101
|
West H, Reid GE. Hybrid 213 nm photodissociation of cationized Sterol lipid ions yield [M] +. Radical products for improved structural characterization using multistage tandem mass spectrometry. Anal Chim Acta 2020; 1141:100-109. [PMID: 33248642 DOI: 10.1016/j.aca.2020.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Sterols are a class of lipid molecules that include cholesterol, oxysterols, and sterol esters. Sterol lipids play critical functional roles in mammalian biology, including the dynamic regulation of cell membrane fluidity, as precursors for the synthesis of bile acids, steroid hormones and vitamin D, as regulators of gene expression in lipid metabolism, and for cholesterol transport and storage. The most common method employed for sterol analysis is high performance liquid chromatography coupled with tandem mass spectrometry (MS/MS). However, conventional collision induced dissociation (CID) methods used for ion activation during MS/MS typically fail to provide sufficient structural information for unambiguous assignment of sterol species based on their fragmentation behaviour alone. This places a significant burden on the efficiency of the chromatographic separation methods for the effective separation of isomeric sterols. Here, toward developing an improved analysis strategy for sterol lipids, we have explored the novel use of 213 nm photodissociation MS/MS and hybrid multistage-MS/MS (i.e., MSn) data acquisition approaches for the improved structural characterization of cholesterol, representative isomeric oxysterols, and cholesteryl esters. Most notably, UVPD-MS/MS of ammoniated, lithiated and sodiated adducts of cholesterol, several representative oxysterol species, and an oxosterol lipid, are shown to give rise to abundant [M]+. radical cation products, that subsequently fragment during collision induced MS3 to yield extensive structurally informative product ions, similar to those observed by Electron Ionization, and that enable their unambiguously assignment, including isomeric differentiation of oxysterols. For cholesterol esters, a reversed hybrid collision induced-MS/MS and UVPD-MS3 approach is shown to enable assignment of the sterol backbone, and localization of the site(s) of unsaturation within esterified fatty acyl chains.
Collapse
Affiliation(s)
- Henry West
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia; Bio 21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
102
|
Maddox SW, Olsen SSH, Velosa DC, Burkus-Matesevac A, Peverati R, Chouinard CD. Improved Identification of Isomeric Steroids Using the Paternò-Büchi Reaction with Ion Mobility-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2086-2092. [PMID: 32870679 DOI: 10.1021/jasms.0c00215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Paternò-Büchi (PB) reaction is a common organic reaction in which a carbonyl radical formed by exposure to UV radiation reacts with an alkene to form an oxetane ring. Recent analytical applications of this reaction have included the determination of C═C bond position in lipid fatty acyl tails using tandem mass spectrometry. Our group has recently investigated methods for structurally modifying steroid isomers to improve their identification and resolution using ion mobility spectrometry. Herein, we report the first application of the Paternò-Büchi reaction to form steroid oxetanes using a simple, low-cost, and high efficiency method with a low pressure mercury lamp. This methodology is performed on several endogenous steroid isomers, resulting in unique ion mobility spectra that provide a unique fingerprint for each. These fingerprint spectra can add confidence in identification of those compounds, especially in complex biological matrixes. Testosterone and epitestosterone, an epimer pair commonly interrogated in a number of applications such as for their use as performance enhancing drugs, displayed one and three unique ion mobility peaks, respectively. These spectra and their measured collision cross sections (CCS) allow for unambiguous differentiation of these and several other steroid isomer groups analyzed in this work. Finally, multiple anabolic androgenic steroids prohibited by the World Anti-Doping Agency were tested with this method and resulted in unique CCS for their PB reaction products. This approach can offer improved confidence in their identification as well as for many other banned substances.
Collapse
Affiliation(s)
- Samuel W Maddox
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Stine S H Olsen
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Diana C Velosa
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Aurora Burkus-Matesevac
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Roberto Peverati
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Christopher D Chouinard
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32901, United States
| |
Collapse
|
103
|
Buenger EW, Reid GE. Shedding light on isomeric FAHFA lipid structures using 213 nm ultraviolet photodissociation mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:311-323. [PMID: 32957827 DOI: 10.1177/1469066720960341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) are a recently discovered class of biological active lipids with anti-diabetic and anti-inflammatory functions. Given that structure and function are intimately related, we report here the use of direct infusion multi-stage hybrid tandem mass spectrometry involving sequential Collisional Activated Dissociation (CAD) and 213 nm UltraViolet PhotoDissociation (UVPD), as a novel technique for the unambiguous denovo identification and detailed structural characterisation of FAHFA lipid ions, including determination of the esterified fatty acid identity, the hydroxy fatty acid identity and position of esterification, and localization of the site(s) of endogenous unsaturations, without need for chromatographic separation or authentic reference standards. The utility of this approach is demonstrated for the identification of individual FAHFA lipids introduced to the mass spectrometer in positive ionization mode as their lithiated adducts, as well as from mixtures containing isomeric FAHFA species with differing esterification sites, including those that are not resolved by current liquid chromatography methods.
Collapse
Affiliation(s)
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
104
|
Chintalapudi K, Badu-Tawiah AK. An integrated electrocatalytic nESI-MS platform for quantification of fatty acid isomers directly from untreated biofluids. Chem Sci 2020; 11:9891-9897. [PMID: 34094249 PMCID: PMC8162127 DOI: 10.1039/d0sc03403g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/23/2020] [Indexed: 12/17/2022] Open
Abstract
Positional isomers of alkenes are frequently transparent to the mass spectrometer and it is difficult to provide convincing data to support their presence. This work focuses on the development of a new reactive nano-electrospray ionization (nESI) platform that utilizes non-inert metal electrodes (e.g., Ir and Ru) for rapid detection of fatty acids by mass spectrometry (MS), with concomitant localization of the C[double bond, length as m-dash]C bond to differentiate fatty acid isomers. During the electrospray process, the electrical energy (direct current voltage) is harnessed for in situ oxide formation on the electrode surface via electro-oxidation. The as-formed surface oxides are found to facilitate in situ epoxide formation at the C[double bond, length as m-dash]C bond position and the products are analyzed by MS in real-time. This phenomenon has been applied to analyze isomers of unsaturated fatty acids from complex serum samples, without pre-treatment.
Collapse
Affiliation(s)
- Kavyasree Chintalapudi
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| |
Collapse
|
105
|
Zhao J, Xie X, Lin Q, Ma X, Su P, Xia Y. Next-Generation Paternò–Büchi Reagents for Lipid Analysis by Mass Spectrometry. Anal Chem 2020; 92:13470-13477. [PMID: 32840355 DOI: 10.1021/acs.analchem.0c02896] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaobo Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiaohong Lin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Pei Su
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
106
|
Flores J, White BM, Brea RJ, Baskin JM, Devaraj NK. Lipids: chemical tools for their synthesis, modification, and analysis. Chem Soc Rev 2020; 49:4602-4614. [PMID: 32691785 PMCID: PMC7380508 DOI: 10.1039/d0cs00154f] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipids remain one of the most enigmatic classes of biological molecules. Whereas lipids are well known to form basic units of membrane structure and energy storage, deciphering the exact roles and biological interactions of distinct lipid species has proven elusive. How these building blocks are synthesized, trafficked, and stored are also questions that require closer inspection. This tutorial review covers recent advances on the preparation, derivatization, and analysis of lipids. In particular, we describe several chemical approaches that form part of a powerful toolbox for controlling and characterizing lipid structure. We believe these tools will be helpful in numerous applications, including the study of lipid-protein interactions and the development of novel drug delivery systems.
