101
|
Fu D, Davis ME. Carbon dioxide capture with zeotype materials. Chem Soc Rev 2022; 51:9340-9370. [DOI: 10.1039/d2cs00508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the application of zeotype materials for the capture of CO2 in different scenarios, the critical parameters defining the adsorption performances, and the challenges of zeolitic adsorbents for CO2 capture.
Collapse
Affiliation(s)
- Donglong Fu
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| | - Mark E. Davis
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| |
Collapse
|
102
|
Cairns KR, King RP, Levason W, Reid G. Self-assembly of [Sn(OPMe 3) 3(CF 3SO 3) 2] 6 metallocyclic Sn( ii) hexamer stacks with CF 3-lined channel interiors. CrystEngComm 2022. [DOI: 10.1039/d2ce01029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation, spectroscopic and structural characterisation of a [Sn(OPMe3)3(CF3SO3)2]6, a Sn(ii)-based metallocyclic hexamer, containing hydrophobic CF3-lined 8.0 Å diameter channels is reported.
Collapse
Affiliation(s)
- Kelsey R. Cairns
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Rhys P. King
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - William Levason
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Gillian Reid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
103
|
|
104
|
Zaworotko M, Sensharma D, O'Hearn D, Koochaki A, Bezrukov A, Kumar N, Wilson B, Vandichel M. The First Sulfate-Pillared Hybrid Ultramicroporous Material, SOFOUR-1-Zn, and its Acetylene Capture Properties. Angew Chem Int Ed Engl 2021; 61:e202116145. [PMID: 34929064 PMCID: PMC9302121 DOI: 10.1002/anie.202116145] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/21/2022]
Abstract
Hybrid ultramicroporous materials, HUMs, are comprised of metal cations linked by combinations of inorganic and organic ligands. Their modular nature makes them amenable to crystal engineering studies, which have thus far afforded four HUM platforms (as classified by the inorganic linkers). HUMs are of practical interest because of their benchmark gas separation performance for several industrial gas mixtures. We report herein design and gram‐scale synthesis of the prototypal sulfate‐linked HUM, the fsc topology coordination network ([Zn(tepb)(SO4)]n), SOFOUR‐1‐Zn, tepb=(tetra(4‐pyridyl)benzene). Alignment of the sulfate anions enables strong binding to C2H2 via O⋅⋅⋅HC interactions but weak CO2 binding, affording a new benchmark for the difference between C2H2 and CO2 heats of sorption at low loading (ΔQst=24 kJ mol−1). Dynamic column breakthrough studies afforded fuel‐grade C2H2 from trace (1 : 99) or 1 : 1 C2H2/CO2 mixtures, outperforming its SiF62− analogue, SIFSIX‐22‐Zn.
Collapse
Affiliation(s)
- Michael Zaworotko
- University of Limerick, Chemical and Environmental Science, Limerick, na, Limerick, IRELAND
| | - Debobroto Sensharma
- University of Limerick Faculty of Science and Engineering, Chemical Sciences, IRELAND
| | - Daniel O'Hearn
- University of Limerick Faculty of Science and Engineering, Chemical Sciences, IRELAND
| | - Amin Koochaki
- University of Limerick Faculty of Science and Engineering, Chemical Sciences, IRELAND
| | - Andrey Bezrukov
- University of Limerick Faculty of Science and Engineering, Chemical Sciences, IRELAND
| | - Naveen Kumar
- University of Limerick Faculty of Science and Engineering, Chemical Sciences, IRELAND
| | - Benjamin Wilson
- University of Limerick Faculty of Science and Engineering, chemical sciences, IRELAND
| | - Matthias Vandichel
- University of Limerick Faculty of Science and Engineering, chemical sciences, IRELAND
| |
Collapse
|
105
|
Lin JB, Nguyen TTT, Vaidhyanathan R, Burner J, Taylor JM, Durekova H, Akhtar F, Mah RK, Ghaffari-Nik O, Marx S, Fylstra N, Iremonger SS, Dawson KW, Sarkar P, Hovington P, Rajendran A, Woo TK, Shimizu GKH. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 2021; 374:1464-1469. [PMID: 34914501 DOI: 10.1126/science.abi7281] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jian-Bin Lin
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Tai T T Nguyen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ramanathan Vaidhyanathan
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.,Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Jake Burner
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Jared M Taylor
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.,ZoraMat Solutions Inc., Calgary, Alberta, Canada
| | - Hana Durekova
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Farid Akhtar
- Department of Materials Engineering, Luleå University of Technology, Luleå, Sweden
| | - Roger K Mah
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.,ZoraMat Solutions Inc., Calgary, Alberta, Canada
| | | | | | - Nicholas Fylstra
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Simon S Iremonger
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Karl W Dawson
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Partha Sarkar
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | - Arvind Rajendran
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Tom K Woo
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - George K H Shimizu
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.,ZoraMat Solutions Inc., Calgary, Alberta, Canada
| |
Collapse
|
106
|
Liu RS, Xu S, Hao GP, Lu AH. Recent Advances of Porous Solids for Ultradilute CO2 Capture. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1394-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
107
|
Fu D, Park Y, Davis ME. Zinc Containing Small-Pore Zeolites for Capture of Low Concentration Carbon Dioxide. Angew Chem Int Ed Engl 2021; 61:e202112916. [PMID: 34799943 DOI: 10.1002/anie.202112916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 02/02/2023]
Abstract
The capture of low concentration CO2 presents numerous challenges. Here, we report that zinc containing chabazite (CHA) zeolites can realize high capacity, fast adsorption kinetics, and low desorption energy when capturing ca. 400 ppm CO2 . Control of the state and location of the zinc ions in the CHA cage is critical to the performance. Zn2+ loaded onto paired anionic sites in the six-membered rings (6MRs) in the CHA cage are the primary sites to adsorb ca. 0.51 mmol CO2 /g-zeolite with Si/Al=ca. 7, a 17-fold increase compared to the parent H-form. The capacity is increased further to ca. 0.67 mmol CO2 /g-zeolite with Si/Al=ca. 2 due to more paired sites for zinc exchange. Zeolites with double six-membered rings (D6MRs) that orient 6MRs into the cages give enhanced uptakes for CO2 adsorption with zinc exchange. The results reveal that zinc exchanged CHA and several other small pore, cage containing zeolites merit further investigation for the capture of low concentration CO2 .
