade-Gagnon B, Chowdhury FR, Skinner CD, Findlay BL, Oh JK. pH-Responsive Degradable Electro-Spun Nanofibers Crosslinked via Boronic Ester Chemistry for Smart Wound Dressings. Macromol Biosci 2024; 24:e2400217. [PMID: 38989606 DOI: 10.1002/mabi.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Recent advances in the treatment of chronic wounds have focused on the development of effective strategies for cutting-edge wound dressings based on nanostructured materials, particularly biocompatible poly(vinyl alcohol) (PVA)-based electro-spun (e-spun) nanofibers. However, PVA nanofibers need to be chemically crosslinked to ensure their dimensional stability in aqueous environment and their capability to encapsulate bioactive molecules. Herein, a robust approach for the fabrication of pH-degradable e-spun PVA nanofibers crosslinked with dynamic boronic ester (BE) linkages through a coupling reaction of PVA hydroxyl groups with the boronic acid groups of a phenyl diboronic acid crosslinker is reported. This comprehensive analysis reveals the importance of the mole ratio of boronic acid to hydroxyl group for the fabrication of well-defined BE-crosslinked fibrous mats with not only dimensional stability but also the ability to retain uniform fibrous form in aqueous solutions. These nanofibers degrade in both acidic and basic conditions that mimic wound environments, leading to controlled/enhanced release of encapsulated antimicrobial drug molecules. More importantly, drug-loaded BE-crosslinked fibers show excellent antimicrobial activities against both Gram-positive and Gram-negative bacteria, suggesting that this approach of exploring dynamic BE chemistry is amenable to the development of smart wound dressings with controlled/enhanced drug release.
Collapse
Affiliation(s)
| | - Nishadi Dilkushi Lokuge
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Brandon Andrade-Gagnon
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | | | - Cameron D Skinner
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Brandon L Findlay
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
121
|
Xu K, Zhu J, Zhang T, Sui G. A phosphorylated guanidine chitosan and UiO-66-NH 2 modified magnetic nanoparticle platform for enrichment and detection of multiple bacteria. Talanta 2024; 278:126435. [PMID: 38924986 DOI: 10.1016/j.talanta.2024.126435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Wastewater-based epidemiology (WBE) is a powerful tool for early warning of infectious disease outbreaks. Hence, a rapid and portable pathogen monitoring system is urgent needed for on-site detection. In this work, we first reported synthesis of an artificial modulated wide-spectrum bacteria capture nanoparticle (Arg-CSP@UiO@Fe3O4). Arginine-modified phosphorylated chitosan (Arg-CSP) coating could provide strongly positive charged guanidinium group for pathogen interaction by electrostatic attraction, and UiO-66-NH2 layer could help Arg-CSP graft onto Fe3O4 magnetic particles. The capture efficiency of Arg-CSP@UiO@Fe3O4 reached 92.2 % and 97.3 % for Escherichia coli (E.coli) and Staphylococcus epidermidis (S.epidermidis)within 40 min, in 10 mL sample. To prevent pathogen degradation in sewage, a portable nucleic acid extraction-free method was also developed. UiO-66-NH2 could disintegrate in buffer with high concentration of PO43- for bacterium desorption, and then nucleic acid of the bacteria was released by heating. The DNA template concentration obtained by this method was 779.28 times higher than that of the direct thermal lysis product and 8.63 times higher than that of the commercial kit. Afterwards, multiple detection of bacteria was realized by loop-mediated isothermal amplification (LAMP). Artificial regulated pathogen desorption could prevent non-specific adsorption of nucleic acid by nanoparticles. The detection limit of Arg-CSP@UiO@Fe3O4-LAMP method was 80 cfu/mL for E.coli and 300 cfu/mL for S.epidermidis. The accuracy and reliability of the method was validated by spiked sewage samples. In conclusion, this bio-monitoring system was able to detect multiple bacteria in environment conveniently and have good potential to become an alternative solution for rapid on-site pathogen detection.
Collapse
Affiliation(s)
- Kexin Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, China
| | - Jinhui Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, China
| | - Tong Zhang
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tong Ji University, Shanghai, 200120, China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, P. R. China.
| |
Collapse
|
122
|
Zhang X, Liang Y, Huang S, Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci 2024; 332:103267. [PMID: 39121832 DOI: 10.1016/j.cis.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Skin has strong self-regenerative capacity, while severe skin defects do not heal without appropriate treatment. Therefore, in order to cover the wound sites and hasten the healing process, wound dressings are required. Hydrogels have emerged as one of the most promising candidates for wound dressings because of their hydrated and porous molecular structure. Chitosan (CS) with biocompatibility, oxygen permeability, hemostatic and antimicrobial properties is beneficial for wound treatment and it can generate self-healing hydrogels through reversible crosslinks, from dynamic covalent bonding, such as Schiff base bonds, boronate esters, and acylhydrazone bonds, to physical interactions like hydrogen bonding, electrostatic interaction, ionic bonding, metal-coordination, host-guest interactions, and hydrophobic interaction. Therefore, various chitosan-based self-healing hydrogel dressings have been prepared in recent years to cope with increasingly complex wound conditions. This review's objective is to provide comprehensive information on the self-healing mechanism of chitosan-based hydrogel wound dressings, discuss their advanced functions including antibacterial, conductive, anti-inflammatory, anti-oxidant, stimulus-responsive, hemostatic/adhesive and controlled release properties, further introduce their applications in the promotion of wound healing in two categories: acute and chronic (infected, burn and diabetic) wounds, and finally discuss the future perspective of chitosan-based self-healing hydrogel dressings for wound healing.
Collapse
Affiliation(s)
- Xingyu Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
123
|
Deng J, Li J, Yan L, Guo W, Ding X, Ding P, Liu S, Sun Y, Jiang G, Okoro OV, Shavandi A, Xie Z, Fan L, Nie L. Accelerated, injectable, self-healing, scarless wound dressings using rGO reinforced dextran/chitosan hydrogels incorporated with PDA-loaded asiaticoside. Int J Biol Macromol 2024; 278:134424. [PMID: 39111509 DOI: 10.1016/j.ijbiomac.2024.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The process of wound healing is intricate and complex, necessitating the intricate coordination of various cell types and bioactive molecules. Despite significant advances, challenges persist in achieving accelerated healing and minimizing scar formation. Herein, a multifunctional hydrogel engineered via dynamic Schiff base crosslinking between oxidized dextran and quaternized chitosan, reinforced with reduced graphene oxide (rGO) is reported. The resulting OQG hydrogels demonstrated injectability to aid in conforming to irregular wound geometries, rapid self-healing to maintain structural integrity and adhesion for intimate integration with wound beds. Moreover, the developed hydrogels possessed antioxidant and antibacterial activities, mitigating inflammation and preventing infection. The incorporation of conductive rGO further facilitated the transmission of endogenous electrical signals, stimulating cell migration and tissue regeneration. In addition, the polydopamine-encapsulated asiaticoside (AC@PDA) nanoparticles were encapsulated in OQG hydrogels to reduce scar formation during in vivo evaluations. In vitro results confirmed the histocompatibility of the hydrogels to promote cell migration. The recovery of the full-thickness rat wounds revealed that these designed OQG hydrogels with the incorporation of AC@PDA nanoparticles could accelerate wound healing, reduce inflammation, facilitate angiogenesis, and minimize scarring when implemented. This multifunctional hydrogel system offers a promising strategy for enhanced wound management and scarless tissue regeneration, addressing the multifaceted challenges in wound care.