Collapse
Affiliation(s)
- Judith Flores
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Brittany M White
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
107
|
Xia T, Ren H, Zhang W, Xia Y. Lipidome-wide characterization of phosphatidylinositols and phosphatidylglycerols on CC location level. Anal Chim Acta 2020; 1128:107-115. [PMID: 32825894 DOI: 10.1016/j.aca.2020.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023]
Abstract
Phosphatidylglycerol (PG) and phosphatidylinositol (PI) are two essential classes of glycerophospholipids (GPs), playing versatile roles such as signalling messengers and lipid-protein interaction ligands in cell. Although a majority of PG and PI molecular species contain unsaturated fatty acyl chain(s), conventional tandem mass spectrometry (MS/MS) methods cannot discern isomers different in carbon-carbon double bond (CC) locations. In this work, we paired phosphate methylation with acetone Paternò-Büchi (PB) reaction, aiming to provide a solution for sensitive and structurally informative analysis of these two important classes of GPs down to the location of CC. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow was established. Offline methylated PG or PI mixtures were subjected to hydrophilic interaction chromatographic separation, online acetone PB reaction, and MS/MS via collision-induced dissociation (CID) for CC location determination in positive ion mode. This method was sensitive, offering limit of identification at 5 nM for both PG and PI standards down to CC locations. On molecular species level, 49 PI and 31 PG were identified from bovine liver, while 61 PIs were identified from human plasma. This workflow also enabled ratiometric comparisons of CC location isomers (C18:1 Δ9 vs. Δ11) of a series of PIs from type 2 diabetes (T2D) plasma to that of normal plasma samples. PI 16:0_18:1 and PI 18:0_18:1 were found to exhibit significant changes in CC isomeric ratios between T2D and normal plasma samples. The above results demonstrate that the developed LC-PB-MS/MS workflow is applicable to different classes of lipids and compatible with other established lipid derivatization methods to achieve comprehensive lipid analysis.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hanlin Ren
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenpeng Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China; Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
108
|
Blevins MS, James VK, Herrera CM, Purcell AB, Trent MS, Brodbelt JS. Unsaturation Elements and Other Modifications of Phospholipids in Bacteria: New Insight from Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2020; 92:9146-9155. [PMID: 32479092 PMCID: PMC7384744 DOI: 10.1021/acs.analchem.0c01449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycerophospholipids (GPLs), one of the main components of bacterial cell membranes, exhibit high levels of structural complexity that are directly correlated with biophysical membrane properties such as permeability and fluidity. This structural complexity arises from the substantial variability in the individual GPL structural components such as the acyl chain length and headgroup type and is further amplified by the presence of modifications such as double bonds and cyclopropane rings. Here we use liquid chromatography coupled to high-resolution and high-mass-accuracy ultraviolet photodissociation mass spectrometry for the most in-depth study of bacterial GPL modifications to date. In doing so, we unravel a diverse array of unexplored GPL modifications, ranging from acyl chain hydroxyl groups to novel headgroup structures. Along with characterizing these modifications, we elucidate general trends in bacterial GPL unsaturation elements and thus aim to decipher some of the biochemical pathways of unsaturation incorporation in bacterial GPLs. Finally, we discover aminoacyl-PGs not only in Gram-positive bacteria but also in Gram-negative C. jejuni, advancing our knowledge of the methods of surface charge modulation that Gram-negative organisms may adopt for antibiotic resistance.
Collapse
Affiliation(s)
- Molly S Blevins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Carmen M Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Alexandria B Purcell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
- Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
109
|
Feng G, Hao Y, Wu L, Chen S. A visible-light activated [2 + 2] cycloaddition reaction enables pinpointing carbon-carbon double bonds in lipids. Chem Sci 2020; 11:7244-7251. [PMID: 34123010 PMCID: PMC8159383 DOI: 10.1039/d0sc01149e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
The precise location of C[double bond, length as m-dash]C bonds in bioactive molecules is critical for a deep understanding of the relationship between their structures and biological roles. However, the traditional ultraviolet light-based approaches exhibited great limitations. Here, we discovered a new type of visible-light activated [2 + 2] cycloaddition of carbonyl with C[double bond, length as m-dash]C bonds. We found that carbonyl in anthraquinone showed great reactivities towards C[double bond, length as m-dash]C bonds in lipids to form oxetanes under the irradiation of visible-light. Combined with tandem mass spectrometry, this site-specific dissociation of oxetane enabled precisely locating the C[double bond, length as m-dash]C bonds in various kinds of monounsaturated and polyunsaturated lipids. The proof-of-concept applicability of this new type of [2 + 2] photocycloaddition was validated in the global identification of unsaturated lipids in a complex human serum sample. 86 monounsaturated and polyunsaturated lipids were identified with definitive positions of C[double bond, length as m-dash]C bonds, including phospholipids and fatty acids even with up to 6 C[double bond, length as m-dash]C bonds. This study provides new insights into both the photocycloaddition reactions and the structural lipidomics.
Collapse
Affiliation(s)
- Guifang Feng
- Institute for Advanced Studies, Wuhan University Wuhan Hubei 430072 China
| | - Yanhong Hao
- Institute for Advanced Studies, Wuhan University Wuhan Hubei 430072 China
| | - Liang Wu
- Institute for Advanced Studies, Wuhan University Wuhan Hubei 430072 China
| | - Suming Chen
- Institute for Advanced Studies, Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
110
|
Feider CL, Macias LA, Brodbelt JS, Eberlin LS. Double Bond Characterization of Free Fatty Acids Directly from Biological Tissues by Ultraviolet Photodissociation. Anal Chem 2020; 92:8386-8395. [PMID: 32421308 PMCID: PMC7433749 DOI: 10.1021/acs.analchem.0c00970] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Free fatty acids (FA) are a vital component of cells and are critical to cellular structure and function, so much so that alterations in FA are often associated with cell malfunction and disease. Analysis of FA from biological samples can be achieved by mass spectrometry (MS), but these analyses are often not capable of distinguishing the fine structural alterations within FA isomers and often limited to global profiling of lipids without spatial resolution. Here, we present the use of ultraviolet photodissociation (UVPD) for the characterization of double bond positional isomers of charge inverted dication·FA complexes and the subsequent implementation of this method for online desorption electrospray ionization (DESI) MS imaging of FA isomers from human tissue sections. This method allows relative quantification of FA isomers from heterogeneous biological tissue sections, yielding spatially resolved information about alterations in double bond isomers within these samples. Applying this method to the analysis of the monounsaturated FA 18:1 within breast cancer subtypes uncovered a correlation between double bond positional isomer abundance and the hormone receptor status of the tissue sample, an important factor in the prognosis and treatment of breast cancer patients. This result further validates similar studies that suggest FA synthase activity and FA isomer abundances are significantly altered within breast cancer tissue.