Collapse
Affiliation(s)
- Donglong Fu
- Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Youngkyu Park
- Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | - Mark E Davis
- Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| |
Collapse
|
108
|
Kumar N, Mukherjee S, Harvey-Reid NC, Bezrukov AA, Tan K, Martins V, Vandichel M, Pham T, van Wyk LM, Oyekan K, Kumar A, Forrest KA, Patil KM, Barbour LJ, Space B, Huang Y, Kruger PE, Zaworotko MJ. Breaking the trade-off between selectivity and adsorption capacity for gas separation. Chem 2021; 7:3085-3098. [PMID: 34825106 PMCID: PMC8600127 DOI: 10.1016/j.chempr.2021.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/25/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022]
Abstract
The trade-off between selectivity and adsorption capacity with porous materials is a major roadblock to reducing the energy footprint of gas separation technologies. To address this matter, we report herein a systematic crystal engineering study of C2H2 removal from CO2 in a family of hybrid ultramicroporous materials (HUMs). The HUMs are composed of the same organic linker ligand, 4-(3,5-dimethyl-1H-pyrazol-4-yl)pyridine, pypz, three inorganic pillar ligands, and two metal cations, thereby affording six isostructural pcu topology HUMs. All six HUMs exhibited strong binding sites for C2H2 and weaker affinity for CO2. The tuning of pore size and chemistry enabled by crystal engineering resulted in benchmark C2H2/CO2 separation performance. Fixed-bed dynamic column breakthrough experiments for an equimolar (v/v = 1:1) C2H2/CO2 binary gas mixture revealed that one sorbent, SIFSIX-21-Ni, was the first C2H2 selective sorbent that combines exceptional separation selectivity (27.7) with high adsorption capacity (4 mmol·g−1). Six isostructural hybrid ultramicroporous materials are prepared and characterized Crystal engineering approach enabled fine-tuning of pore size and chemistry Weak CO2/strong C2H2 affinity resulted in high C2H2/CO2 separation selectivities SIFSIX-21-Ni: benchmark selectivity/uptake capacity for C2H2/CO2 separation
It is generally recognized that porous solids (sorbents) with high selectivity and high adsorption capacity offer potential for energy-efficient gas separations. Unfortunately, there is generally a trade-off between capacity and selectivity, which represents a roadblock to the utility of sorbents in key industrial processes. For example, acetylene (C2H2), an important fuel and chemical intermediate, is produced with CO2 as an impurity, and the similar physicochemical properties of C2H2 and CO2 mean that most sorbents are poorly selective. Hybrid ultramicroporous materials (HUMs) are candidates for gas separations as they exhibit benchmark selectivity for several key gas pairs. Unfortunately, existing HUMs are handicapped by low capacity. We report a new HUM, SIFSIX-21-Ni, that addresses the trade-off between selectivity and capacity that has plagued sorbents, as its high uptake and high selectivity renders it the new benchmark for C2H2/CO2 separation performance.
Collapse
Affiliation(s)
- Naveen Kumar
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Soumya Mukherjee
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Nathan C Harvey-Reid
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Andrey A Bezrukov
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Kui Tan
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Vinicius Martins
- Department of Chemistry, the University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Matthias Vandichel
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Tony Pham
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, FL 33620-5250, USA
| | - Lisa M van Wyk
- Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch, Matieland 7602, South Africa
| | - Kolade Oyekan
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Amrit Kumar
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Katherine A Forrest
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, FL 33620-5250, USA
| | - Komal M Patil
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Leonard J Barbour
- Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch, Matieland 7602, South Africa
| | - Brian Space
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, FL 33620-5250, USA
| | - Yining Huang
- Department of Chemistry, the University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Paul E Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
109
|
Usman M, Iqbal N, Noor T, Zaman N, Asghar A, Abdelnaby MM, Galadima A, Helal A. Advanced strategies in Metal-Organic Frameworks for CO 2 Capture and Separation. CHEM REC 2021; 22:e202100230. [PMID: 34757694 DOI: 10.1002/tcr.202100230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
The continuous carbon dioxide (CO2 ) gas emissions associated with fossil fuel production, valorization, and utilization are serious challenges to the global environment. Therefore, several developments of CO2 capture, separation, transportation, storage, and valorization have been explored. Consequently, we documented a comprehensive review of the most advanced strategies adopted in metal-organic frameworks (MOFs) for CO2 capture and separation. The enhancements in CO2 capture and separation are generally achieved due to the chemistry of MOFs by controlling pore window, pore size, open-metal sites, acidity, chemical doping, post or pre-synthetic modifications. The chemistry of defects engineering, breathing in MOFs, functionalization in MOFs, hydrophobicity, and topology are the salient advanced strategies, recently reported in MOFs for CO2 capture and separation. Therefore, this review summarizes MOF materials' advancement explaining different strategies and their role in the CO2 mitigations. The study also provided useful insights into key areas for further investigations.
Collapse
Affiliation(s)
- Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Naseem Iqbal
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Neelam Zaman
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aisha Asghar
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mahmoud M Abdelnaby
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Ahmad Galadima
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
110
|
Vizuet JP, Mortensen ML, Lewis AL, Wunch MA, Firouzi HR, McCandless GT, Balkus KJ. Fluoro-Bridged Clusters in Rare-Earth Metal-Organic Frameworks. J Am Chem Soc 2021; 143:17995-18000. [PMID: 34677056 DOI: 10.1021/jacs.1c10493] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The modulator 2-fluorobenzoic acid (2-fba) is widely used to prepare RE clusters in metal-organic frameworks (MOFs). In contrast to known RE MOF structures containing hydroxide bridging groups, we report for the first time the possible presence of fluoro bridging groups in RE MOFs. In this report we discuss the synthesis of a holmium-UiO-66 analogue as well as a novel holmium MOF, where evidence of fluorinated clusters is observed. The mechanism of fluorine extraction from 2-fba is discussed as well as the implications that these results have for previously reported RE MOF structures.
Collapse
Affiliation(s)
- Juan P Vizuet
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Marie L Mortensen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Abigail L Lewis
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Melissa A Wunch
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Hamid R Firouzi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Gregory T McCandless
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| |
Collapse
|
111
|
Yang Z, Guo W, Chen H, Kobayashi T, Suo X, Wang T, Wang S, Cheng L, Liu G, Jin W, Mahurin SM, Jiang DE, Popovs I, Dai S. Benchmark CO2 separation achieved by highly fluorinated nanoporous molecular sieve membranes from nonporous precursor via in situ cross-linking. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
112
|
Power-to-decarbonization: Mesoporous carbon-MgO nanohybrid derived from plasma-activated seawater salt-loaded biomass for efficient CO2 capture. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
113
|
Custelcean R. Direct air capture of CO 2 via crystal engineering. Chem Sci 2021; 12:12518-12528. [PMID: 34703538 PMCID: PMC8494026 DOI: 10.1039/d1sc04097a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/12/2021] [Indexed: 12/21/2022] Open
Abstract
This article presents a perspective view of the topic of direct air capture (DAC) of carbon dioxide and its role in mitigating climate change, focusing on a promising approach to DAC involving crystal engineering of metal-organic and hydrogen-bonded frameworks. The structures of these crystalline materials can be easily elucidated using X-ray and neutron diffraction methods, thereby allowing for systematic structure-property relationships studies, and precise tuning of their DAC performance.
Collapse
Affiliation(s)
- Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
114
|
Kunde T, Pausch T, Schmidt BM. Supramolecular Alloys from Fluorinated Hybrid Tri 4 Di 6 Imine Cages. Chemistry 2021; 27:8457-8460. [PMID: 33852171 PMCID: PMC8252657 DOI: 10.1002/chem.202100891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 11/29/2022]
Abstract
To create innovative materials, efficient control and engineering of pore sizes and their characteristics, crystallinity and stability is required. Eight hybrid Tri4 Di6 imine cages with a tunable degree of fluorination and one fully fluorinated Tri4 Di6 imine cage are investigated. Although the fluorinated and the non-fluorinated building blocks used herein differ vastly in reactivity, it was possible to gain control over the outcome of the self-assembly process, by carefully controlling the feed ratio. This represents the first hybrid material based on fluorinated/hydrogenated porous organic cages (POCs). These cages with unlimited miscibility in the solid state were obtained as highly crystalline samples after recrystallization and even showed retention of the crystal lattice, forming alloys. All mixtures and the fully fluorinated Tri4 Di6 imine cage were analyzed by MALDI-MS, single-crystal XRD, powder XRD and in regard to thermal stability (TGA).