Collapse
Affiliation(s)
- Jun Deng
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jingyu Li
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Shuang Liu
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Zhizhong Xie
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Lihong Fan
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
124
|
Yan Y, Li X, Chen C, Cui D, Wang Z, Li M, Long Y, Zhang J, Li C, Wang Z, Zhou C, Yao Z, Wang D, Hou J, Yang R. A mussel-inspired, antibacterial, antioxidant, injectable composite hydrogel for the sustain delivery of salvianolic acid B for the treatment of frozen shoulder. Bioact Mater 2024; 40:396-416. [PMID: 39022185 PMCID: PMC11252718 DOI: 10.1016/j.bioactmat.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Frozen shoulder (FS) manifests as progressively worsening pain and a reduction in shoulder range of motion (ROM). Salvianolic acid B (SaB) is recently expected to be used in the treatment of fibrosis diseases including FS. We firstly demonstrate that SaB can effectively hinder the progression of oxidative stress, inflammation, and pathological fibrosis within the synovial tissue in FS, potentially leading to the reduction or reversal of capsule fibrosis and joint stiffness. For further clinical application, we design and synthesize a novel, superior, antioxidant and antibacterial CSMA-PBA/OD-DA (CPDA) hydrogel for the delivery of SaB. In vitro experiments demonstrate that the CPDA hydrogel exhibits excellent biocompatibility and rheological properties, rendering it suitable for intra-articular injections. Upon injection into the contracted joint cavity of FS model rat, the SaB-CPDA hydrogel accelerate the recovery of ROM and exhibit superior anti-fibrosis effect, presenting the promise for the treatment of FS in vivo.
Collapse
Affiliation(s)
- Yan Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Xinhao Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Chen Chen
- Department of Geriatric Dentistry, NMPA Key Laboratory for Dental Materials National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dedong Cui
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhuo Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Ming Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Yi Long
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Jinming Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Cheng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhiling Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Chuanhai Zhou
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zeyu Yao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Dan Wang
- School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jingyi Hou
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Rui Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| |
Collapse
|
125
|
Huang J, Ma Y, Jiang X, Xian J, Fu Z, Ouyang H. Robust Luminescent Pyrene-Based Metal-Organic Framework Hydrogel as a pH-Responsive Fluorescence Emitter for Sensitive Immunoassay of Cardiac Troponin I. Anal Chem 2024; 96:15042-15049. [PMID: 39219053 DOI: 10.1021/acs.analchem.4c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Despite many luminescent advantages including outstanding absorption coefficient and high quantum yield, pyrene and its derivatives have been suffering from a dramatic aggregation-caused quenching (ACQ) effect. Although the dramatic ACQ effect of pyrene-based fluorophores has been restrained in pyrene-doped metal-organic frameworks (MOFs), the low loading of fluorescent (FL) units substantially impedes the improved luminescent behaviors. Herein, pyrene-based MOFs hydrogel was synthesized with a high loading of pyrene as the unique organic linker blocks instead of a dopant in MOFs. The gel matrix contributed to rigidifying the location of the FL emitters and achieving intensive FL emission and high luminescent stability and therefore efficiently overcoming the ACQ effect. Furthermore, the protonation of pyrene in the MOFs hydrogel remarkably decreased the luminescent intensity, which endowed the FL hydrogel with highly pH-responsive activity in the broad range (pH 4-10). Interestingly, glucose oxidase was immobilized into ZIF-8 as a highly efficient luminescent quencher, which contributed to catalyzing the form of gluconic acid and thus drastically quenching the FL signal of the MOFs hydrogel. Furthermore, the emitter-quencher pair of pyrene-based MOFs hydrogel and glucose oxidase was successfully employed to develop an ultrasensitive FL immunoassay platform for cardiac troponin I (as a model analyte). The limit of detection for cardiac troponin I was 5.2 pg/mL (3σ). The proof-of-principle study demonstrated the thrilling auxiliary effect of tailorable MOFs hydrogel on boosting the feasibility of aqueous insoluble FL chromophores for trace analysis.
Collapse
Affiliation(s)
- Junyi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yuchan Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
126
|
Zhang M, Yan S, Wang J, Zhong Y, Wang C, Zhang T, Xing D, Shao Y. Rational design of multifunctional hydrogels targeting the microenvironment of diabetic periodontitis. Int Immunopharmacol 2024; 138:112595. [PMID: 38950455 DOI: 10.1016/j.intimp.2024.112595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
Periodontitis is a chronic inflammatory disease and is the primary contributor to adult tooth loss. Diabetes exacerbates periodontitis, accelerates periodontal bone resorption. Thus, effectively managing periodontitis in individuals with diabetes is a long-standing challenge. This review introduces the etiology and pathogenesis of periodontitis, and analyzes the bidirectional relationship between diabetes and periodontitis. In this review, we comprehensively summarize the four pathological microenvironments influenced by diabetic periodontitis: high glucose microenvironment, bacterial infection microenvironment, inflammatory microenvironment, and bone loss microenvironment. The hydrogel design strategies and latest research development tailored to the four microenvironments of diabetic periodontitis are mainly focused on. Finally, the challenges and potential solutions in the treatment of diabetic periodontitis are discussed. We believe this review will be helpful for researchers seeking novel avenues in the treatment of diabetic periodontitis.