Collapse
Affiliation(s)
- Clara L Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
111
|
Comprehensive Characterization of Phospholipid Isomers in Human Platelets. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00137-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
112
|
Narreddula VR, Sadowski P, Boase NRB, Marshall DL, Poad BLJ, Trevitt AJ, Mitchell TW, Blanksby SJ. Structural elucidation of hydroxy fatty acids by photodissociation mass spectrometry with photolabile derivatives. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8741. [PMID: 32012356 DOI: 10.1002/rcm.8741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Eicosanoids are short-lived bio-responsive lipids produced locally from oxidation of polyunsaturated fatty acids (FAs) via a cascade of enzymatic or free radical reactions. Alterations in the composition and concentration of eicosanoids are indicative of inflammation responses and there is strong interest in developing analytical methods for the sensitive and selective detection of these lipids in biological mixtures. Most eicosanoids are hydroxy FAs (HFAs), which present a particular analytical challenge due to the presence of regioisomers arising from differing locations of hydroxylation and unsaturation within their structures. METHODS In this study, the recently developed derivatization reagent 1-(3-(aminomethyl)-4-iodophenyl)pyridin-1-ium (4-I-AMPP+ ) was applied to a representative set of HFAs including bioactive eicosanoids. Photodissociation (PD) mass spectra obtained at 266 nm of 4-I-AMPP+ -modified HFAs exhibit abundant product ions arising from photolysis of the aryl-iodide bond within the derivative with subsequent migration of the radical to the hydroxyl group promoting fragmentation of the FA chain and facilitating structural assignment. RESULTS Representative polyunsaturated HFAs (from the hydroxyeicosatetraenoic acid and hydroxyeicosapentaenoic acid families) were derivatized with 4-I-AMPP+ and subjected to a reversed-phase liquid chromatography workflow that afforded chromatographic resolution of isomers in conjunction with structurally diagnostic PD mass spectra. CONCLUSIONS PD of these complex HFAs was found to be sensitive to the locations of hydroxyl groups and carbon-carbon double bonds, which are structural properties strongly associated with the biosynthetic origins of these lipid mediators.
Collapse
Affiliation(s)
- Venkateswara R Narreddula
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathan R B Boase
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Adam J Trevitt
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Todd W Mitchell
- School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Stephen J Blanksby
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
113
|
Wang HYJ, Hsu FF. Revelation of Acyl Double Bond Positions on Fatty Acyl Coenzyme A Esters by MALDI/TOF Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1047-1057. [PMID: 32167298 DOI: 10.1021/jasms.9b00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fatty acyl coenzyme A esters (FA-CoAs) are important crossroad intermediates in lipid catabolism and anabolism, and the structures are complicated. Several mass spectrometric approaches have been previously described to elucidate their structures. However, a direct mass spectrometric approach toward a complete identification of the molecule, including the location of unsaturated bond(s) in the fatty acid chain has not been reported. In this study, we applied a simple MALDI/TOF mass spectrometric method to a near-complete characterization of long-chain FA-CoAs, including the location(s) of the double bond in the fatty acyl chain, and the common structural features that recognize FA-CoAs. Negative ion mass spectra of saturated, monounsaturated, and polyunsaturated FA-CoAs were acquired with a MALDI/TOF mass spectrometer using 2,5-dihydroxybenzoic acid as the matrix and ionized with a laser fluence two folds of the threshold to induce the in-source fragmentation (ISF) of the analytes. The resulting ISF spectra contained fragment ions arising from specific cleavages of the C-C bond immediate adjacent to the acyl double-bond. This structural feature affords locating the double-bond position(s) of the fatty acyl substituent. Thereby, positional isomer such as 18:3(n - 3) and 18:3(n - 6) FA-CoA can be differentiated without applying tandem mass spectrometry.
Collapse
Affiliation(s)
- Hay-Yan J Wang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine Box 8127, 660 S Euclid Ave., St. Louis, Missouri 63110, United States
| |
Collapse
|
114
|
Randolph CE, Shenault DM, Blanksby SJ, McLuckey SA. Structural Elucidation of Ether Glycerophospholipids Using Gas-Phase Ion/Ion Charge Inversion Chemistry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1093-1103. [PMID: 32251588 PMCID: PMC7328668 DOI: 10.1021/jasms.0c00025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ether lipids represent a unique subclass of glycerophospholipid (GPL) that possesses a 1-O-alkyl (i.e., plasmanyl subclass) or a 1-O-alk-1'-enyl (i.e., plasmenyl subclass) group linked at the sn-1 position of the glycerol backbone. As changes in ether GPL composition and abundance are associated with numerous human pathologies, analytical strategies capable of providing high-level structural detail are desirable. While mass spectrometry (MS) has emerged as a prominent tool for lipid structural elucidation in biological extracts, distinctions between the various isomeric forms of ether-linked GPLs have remained a significant challenge for tandem MS, principally due to similarities in the conventional tandem mass spectra obtained from the two ether-linked subclasses. To distinguish plasmanyl and plasmenyl GPLs, a multistage (i.e., MSn where n = 3 or 4) mass spectrometric approach reliant on low-energy collision-induced dissociation (CID) is required. While this method facilitates assignment of the sn-1 bond type (i.e., 1-O-alkyl versus 1-O-alk-1'-enyl), a composite distribution of isomers is left unresolved, as carbon-carbon double-bond (C=C) positions cannot be localized in the sn-2 fatty acyl substituent. In this study, we combine a systematic MSn approach with two unique gas-phase charge inversion ion/ion chemistries to elucidate ether GPL structures with high-level detail. Ultimately, we assign both the sn-1 bond type and sites of unsaturation in the sn-2 fatty acyl substituent using an entirely gas-phase MS-based workflow. Application of this workflow to human blood plasma extract permitted isomeric resolution and in-depth structural identification of major and, in some cases, minor isomeric contributors to ether GPLs that have been previously unresolved when examined via conventional methods.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
115
|
Bednařík A, Preisler J, Bezdeková D, Machálková M, Hendrych M, Navrátilová J, Knopfová L, Moskovets E, Soltwisch J, Dreisewerd K. Ozonization of Tissue Sections for MALDI MS Imaging of Carbon-Carbon Double Bond Positional Isomers of Phospholipids. Anal Chem 2020; 92:6245-6250. [PMID: 32286046 DOI: 10.1021/acs.analchem.0c00641] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Visualizing the differential distribution of carbon-carbon double bond (C═C db) positional isomers of unsaturated phospholipids (PL) in tissue sections by use of refined matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) technologies offers a high promise to deeper understand PL metabolism and isomer-specific functions in health and disease. Here we introduce an on-tissue ozonization protocol that enables a particular straightforward derivatization of unsaturated lipids in tissue sections. Collision-induced dissociation (CID) of MALDI-generated ozonide ions (with yields in the several ten percent range) produced the Criegee fragment ion pairs, which are indicative of C═C db position(s). We used our technique for visualizing the differential distribution of Δ9 and Δ11 isomers of phosphatidylcholines in mouse brain and in human colon samples with the desorption laser spot size 15 μm, emphasizing the potential of the technique to expose local isomer-specific metabolism of PLs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jens Soltwisch
- Institute for Hygiene, University of Münster, Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Klaus Dreisewerd
- Institute for Hygiene, University of Münster, Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| |
Collapse
|
116
|
Dazzoni R, Buré C, Morvan E, Grélard A, Gounou C, Schmitter JM, Loquet A, Larijani B, Dufourc EJ. Tandem NMR and Mass Spectrometry Analysis of Human Nuclear Membrane Lipids. Anal Chem 2020; 92:6858-6868. [DOI: 10.1021/acs.analchem.9b05052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Régine Dazzoni
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR 5248, CNRS, Université Bordeaux, Institut National Polytechnique Bordeaux, Pessac F-33600, France
- Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Instituto Biofísika (CSIC, UPV/EHU) and Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Plentzia, Spain
| | - Corinne Buré