Collapse
Affiliation(s)
- Tom Kunde
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Tobias Pausch
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| |
Collapse
|
115
|
Nandi S, Singh HD, Chakraborty D, Maity R, Vaidhyanathan R. Deciphering the Weak CO 2···Framework Interactions in Microporous MOFs Functionalized with Strong Adsorption Sites-A Ubiquitous Observation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24976-24983. [PMID: 34014632 DOI: 10.1021/acsami.1c05845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon capture from industrial effluents such as flue gas or natural gas mixture (cf. landfill gas), the primary sources of CO2 emission, greatly aids in balancing the environmental carbon cycle. In this context, the most energy-efficient physisorptive CO2 separation process can benefit immensely from improved porous sorbents. Metal organic frameworks (MOFs), especially the ultramicroporous MOFs, built from readily available small and rigid ligands, are highly promising because of their high selectivity (CO2/N2) and easy scalability. Here, we report two new ultramicroporous Co-adeninato isophthalate MOFs. They concomitantly carry basic functional groups (-NH2) and Lewis acidic sites (coordinatively unsaturated Co centers). They show good CO2 capacity (3.3 mmol/g at 303 K and 1 bar) along with high CO2/N2 (∼600 at 313 K and 1 bar and ∼340 at 303 K and 1 bar) selectivity, working capacity, and smooth diffusion kinetics (Dc = 7.5 × 10-9 m2 s-1). The MOFs exhibit good CO2/N2 kinetic separation under both dry and wet conditions with a smooth breakthrough profile. Despite their well-defined CO2 adsorption sites, these MOFs exhibit only a moderately strong interaction with CO2 as evidenced from their HOA values. This counterintuitive observation is ubiquitous among many MOFs adorned with strong CO2 adsorption sites. To gain insights, we have identified the binding sites for CO2 using simulation and MD studies. The radial distribution function analysis reveals that despite the amine and bare-metal sites, the pore size and the pore structure determine the positions for the CO2 molecules. The most favorable sites become the confined spaces lined by aromatic rings. A plausible explanation for the lack of strong adsorption in these MOFs is premised from these collective studies, which could aid in the future design of superior CO2 sorbents.
Collapse
|
116
|
Guo M, Wu H, Lv L, Meng H, Yun J, Jin J, Mi J. A Highly Efficient and Stable Composite of Polyacrylate and Metal-Organic Framework Prepared by Interface Engineering for Direct Air Capture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21775-21785. [PMID: 33908751 DOI: 10.1021/acsami.1c03661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a kilogram-scale experiment for assessing the prospects of a novel composite material of metal-organic framework (MOF) and polyacrylates (PA), namely NbOFFIVE-1-Ni@PA, for trace CO2 capture. Through the interfacial enrichment of metal ions and organic ligands as well as heterogeneous crystallization, the sizes of microporous NbOFFIVE-1-Ni crystals are downsized to 200-400 nm and uniformly anchored on the macroporous surface of PA via interfacial coordination, forming a unique dual-framework structure. Specifically, the NbOFFIVE-1-Ni@PA composite with a loading of 45.8 wt % NbOFFIVE-1-Ni yields a superior CO2 uptake (ca. 1.44 mol·kg-1) compared to the pristine NbOFFIVE-1-Ni (ca. 1.30 mol·kg-1) at 400 ppm and 298 K, indicating that the adsorption efficiency of NbOFFIVE-1-Ni has been raised by 2.42 times. Meanwhile, the time cost for realizing a complete adsorption/desorption cycle in a fluidized bed has been shortened to 25 min, and the working capacity (ca. 0.84 mol·kg-1) declines only by 1.3% after 2000 cycles. The device is capable of harvesting 2.1 kg of CO2 per kilogram of composite daily from simulated air with 50% relatively humidity (RH). To the best of our knowledge, the excellent adsorption/desorption performances of NbOFFIVE-1-Ni@PA position it as the most advantageous and practically applicable candidate for trace CO2 capture.
Collapse
Affiliation(s)
- Mengzhi Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Hao Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Lv
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100191, China
| | - Hong Meng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, China
| | - Jimmy Yun
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Junsu Jin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianguo Mi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
117
|
Abstract
Carbon capture from large sources and ambient air is one of the most promising strategies to curb the deleterious effect of greenhouse gases. Among different technologies, CO2 adsorption has drawn widespread attention mostly because of its low energy requirements. Considering that water vapor is a ubiquitous component in air and almost all CO2-rich industrial gas streams, understanding its impact on CO2 adsorption is of critical importance. Owing to the large diversity of adsorbents, water plays many different roles from a severe inhibitor of CO2 adsorption to an excellent promoter. Water may also increase the rate of CO2 capture or have the opposite effect. In the presence of amine-containing adsorbents, water is even necessary for their long-term stability. The current contribution is a comprehensive review of the effects of water whether in the gas feed or as adsorbent moisture on CO2 adsorption. For convenience, we discuss the effect of water vapor on CO2 adsorption over four broadly defined groups of materials separately, namely (i) physical adsorbents, including carbons, zeolites and MOFs, (ii) amine-functionalized adsorbents, and (iii) reactive adsorbents, including metal carbonates and oxides. For each category, the effects of humidity level on CO2 uptake, selectivity, and adsorption kinetics under different operational conditions are discussed. Whenever possible, findings from different sources are compared, paying particular attention to both similarities and inconsistencies. For completeness, the effect of water on membrane CO2 separation is also discussed, albeit briefly.