Collapse
Affiliation(s)
- Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
127
|
Abbasi M, Heath B, McGinness L. Advances in metformin-delivery systems for diabetes and obesity management. Diabetes Obes Metab 2024; 26:3513-3529. [PMID: 38984380 DOI: 10.1111/dom.15759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Metformin is a medication that is commonly prescribed to manage type 2 diabetes. It has been used for more than 60 years and is highly effective in lowering blood glucose levels. Recent studies indicate that metformin may have additional medical benefits beyond treating diabetes, revealing its potential therapeutic uses. Oral medication is commonly used to administer metformin because of its convenience and cost-effectiveness. However, there are challenges in optimizing its effectiveness. Gastrointestinal side effects and limitations in bioavailability have led to the underutilization of metformin. Innovative drug-delivery systems such as fast-dissolving tablets, micro/nanoparticle formulations, hydrogel and microneedles have been explored to optimize metformin therapy. These strategies enhance metformin dosage, targeting, bioavailability and stability, and provide personalized treatment options for improved glucose homeostasis, antiobesity and metabolic health benefits. Developing new delivery systems for metformin shows potential for improving therapeutic outcomes, broadening its applications beyond diabetes management and addressing unmet medical needs in various clinical settings. However, it is important to improve drug-delivery systems, addressing issues such as complexity, cost, biocompatibility, stability during storage and transportation, loading capacity, required technologies and biomaterials, targeting precision and regulatory approval. Addressing these limitations is crucial for effective, safe and accessible drug delivery in clinical practice. In this review, recent advances in the development and application of metformin-delivery systems for diabetes and obesity are discussed.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, Alabama, USA
| | - Braeden Heath
- Department of Biomedical Sciences, College of Sciences and Mathematics, Auburn University, Auburn, Alabama, USA
| | - Lauren McGinness
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
128
|
Sun Z, Chen X, Miao F, Meng N, Hu K, Xiong S, Peng X, Ma L, Zhou C, Yang Y. Engineering Ag-Decorated Graphene Oxide Nano-Photothermal Platforms with Enhanced Antibacterial Properties for Promoting Infectious Wound Healing. Int J Nanomedicine 2024; 19:8901-8927. [PMID: 39233743 PMCID: PMC11372703 DOI: 10.2147/ijn.s474536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Graphene oxide (GO) nanoparticles have emerged as a compelling photothermal agent (PHTA) in the realm of photothermal antibacterial therapy, owing to their cost-effectiveness, facile synthesis, and remarkable photostability. Nevertheless, the therapeutic efficacy of GO nanoparticles is commonly hindered by their inherent drawback of low photothermal conversion efficiency (PCE). Methods Herein, we engineer the Ag/GO-GelMA platform by growing the Ag on the surface of GO and encapsulating the Ag/GO nanoparticles into the GelMA hydrogels. Results The resulting Ag/GO-GelMA platform demonstrates a significantly enhanced PCE (47.6%), surpassing that of pure GO (11.8%) by more than fourfold. As expected, the Ag/GO-GelMA platform, which was designed to integrate the benefits of Ag/GO nanoparticles (high PCE) and hydrogel (slowly releasing Ag+ to exert an inherent antibacterial effect), has been shown to exhibit exceptional antibacterial efficacy. Furthermore, transcriptome analyses demonstrated that the Ag/GO-GelMA platform could significantly down-regulate pathways linked to inflammation (the MAPK and PI3K-Akt pathways) and had the ability to promote cell migration. Discussion Taken together, this study presents the design of a potent photothermal antibacterial platform (Ag/GO-GelMA) aimed at enhancing the healing of infectious wounds. The platform utilizes a handy method to enhance the PCE of GO, thereby making notable progress in the utilization of GO nano-PHTAs.
Collapse
Affiliation(s)
- Zhiwei Sun
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Xiangru Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Fang Miao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Na Meng
- Department of Cardiovascular Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Keqiang Hu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Shaotang Xiong
- The Second People's Hospital of China Three Gorges University·the Second People's Hospital of Yichang, Hubei, People's Republic of China
| | - Ximing Peng
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Liya Ma
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| |
Collapse
|
129
|
Pang Z, Chen Z, Li J, Liu D, Zhang G, Liu C, Du C, Zhou W. Advances in Inorganic Foam Materials Fabricated Via Blowing Strategy: A Comprehensive Review. ACS NANO 2024; 18:21747-21778. [PMID: 39105765 DOI: 10.1021/acsnano.4c05321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Two-dimensional (2D) materials with excellent properties and widespread applications have been explosively investigated. However, their conventional synthetic methods exhibit concerns of limited scalability, complex purification process, and incompetence of prohibiting their restacking. The blowing strategy, characterized by gas-template, low-cost, and high-efficiency, presents a valuable avenue for the synthesis of 2D-based foam materials and thereby addresses these constraints. Whereas, its comprehensive introduction has been rarely outlined so far. This review commences with a synopsis of the blowing strategy, elucidating its development history, the statics and kinetics of the blowing process, and the choice of precursor and foaming agents. Thereafter, we dwell at length on across-the-board foams enabled by the blowing route, like BxCyNz foams, carbon foams, and diverse composite foams consisting of carbon and metal compounds. Following that, a wide-ranging evaluation of the functionality of the foam products in fields such as energy storage, electrocatalysis, adsorption, etc. is discussed, revealing their distinctive strength originated from the foam structure. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future research priorities in this rapidly developing method.
Collapse
Affiliation(s)
- Zimo Pang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhichao Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Jianyu Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dongdong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Guangyue Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Canshang Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Chengkai Du
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Weiwei Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| |
Collapse
|
130
|
Ma B, Chen F, Liu X, Zhang Y, Gou S, Meng Q, Liu P, Cai K. Modified Titanium Implants Satisfy the Demands of Diabetic Osseointegration via Sequential Regulation of Macrophages and Mesenchymal Stem Cells. Adv Healthc Mater 2024:e2401556. [PMID: 39138979 DOI: 10.1002/adhm.202401556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Indexed: 08/15/2024]
Abstract
The application of titanium (Ti) implants for patients with diabetes mellitus (DM) is still facing a significant challenge due to obstacles such as hyperglycemia, reactive oxygen species (ROS), and chronic inflammation, which hinders osseointegration. To address this issue, a Ti implant with dual functions of regulating polarization of macrophages and facilitating osseointergration is developed via hydrothermal reaction and hydrogel coating. The reactive oxygen species (ROS) and glucose (Glu) responsive hydrogel coating can locally deliver adenosine (ADO) in the early stage of implantation. The controlled release of ADO regulated the phenotype of macrophages, restored oxidative balance, and enhanced mitochondrial function during the early stages of implantation. Subsequently, strontium (Sr) ions will be released to promote osteogenic differentiation and proliferation of mesenchymal stem cells (MSCs), as the hydrogel coating degraded. It eventually leads to bone reconstruction during the late stages, aligning with the biological cascade of bone healing. The modified Ti implants showed effective osteogenesis for bone defects in DM patients, shedding light on the design and biological mechanisms of surface modification. This research offers promising potential for improving the treatment of bone-related complications in diabetic patients.
Collapse
Affiliation(s)
- Bo Ma
- Key laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Fangye Chen
- Key laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xin Liu
- Key laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yang Zhang
- Key laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuangquan Gou
- Key laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qianxiang Meng
- Key laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Peng Liu
- Key laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
131
|
Lu Y, Hu M, Huang Y, Liao J, Zhao M, Zhou Y, Xia G, Zhan Q. Preparation of Multifunctional Hydrogels with In Situ Dual Network Structure and Promotion of Wound Healing. Biomacromolecules 2024; 25:4965-4976. [PMID: 39007721 DOI: 10.1021/acs.biomac.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As an emerging biomedical material, wound dressings play an important therapeutic function in the process of wound healing. It can provide an ideal healing environment while protecting the wound from a complex external environment. A hydrogel wound dressing composed of tilapia skin gelatin (Tsg) and fucoidan (Fuc) was designed in this article to enhance the microenvironment of wound treatment and stimulate wound healing. By mixing horseradish peroxidase (HRP), hydrogen peroxide (H2O2), tilapia skin gelatin-tyramine (Tsg-Tyr), and carboxylated fucoidan-tyramine in agarose (Aga), using the catalytic cross-linking of HRP/H2O2 and the sol-gel transformation of Aga, a novel gelatin-fucoidan (TF) double network hydrogel wound dressing was constructed. The TF hydrogels have a fast and adjustable gelation time, and the addition of Aga further enhances the stability of the hydrogels. Moreover, Tsg and Fuc are coordinated with each other in terms of biological efficacy, and the TF hydrogel demonstrated excellent antioxidant properties and biocompatibility in vitro. Also, in vivo wound healing experiments showed that the TF hydrogel could effectively accelerate wound healing, reduce wound microbial colonization, alleviate inflammation, and promote collagen deposition and angiogenesis. In conclusion, TF hydrogel wound dressings have the potential to replace traditional dressings in wound healing.