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR 5248, CNRS, Université Bordeaux, Institut National Polytechnique Bordeaux, Pessac F-33600, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie, University of Bordeaux, INSERM, CNRS (UMS 3033-US 001), 2 rue Escarpit, Pessac 33600, France
| | - Axelle Grélard
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR 5248, CNRS, Université Bordeaux, Institut National Polytechnique Bordeaux, Pessac F-33600, France
| | - Céline Gounou
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR 5248, CNRS, Université Bordeaux, Institut National Polytechnique Bordeaux, Pessac F-33600, France
| | - Jean-Marie Schmitter
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR 5248, CNRS, Université Bordeaux, Institut National Polytechnique Bordeaux, Pessac F-33600, France
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR 5248, CNRS, Université Bordeaux, Institut National Polytechnique Bordeaux, Pessac F-33600, France
| | - Banafshé Larijani
- Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Instituto Biofísika (CSIC, UPV/EHU) and Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Plentzia, Spain
- Cell Biophysics Laboratory, Centre for Therapeutic Innovation, Department of Pharmacy and Pharmacology, Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Erick J. Dufourc
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR 5248, CNRS, Université Bordeaux, Institut National Polytechnique Bordeaux, Pessac F-33600, France
| |
Collapse
|
117
|
Immunoassay-type biosensor based on magnetic nanoparticle capture and the fluorescence signal formed by horseradish peroxidase catalysis for tumor-related exosome determination. Mikrochim Acta 2020; 187:282. [DOI: 10.1007/s00604-020-04275-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/13/2020] [Indexed: 12/28/2022]
|
118
|
Klein DR, Blevins MS, Macias LA, Douglass MV, Trent MS, Brodbelt JS. Localization of Double Bonds in Bacterial Glycerophospholipids Using 193 nm Ultraviolet Photodissociation in the Negative Mode. Anal Chem 2020; 92:5986-5993. [PMID: 32212719 PMCID: PMC7385702 DOI: 10.1021/acs.analchem.0c00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The need for detailed structural characterization of glycerophospholipids (GPLs) for many types of biologically motivated applications has led to the development of novel mass spectrometry-based methodologies that utilize alternative ion activation methods. Ultraviolet photodissociation (UVPD) has shown great utility for localizing sites of unsaturation within acyl chains and to date has predominantly been used for positive mode analysis of GPLs. In the present work, UVPD is used to localize sites of unsaturation in GPL anions. Similar to UVPD mass spectra of GPL cations, UVPD of deprotonated or formate-adducted GPLs yields diagnostic fragment ions spaced 24 Da apart. This method was integrated into a liquid chromatography workflow and used to evaluate profiles of sites of unsaturation of lipids in Escherichia coli (E. coli) and Acinetobacter baumannii (A. baumannii). When assigning sites of unsaturation, E. coli was found to contain all unsaturation elements at the same position relative to the terminal methyl carbon of the acyl chain; the first carbon participating in a site of unsaturation was consistently seven carbons along the acyl chain when counting carbons from the terminal methyl carbon. GPLs from A. baumannii exhibited more variability in locations of unsaturation. For GPLs containing sites of unsaturation in both acyl chains, an MS3 method was devised to assign sites to specific acyl chains.
Collapse
Affiliation(s)
- Dustin R Klein
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Molly S Blevins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Martin V Douglass
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602, United States
| | - M Stephen Trent
- Department of Infectious Diseases, The University of Georgia, College of Veterinary Medicine, Athens, Georgia 30602, United States
- Department of Microbiology, The University of Georgia, College of Arts and Sciences, Athens, Georgia 30602, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
119
|
Zhang W, Shang B, Ouyang Z, Xia Y. Enhanced Phospholipid Isomer Analysis by Online Photochemical Derivatization and RPLC-MS. Anal Chem 2020; 92:6719-6726. [PMID: 32271544 DOI: 10.1021/acs.analchem.0c00690] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mapping the complete molecular composition of a lipidome is considered an important goal of lipidomics for unraveling pathways and mechanisms behind lipid homeostasis. Conventional dissociation methods of mass spectrometry (MS) usually cannot give detailed structural information on lipids such as locations of carbon-carbon double bonds (C═C) in acyl chains. Double-bond derivatization via the Paternò-Büchi (PB) reaction has been demonstrated as a simple and highly efficient method for identification of C═C locations of different classes of lipids when paired with tandem mass spectrometry (MS/MS). In this work, reversed-phase lipid chromatography (RPLC)-MS was coupled with an online PB reaction to achieve enhanced analysis of isomers and isobars of phospholipids. A new acetone-containing mobile phase was developed that showed good elution performance for the separation of phospholipids by C18 columns. An improved flow microreactor was developed, enabling online derivatization of phospholipid C═C in 20 s. The workflow of RPLC-PB-MS/MS was developed and optimized for identification of C═C locations in isobaric ether-linked and diacyl phospholipids, 13C isobars, and acyl chain isomers in biological lipid extracts. Separation and identification of C═C locations of cis/trans phospholipid isomers were achieved for lipid standards. The incorporation of the PB reaction into the RPLC-MS workflow enabled analysis of phospholipid isomers and isobars with high confidence, demonstrating its potential for high-throughput phospholipid identification from complex mixtures.
Collapse
Affiliation(s)
- Wenpeng Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bing Shang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
120
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
121
|
Bender J, Schmidt C. Mass spectrometry of membrane protein complexes. Biol Chem 2020; 400:813-829. [PMID: 30956223 DOI: 10.1515/hsz-2018-0443] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/25/2019] [Indexed: 12/24/2022]
Abstract
Membrane proteins are key players in the cell. Due to their hydrophobic nature they require solubilising agents such as detergents or membrane mimetics during purification and, consequently, are challenging targets in structural biology. In addition, their natural lipid environment is crucial for their structure and function further hampering their analysis. Alternative approaches are therefore required when the analysis by conventional techniques proves difficult. In this review, we highlight the broad application of mass spectrometry (MS) for the characterisation of membrane proteins and their interactions with lipids. We show that MS unambiguously identifies the protein and lipid components of membrane protein complexes, unravels their three-dimensional arrangements and further provides clues of protein-lipid interactions.
Collapse
Affiliation(s)
- Julian Bender
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Str. 3a, D-06120 Halle, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Str. 3a, D-06120 Halle, Germany
| |
Collapse
|
122
|
Evaluation of ultraviolet photodissociation tandem mass spectrometry for the structural assignment of unsaturated fatty acid double bond positional isomers. Anal Bioanal Chem 2020; 412:2339-2351. [PMID: 32006064 DOI: 10.1007/s00216-020-02446-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Fatty acids are a major source of structural diversity within the lipidome due to variations in their acyl chain lengths, branching, and cyclization, as well as the number, position, and stereochemistry of double bonds within their mono- and poly-unsaturated species. Here, the utility of 193 nm UltraViolet PhotoDissociation tandem mass spectrometry (UVPD-MS/MS) has been evaluated for the detailed structural characterization of a series of unsaturated fatty acid lipid species. UVPD-MS/MS of unsaturated fatty acids is shown to yield pairs of unique diagnostic product ions resulting from cleavages adjacent to their C=C double bonds, enabling unambiguous localization of the site(s) of unsaturation within these lipids. The effect of several experimental variables on the observed fragmentation behaviour and UVPD-MS/MS efficiency, including the position and number of double bonds, the effect of conjugated versus non-conjugated double bonds, the number of laser pulses, and the influence of alkali metal cations (Li, Na, K) as the ionizing adducts, has been evaluated. Importantly, the abundance of the diagnostic ions is shown to enable relative quantitation of mixtures of fatty acid isomers across a range of molar ratios. Finally, the practical application of 193 nm UVPD-MS/MS is demonstrated via characterization of changes in the ratios of fatty acid double bond positional isomers in isogenic colorectal cancer cell lines. This study therefore demonstrates the practicality of UVPD-MS/MS for the structural characterization of fatty acid isomers in lipidome analysis workflows.