Collapse
Affiliation(s)
- Joel M Kolle
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mohammadreza Fayaz
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
118
|
Mukherjee S, Kumar N, Bezrukov AA, Tan K, Pham T, Forrest KA, Oyekan KA, Qazvini OT, Madden DG, Space B, Zaworotko MJ. Amino-Functionalised Hybrid Ultramicroporous Materials that Enable Single-Step Ethylene Purification from a Ternary Mixture. Angew Chem Int Ed Engl 2021; 60:10902-10909. [PMID: 33491848 PMCID: PMC8252428 DOI: 10.1002/anie.202100240] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 11/28/2022]
Abstract
Pyrazine-linked hybrid ultramicroporous (pore size <7 Å) materials (HUMs) offer benchmark performance for trace carbon capture thanks to strong selectivity for CO2 over small gas molecules, including light hydrocarbons. That the prototypal pyrazine-linked HUMs are amenable to crystal engineering has enabled second generation HUMs to supersede the performance of the parent HUM, SIFSIX-3-Zn, mainly through substitution of the metal and/or the inorganic pillar. Herein, we report that two isostructural aminopyrazine-linked HUMs, MFSIX-17-Ni (17=aminopyrazine; M=Si, Ti), which we had anticipated would offer even stronger affinity for CO2 than their pyrazine analogs, unexpectedly exhibit reduced CO2 affinity but enhanced C2 H2 affinity. MFSIX-17-Ni are consequently the first physisorbents that enable single-step production of polymer-grade ethylene (>99.95 % for SIFSIX-17-Ni) from a ternary equimolar mixture of ethylene, acetylene and CO2 thanks to coadsorption of the latter two gases. We attribute this performance to the very different binding sites in MFSIX-17-Ni versus SIFSIX-3-Zn.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXIreland
- Department of ChemistryTechnical University of MunichLichtenbergstraße 485748Garching b. MünchenGermany
| | - Naveen Kumar
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXIreland
| | - Andrey A. Bezrukov
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXIreland
| | - Kui Tan
- Department of Materials Science & EngineeringUniversity of Texas at DallasRichardsonTX75080USA
| | - Tony Pham
- Department of ChemistryUniversity of South Florida4202 East Fowler Avenue, CHE205TampaFL33620-5250USA
| | - Katherine A. Forrest
- Department of ChemistryUniversity of South Florida4202 East Fowler Avenue, CHE205TampaFL33620-5250USA
| | - Kolade A. Oyekan
- Department of Materials Science & EngineeringUniversity of Texas at DallasRichardsonTX75080USA
| | - Omid T. Qazvini
- Department of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - David G. Madden
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXIreland
| | - Brian Space
- Department of ChemistryUniversity of South Florida4202 East Fowler Avenue, CHE205TampaFL33620-5250USA
- Department of ChemistryNorth Carolina State UniversityUSA
| | - Michael J. Zaworotko
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXIreland
| |
Collapse
|
119
|
Effective Separation of Prime Olefins from Gas Stream Using Anion Pillared Metal Organic Frameworks: Ideal Adsorbed Solution Theory Studies, Cyclic Application and Stability. Catalysts 2021. [DOI: 10.3390/catal11040510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The separation of C3H4/C3H6 is one of the most energy intensive and challenging operations, requiring up to 100 theoretical stages, in traditional cryogenic distillation. In this investigation, the potential application of two MOFs (SIFSIX-3-Ni and NbOFFIVE-1-Ni) was tested by studying the adsorption-desorption behaviors at a range of operational temperatures (300–360 K) and pressures (1–100 kPa). Dynamic adsorption breakthrough tests were conducted and the stability and regeneration ability of the MOFs were established after eight consecutive cycles. In order to establish the engineering key parameters, the experimental data were fitted to four isotherm models (Langmuir, Freundlich, Sips and Toth) in addition to the estimation of the thermodynamic properties such as the isosteric heats of adsorption. The selectivity of the separation was tested by applying ideal adsorbed solution theory (IAST). The results revealed that SIFSIX-3-Ni is an effective adsorbent for the separation of 10/90 v/v C3H4/C3H6 under the range of experimental conditions used in this study. The maximum adsorption reported for the same combination was 3.2 mmol g−1. Breakthrough curves confirmed the suitability of this material for the separation with a 10-min gab before the lighter C3H4 is eluted from the column. The separated C3H6 was obtained with a 99.98% purity.
Collapse
|
120
|
Mukherjee S, Kumar N, Bezrukov AA, Tan K, Pham T, Forrest KA, Oyekan KA, Qazvini OT, Madden DG, Space B, Zaworotko MJ. Amino‐Functionalised Hybrid Ultramicroporous Materials that Enable Single‐Step Ethylene Purification from a Ternary Mixture. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Soumya Mukherjee
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
- Department of Chemistry Technical University of Munich Lichtenbergstraße 4 85748 Garching b. München Germany
| | - Naveen Kumar
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Andrey A. Bezrukov
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Kui Tan
- Department of Materials Science & Engineering University of Texas at Dallas Richardson TX 75080 USA
| | - Tony Pham
- Department of Chemistry University of South Florida 4202 East Fowler Avenue, CHE205 Tampa FL 33620-5250 USA
| | - Katherine A. Forrest
- Department of Chemistry University of South Florida 4202 East Fowler Avenue, CHE205 Tampa FL 33620-5250 USA
| | - Kolade A. Oyekan
- Department of Materials Science & Engineering University of Texas at Dallas Richardson TX 75080 USA
| | - Omid T. Qazvini
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL UK
| | - David G. Madden
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| | - Brian Space
- Department of Chemistry University of South Florida 4202 East Fowler Avenue, CHE205 Tampa FL 33620-5250 USA
- Department of Chemistry North Carolina State University USA
| | - Michael J. Zaworotko
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Ireland
| |
Collapse
|
121
|
Liu RS, Shi XD, Wang CT, Gao YZ, Xu S, Hao GP, Chen S, Lu AH. Advances in Post-Combustion CO 2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice. CHEMSUSCHEM 2021; 14:1428-1471. [PMID: 33403787 DOI: 10.1002/cssc.202002677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption-based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal-organic frameworks (MOFs) and covalent-organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot-scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption-based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes.
Collapse
Affiliation(s)
- Ru-Shuai Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiao-Dong Shi
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Cheng-Tong Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yu-Zhou Gao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shuang Xu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shaoyun Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
122
|
Hazra A, Bonakala S, Adalikwu SA, Balasubramanian S, Maji TK. Fluorocarbon-Functionalized Superhydrophobic Metal-Organic Framework: Enhanced CO 2 Uptake via Photoinduced Postsynthetic Modification. Inorg Chem 2021; 60:3823-3833. [PMID: 33655749 DOI: 10.1021/acs.inorgchem.0c03575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The design and synthesis of porous materials for selective capture of CO2 in the presence of water vapor is of paramount importance in the context of practical separation of CO2 from the flue gas stream. Here, we report the synthesis and structural characterization of a photoresponsive fluorinated MOF {[Cd(bpee)(hfbba)]·EtOH}n (1) constructed by using 4,4'-(hexafluoroisopropylidene)bis(benzoic acid) (hfbba), Cd(NO3)2, and 1,2-bis(4-pyridyl)ethylene (bpee) as building units. Due to the presence of the fluoroalkyl -CF3 functionality, compound 1 exhibits superhydrophobicity, which is validated by both water vapor adsorption and contact angle measurements (152°). The parallel arrangement of the bpee linkers makes compound 1 a photoresponsive material that transforms to {[Cd2(rctt-tpcb)(hfbba)2]·2EtOH}n (rctt-tpcb = regio cis,trans,trans-tetrakis(4-pyridyl)cyclobutane; 1IR) after a [2 + 2] cycloaddition reaction. The photomodified framework 1IR exhibits increased uptake of CO2 in comparison to 1 under ambient conditions due to alteration of the pore surface that leads to additional weak electron donor-acceptor interactions with the -CF3 groups, as examined through periodic density functional theory calculations. The enhanced uptake is also aided by an expansion of the pore window, which contributes to increasing the rotational entropy of CO2, as demonstrated through force field based free energy calculations.