Collapse
Affiliation(s)
- Yapeng Lu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Maojie Hu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yikai Huang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Jianwei Liao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yang Zhou
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
132
|
Ali MS, Buddhiraju HS, Gubige M, Basa A, K GG, Veeresh B, Rengan AK. Multifunctional Nanosystem for Dual Anti-Inflammatory and Antibacterial Photodynamic Therapy in Infectious Diabetic Wounds. ACS Infect Dis 2024; 10:2978-2990. [PMID: 38990322 DOI: 10.1021/acsinfecdis.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Infectious diabetic wounds present a substantial challenge, characterized by inflammation, infection, and delayed wound healing, leading to elevated morbidity and mortality rates. In this work, we developed a multifunctional lipid nanoemulsion containing quercetin, chlorine e6, and rosemary oil (QCRLNEs) for dual anti-inflammatory and antibacterial photodynamic therapy (APDT) for treating infectious diabetic wounds. The QCRLNEs exhibited spherical morphology with a size of 51 nm with enhanced encapsulation efficiency, skin permeation, and localized delivery at the infected wound site. QCRLNEs with NIR irradiation have shown excellent wound closure and antimicrobial properties in vitro, mitigating the nonselective cytotoxic behavior of PDT. Also, excellent biocompatibility and anti-inflammatory and wound healing responses were observed in zebrafish models. The infected wound healing properties in S. aureus-infected diabetic rat models indicated re-epithelization and collagen deposition with no signs of inflammation. This multifaceted approach using QCRLNEs with NIR irradiation holds great promise for effectively combating oxidative stress and bacterial infections commonly associated with infected diabetic wounds, facilitating enhanced wound healing and improved clinical outcomes.
Collapse
Affiliation(s)
- Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad 502284, India
| | - Hima Sree Buddhiraju
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad 502284, India
| | - Mounika Gubige
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad 502284, India
| | - Apoorva Basa
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad 502284, India
| | | | - Bantal Veeresh
- G Pullareddy College of Pharmacy, Mehadipatnam, Hyderabad 500028, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Hyderabad 502284, India
| |
Collapse
|
133
|
Zhang R, Li H, Zhang W, Zhang T, Chen X, Lu W, Zhang B, Wang Y, Guo Y. Chlorogenic acid/carboxymethyl chitosan nanoparticle-assisted biomultifunctional hyaluronic acid-based hydrogel scaffolds for burn skin repair. Int J Biol Macromol 2024; 275:133528. [PMID: 38945346 DOI: 10.1016/j.ijbiomac.2024.133528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Burns are a prevalent type of injury worldwide, affecting tens of millions of people each year and significantly impacting the physical and psychological well-being of patients. Consequently, prompt treatment of burn wounds is imperative, with oxidative stress and excessive inflammation identified as primary factors contributing to delayed healing. In recent years, there has been growing interest in in situ crosslinked multifunctional hydrogels as a minimally invasive approach for personalized treatment delivery. To address these, a photocrosslinkable methacryloyl hyaluronic acid hydrogel scaffold embedded with chlorogenic acid/carboxymethyl chitosan nanoparticles (CGA/CMCS-HAMA, CCH), was developed for the treatment of burn wounds. The hydrogel prepared degraded by over 50 % by day 20, demonstrating stability and meeting the therapeutic requirements for burn wounds. Leveraging the extracellular matrix-like properties of HAMA and the antioxidant capabilities of CGA/CMCS NPs, this hydrogel demonstrates the ability to locally and continuously scavenge ROS and inhibit lipid peroxidation, inhibiting ferroptosis. Moreover, hydrogels well modulate the expression of macrophage- and fibroblast-associated inflammatory factors. Additionally, the hydrogel promotes cell adhesion and migration, further supporting the healing process. Overall, this innovative approach offers a safe and promising solution for burn wound treatment, addressing drug breakthrough and safety concerns while being adaptable to various irregular wound types.
Collapse
Affiliation(s)
- Ruiying Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Hanfeng Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Weijie Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Tong Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Xin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yihu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| |
Collapse
|
134
|
Wu K, Hu Y, Wu X, Wang S, Shang M, Yang L, Sun J. Fabrication of multifunctional cotton fabrics with quaternized N-halamine endowing the synergetic rechargeable antibacterial, wound healing and self-cleaning performances. Int J Biol Macromol 2024; 275:133493. [PMID: 38960230 DOI: 10.1016/j.ijbiomac.2024.133493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Cotton has attracted considerable attention due to its functional characteristics. The focus of research on cotton has shifted in recent years towards designing multi-functional and modified media for cotton fibers, which can be firmly combined with textiles, giving them reusability and extending their service life. This study constructed a synergistic antibacterial layer of quaternary ammonium compounds (QACs) and N-halamine (Hals) using an in-situ free radical copolymerization method in water, named QACs/Hals@cotton-Cl. The route significantly increases the number of antibacterial active centers. FTIR, XPS, and SEM were used to systematically analyze the product's chemical structure, surface morphology, and other characteristics. The modified fabric's antibacterial efficiency, wound healing, renewability, and durability were also evaluated. The chlorinated modified cotton fabric could completely eradicate S. aureus and E. coli within 10 min. Compared with pure cotton, it notably promoted the healing rate of infected wounds in mice. The modification method imparted excellent hydrophobicity to the cotton fabric, with a contact angle exceeding 130°, making it easy to remove surface stains. After 30 days of regular storage and 24 h of UV irradiation, the active chlorine concentration (Cl+%) only decreased by 25 % and 39 %, respectively, and the reduced Cl+% was effectively recharged via simple re-chlorination. The hydrophobicity and antimicrobial properties of QACs/Hals@cotton-Cl remained stable even after 20 cycles of friction. This simple synthesis technique provides a convenient approach for the scalable fabrication of multifunctional and rechargeable antibacterial textiles, with potential applications in medical devices and personal hygiene protection.