Collapse
|
123
|
Cao W, Cheng S, Yang J, Feng J, Zhang W, Li Z, Chen Q, Xia Y, Ouyang Z, Ma X. Large-scale lipid analysis with C=C location and sn-position isomer resolving power. Nat Commun 2020; 11:375. [PMID: 31953382 PMCID: PMC6969141 DOI: 10.1038/s41467-019-14180-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids play a pivotal role in biological processes and lipid analysis by mass spectrometry (MS) has significantly advanced lipidomic studies. While the structure specificity of lipid analysis proves to be critical for studying the biological functions of lipids, current mainstream methods for large-scale lipid analysis can only identify the lipid classes and fatty acyl chains, leaving the C=C location and sn-position unidentified. In this study, combining photochemistry and tandem MS we develop a simple but effective workflow to enable large-scale and near-complete lipid structure characterization with a powerful capability of identifying C=C location(s) and sn-position(s) simultaneously. Quantitation of lipid structure isomers at multiple levels of specificity is achieved and different subtypes of human breast cancer cells are successfully discriminated. Remarkably, human lung cancer tissues can only be distinguished from adjacent normal tissues using quantitative results of both lipid C=C location and sn-position isomers.
Collapse
Affiliation(s)
- Wenbo Cao
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Simin Cheng
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Jing Yang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Jiaxin Feng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenpeng Zhang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Zishuai Li
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei Province, 442000, China
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zheng Ouyang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China.
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Xiaoxiao Ma
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
124
|
Grossert JS, Melanson JE, Ramaley L. Fragmentation Pathways of Cationized, Saturated, Short-Chain Triacylglycerols: Lithiated and Sodiated Tripropanoyl- and Trihexanoylglycerol. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:34-46. [PMID: 32881521 DOI: 10.1021/jasms.9b00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many methods, often depending on tandem mass spectrometry, have been developed for analysis of complex mixtures of triacylglycerols (TAGs), especially in clinical diagnostics and food authentication. Understanding the fragmentation mechanisms of cationized TAGs has proved problematic. To obtain a better understanding of viable mechanisms, detailed studies including double- and triple-stage tandem mass spectrometry were made using electrospray ionization on lithiated and sodiated tripropanoyl- and trihexanoylglycerols. Density functional theory computations, including a functional parameterized for van der Waals interactions, were used to correlate computed energies with mass spectra. Losses of both a neutral salt and a neutral acid corresponding to a glycerol side chain were observed as major product ions in MS2 experiments. Signal intensities at low collision energies correlated well with computed energies. However, an important difference between the lithiated and sodiated ions was the appearance of the sodium cation as a major fragmentation product. Computations on the product ions resulting from the loss of a neutral acid indicated multiple structures for the lithiated ions but mainly a single structure for the sodiated ions. The lithiated product ions could be fragmented further (pseudo-MS3) to give additional structural information, whereas the sodiated ions gave only m/z 23. The longer chain TAG, while giving a much less intense mass spectrum than the shorter chain TAG, gave comparable MS2 and MS3 product ion spectra. Taken together, the spectral and computational work described herein offer a new and detailed pathway for collision-induced fragmentation of lithiated and sodiated saturated TAGs.
Collapse
Affiliation(s)
- J Stuart Grossert
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, NS, Canada B3H 4R2
| | - Jeremy E Melanson
- Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada K1A 0R6
| | - Louis Ramaley
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, NS, Canada B3H 4R2
| |
Collapse
|
125
|
Claes BSR, Takeo E, Fukusaki E, Shimma S, Heeren RMA. Imaging Isomers on a Biological Surface: A Review. Mass Spectrom (Tokyo) 2019; 8:A0078. [PMID: 32158629 PMCID: PMC7035452 DOI: 10.5702/massspectrometry.a0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022] Open
Abstract
Mass spectrometry imaging is an imaging technology that allows the localization and identification of molecules on (biological) sample surfaces. Obtaining the localization of a compound in tissue is of great value in biological research. Yet, the identification of compounds remains a challenge. Mass spectrometry alone, even with high-mass resolution, cannot always distinguish between the subtle structural differences of isomeric compounds. This review discusses recent advances in mass spectrometry imaging of lipids, steroid hormones, amino acids and proteins that allow imaging with isomeric resolution. These improvements in detailed identification can give new insights into the local biological activity of isomers.
Collapse
Affiliation(s)
- Britt S. R. Claes
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University
| | - Emi Takeo
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University
| |
Collapse
|
126
|
Zhao X, Zhang W, Zhang D, Liu X, Cao W, Chen Q, Ouyang Z, Xia Y. A lipidomic workflow capable of resolving sn- and C[double bond, length as m-dash]C location isomers of phosphatidylcholines. Chem Sci 2019; 10:10740-10748. [PMID: 32153749 PMCID: PMC7020929 DOI: 10.1039/c9sc03521d] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/04/2019] [Indexed: 01/01/2023] Open
Abstract
As a major class of mammalian lipids, phosphatidylcholines (PCs) often contain mixtures of structural isomers, resulting from different lipogenesis pathways. Profiling PCs at the isomer level, however, remains challenging in lipidomic settings, especially for characterizing the positions of fatty acyls on the glycerol backbone (sn-positions) and the locations of carbon-carbon double bonds (C[double bond, length as m-dash]Cs) in unsaturated acyl chains. In this work, we have developed a workflow for profiling PCs down to sn- and C[double bond, length as m-dash]C locations at high coverage and sensitivity. This capability is enabled by radical-directed fragmentation, forming sn-1 specific fragment ions upon collision-induced dissociation (CID) of bicarbonate anion adducts of PCs ([M + HCO3]-) inside a mass spectrometer. This new tandem mass spectrometry (MS/MS) method can be simply incorporated into liquid chromatography by employing ammonium bicarbonate in the mobile phase without any instrument modification needed. It is also compatible with the online Paternò-Büchì reaction and subsequent MS/MS for the assignment of C[double bond, length as m-dash]C locations in sn-1 fatty acyl chains of unsaturated PCs. The analytical performance of the workflow is manifested by identification of 82 distinct PC molecular species from the polar extract of bovine liver, including quantification of 19 pairs of sn-isomers. Finally, we demonstrate that five pairs of PC sn-isomers show significant compositional changes in tissue samples of human breast cancer relative to controls, suggesting a potential for monitoring PC sn-isomers for biomedical applications.
Collapse
Affiliation(s)
- Xue Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological , Department of Chemistry , Tsinghua University , Beijing 100084 , China .
| | - Wenpeng Zhang
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments , Department of Precision Instrument , Tsinghua University , Beijing , 100084 , China
| | - Xinwei Liu
- State Key Laboratory of Precision Measurement Technology and Instruments , Department of Precision Instrument , Tsinghua University , Beijing , 100084 , China
| | - Wenbo Cao
- State Key Laboratory of Precision Measurement Technology and Instruments , Department of Precision Instrument , Tsinghua University , Beijing , 100084 , China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital , Hubei University of Medicine , Shiyan , Hubei Province 442000 , China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments , Department of Precision Instrument , Tsinghua University , Beijing , 100084 , China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biological , Department of Chemistry , Tsinghua University , Beijing 100084 , China .
| |
Collapse
|
127
|
Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem 2019; 412:2191-2209. [PMID: 31820027 PMCID: PMC7118050 DOI: 10.1007/s00216-019-02241-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Abstract
Lipids are amongst the most important organic compounds in living organisms, where they serve as building blocks for cellular membranes as well as energy storage and signaling molecules. Lipidomics is the science of the large-scale determination of individual lipid species, and the underlying analytical technology that is used to identify and quantify the lipidome is generally mass spectrometry (MS). This review article provides an overview of the crucial steps in MS-based lipidomics workflows, including sample preparation, either liquid–liquid or solid-phase extraction, derivatization, chromatography, ion-mobility spectrometry, MS, and data processing by various software packages. The associated concepts are discussed from a technical perspective as well as in terms of their application. Furthermore, this article sheds light on recent advances in the technology used in this field and its current limitations. Particular emphasis is placed on data quality assurance and adequate data reporting; some of the most common pitfalls in lipidomics are discussed, along with how to circumvent them.