Collapse
Affiliation(s)
- Arpan Hazra
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Satyanarayana Bonakala
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Stephen Adie Adalikwu
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| |
Collapse
|
123
|
Liu S, Han X, Chai Y, Wu G, Li W, Li J, Silva I, Manuel P, Cheng Y, Daemen LL, Ramirez‐Cuesta AJ, Shi W, Guan N, Yang S, Li L. Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite. Angew Chem Int Ed Engl 2021; 60:6526-6532. [DOI: 10.1002/anie.202014680] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/11/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Shanshan Liu
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 China
| | - Xue Han
- Department of Chemistry The University of Manchester Manchester M13 9PL UK
| | - Yuchao Chai
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 China
| | - Guangjun Wu
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 China
| | - Weiyao Li
- Department of Chemistry The University of Manchester Manchester M13 9PL UK
| | - Jiangnan Li
- Department of Chemistry The University of Manchester Manchester M13 9PL UK
| | - Ivan Silva
- ISIS Facility STFC Rutherford Appleton Laboratory Chilton Oxfordshire OX11 0QX UK
| | - Pascal Manuel
- ISIS Facility STFC Rutherford Appleton Laboratory Chilton Oxfordshire OX11 0QX UK
| | - Yongqiang Cheng
- Neutron Scattering Division Neutron Sciences Directorate Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Luke L. Daemen
- Neutron Scattering Division Neutron Sciences Directorate Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Anibal J. Ramirez‐Cuesta
- Neutron Scattering Division Neutron Sciences Directorate Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Wei Shi
- College of Chemistry Nankai University Tianjin 300071 China
| | - Naijia Guan
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 China
| | - Sihai Yang
- Department of Chemistry The University of Manchester Manchester M13 9PL UK
| | - Landong Li
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 China
| |
Collapse
|
124
|
Liu S, Han X, Chai Y, Wu G, Li W, Li J, Silva I, Manuel P, Cheng Y, Daemen LL, Ramirez‐Cuesta AJ, Shi W, Guan N, Yang S, Li L. Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shanshan Liu
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 China
| | - Xue Han
- Department of Chemistry The University of Manchester Manchester M13 9PL UK
| | - Yuchao Chai
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 China
| | - Guangjun Wu
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 China
| | - Weiyao Li
- Department of Chemistry The University of Manchester Manchester M13 9PL UK
| | - Jiangnan Li
- Department of Chemistry The University of Manchester Manchester M13 9PL UK
| | - Ivan Silva
- ISIS Facility STFC Rutherford Appleton Laboratory Chilton Oxfordshire OX11 0QX UK
| | - Pascal Manuel
- ISIS Facility STFC Rutherford Appleton Laboratory Chilton Oxfordshire OX11 0QX UK
| | - Yongqiang Cheng
- Neutron Scattering Division Neutron Sciences Directorate Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Luke L. Daemen
- Neutron Scattering Division Neutron Sciences Directorate Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Anibal J. Ramirez‐Cuesta
- Neutron Scattering Division Neutron Sciences Directorate Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Wei Shi
- College of Chemistry Nankai University Tianjin 300071 China
| | - Naijia Guan
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 China
| | - Sihai Yang
- Department of Chemistry The University of Manchester Manchester M13 9PL UK
| | - Landong Li
- School of Materials Science and Engineering & National Institute for Advanced Materials Nankai University Tianjin 300350 China
| |
Collapse
|
125
|
Evaluation of different potassium salts as activators for hierarchically porous carbons and their applications in CO2 adsorption. J Colloid Interface Sci 2021; 583:40-49. [DOI: 10.1016/j.jcis.2020.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022]
|
126
|
High Purity/Recovery Separation of Propylene from Propyne Using Anion Pillared Metal-Organic Framework: Application of Vacuum Swing Adsorption (VSA). ENERGIES 2021. [DOI: 10.3390/en14030609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Propylene is one of the world’s most important basic olefin raw material used in the production of a vast array of polymers and other chemicals. The need for high purity grade of propylene is essential and traditionally achieved by the very energy-intensive cryogenic separation. In this study, a pillared inorganic anion SIF62− was used as a highly selective C3H4 due to the square grid pyrazine-based structure. Single gas adsorption revealed a very high C3H4 uptake value (3.32, 3.12, 2.97 and 2.43 mmol·g−1 at 300, 320, 340 and 360 K, respectively). The values for propylene for the same temperatures were 2.73, 2.64, 2.31 and 1.84 mmol·g−1, respectively. Experimental results were obtained for the two gases fitted using Langmuir and Toth models. The former had a varied degree of representation of the system with a better presentation of the adsorption of the propylene compared to the propyne system. The Toth model regression offered a better fit of the experimental data over the entire range of pressures. The representation and fitting of the models are important to estimate the energy in the form of the isosteric heats of adsorption (Qst), which were found to be 45 and 30 kJ·Kmol−1 for propyne and propylene, respectively. A Higher Qst value reveals strong interactions between the solid and the gas. The dynamic breakthrough for binary mixtures of C3H4/C3H6 (30:70 v/v)) were established. Heavier propylene molecules were eluted first from the column compared to the lighter propyne. Vacuum swing adsorption was best suited for the application of strongly bound materials in adsorbents. A six-step cycle was used for the recovery of high purity C3H4 and C3H6. The VSA system was tested with respect to changing blowdown time and purge time as well as energy requirements. It was found that the increase in purge time had an appositive effect on C3H6 recovery but reduced productivity and recovery. Accordingly, under the experimental conditions used in this study for VSA, the purge time of 600 s was considered a suitable trade-off time for purging. Recovery up to 99%, purity of 98.5% were achieved at a purge time of 600 s. Maximum achieved purity and recovery were 97.4% and 98.5% at 100 s blowdown time. Energy and power consumption varied between 63–70 kWh/ton at the range of purge and blowdown time used. The VSA offers a trade-off and cost-effective technology for the recovery and separation of olefins and paraffin at low pressure and high purity.
Collapse
|
127
|
Maia RA, Louis B, Gao W, Wang Q. CO2 adsorption mechanisms on MOFs: a case study of open metal sites, ultra-microporosity and flexible framework. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00090j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review the CO2 adsorption mechanisms of MOF-74-Mg, HKUST-1, SIFSIX-3-M, and ZIF-8 are explored, highlighting their preferential adsorption sites, CO2–MOF complex configuration, adsorption dynamics, bonding angle, and water stability.
Collapse
Affiliation(s)
- Renata Avena Maia
- Université de Strasbourg
- Strasbourg
- France
- Université de Strasbourg
- Strasbourg Cedex 2
| | - Benoît Louis
- Université de Strasbourg
- Strasbourg Cedex 2
- France
| | - Wanlin Gao
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Qiang Wang
- College of Environmental Science and Engineering
- Beijing Forestry University
- Beijing 100083
- P. R. China
| |
Collapse
|
128
|
Chen Z, Wasson MC, Drout RJ, Robison L, Idrees KB, Knapp JG, Son FA, Zhang X, Hierse W, Kühn C, Marx S, Hernandez B, Farha OK. The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discuss 2021; 225:9-69. [DOI: 10.1039/d0fd00103a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We provide a brief overview of the state of the MOF field from their inception to their synthesis, potential applications, and finally, to their commercialization.
Collapse
Affiliation(s)
- Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Riki J. Drout
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Lee Robison
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Karam B. Idrees
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Julia G. Knapp
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Florencia A. Son
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
| | | | | | | | | | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology
- Northwestern University
- Evanston
- USA
- Department of Chemical & Biological Engineering
| |
Collapse
|
129
|
Das R, Muthukumar D, Pillai RS, Nagaraja CM. Rational Design of a Zn II MOF with Multiple Functional Sites for Highly Efficient Fixation of CO 2 under Mild Conditions: Combined Experimental and Theoretical Investigation. Chemistry 2020; 26:17445-17454. [PMID: 32767456 DOI: 10.1002/chem.202002688] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/06/2020] [Indexed: 02/06/2023]
Abstract
The development of efficient heterogeneous catalysts suitable for carbon capture and utilization (CCU) under mild conditions is a promising step towards mitigating the growing concentration of CO2 in the atmosphere. Herein, we report the construction of a hydrogen-bonded 3D framework, {[Zn(hfipbba)(MA)]⋅3 DMF}n (hfipbba=4,4'-(hexaflouroisopropylene)bis(benzoic acid)) (HbMOF1) utilizing ZnII center, a partially fluorinated, long-chain dicarboxylate ligand (hfipbba), and an amine-rich melamine (MA) co-ligand. Interestingly, the framework possesses two types of 1D channels decorated with CO2 -philic (-NH2 and -CF3 ) groups that promote the highly selective CO2 adsorption by the framework, which was supported by computational simulations. Further, the synergistic involvement of both Lewis acidic and basic sites exposed in the confined 1D channels along with high thermal and chemical stability rendered HbMOF1 a good heterogeneous catalyst for the highly efficient fixation of CO2 in a reaction with terminal/internal epoxides at mild conditions (RT and 1 bar CO2 ). Moreover, in-depth theoretical studies were carried out using periodic DFT to obtain the relative energies for each stage involved in the catalytic reaction and an insight mechanistic details of the reaction is presented. Overall, this work represents a rare demonstration of rational design of a porous ZnII MOF incorporating multiple functional sites suitable for highly efficient fixation of CO2 with terminal/internal epoxides at mild conditions supported by comprehensive theoretical studies.