Collapse
Affiliation(s)
- Kun Wu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China.
| | - Yanling Hu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Xueling Wu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Shenglong Wang
- Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Mingyi Shang
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Le Yang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Jingjing Sun
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| |
Collapse
|
135
|
Wang J, Ma Y, Meng Q, Yang Y, Zhang R, Zhong S, Gao Y, He W, Cui X. Photocrosslinked carboxymethylcellulose-based hydrogels: Synthesis, characterization for curcumin delivery and wound healing. Int J Biol Macromol 2024; 275:133558. [PMID: 38955296 DOI: 10.1016/j.ijbiomac.2024.133558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Skin could protect our body and regenerate itself to against dysfunctional and disfiguring scars when faced with external injury. As wound dressings, hydrogels are biocompatible, hydrophilic and have a 3D structure similar to the extracellular matrix (ECM). In particular, hydrogels with drug-releasing capabilities are in acute wound healing. In this paper, photocrosslinked hydrogels served as wound dressing based on sodium carboxymethylcellulose (CMC) were prepared to promote wound healing. Photocrosslinked hydrogels were prepared by grafting lysine and allyl glycidyl ether (AGE) onto CMC and encapsulating curcumin (Cur). The synthesized hydrogels had the unique 3D porous structure with a swelling ratio up to 1300 % in aqueous solution. The drug release ratios of the hydrogels were 20.8 % in acid environment, and 14.4 % in alkaline environment. Notably, the hydrogels showed good biocompatibility and antibacterial properties and also exhibited the ability to accelerate the process of skin wound healing while prevent inflammation and scar formation when applied to a mouse skin wound model. As a result, the prepared hydrogels Gel-CLA@Cur showed great potential in wound healing.
Collapse
Affiliation(s)
- Jingfei Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ying Ma
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China
| | - Qingye Meng
- College of Chemistry, Jilin University, Changchun 130012, PR China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, PR China
| | - Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China
| | - Wenqi He
- College of Veterinary Medicine, Jilin University, Changchun 130012, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China; Weihai Institute for Bionics-Jilin University, Weihai 264400, PR China.
| |
Collapse
|
136
|
Hou J, Jie J, Wei X, Shen X, Zhao Q, Chai X, Pang H, Shen Z, Wang J, Wu L, Xu J. A core-shell-type nanosystem promotes diabetic wound healing through Photothermal-responsive release of transforming growth factor β. J Nanobiotechnology 2024; 22:449. [PMID: 39080658 PMCID: PMC11287882 DOI: 10.1186/s12951-024-02675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/25/2024] [Indexed: 08/03/2024] Open
Affiliation(s)
- Jinfei Hou
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Junjin Jie
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinwei Wei
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangqian Shen
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Qingfang Zhao
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Xupeng Chai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hao Pang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Zeren Shen
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Key Laboratory of Immune Response and Immunotherapy, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing, China.
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
137
|
Chen R, Wang P, Xie J, Tang Z, Fu J, Ning Y, Zhong Q, Wang D, Lei M, Mai H, Li H, Shi Z, Wang J, Cheng H. A multifunctional injectable, self-healing, and adhesive hydrogel-based wound dressing stimulated diabetic wound healing with combined reactive oxygen species scavenging, hyperglycemia reducing, and bacteria-killing abilities. J Nanobiotechnology 2024; 22:444. [PMID: 39068417 PMCID: PMC11283728 DOI: 10.1186/s12951-024-02687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The proficient handling of diabetic wounds, a rising issue coinciding with the global escalation of diabetes cases, poses significant clinical difficulties. A range of biofunctional dressings have been engineered and produced to expedite the healing process of diabetic wounds. This study proposes a multifunctional hydrogel dressing for diabetic wound healing, which is composed of Polyvinyl Alcohol (PVA) and N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-teramethylpropane-1, 3-diaminium (TSPBA), and a dual-drug loaded Gelatin methacryloyl (GM) microgel. The GM microgel is loaded with sodium fusidate (SF) and nanoliposomes (LP) that contain metformin hydrochloride (MH). Notably, adhesive and self-healing properties the hydrogel enhance their therapeutic potential and ease of application. In vitro assessments indicate that SF-infused hydrogel can eliminate more than 98% of bacteria within 24 h and maintain a sustained release over 15 days. Additionally, MH incorporated within the hydrogel has demonstrated effective glucose level regulation for a duration exceeding 15 days. The hydrogel demonstrates a sustained ability to neutralize ROS throughout the entire healing process, predominantly by electron donation and sequestration. This multifunctional hydrogel dressing, which integrated biological functions of efficient bactericidal activity against both MSSA and MRSA strains, blood glucose modulation, and control of active oxygen levels, has successfully promoted the healing of diabetic wounds in rats in 14 days. The hydrogel dressing exhibited significant effectiveness in facilitating the healing process of diabetic wounds, highlighting its considerable promise for clinical translation.
Collapse
Affiliation(s)
- Rong Chen
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Pinkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiajun Xie
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zinan Tang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinlang Fu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanhong Ning
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiang Zhong
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ding Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mingyuan Lei
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huaming Mai
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hao Li
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhanjun Shi
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jian Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hao Cheng
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
138
|
Yang K, Yang J, Chen R, Dong Q, Zhou Y. Fast Self-Healing Hyaluronic Acid Hydrogel with a Double-Dynamic Network for Skin Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37569-37580. [PMID: 38986604 DOI: 10.1021/acsami.4c06156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Developing extracellular matrix-derived hydrogel with a fast self-healing capacity to provide a sustainable moist environment able to accelerate wound healing is highly desired for full-thickness skin wound repair. In this study, a fast self-healing hyaluronic acid hydrogel with a dual dynamic network was constructed through a primary reversible acylhydrazone bond formed between aldehyde-modified hyaluronic acid, 3,3'-dithiobis (propionyl hydrazide) (DTP), and secondary dynamic ionic interactions between κ-carrageenan (KC) and K+. Because of the presence of various dynamic covalent bonds such as the acylhydrazone bond, disulfide bond, and noncovalent bonds including hydrogen bonding and ionic interactions, as well as the notable thermoreversible nature of KC, the resultant hydrogel could be self-healed rapidly within 30 min under physiological temperature with a self-healing efficiency of 100%, which was significantly better than other hyaluronic acid hydrogels, as reported previously. Besides, the hydrogel displayed excellent cytocompatibility. According to this study, the hydrogel was administered into the wounds and achieved a superior performance of promoting full-thickness skin wound healing by increasing granulation tissue formation, deposition of collagen as well as the acceleration of re-epithelialization and neovascularization, compared to commercial products, e.g., gauze and 3 M hydrocolloid. We also anticipate that this strategy of double-dynamic network cross-linking can be adopted to fabricate self-healing materials for multiple applications.