Collapse
|
128
|
Wang J, Han X. Analytical challenges of shotgun lipidomics at different resolution of measurements. Trends Analyt Chem 2019; 121:115697. [PMID: 32713986 PMCID: PMC7382544 DOI: 10.1016/j.trac.2019.115697] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The essence of shotgun lipidomics is to maintain consistency of the chemical environment of lipid samples during mass spectrometry acquisition. This strategy is suitable for large-scale quantitative analysis. This strategy also allows sufficient time to collect data to improve the signal-to-noise ratio. The initial approach of shotgun lipidomics was the electrospray ionization (ESI)-based direct infusion mass spectrometry strategy. With development of mass spectrometry for small molecules, shotgun lipidomics methods have been extended to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and ambient mass spectrometry, including MS imaging methods. Furthermore, the object of analysis has extended from organ and body fluid levels to tissue and cell levels with technological developments. In this article, we summarize the status and technical challenges of shotgun lipidomics at different resolution of measurements from the mass spectrometry perspective.
Collapse
Affiliation(s)
- Jianing Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
- Department of Medicine – Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
129
|
Zhao X, Chen J, Zhang W, Yang C, Ma X, Zhang S, Zhang X. Lipid Alterations during Zebrafish Embryogenesis Revealed by Dynamic Mass Spectrometry Profiling with C=C Specificity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2646-2654. [PMID: 31628596 DOI: 10.1007/s13361-019-02334-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/24/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Lipids exert substantial influences on vertebrate embryogenesis, but their metabolic dynamics at detailed structural levels remains elusive, primarily owing to the lack of a tool capable of resolving their huge structural diversity. Herein, we present the first large-scale and spatiotemporal monitoring of unsaturated lipids with C=C specificity in single developing zebrafish embryos enabled by photochemical derivatization and tandem mass spectrometry (MS). The lipid isomer composition was found extremely stable in yolk throughout embryogenesis, while notable differences in ratios of C=C location (e.g., PC 16:0_16:1 (7) vs. 16:0_16:1 (9)) and fatty acyl composition isomers (e.g., PC 16:1_18:1 vs. 16:0_18:2) were unveiled between blastomeres and yolk from zygote to 4 h post fertilization (hpf). From 24 hpf onwards, lipid isomer compositions in embryo head and tail evolved distinctively with development, suggesting a meticulously regulated lipid remodeling essential for cell division and differentiation. This work has laid the foundation for functional studies of structurally defined lipids in vertebrate embryology.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jing Chen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weiying Zhang
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chengdui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
130
|
Vvedenskaya O, Wang Y, Ackerman JM, Knittelfelder O, Shevchenko A. Analytical challenges in human plasma lipidomics: A winding path towards the truth. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
131
|
Su Y, Ma X, Page J, Shi R, Xia Y, Ouyang Z. Mapping Lipid C=C Location Isomers in Organ Tissues by Coupling Photochemical Derivatization and Rapid Extractive Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2019; 445:116206. [PMID: 32256186 PMCID: PMC7133712 DOI: 10.1016/j.ijms.2019.116206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lipid desaturation plays important roles in biological processes and the disease states. Here, we report a simple but efficient method for mapping unsaturated phospholipids including the spatial distribution of lipid C=C location isomers in animal organs by coupling the C=C specific derivatization with direct analysis mass spectrometry (MS). Lipids are sampled directly by a stainless-steel wire from rat brain or kidney, extracted, and derivatized via the Paternò-Büchi reaction in a glass emitter of the nanoelectrospray ionization (nanoESI) source. Subsequent analysis by nanoESI-tandem mass spectrometry reveals C=C locations and relative quantities of lipid C=C location isomers. Unsaturated lipids, such as phospholipids and free fatty acids, have been identified with ion intensities spanning two orders of magnitude in rat brain. Typical sample consumption is less than 10 μg/measurement and the time for each analysis is about 3 min. This method should serve as a complementary method to high spatial resolution mass spectrometry imaging techniques, because it offers a streamlined experimental workflow for rapid profiling of lipids with C=C specificity to enable such applications as point-of-care disease diagnostics.
Collapse
Affiliation(s)
- Yuan Su
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Jessica Page
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
132
|
Advances in mass spectrometry imaging enabling observation of localised lipid biochemistry within tissues. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
133
|
Wei F, Lamichhane S, Orešič M, Hyötyläinen T. Lipidomes in health and disease: Analytical strategies and considerations. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
134
|
Lee TH, Hofferek V, Separovic F, Reid GE, Aguilar MI. The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance. Curr Opin Chem Biol 2019; 52:85-92. [DOI: 10.1016/j.cbpa.2019.05.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022]
|
135
|
Macias LA, Feider CL, Eberlin LS, Brodbelt JS. Hybrid 193 nm Ultraviolet Photodissociation Mass Spectrometry Localizes Cardiolipin Unsaturations. Anal Chem 2019; 91:12509-12516. [PMID: 31490676 DOI: 10.1021/acs.analchem.9b03278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Developing alternative MS/MS strategies to distinguish isomeric lipids has become a high impact goal in shotgun lipidomics. Novel approaches have been developed to resolve structural features that are not discernible by traditional shotgun methods and have consequently promoted the discovery of new disease biomarkers. However, these methods have largely been limited to characterizing lipids with low structural complexity. Here, ultraviolet photodissociation (UVPD) strategies for phospholipid characterization are expanded for analysis of cardiolipins (CL), a class of phospholipids that exhibits a higher degree of structural complexity. A hybrid collision induced dissociation/193 nm UVPD (CID/UVPD) approach was implemented to pinpoint the location of both double bond and cyclopropyl unsaturations on the four acyl chains of CLs. This strategy was complemented with CID for the de novo elucidation of unknown CLs in biological extracts.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Clara L Feider
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Livia S Eberlin
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| |
Collapse
|
136
|
Schuhmann K, Moon H, Thomas H, Ackerman JM, Groessl M, Wagner N, Kellmann M, Henry I, Nadler A, Shevchenko A. Quantitative Fragmentation Model for Bottom-Up Shotgun Lipidomics. Anal Chem 2019; 91:12085-12093. [PMID: 31441640 PMCID: PMC6751524 DOI: 10.1021/acs.analchem.9b03270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023]
Abstract
Quantitative bottom-up shotgun lipidomics relies on molecular species-specific "signature" fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards.
Collapse
Affiliation(s)
- Kai Schuhmann
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - HongKee Moon
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Henrik Thomas
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Jacobo Miranda Ackerman
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Michael Groessl
- Department
of Nephrology and Hypertension, Inselspital,
Bern University Hospital, Freiburgstr. 15, 3010 Bern, Switzerland
- Department
for BioMedical Research, University of Bern, Murtenstr. 35, 3010 Bern, Switzerland
| | - Nicolai Wagner
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Markus Kellmann
- Thermo
Fisher Scientific, Hanna-Kunath-Str.