Collapse
Affiliation(s)
- Rajesh Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - D Muthukumar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - Renjith S Pillai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Chennai, Tamil Nadu, India
| | - C Mallaiah Nagaraja
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| |
Collapse
|
130
|
Chen H, Yang Z, Do-Thanh CL, Dai S. What Fluorine Can Do in CO 2 Chemistry: Applications from Homogeneous to Heterogeneous Systems. CHEMSUSCHEM 2020; 13:6182-6200. [PMID: 32726509 DOI: 10.1002/cssc.202001638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2020] [Indexed: 06/11/2023]
Abstract
CO2 chemistry including capture and fixation has attracted great attention towards the aim of reducing the consumption of fossil fuels and CO2 accumulation in the atmosphere. "CO2 -philic" materials are required to achieve good performance owing to the intrinsic properties of the CO2 molecule, that is, thermodynamic stability and kinetic inertness. In this respect, fluorinated materials have been deployed in CO2 capture (physical and chemical pathway) or fixation (thermo- and electrocatalytic procedure) with good performances, including homogeneous (e. g., ionic liquids and small organic molecules) and heterogeneous counterparts (e. g., carbons, porous organic polymers, covalent triazine frameworks, metal-organic frameworks, and membranes). In this Minireview, these works are summarized and analyzed from the aspects of (1) the strategy used for fluorine introduction, (2) characterization of the targeted materials, (3) performance of the fluorinated systems in CO2 chemistry, and comparison with the nonfluorinated counterparts, (4) the role of fluorinated functionalities in the working procedure, and (5) the relationship between performance and structural/electronic properties of the materials. The systematic summary in this Minireview will open new opportunities in guiding the design of "CO2 -philic" materials and pave the way to stimulate further progress in this field.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, United States
| | - Zhenzhen Yang
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Chi-Linh Do-Thanh
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, United States
| | - Sheng Dai
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| |
Collapse
|
131
|
Kim S, Yoon TU, Oh KH, Kwak J, Bae YS, Kim M. Positional Installation of Unsymmetrical Fluorine Functionalities onto Metal-Organic Frameworks for Efficient Carbon Dioxide Separation under Humid Conditions. Inorg Chem 2020; 59:18048-18054. [PMID: 33284016 DOI: 10.1021/acs.inorgchem.0c02496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unsymmetrical trifluoro functional groups were installed onto metal-organic frameworks (MOFs) at positions regulated by ligand exchange for efficient CO2 separation under humid conditions. These trifluoro groups induced molecular separation via dipole-dipole interactions. Their installation onto amino-functionalized MOF surfaces produced hydrophobic and CO2-philic core-shell MOFs for efficient CO2 adsorption.
Collapse
Affiliation(s)
- Seongwoo Kim
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Tae-Ung Yoon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kwang Hyun Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jaesung Kwak
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Youn-Sang Bae
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| |
Collapse
|
132
|
Wang J, Wang F, Duan H, Li Y, Xu J, Huang Y, Liu B, Zhang T. Polyvinyl Chloride-Derived Carbon Spheres for CO 2 Adsorption. CHEMSUSCHEM 2020; 13:6426-6432. [PMID: 33047881 DOI: 10.1002/cssc.202002230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Polyvinyl chloride (PVC) is the world's third-most widely produced plastic polymer. Directly transforming PVC to carbonaceous materials for CO2 capture provides an environmentally friendly and attractive strategy to recycle plastics. In this work, a simple and effective method was developed to prepare PVC-derived carbon spheres. In this method, the classical "spheroidization" process shaped the original PVC powders into millimeter spheres, and a special dehalogenation and cross-linking process in the presence of a phase-transfer catalyst transferred the thermoplasticity of the PVC-spheres into thermosetting, which stabilized the shape. Furthermore, by rationally adjusting the activation conditions, the porous structure of the carbon spheres was well optimized. With a specific surface area up to 1738 m2 g-1 and the developed microporous structure, the as-prepared carbon spheres showed not only excellent performance in pure CO2 adsorption (8.93 mmol g-1 , 39.3 wt% at 0 °C and 5.47 mmol g-1 , 24.1 wt% at 25 °C), but also outstanding adsorption capacity and recyclability in low-concentration CO2 capture, even superior to conventional molecular sieves.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fanan Wang
- Fujian Eco-materials Engineering Research Center, Fujian University of Technology, Fuzhou, 350118, P. R. China
| | - Hongmin Duan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| | - Yang Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinming Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| |
Collapse
|
133
|
|
134
|
Li J, Bhatt PM, Li J, Eddaoudi M, Liu Y. Recent Progress on Microfine Design of Metal-Organic Frameworks: Structure Regulation and Gas Sorption and Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002563. [PMID: 32671894 DOI: 10.1002/adma.202002563] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Indexed: 05/18/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as an important and unique class of functional crystalline hybrid porous materials in the past two decades. Due to their modular structures and adjustable pore system, such distinctive materials have exhibited remarkable prospects in key applications pertaining to adsorption such as gas storage, gas and liquid separations, and trace impurity removal. Evidently, gaining a better understanding of the structure-property relationship offers great potential for the enhancement of a given associated MOF property either by structural adjustments via isoreticular chemistry or by the design and construction of new MOF structures via the practice of reticular chemistry. Correspondingly, the application of isoreticular chemistry paves the way for the microfine design and structure regulation of presented MOFs. Explicitly, the microfine tuning is mainly based on known MOF platforms, focusing on the modification and/or functionalization of a precise part of the MOF structure or pore system, thus providing an effective approach to produce richer pore systems with enhanced performances from a limited number of MOF platforms. Here, the latest progress in this field is highlighted by emphasizing the differences and connections between various methods. Finally, the challenges together with prospects are also discussed.
Collapse
Affiliation(s)
- Jiantang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Functional Materials Design, Discovery & Development (FMD3), Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Prashant M Bhatt
- Functional Materials Design, Discovery & Development (FMD3), Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery & Development (FMD3), Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
135
|
Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213485] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
136
|
Wang G, Graham E, Zheng S, Zhu J, Zhu R, He H, Sun Z, Mackinnon IDR, Xi Y. Diatomite-Metal-Organic Framework Composite with Hierarchical Pore Structures for Adsorption/Desorption of Hydrogen, Carbon Dioxide and Water Vapor. MATERIALS 2020; 13:ma13214700. [PMID: 33105589 PMCID: PMC7659967 DOI: 10.3390/ma13214700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022]
Abstract
Distinctive Cr-MOF@Da composites have been constructed using chromium-based metal-organic frameworks (MOFs) and diatomite (Da). The new materials have hierarchical pore structures containing micropores, mesopores and macropores. We have synthesized various morphologies of the MOF compound Cr-MIL-101 to combine with Da in a one-pot reaction step. These distinctive hierarchical pore networks within Cr-MIL-101@Da enable exceptional adsorptive performance for a range of molecules, including hydrogen (H2), carbon dioxide (CO2) and water (H2O) vapor. Selectivity for H2 or CO2 can be moderated by the morphology and composition of the Cr-MIL-101 included in the Cr-MOF@Da composite. The encapsulation and growth of Cr-MIL-101 within and on Da have resulted in excellent water retention as well as high thermal and hydrolytic stability. In some cases, Cr-MIL-101@Da composite materials have demonstrated increased thermal stability compared with that of Cr-MIL-101; for example, decomposition temperatures >340 ℃ can be achieved. Furthermore, these Cr-MIL-101@Da composites retain structural and morphological integrity after 60 cycles of repeated hydration/dehydration, and after storage for more than one year. These characteristics are difficult to achieve with many MOF materials, and thus suggest that MOF–mineral composites show high potential for practical gas storage and water vapor capture.