Collapse
Affiliation(s)
- Kaidan Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Junfeng Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Ruina Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Qi Dong
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| |
Collapse
|
139
|
Teng J, Zhao W, Zhang S, Yang D, Liu Y, Huang R, Ma Y, Jiang L, Wei H, Zhang J, Chen J. Injectable nanoparticle-crosslinked xyloglucan/ε-poly-l-lysine composite hydrogel with hemostatic, antimicrobial, and angiogenic properties for infected wound healing. Carbohydr Polym 2024; 336:122102. [PMID: 38670773 DOI: 10.1016/j.carbpol.2024.122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Skin wounds are susceptible to infection, leading to severe inflammatory reactions that can progress to chronic wounds, ultimately causing significant physical and mental distress to the patient. In this study, we propose an injectable composite hydrogel achieved through one-pot gelation of oxidized xyloglucan (OXG), cationic polyamide ε-poly-l-lysine (EPL), and surface amino-rich silicon nanoparticles (SiNPs). OXG exhibits commendable anti-inflammatory properties and provides crosslinking sites. SiNPs serve as mechanically reinforced crosslinkers, facilitating the construction of a dynamic Schiff base network. SiNPs significantly reduced the gelation time to 3 s and tripled the storage modulus of the hydrogels. Additionally, the combination of EPL and SiNPs demonstrated synergistic antimicrobial activity against both S. aureus and E. coli. Notably, the hydrogel effectively halted liver bleeding within 30 s. The hydrogel demonstrated outstanding shear-thinning and self-healing properties, crucial considerations for the design of injectable hydrogels. Furthermore, its efficacy was evaluated as a wound dressing in a mouse model with S. aureus infection. The results indicated that, compared to commercial products, the hydrogel exhibited a shorter wound healing time, decreased inflammation, thinner epithelium, increased hair follicles, enhanced neovascularization, and more substantial collagen deposition. These findings strongly suggest the promising potential of the proposed hydrogel as an effective wound dressing for the treatment of infected wounds.
Collapse
Affiliation(s)
- Jingmei Teng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China; Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Wei Zhao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Shengyu Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Dan Yang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yu Liu
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Rongjian Huang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yuxi Ma
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Lei Jiang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China; Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Hua Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jiantao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China; Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| | - Jing Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| |
Collapse
|
140
|
Solanki R, Bhatia D. Stimulus-Responsive Hydrogels for Targeted Cancer Therapy. Gels 2024; 10:440. [PMID: 39057463 PMCID: PMC11275390 DOI: 10.3390/gels10070440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer is a highly heterogeneous disease and remains a global health challenge affecting millions of human lives worldwide. Despite advancements in conventional treatments like surgery, chemotherapy, and immunotherapy, the rise of multidrug resistance, tumor recurrence, and their severe side effects and the complex nature of the tumor microenvironment (TME) necessitates innovative therapeutic approaches. Recently, stimulus-responsive nanomedicines designed to target TME characteristics (e.g., pH alterations, redox conditions, enzyme secretion) have gained attention for their potential to enhance anticancer efficacy while minimizing the adverse effects of chemotherapeutics/bioactive compounds. Among the various nanocarriers, hydrogels are intriguing due to their high-water content, adjustable mechanical characteristics, and responsiveness to external and internal stimuli, making them promising candidates for cancer therapy. These properties make hydrogels an ideal nanocarrier for controlled drug release within the TME. This review comprehensively surveys the latest advancements in the area of stimulus-responsive hydrogels for cancer therapy, exploring various stimuli-responsive mechanisms, including biological (e.g., pH, redox), chemical (e.g., enzymes, glucose), and physical (e.g., temperature, light), as well as dual- or multi-stimuli responsiveness. Furthermore, this review addresses the current developments and challenges in hydrogels in cancer treatment. Our aim is to provide readers with a comprehensive understanding of stimulus-responsive hydrogels for cancer treatment, offering novel perspectives on their development for cancer therapy and other medical applications.
Collapse
Affiliation(s)
- Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India
| |
Collapse
|
141
|
Zhou XY, Wang CK, Shen ZF, Wang YF, Li YH, Hu YN, Zhang P, Zhang Q. Recent research progress on tumour-specific responsive hydrogels. J Mater Chem B 2024. [PMID: 38949411 DOI: 10.1039/d4tb00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Most existing hydrogels, even recently developed injectable hydrogels that undergo a reversible sol-gel phase transition in response to external stimuli, are designed to gel immediately before or after implantation/injection to prevent the free diffusion of materials and drugs; however, the property of immediate gelation leads to a very weak tumour-targeting ability, limiting their application in anticancer therapy. Therefore, the development of tumour-specific responsive hydrogels for anticancer therapy is imperative because tumour-specific responses improve their tumour-targeting efficacy, increase therapeutic effects, and decrease toxicity and side effects. In this review, we introduce the following three types of tumour-responsive hydrogels: (1) hydrogels that gel specifically at the tumour site; (2) hydrogels that decompose specifically at the tumour site; and (3) hydrogels that react specifically with tumours. For each type, their compositions, the mechanisms of tumour-specific responsiveness and their applications in anticancer treatment are comprehensively discussed.
Collapse
Affiliation(s)
- Xuan-Yi Zhou
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen-Kai Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ze-Fan Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi-Fan Wang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu-Hang Li
- The Third Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu-Ning Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Institute of Urology, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Institute of Urology, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
142
|
Chen M, Wang F, Yan Q, Da M, Wang F. Photothermally responsive graphene hybrid dry powders for diabetic wound healing. Biomed Phys Eng Express 2024; 10:045055. [PMID: 38821043 DOI: 10.1088/2057-1976/ad5295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
The treatment of diabetic wounds remains a significant challenge in the medical field. In this study, we present a novel approach using photothermally responsive graphene hybrid dry powders for the treatment of diabetic wounds. These powders, derived from polyacrylic acid (PAA) and polyethyleneimine (PEI), exhibit rapid water absorption at the interface, leading to thein situformation of physically crosslinked hydrogels due to interactions between polymers. Furthermore, by incorporating graphene into the PAA/PEI powder mixture, we establish a multifunctional platform with capabilities such as photothermal antibacterial effects and drug release. Given the outstanding performance of this hybrid material, we demonstrate its potential in wound healing by incorporating the tumor necrosis factor-alpha (TNF-α) inhibitor Etanercept into the PAA/PEI powder. This intervention resulted in a significant improvement in the wound healing process in diabetic rats, as evidenced by the downregulation of inflammatory factors, promotion of collagen deposition, and enhanced vascularization. These remarkable attributes underscore the enormous potential value of the presented hydrogel patches in the field of biomedicine.