11, 28199 Bremen, Germany
| | - Ian Henry
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - André Nadler
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
137
|
Mukherjee S, Fang M, Kok WM, Kapp EA, Thombare VJ, Huguet R, Hutton CA, Reid GE, Roberts BR. Establishing Signature Fragments for Identification and Sequencing of Dityrosine Cross-Linked Peptides Using Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2019; 91:12129-12133. [DOI: 10.1021/acs.analchem.9b02986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Soumya Mukherjee
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mengxuan Fang
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - W. Mei Kok
- University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Eugene A. Kapp
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Varsha J. Thombare
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Romain Huguet
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Craig A. Hutton
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Gavin E. Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Blaine R. Roberts
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
138
|
Marshall DL, Criscuolo A, Young RSE, Poad BLJ, Zeller M, Reid GE, Mitchell TW, Blanksby SJ. Mapping Unsaturation in Human Plasma Lipids by Data-Independent Ozone-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1621-1630. [PMID: 31222675 DOI: 10.1007/s13361-019-02261-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Over 1500 different lipids have been reported in human plasma at the sum composition level. Yet the number of unique lipids present is surely higher, once isomeric contributions from double bond location(s) and fatty acyl regiochemistry are considered. In order to resolve this ambiguity, herein, we describe the incorporation of ozone-induced dissociation (OzID) into data-independent shotgun lipidomics workflows on a high-resolution hybrid quadrupole-Orbitrap platform. In this configuration, [M + Na]+ ions generated by electrospray ionization of a plasma lipid extract were transmitted through the quadrupole in 1 Da segments. Reaction of mass-selected lipid ions with ozone in the octopole collision cell yielded diagnostic ions for each double bond position. The increased ozone concentration in this region significantly improved ozonolysis efficiency compared with prior implementations on linear ion-trap devices. This advancement translates into increased lipidome coverage and improvements in duty cycle for data-independent MS/MS analysis using shotgun workflows. Grouping all precursor ions with a common OzID neutral loss enables straightforward classification of the lipidome by unsaturation position (with respect to the methyl terminus). Two-dimensional maps obtained from this analysis provide a powerful visualization of structurally related lipids and lipid isomer families within plasma. Global profiling of lipid unsaturation in plasma extracts reveals that most unsaturated lipids are present as isomeric mixtures. These new insights provide a unique picture of underlying metabolism that could in the future provide novel indicators of health and disease.
Collapse
Affiliation(s)
- David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| | - Angela Criscuolo
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199, Bremen, Germany
| | - Reuben S E Young
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Martin Zeller
- Thermo Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199, Bremen, Germany
| | - Gavin E Reid
- School of Chemistry, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Todd W Mitchell
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
139
|
Kuo TH, Chung HH, Chang HY, Lin CW, Wang MY, Shen TL, Hsu CC. Deep Lipidomics and Molecular Imaging of Unsaturated Lipid Isomers: A Universal Strategy Initiated by mCPBA Epoxidation. Anal Chem 2019; 91:11905-11915. [DOI: 10.1021/acs.analchem.9b02667] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | - Ming-Yang Wang
- National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan
| | | | | |
Collapse
|
140
|
Wäldchen F, Spengler B, Heiles S. Reactive Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Using an Intrinsically Photoreactive Paternò-Büchi Matrix for Double-Bond Localization in Isomeric Phospholipids. J Am Chem Soc 2019; 141:11816-11820. [PMID: 31318556 DOI: 10.1021/jacs.9b05868] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The location and identity of phospholipids (PLs) within tissues can serve as diagnostic markers for tissue types or diseases. Whereas mass spectrometry imaging (MSI) has emerged as a powerful bioanalytical tool to visualize PL distributions, inferring PL identities from MSI experiments is challenging. Especially, C═C double-bond (DB) positions are not identifiable in most MSI experiments. Herein, we introduce benzophenone (BPh) as a novel reactive matrix for matrix-assisted laser desorption/ionization (MALDI). BPh promotes desorption/ionization and simultaneously serves as derivatization reagent that allows functionalization of unsaturated PLs during the MALDI process via a laser-light driven Paternò-Büchi (PB) reaction without the need for additional equipment. Using BPh, PB product ions of numerous PL classes are readily generated to pinpoint the location of DBs. High lateral resolution MSI results of DB-position isomers are presented, highlighting the capabilities of BPh as a PB-reactive MALDI matrix to potentially unveil the impact of DB-position isomers in PL metabolism.
Collapse
Affiliation(s)
- Fabian Wäldchen
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry , Justus Liebig University Giessen , Heinrich Buff Ring 17 , 35392 Giessen , Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry , Justus Liebig University Giessen , Heinrich Buff Ring 17 , 35392 Giessen , Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry , Justus Liebig University Giessen , Heinrich Buff Ring 17 , 35392 Giessen , Germany
| |
Collapse
|
141
|
Narreddula VR, Boase NR, Ailuri R, Marshall DL, Poad BL, Kelso MJ, Trevitt AJ, Mitchell TW, Blanksby SJ. Introduction of a Fixed-Charge, Photolabile Derivative for Enhanced Structural Elucidation of Fatty Acids. Anal Chem 2019; 91:9901-9909. [DOI: 10.1021/acs.analchem.9b01566] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Venkateswara R. Narreddula
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Nathan R. Boase
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ramesh Ailuri
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - David L. Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Berwyck L.J. Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Michael J. Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Adam J. Trevitt
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Todd W. Mitchell
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Stephen J. Blanksby
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
142
|
Frick M, Schmidt C. Mass spectrometry—A versatile tool for characterising the lipid environment of membrane protein assemblies. Chem Phys Lipids 2019; 221:145-157. [DOI: 10.1016/j.chemphyslip.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023]
|
143
|
Mishra VK, Buter J, Blevins MS, Witte MD, Van Rhijn I, Moody DB, Brodbelt JS, Minnaard AJ. Total Synthesis of an Immunogenic Trehalose Phospholipid from Salmonella Typhi and Elucidation of Its sn-Regiochemistry by Mass Spectrometry. Org Lett 2019; 21:5126-5131. [PMID: 31247773 PMCID: PMC6614791 DOI: 10.1021/acs.orglett.9b01725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Diphosphatidyltrehalose (diPT) is an immunogenic glycolipid, recently isolated from Salmonella Typhi. Despite rigorous structure elucidation, the sn-position of the acyl chains on the glycerol backbone had not been unequivocally established. A stereoselective synthesis of diPT and its regioisomer is reported herein. Using a hybrid MS3 approach combining collisional dissociation and ultraviolet photodissociation mass spectrometry for analysis of the regioisomers and natural diPT, the regiochemistry of the acyl chains of this abundant immunostimulatory glycolipid was established.
Collapse
Affiliation(s)
- Vivek K Mishra
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Molly S Blevins
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Martin D Witte
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| | - Ildiko Van Rhijn
- Department of Infectious Diseases and Immunology, School of Veterinary Medicine , Utrecht University , 3584 CL Utrecht , The Netherlands.,Department of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - D Branch Moody
- Department of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , University of Texas , Austin , Texas 78712 , United States
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands
| |
Collapse
|
144
|
Colsch B, Damont A, Junot C, Fenaille F, Tabet JC. Experimental evidence that electrospray-produced sodiated lysophosphatidyl ester structures exist essentially as protonated salts. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:333-338. [PMID: 30909743 DOI: 10.1177/1469066719838924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sodiated lysoglycerophosphatidylethanolamine (LGPE) and lysoglycerophosphatidylcholine (LGPC) species dissociate under low collision energy by covalent bond cleavage resulting in product ions with either sodium retention or without sodium retention. For explaining these fragmentations, sodium chelation by heteroatoms (as charge-solvated structures) is often considered, and consequently, under keV collision conditions, sodium is "spectator" of cleavages (charge remote fragmentation). However, cleavage of such charge-solvated forms under low-energy conditions should result in sodium desolvation rather than covalent bond cleavage. In the present study, protonated salts are proposed as the main representative structures of the sodiated LGPE and LGPC forms. These structures are generated from sodiation of zwitterionic and betaine forms of LGPE and LGPC molecules, respectively. Experimental evidence to determine which structure is involved in the dissociations is provided, especially by comparing the dissociation of LGPL sodiated forms with that of sodiated polyethylene glycols. Energy-resolved mass spectrometry breakdown experiments were performed on a quadrupole time-of-flight instrument to demonstrate that both LGPE and LGPC sodiated forms exist as protonated salt structures. From such structures, proton migration by prototropy can result in different bond cleavages whereas the salt moiety remains spectator of these processes.