Collapse
Affiliation(s)
- Gaofeng Wang
- Institute for Future Environments and Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia; (G.W.); (I.D.R.M.)
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research and Development, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; (E.G.); (J.Z.); (R.Z.); (H.H.)
| | - Elizabeth Graham
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research and Development, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; (E.G.); (J.Z.); (R.Z.); (H.H.)
| | - Shuilin Zheng
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China; (S.Z.); (Z.S.)
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research and Development, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; (E.G.); (J.Z.); (R.Z.); (H.H.)
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research and Development, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; (E.G.); (J.Z.); (R.Z.); (H.H.)
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Material Research and Development, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; (E.G.); (J.Z.); (R.Z.); (H.H.)
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China; (S.Z.); (Z.S.)
| | - Ian D. R. Mackinnon
- Institute for Future Environments and Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia; (G.W.); (I.D.R.M.)
| | - Yunfei Xi
- Institute for Future Environments and Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia; (G.W.); (I.D.R.M.)
- Correspondence: ; Tel.: +61-07-3138-1995
| |
Collapse
|
137
|
Abd AA, Naji SZ, Hashim AS, Othman MR. Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: A review. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104142. [DOI: 10.1016/j.jece.2020.104142] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
138
|
Pal A, Chand S, Madden DG, Franz D, Ritter L, Space B, Curtin T, Chand Pal S, Das MC. Immobilization of a Polar Sulfone Moiety onto the Pore Surface of a Humid-Stable MOF for Highly Efficient CO 2 Separation under Dry and Wet Environments through Direct CO 2-Sulfone Interactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41177-41184. [PMID: 32803939 DOI: 10.1021/acsami.0c07380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The stability of microporous metal-organic frameworks (MOFs) in moist environments must be taken into consideration for their practical implementations, which has been largely ignored thus far. Herein, we synthesized a new moisture-stable Zn-MOF, {[Zn2(SDB)2(L)2]·2DMA}n, IITKGP-12, by utilizing a bent organic linker 4,4'-sulfonyldibenzoic acid (H2SDB) containing a polar sulfone group (-SO2) and a N, N-donor spacer (L) with a Brunauer-Emmett-Teller surface area of 216 m2 g-1. This material displays greater CO2 adsorption capacity over N2 and CH4 with high IAST selectivity, which is also validated by breakthrough experiments with longer breakthrough times for CO2. Most importantly, the separation performance is largely unaffected in the presence of moisture of simulated flue gas stream. Temperature-programmed desorption (TPD) analysis shows the ease of the regeneration process, and the performance was verified for multiple cycles. In order to understand the structure-function relationship at the atomistic level, grand canonical Monte Carlo (GCMC) calculation was performed, indicating that the primary binding site for CO2 is between the sulfone moieties in IITKGP-12. CO2 is attracted to the bonded structure (V-shape) of the sulfone moieties in a perpendicular fashion, where CCO2 is aligned with S, and the CO2 axis bisects the SO2 axis. Thus, the strategic approach to immobilize the polar sulfone moiety with a high number of inherent stronger M-N coordination and the absence of coordination unsaturation made this MOF potential toward practical CO2 separation applications.
Collapse
Affiliation(s)
- Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - David G Madden
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, U.K
| | - Douglas Franz
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - Logan Ritter
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - Brian Space
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - Teresa Curtin
- Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
139
|
Jin M, Li Y, Gu C, Liu X, Sun L. Tailoring microenvironment of adsorbents to achieve excellent
CO
2
uptakes from wet gases. AIChE J 2020. [DOI: 10.1002/aic.16645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Meng‐Meng Jin
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yu‐Xia Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Chen Gu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Xiao‐Qin Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Lin‐Bing Sun
- State Key Laboratory of Materials‐Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
140
|
Mukherjee S, Sensharma D, Chen KJ, Zaworotko MJ. Crystal engineering of porous coordination networks to enable separation of C2 hydrocarbons. Chem Commun (Camb) 2020; 56:10419-10441. [PMID: 32760960 DOI: 10.1039/d0cc04645k] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Crystal engineering, the field of chemistry that studies the design, properties, and applications of crystals, is exemplified by the emergence over the past thirty years of porous coordination networks (PCNs), including metal-organic frameworks (MOFs) and hybrid coordination networks (HCNs). PCNs have now come of age thanks to their amenability to design from first principles and how this in turn can result in new materials with task-specific features. Herein, we focus upon how control over the pore chemistry and pore size of PCNs has been leveraged to create a new generation of physisorbents for efficient purification of light hydrocarbons (LHs). The impetus for this research comes from the need to address LH purification processes based upon cryogenic separation, distillation, chemisorption or solvent extraction, each of which is energy intensive. Adsorptive separation by physisorbents (in general) and PCNs (in particular) can offer two advantages over these existing approaches: improved energy efficiency; lower plant size/cost. Unfortunately, most existing physisorbents suffer from low uptake and/or poor sorbate selectivity and are therefore unsuitable for trace separations of LHs including the high volume C2 LHs (C2Hx, x = 2, 4, 6). This situation is rapidly changing thanks to PCN sorbents that have set new performance benchmarks for several C2 separations. Herein, we review and analyse PCN sorbents with respect to the supramolecular chemistry of sorbent-sorbate binding and detail the crystal engineering approaches that have enabled the exquisite control over pore size and pore chemistry that affords highly selective binding sites. Whereas the structure-function relationships that have emerged offer important design principles, several development roadblocks remain to be overcome.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland.
| | | | | | | |
Collapse
|
141
|
Madden DG, Albadarin AB, O'Nolan D, Cronin P, Perry JJ, Solomon S, Curtin T, Khraisheh M, Zaworotko MJ, Walker GM. Metal-Organic Material Polymer Coatings for Enhanced Gas Sorption Performance and Hydrolytic Stability under Humid Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33759-33764. [PMID: 32497420 DOI: 10.1021/acsami.0c08078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Physisorbent metal-organic materials (MOMs) have shown benchmark performance for highly selective CO2 capture from bulk and trace gas mixtures. However, gas stream moisture can be detrimental to both adsorbent performance and hydrolytic stability. One of the most effective methods to solve this issue is to transform the adsorbent surface from hydrophilic to hydrophobic. Herein, we present a facile approach for coating MOMs with organic polymers to afford improved hydrophobicity and hydrolytic stability under humid conditions. The impact of gas stream moisture on CO2 capture for the composite materials was found to be negligible under both bulk and trace CO2 capture conditions with significant improvements in regeneration times and energy requirements.