Collapse
Affiliation(s)
- Mei Chen
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Fengyuan Wang
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Qiao Yan
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Meihong Da
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Fei Wang
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
143
|
Mukherjee N, Ghosh S, Roy R, Mukherjee D, Sen S, Nandi D, Sarkar J, Ghosh S. Extracellular Matrix Mimicking Wound Microenvironment Responsive Amyloid-Heparin@TA AgNP Co-Assembled Hydrogel: An Effective Conductive Antibacterial Wound Healing Material. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30929-30957. [PMID: 38832934 DOI: 10.1021/acsami.4c05559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Bioengineered composite hydrogel platforms made of a supramolecular coassembly have recently garnered significant attention as promising biomaterial-based healthcare therapeutics. The mechanical durability of amyloids, in conjunction with the structured charged framework rendered by biologically abundant key ECM component glycosaminoglycan, enables us to design minimalistic customized biomaterial suited for stimuli responsive therapy. In this study, by harnessing the heparin sulfate-binding aptitude of amyloid fibrils, we have constructed a pH-responsive extracellular matrix (ECM) mimicking hydrogel matrix. This effective biocompatible platform comprising heparin sulfate-amyloid coassembled hydrogel embedded with polyphenol functionalized silver nanoparticles not only provide a native skin ECM-like conductive environment but also provide wound-microenvironment responsive on-demand superior antibacterial efficacy for effective diabetic wound healing. Interestingly, both the cytocompatibility and antibacterial properties of this bioinspired matrix can be fine-tuned by controlling the mutual ratio of heparin sulfate-amyloid and incubated silver nanoparticle components, respectively. The designed biomaterial platform exhibits notable effectiveness in the treatment of chronic hyperglycemic wounds infected with multidrug-resistant bacteria, because of the integration of pH-responsive release characteristics of the incubated functionalized AgNP and the antibacterial amyloid fibrils. In addition to this, the aforementioned assemblage shows exceptional hemocompatibility with significant antibiofilm and antioxidant characteristics. Histological evidence of the incised skin tissue sections indicates that the fabricated composite hydrogel is also effective in controlling pro-inflammatory cytokines such as IL6 and TNFα expressions at the wound vicinity with significant upregulation of angiogenesis markers like CD31 and α-SMA.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Smart Healthcare, Interdisciplinary Research Division, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Dipro Mukherjee
- Department of Bioscience & Bioengineering, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Debasmita Nandi
- Department of Bioscience & Bioengineering, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development for Scientific Instruments, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Surajit Ghosh
- Smart Healthcare, Interdisciplinary Research Division, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology-Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| |
Collapse
|
144
|
Bao J, Mi J, Xia Y, Gui H, Jia H, Wang D, Luo H, Su L, Zhang J, Liu J, Liu J. Heme-Mimetic Photosensitizer with Iron-Targeting and Internalizing Properties for Enhancing PDT Activity and Promoting Infected Diabetic Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:4116-4132. [PMID: 38772009 DOI: 10.1021/acsabm.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The management of multibacterial infections remains clinically challenging in the care and treatment of chronic diabetic wounds. Photodynamic therapy (PDT) offers a promising approach to addressing bacterial infections. However, the limited target specificity and internalization properties of traditional photosensitizers (PSs) toward Gram-negative bacteria pose significant challenges to their antibacterial efficacy. In this study, we designed an iron heme-mimetic PS (MnO2@Fe-TCPP(Zn)) based on the iron dependence of bacteria that can be assimilated by bacteria and retained in different bacteria strains (Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus) and which shows high PDT antibacterial efficacy. For accelerated wound healing after antibacterial treatment, MnO2@Fe-TCPP(Zn) was loaded into a zwitterionic hydrogel with biocompatibility and antifouling properties to form a nanocomposite antibacterial hydrogel (PSB-MnO2@Fe-TCPP(Zn)). In the multibacterial infectious diabetic mouse wound model, the PSB-MnO2@Fe-TCPP(Zn) hydrogel dressing rapidly promoted skin regeneration by effectively inhibiting bacterial infections, eliminating inflammation, and promoting angiogenesis. This study provides an avenue for developing broad-spectrum antibacterial nanomaterials for combating the antibiotic resistance crisis and promoting the healing of complex bacterially infected wounds.
Collapse
Affiliation(s)
- Jiawei Bao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jiayu Mi
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Yi Xia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Han Gui
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Haixue Jia
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Dianyu Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Hongjing Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Linzhu Su
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jiamin Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jinjian Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| |
Collapse
|
145
|
Yu P, Wei L, Yang Z, Liu X, Ma H, Zhao J, Liu L, Wang L, Chen R, Cheng Y. Hydrogel Wound Dressings Accelerating Healing Process of Wounds in Movable Parts. Int J Mol Sci 2024; 25:6610. [PMID: 38928316 PMCID: PMC11203733 DOI: 10.3390/ijms25126610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Skin is the largest organ in the human body and requires proper dressing to facilitate healing after an injury. Wounds on movable parts, such as the elbow, knee, wrist, and neck, usually undergo delayed and inefficient healing due to frequent movements. To better accommodate movable wounds, a variety of functional hydrogels have been successfully developed and used as flexible wound dressings. On the one hand, the mechanical properties, such as adhesion, stretchability, and self-healing, make these hydrogels suitable for mobile wounds and promote the healing process; on the other hand, the bioactivities, such as antibacterial and antioxidant performance, could further accelerate the wound healing process. In this review, we focus on the recent advances in hydrogel-based movable wound dressings and propose the challenges and perspectives of such dressings.
Collapse
Affiliation(s)
- Pengcheng Yu
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Liqi Wei
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| | - Zhiqi Yang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Xin Liu
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| | - Hongxia Ma
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| | - Jian Zhao
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Lulu Liu
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Lili Wang
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Rui Chen
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, School of Materials Science and Engineering, Changchun University, Changchun 130022, China; (P.Y.); (Z.Y.); (J.Z.); (L.L.); (L.W.)
| | - Yan Cheng
- Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Engineering Research, Jilin Agricultural University, Changchun 130118, China; (L.W.); (X.L.); (H.M.)
| |
Collapse
|
146
|
Chen C, Tang Q, Wu L, Gu G, Huang X, Chen K, Li Z, Wang J, Qu G, Jiang Y, Liu Y, Li S, Huang J, Jia X, Zhu T, Zhao Y, Zhang Q, Ren J, Wu X. Hybrid Double-Sided Tape with Asymmetrical Adhesion and Burst Pressure Tolerance for Abdominal Injury Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30430-30442. [PMID: 38814614 DOI: 10.1021/acsami.4c05400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Patients with open abdominal (OA) wounds have a mortality risk of up to 30%, and the resulting disabilities would have profound effects on patients. Here, we present a novel double-sided adhesive tape developed for the management of OA wounds. The tape features an asymmetrical structure and employs an acellular dermal matrix (ADM) with asymmetric wettability as a scaffold. It is constructed by integrating a tissue-adhesive hydrogel composed of polydopamine (pDA), quaternary ammonium chitosan (QCS), and acrylic acid cross-linking onto the bottom side of the ADM. Following surface modification with pDA, the ADM would exhibit characteristics resistant to bacterial adhesion. Furthermore, the presence of a developed hydrogel ensures that the tape not only possesses tissue adhesiveness and noninvasive peelability but also effectively mitigates damage caused by oxidative stress. Besides, the ADM inherits the strength of the skin, imparting high burst pressure tolerance to the tape. Based on these remarkable attributes, we demonstrate that this double-sided (D-S) tape facilitates the repair of OA wounds, mitigates damage to exposed intestinal tubes, and reduces the risk of intestinal fistulae and complications. Additionally, the D-S tape is equally applicable to treating other abdominal injuries, such as gastric perforations. It effectively seals the perforation, promotes injury repair, and prevents the formation of postoperative adhesions. These notable features indicate that the presented double-sided tape holds significant potential value in the biomedical field.