Collapse
Affiliation(s)
- Benoit Colsch
- 1 CEA-INRA UMR 0496, DRF/Institut Joliot/SPI, Université Paris-Saclay, MetaboHUB, France
| | - Annelaure Damont
- 1 CEA-INRA UMR 0496, DRF/Institut Joliot/SPI, Université Paris-Saclay, MetaboHUB, France
| | - Christophe Junot
- 1 CEA-INRA UMR 0496, DRF/Institut Joliot/SPI, Université Paris-Saclay, MetaboHUB, France
| | - François Fenaille
- 1 CEA-INRA UMR 0496, DRF/Institut Joliot/SPI, Université Paris-Saclay, MetaboHUB, France
| | - Jean-Claude Tabet
- 1 CEA-INRA UMR 0496, DRF/Institut Joliot/SPI, Université Paris-Saclay, MetaboHUB, France
- 2 Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Paris, France
| |
Collapse
|
145
|
Blevins MS, Klein DR, Brodbelt JS. Localization of Cyclopropane Modifications in Bacterial Lipids via 213 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2019; 91:6820-6828. [PMID: 31026154 PMCID: PMC6628200 DOI: 10.1021/acs.analchem.9b01038] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Subtle structural features in bacterial lipids such as unsaturation elements can have vast biological implications. Cyclopropane rings have been correlated with tolerance to a number of adverse conditions in bacterial phospholipids. They have also been shown to play a major role in Mycobacterium tuberculosis ( M. tuberculosis or Mtb) pathogenesis as they occur in mycolic acids (MAs) in the mycobacterial cell. Traditional collisional activation methods allow elucidation of basic structural features of lipids but fail to reveal the presence and position of cyclopropane rings. Here, we employ 213 nm ultraviolet photodissociation mass spectrometry (UVPD-MS) for structural characterization of cyclopropane rings in bacterial phospholipids and MAs. Upon UVPD, dual cross-ring C-C cleavages on both sides of the cyclopropane ring are observed for cyclopropyl lipids, resulting in diagnostic pairs of fragment ions spaced 14 Da apart, thus enabling cyclopropane localization. These diagnostic pairs of ions corresponding to dual cross-ring cleavage are observed in both negative and positive ion modes and afford localization of multiple cyclopropane rings within a single lipid. This method was integrated with liquid chromatography (LC) for LC/UVPD-MS analysis of cyclopropyl glycerophospholipids in Escherichia coli ( E. coli) and for analysis of MAs in Mycobacterium bovis ( M. bovis) and M. tuberculosis lipid extracts.
Collapse
Affiliation(s)
- Molly S. Blevins
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, United States
| | - Dustin R. Klein
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
146
|
Porta Siegel T, Ekroos K, Ellis SR. Reshaping Lipid Biochemistry by Pushing Barriers in Structural Lipidomics. Angew Chem Int Ed Engl 2019; 58:6492-6501. [PMID: 30601602 PMCID: PMC6563696 DOI: 10.1002/anie.201812698] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 12/14/2022]
Abstract
Lipidomics is a rapidly growing field with numerous examples showing the importance of lipid molecules throughout biology. It has also shed light onto the vast and complex functions performed by many lipids that possess an immense diversity in molecular structures. Mass spectrometry (MS) is the tool of choice for analyzing lipids and has been the key catalyst driving the field forward. However, MS does not yet permit true molecular lipidomics wherein the identification and quantification of lipids having defined molecular structures can be routinely achieved. Here we describe recent advances in MS-based lipidomics that allow access to higher levels of molecular information in lipidomics experiments. These advances will form a key piece of the puzzle as the field moves towards systems characterization of lipids at the molecular level.
Collapse
Affiliation(s)
- Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging (M4I) instituteDivision of Imaging Mass SpectrometryMaastricht UniversityUniversiteitssingel 506229 ERMaastrichtThe Netherlands
| | | | - Shane R. Ellis
- Maastricht MultiModal Molecular Imaging (M4I) instituteDivision of Imaging Mass SpectrometryMaastricht UniversityUniversiteitssingel 506229 ERMaastrichtThe Netherlands
| |
Collapse
|
147
|
Xie X, Xia Y. Analysis of Conjugated Fatty Acid Isomers by the Paternò-Büchi Reaction and Trapped Ion Mobility Mass Spectrometry. Anal Chem 2019; 91:7173-7180. [DOI: 10.1021/acs.analchem.9b00374] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaobo Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
148
|
Zhang W, Chiang S, Li Z, Chen Q, Xia Y, Ouyang Z. A Polymer Coating Transfer Enrichment Method for Direct Mass Spectrometry Analysis of Lipids in Biofluid Samples. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua University Beijing 100084 China
- Department of Chemistry and Weldon School of Biomedical EngineeringPurdue University West Lafayette IN 47907 USA
| | - Spencer Chiang
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua University Beijing 100084 China
- Department of Chemistry and Weldon School of Biomedical EngineeringPurdue University West Lafayette IN 47907 USA
| | - Zishuai Li
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua University Beijing 100084 China
| | - Qinhua Chen
- Affiliated Dongfeng HospitalHubei University of Medicine Shiyan 442000 China
| | - Yu Xia
- Department of ChemistryTsinghua University Beijing 100084 China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua University Beijing 100084 China
- Department of Chemistry and Weldon School of Biomedical EngineeringPurdue University West Lafayette IN 47907 USA
| |
Collapse
|
149
|
Zhang W, Chiang S, Li Z, Chen Q, Xia Y, Ouyang Z. A Polymer Coating Transfer Enrichment Method for Direct Mass Spectrometry Analysis of Lipids in Biofluid Samples. Angew Chem Int Ed Engl 2019; 58:6064-6069. [PMID: 30805967 DOI: 10.1002/anie.201900011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/16/2019] [Indexed: 12/17/2022]
Abstract
A porous polymer coating transfer enrichment method is developed for the direct mass spectrometry (MS) analysis of lipids. The enrichment is fast (ca. 1 min) and enables the profiling and quantitation of lipids in small-volume biofluid samples. Coupled with a photochemical Paternò-Büchi reaction, this method enables the fast determination of lipid structure at the C=C location level and point-of-care lipid biomarker analysis.
Collapse
Affiliation(s)
- Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.,Department of Chemistry and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Spencer Chiang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.,Department of Chemistry and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Zishuai Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.,Department of Chemistry and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
150
|
Porta Siegel T, Ekroos K, Ellis SR. Reshaping Lipid Biochemistry by Pushing Barriers in Structural Lipidomics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging (M4I) instituteDivision of Imaging Mass SpectrometryMaastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
| | | | - Shane R. Ellis
- Maastricht MultiModal Molecular Imaging (M4I) instituteDivision of Imaging Mass SpectrometryMaastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
| |
Collapse
|