Collapse
Affiliation(s)
- David G Madden
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Ahmad B Albadarin
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Daniel O'Nolan
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Patrick Cronin
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - John J Perry
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Samuel Solomon
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Teresa Curtin
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Gavin M Walker
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
142
|
Wu X, Hong YL, Xu B, Nishiyama Y, Jiang W, Zhu J, Zhang G, Kitagawa S, Horike S. Perfluoroalkyl-Functionalized Covalent Organic Frameworks with Superhydrophobicity for Anhydrous Proton Conduction. J Am Chem Soc 2020; 142:14357-14364. [DOI: 10.1021/jacs.0c06474] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaowei Wu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - You-lee Hong
- RIKEN CLST-JEOL Collaboration Center, Tsurumi,
Yokohama, Kanagawa 230-0045, Japan
| | - Bingqing Xu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Yusuke Nishiyama
- RIKEN CLST-JEOL Collaboration Center, Tsurumi,
Yokohama, Kanagawa 230-0045, Japan
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Wei Jiang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Gen Zhang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | | | - Satoshi Horike
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
143
|
|
144
|
|
145
|
Mukherjee S, Chen S, Bezrukov AA, Mostrom M, Terskikh VV, Franz D, Wang SQ, Kumar A, Chen M, Space B, Huang Y, Zaworotko MJ. Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H 2 by Calcium Trimesate. Angew Chem Int Ed Engl 2020; 59:16188-16194. [PMID: 32449818 DOI: 10.1002/anie.202006414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 12/28/2022]
Abstract
The high energy footprint of commodity gas purification and increasing demand for gases require new approaches to gas separation. Kinetic separation of gas mixtures through molecular sieving can enable separation by molecular size or shape exclusion. Physisorbents must exhibit the right pore diameter to enable separation, but the 0.3-0.4 nm range relevant to small gas molecules is hard to control. Herein, dehydration of the ultramicroporous metal-organic framework Ca-trimesate, Ca(HBTC)⋅H2 O (H3 BTC=trimesic acid), bnn-1-Ca-H2 O, affords a narrow pore variant, Ca(HBTC), bnn-1-Ca. Whereas bnn-1-Ca-H2 O (pore diameter 0.34 nm) exhibits ultra-high CO2 /N2 , CO2 /CH4 , and C2 H2 /C2 H4 binary selectivity, bnn-1-Ca (pore diameter 0.31 nm) offers ideal selectivity for H2 /CO2 and H2 /N2 under cryogenic conditions. Ca-trimesate, the first physisorbent to exhibit H2 sieving under cryogenic conditions, could be a prototype for a general approach to exert precise control over pore diameter in physisorbents.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Shoushun Chen
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland.,Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Andrey A Bezrukov
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Matthew Mostrom
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, FL, 33620-5250, USA
| | - Victor V Terskikh
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Douglas Franz
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, FL, 33620-5250, USA
| | - Shi-Qiang Wang
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Amrit Kumar
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Mansheng Chen
- Key Laboratory of Functional Organometallic Materials, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan, 421008, China
| | - Brian Space
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, FL, 33620-5250, USA
| | - Yining Huang
- Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| |
Collapse
|
146
|
Mukherjee S, Chen S, Bezrukov AA, Mostrom M, Terskikh VV, Franz D, Wang S, Kumar A, Chen M, Space B, Huang Y, Zaworotko MJ. Ultramicropore Engineering by Dehydration to Enable Molecular Sieving of H
2
by Calcium Trimesate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Soumya Mukherjee
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Shoushun Chen
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Republic of Ireland
- Department of Chemistry University of Western Ontario London Ontario N6A 5B7 Canada
| | - Andrey A. Bezrukov
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Matthew Mostrom
- Department of Chemistry University of South Florida 4202 East Fowler Avenue, CHE205 Tampa FL 33620-5250 USA
| | - Victor V. Terskikh
- Department of Chemistry University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Douglas Franz
- Department of Chemistry University of South Florida 4202 East Fowler Avenue, CHE205 Tampa FL 33620-5250 USA
| | - Shi‐Qiang Wang
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Amrit Kumar
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Mansheng Chen
- Key Laboratory of Functional Organometallic Materials College of Chemistry and Materials Science Hengyang Normal University Hengyang Hunan 421008 China
| | - Brian Space
- Department of Chemistry University of South Florida 4202 East Fowler Avenue, CHE205 Tampa FL 33620-5250 USA
| | - Yining Huang
- Department of Chemistry University of Western Ontario London Ontario N6A 5B7 Canada
| | - Michael J. Zaworotko
- Bernal Institute Department of Chemical Sciences University of Limerick Limerick V94 T9PX Republic of Ireland
| |
Collapse
|
147
|
Mukherjee S, Zaworotko MJ. Crystal Engineering of Hybrid Coordination Networks: From Form to Function. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.02.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
148
|
Chand S, Pal A, Saha R, Das P, Sahoo R, Chattaraj PK, Das MC. Two Closely Related Zn(II)-MOFs for Their Large Difference in CO2 Uptake Capacities and Selective CO2 Sorption. Inorg Chem 2020; 59:7056-7066. [DOI: 10.1021/acs.inorgchem.0c00551] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Ranajit Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Prasenjit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Pratim K. Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
- Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Madhab C. Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| |
Collapse
|
149
|
Yuvaraja S, Surya SG, Chernikova V, Vijjapu MT, Shekhah O, Bhatt PM, Chandra S, Eddaoudi M, Salama KN. Realization of an Ultrasensitive and Highly Selective OFET NO 2 Sensor: The Synergistic Combination of PDVT-10 Polymer and Porphyrin-MOF. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18748-18760. [PMID: 32281789 DOI: 10.1021/acsami.0c00803] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Organic field-effect transistors (OFETs) are emerging as competitive candidates for gas sensing applications due to the ease of their fabrication process combined with the ability to readily fine-tune the properties of organic semiconductors. Nevertheless, some key challenges remain to be addressed, such as material degradation, low sensitivity, and poor selectivity toward toxic gases. Appropriately, a heterojunction combination of different sensing layers with multifunctional capabilities offers great potential to overcome these problems. Here, a novel and highly sensitive receptor layer is proposed encompassing a porous 3D metal-organic framework (MOF) based on isostructural-fluorinated MOFs acting as an NO2 specific preconcentrator, on the surface of a stable and ultrathin PDVT-10 organic semiconductor on an OFET platform. Here, with this proposed combination we have unveiled an unprecedented 700% increase in sensitivity toward NO2 analyte in contrast to the pristine PDVT-10. The resultant combination for this OFET device exhibits a remarkable lowest detection limit of 8.25 ppb, a sensitivity of 680 nA/ppb, and good stability over a period of 6 months under normal laboratory conditions. Further, a negligible response (4.232 nA/%RH) toward humidity in the range of 5%-90% relative humidity was demonstrated using this combination. Markedly, the obtained results support the use of the proposed novel strategy to achieve an excellent sensing performance with an OFET platform.
Collapse
Affiliation(s)
- Saravanan Yuvaraja
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sandeep G Surya
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Valeriya Chernikova
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mani Teja Vijjapu
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Prashant M Bhatt
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Suman Chandra
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
150
|
Dai J, Xie D, Liu Y, Zhang Z, Yang Y, Yang Q, Ren Q, Bao Z. Supramolecular Metal–Organic Framework for CO2/CH4 and CO2/N2 Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Juanjuan Dai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Danyan Xie
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
| |
Collapse
|