Collapse
Affiliation(s)
- Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Qinqing Tang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Lei Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China
| | - Guosheng Gu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
- Department of General Surgery, Anhui No.2 Provincial Peoples' Hospital, Anhui 230041, P. R. China
| | - Xinxin Huang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Jiajie Wang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Guiwen Qu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Yungang Jiang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Ye Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tangsong Zhu
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yun Zhao
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, P. R. China
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, P. R. China
| |
Collapse
|
147
|
Chen Y, Feng T, Zhu X, Tang Y, Xiao Y, Zhang X, Wang SF, Wang D, Wen W, Liang J, Xiong H. Ambient Synthesis of Porphyrin-Based Fe-Covalent Organic Frameworks for Efficient Infected Skin Wound Healing. Biomacromolecules 2024; 25:3671-3684. [PMID: 38720431 DOI: 10.1021/acs.biomac.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Reactive oxygen species (ROS) have emerged as a promising treatment option for antibacterial and biofilm eradication. However, their therapeutic efficacy is significantly hampered by the unique microenvironments of diabetic wounds. In this study, we designed and synthesized porphyrin-based Fe covalent organic frameworks (Fe-COF) through a Schiff base condensation reaction. Subsequently, Fe-COF were encapsulated with hyaluronic acid (HA) through electrostatic adsorption, resulting in a novel formulation named HA-Fe-COF for diabetic wound healing. HA-Fe-COF were engineered to respond to hyaluronidase in the infected wound, leading to the controlled release of Fe-COF. Those released Fe-COF served a dual role as photosensitizers, generating singlet oxygen and localized heating when exposed to dual light sources. Additionally, they acted as peroxidase-like nanozymes, facilitating the production of ROS through enzymatic reactions. This innovative approach enabled a synergistic therapeutic effect combining photodynamic, photothermal, and chemodynamic modalities. Furthermore, the sustained release of HA from HA-Fe-COF promoted angiogenesis, collagen deposition, and re-epithelialization during the diabetic wound healing process. This "all-in-one" strategy offers a novel approach for the development of antimicrobial and biofilm eradication strategies that minimize damage to healthy tissues in vivo.
Collapse
Affiliation(s)
- Yidan Chen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tiantian Feng
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Xiaohong Zhu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuting Tang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yao Xiao
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiuhua Zhang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Sheng-Fu Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Dong Wang
- Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wei Wen
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jichao Liang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Huayu Xiong
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
148
|
Hu XQ, Zhu JZ, Hao Z, Tang L, Sun J, Sun WR, Hu J, Wang PY, Basmadji NP, Pedraz JL, Vairo C, Lafuente EG, Ramalingam M, Xie S, Wang R. Renewable Electroconductive Hydrogels for Accelerated Diabetic Wound Healing and Motion Monitoring. Biomacromolecules 2024; 25:3566-3582. [PMID: 38780026 DOI: 10.1021/acs.biomac.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Diabetic foot ulcers (DFUs), a prevalent complication of diabetes mellitus, may result in an amputation. Natural and renewable hydrogels are desirable materials for DFU dressings due to their outstanding biosafety and degradability. However, most hydrogels are usually only used for wound repair and cannot be employed to monitor motion because of their inherent poor mechanical properties and electrical conductivity. Given that proper wound stretching is beneficial for wound healing, the development of natural hydrogel patches integrated with wound repair properties and motion monitoring was expected to achieve efficient and accurate wound healing. Here, we designed a dual-network (chitosan and sodium alginate) hydrogel embedded with lignin-Ag and quercetin-melanin nanoparticles to achieve efficient wound healing and motion monitoring. The double network formed by the covalent bond and electrostatic interaction confers the hydrogel with superior mechanical properties. Instead of the usual chemical reagents, genipin extracted from Gardenia was used as a cross-linking agent for the hydrogel and consequently improved its biosafety. Furthermore, the incorporation of lignin-Ag nanoparticles greatly enhanced the mechanical strength, antibacterial efficacy, and conductivity of the hydrogel. The electrical conductivity of hydrogels gives them the capability of motion monitoring. The motion sensing mechanism is that stretching of the hydrogel induced by motion changes the conductivity of the hydrogel, thus converting the motion into an electrical signal. Meanwhile, quercetin-melanin nanoparticles confer exceptional adhesion, antioxidant, and anti-inflammatory properties to the hydrogels. The system ultimately achieved excellent wound repair and motion monitoring performance and was expected to be used for stretch-assisted safe and accurate wound repair in the future.
Collapse
Affiliation(s)
- Xiao Qian Hu
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jia Zhi Zhu
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Zhaokun Hao
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Letian Tang
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jian Sun
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Wan Ru Sun
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jiaxiang Hu
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ping Yu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Nicola Paccione Basmadji
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Claudia Vairo
- BIOSASUN S.A., Ctra. Allo-Arroniz Km1, Navarra 31263, Spain
| | | | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai 264003, People's Republic of China
| |
Collapse
|
149
|
Chen X. Announcing the 2024 ACS Nano Lectureship and ACS Nano Impact Laureates. ACS NANO 2024. [PMID: 38856085 DOI: 10.1021/acsnano.4c06869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
|
150
|
Zhang W, Li X, Chen W, Huang X, Hua T, Hu J, Zhu J, Ye S, Li X. l-Carnosine loaded on carboxymethyl cellulose hydrogels for promoting wound healing. RSC Adv 2024; 14:18317-18329. [PMID: 38860244 PMCID: PMC11163232 DOI: 10.1039/d4ra00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/26/2024] [Indexed: 06/12/2024] Open
Abstract
Wound management remains a challenge in clinical practice. Nowadays, patients have an increasing demand for wound repair with enhanced speed and quality; therefore, there is a great need to seek therapeutic strategies that can promote rapid and effective wound healing. In this study, we developed a carboxymethyl cellulose hydrogel loaded with l-carnosine (CRN@hydrogel) for potential application as a wound dressing. In vitro experiments confirmed that CRN@hydrogel can release over 80% of the drug within 48 h and demonstrated its favorable cytocompatibility and blood compatibility, thus establishing its applicability for safe utilization in clinical practice. Using a rat model, we found that this hydrogel could promote and accelerate wound healing more effectively. These results indicate that the novel hydrogel can serve as an efficient therapeutic strategy for wound treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 Anhui China
| | - Xinyi Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 Anhui China
| | - Wenjian Chen
- Department of Orthopaedics, Anhui Provincial Children's Hospital Hefei Anhui 230022 China
| | - Xiaoyi Huang
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
| | - Tianfeng Hua
- Department of Emergency Surgery & the 2nd Department of Intensive Care Unit, The Second Hospital of Anhui Medical University Hefei Anhui 230001 China
| | - Jinpeng Hu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 Anhui China
| | - Jing Zhu
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
| | - Sheng Ye
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
| | - Xiaojing Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 Anhui China
| |
Collapse
|